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ABSTRACT 

Pressure pulsations and mechanical vibrations in pipe systems may cause excessive noise 

and may even lead to damage of piping or machinery. The excitation mechanism can be 

hydraulic or mechanical. In fluid-filled pipe systems pulsations and vibrations will be 

strongly coupled. In the present study calculation and measurement methods have been 

developed for the analysis of vibrations and pulsations in fluid-filled pipe systems, taking 

fluid-structure interaction into account. 

A calculation model has been developed for the simulation of pulsations and vibra­

tions in fluid-filled pipe systems. The analytical model is based on the transfer matrix 

method. It describes pressure waves in the fluid and axial extensional waves, bending 

waves and torsional waves in the pipes. Fluid pulsations and mechanical vibrations are 

coupled at discontinuities (like elbows and T-junctions) and via Poisson contraction of the 

pipe wall. For a given source description the model calculates pulsation and vibrations 

levels, but also for example mode shapes and vibro-acoustic energy flow. The practicabili­

ty of the calculation model and the effects of fluid-structure interaction are illustrated by 

calculations for some simple systems. 

Apart from the calculation method, experimental methods have also been develo­

ped. These are indirect methods for the determination of quantities like acoustic source 

strength, acoustical and mechanical impedance and energy flow. These quantities are 

important to diagnose the causes of excessive noise and vibrations and to determine input 

parameters for the calculation model. They are derived from measurements of pipe wall 

accelerations and fluid pressure pulsations, in combination with models for the dynamic 

behaviour of the pipe system. 

The prediction and measurement methods have been tested in experiments on 

simple laboratory test rigs. Measurements have been performed on a straight water-filled 

pipe, on a system of two pipes connected by an elbow and on a system of two pipes and a 

rubber bellows. Generally the results of measurements and calculations agree quite well. 

Deviations can be attributed to an insufficiently accurate modelling of the boundary 

conditions. 

Centrifugal pumps are important sources of pulsations and vibrations in pipe 

systems. Therefore much attention has been given to the testing of an indirect measurement 

method for the characterisation of a centrifugal pump with respect to the generation and 

transmission of fluid pulsations. The transfer matrix of the pump has been determined 

using external fluid excitation. Next, the generation of fluid pulsations is characterised by 

an equivalent source strength vector. In the absence of cavitation it appears that the pump 

generates predominantly fluctuating forces on the fluid. The method that is developed here 

may be used to investigate to what extent the generation of fluid pulsations is influenced 

by the design and the operating condition of the pump. 



SAMENVATTING 

Drukpulsaties en mechanische trillingen in pijpleidingsystemen kunnen geluidsoverlast 

veroorzaken en kunnen zelfs leiden tot beschadiging van pijpen of machines. Het aanstoot­

mechanisme kan zowel van hydraulische als van mechanische aard zijn. Daarbij zullen 

pulsaties en trillingen elkaar in vloeistofgevulde leidingsystemen sterk bei"nvloeden. In het 

hier beschreven onderzoek zijn reken- en meetmethoden ontwikkeld voor het analyseren 

van pulsaties en trillingen in vloeistofgevulde pijpleidingsystemen, waarbij de interactie 

tussen vloeistof en constructie in rekening wordt gebracht. 

Er is een rekenmodel ontwikkeld voor het simuleren van pulsaties en trillingen in 

vloeistofgevulde pijpleidingsystemen. Het analytische rekenmodel is gebaseerd op de 

methode van overdrachtsmatrices. Het beschrijft drukgolven in de vloeistof en axiale 

rekgolven, buiggolven en torsiegolven in de pijpen. Vloeistofpulsaties en mechanische 

trillingen zijn gekoppeld bij discontinui"teiten (zoals bochten en vertakkingen) en via 

dwarscontractie van de pijpwand. Bij een gegeven bronbeschrijving levert het rekenmodel 

pulsatie- en trillingsniveaus, maar ook bijvoorbeeld trilvormen en akoestische energiestro­

men. Het gebruik van het rekenmodel en de effecten van vloeistof-constructie interactie 

worden getoond aan de hand van berekeningen aan enkele eenvoudige systemen. 

Naast de rekenmethode zijn ook experimenteIe methoden ontwikkeld. Het betreft 

hier indirecte methoden voor het bepalen van grootheden zoals akoestische bronsterkte, 

akoestische en mechanische impedantie en energiestroom. Deze grootheden zijn een 

belangrijk hulpmiddel bij het opsporen van de oorzaken van geluid- of trilIingsoveriast en 

bij het bepalen van invoergegevens voor het rekenmodel. Ze worden afgeleid uit metingen 

van versnelling van de pijpwand en drukpulsaties in de vloeistof, in combinatie met 

modellen voor het dynamische gedrag van het pijpleidingsysteem. 

De reken- en meetmethoden zijn getoetst aan de hand van experimenten aan 

eenvoudige laboratoriumopstellingen. Er zijn metingen verricht aan een rechte pijp gevuld 

met water, twee pijpen verbonden via een bocht en een systeem van twee pijpen met een 

rubberbalg. Over het algemeen komen de resuItaten van metingen en berekeningen 

behoorlijk goed overeen. Afwijkingen kunnen worden toegeschreven aan een onvoldoende 

nauwkeurige beschrijving van de randvoorwaarden. 

Centrifugaalpompen vormen een belangrijke bron van drukpulsaties en trillingen in 

pijpleidingsystemen. Daarom is uitgebreid aandacht be steed aan het toetsen van een 

indirecte meetmethode voor het karakteriseren van een centrifugaalpomp met betrekking tot 

de opwekking en transmissie van vloeistofpulsaties. De overdrachtsmatrix van de pomp is 

bepaald met behulp van externe vloeistofaanstoting. De opwekking van vloeistofpulsaties 

in de pomp is vervolgens gekarakteriseerd door middel van een equivalente bronsterktevec­

tor. Bij afwezigheid van cavitatie in de pomp blijkt deze vooral wisselkrachten op de 

vloeistof uit te oefenen. Met behulp van de hier ontwikkelde methode kan worden onder­

zocht in hoeverre het ontwerp en de bedrijfsinstelling van de pomp de opwekking van 

vloeistofpulsaties bei"nvloedt. 
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1. INTRODUCTION 

1.1 Noise and vibrations in pipe systems 

In many situations where machines are operating and fluids are transported, pipe systems 

are responsible for the transmission of noise, e.g. in buildings, ships, power plants, process 

plants, etc. The effectiveness of noise control measures, like the resilient mounting and 

acoustic enclosure of machines, may be limited due to noise transmission along pipes. 

Moreover, pipe systems are a critical factor in the reliability of systems. Excessive vibra­

tions may lead to fatigue and cause damage to vital parts of installations. Fluid pulsations 

may also cause incorrect reading of flow meters and other control devices. On the other 

hand, the monitoring of pulsations or vibrations can be valuable to diagnose malfunction of 

machinery. 

To be able to solve, or rather prevent, reliability and noise problems it is of great import­

ance to understand the mechanisms that are responsible for the generation and the 

propagation of fluid pulsations and mechanical vibrations in the piping. The study of these 

mechanisms is the starting point in the development of practical methods for the analysis 

of the vibro-acoustic behaviour of fluid-filled pipe systems. Such an analysis is required to 

decide on the appropriate design of the pipe system or of noise and vibration reduction 

measures. 

Noise and vibrations in pipe systems may be generated in pumps, compressors, pressure­

reducing valves, bends, etc. The source mechanisms can be either hydraulic or mechanical. 

Turbulent flow and local flow instabilities in, for example, pumps, valves or side-branches 

will excite fluid pulsations. Mechanical vibrations may be excited by, for example, 

unbalance in rotating machinery. The distinction between hydraulic and mechanical source 

mechanisms is not always clear, because fluid pulsations may excite structural vibrations at 

the source and vice-versa. 

There are many different ways in which vibro-acoustic energy can be transmitted in fluid­

filled pipe systems. Several types of fluid- and structure-borne waves can propagate along 

a straight pipe. At each discontinuity (e.g. elbow or pipe support) the energy may be 

redistributed by coupling of these waves. This means that a noise or vibration reduction 

measure that treats only one type of wave may be largely ineffective, because it is short­

circuited by transmission via other waves. 
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The complexity of the vibro-acoustic behaviour of flexible, fluid-filled pipe systems is 

predominantly determined by two parameters: the frequency and the ratio of the masses 

per unit pipe length of fluid and pipe wall. The number of simultaneously propagating 

waves in the pipes increases with frequency. The mass ratio determines whether fluid­

borne and structure-borne waves may be treated separately. If this ratio is close to one, 

fluid pulsations and mechanical vibrations will be strongly coupled, so that it becomes 

necessary to take their interaction into account when analysing the dynamic behaviour. 

This thesis presents some new contributions to theoretical and experimental methods to 

analyze this coupled behaviour. The methods are especially useful for application in 

systems with a heavy, homogeneous fluid (like water or oil). The description of the 

dynamic behaviour of two-phase flows is not covered. The present discussion focuses on 

deterministic methods to analyze the linear elastic behaviour of pipe systems in a fre­

quency range where the number of propagating waves is limited. Non-linear deformations 

fall outside the scope of this thesis, which is aimed at noise and vibration control. 

In the high-frequency range, where the pipe cross-section is larger than the acoustic and 

vibrational wavelengths, the vibro-acoustic behaviour of the piping is governed by a large 

number of waves. Fluid-borne and structure-borne waves will be strongly coupled, even 

independent of the mass ratio, because the wavelengths of both waves may coincide. This 

makes a deterministic analysis of the dynamic behaviour practically impossible. Statistical 

Energy Analysis (SEA) [Lyon 1975] is a more useful approach in this frequency range 

[White & Sawley 1972]. 

1.2 Review of the state-of-the-art 

Because the problem of noise and vibrations in pipe systems has many aspects, this review 

is limited to deterministic prediction and measurement methods to analyze the dynamic 

behaviour of fluid-filled pipe systems. For general information about noise in pipeline 

systems the reader is referred to, for example, [VDI3733, 1983] or [de Vos 1984]. 

1.2.1 prediction methods 

The dynamic behaviour of fluid-filled pipe systems has been studied extensively during the 

last decades. Different applications have led to a wide range of publications variously 

related in subject. At least four application areas can be distinguished: 

1) The analysis of water-pipe systems with relation to waterhammer (i.e. a strong 

transient flow, e.g. due to the rapid closing or opening of a valve), see for example 
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[Wylie & Streeter 1978]. 

2) The analysis of the instability of fluid-conveying pipes, that is of importance for 

high velocity flow through a flexible pipe, such as those used in the feed lines to 

rocket motors and water turbines, see for example [Blevins 1977]. 

3) The analysis of noise and vibrations of hydraulic pipe systems, see for example 

[Stulemeijer 1981; Ham 1982]. 

4) The analysis of fluid-filled pipes as acoustic waveguides, see for example [Junger 

& Feit 1982; Cremer, Heckl & Ungar 1988]. 

Generally only few cross-references to other application areas can be found in the publica­

tions on this subject. This thesis attempts to integrate, where appropriate, the methods of 

the different application areas (especially of 3 and 4). 

The first three application areas are limited to the low-frequency range, where the fluid­

borne noise propagates in plane waves only and the mechanical vibrations in the pipes 

propagate in longitudinal, flexural and torsional waves only. Traditionally, steady-flow and 

waterhammer analysis of hydraulic pipe systems are carried out under the assumption that 

the fluid pulsations and mechanical vibrations may be treated separately. The analysis 

method generally consists in calculating the pulsation pressure distribution in the fluid, 

either in the frequency domain, using the transfer matrix method [Stulemeijer 1981; Ham 

1982], or in the time domain, using the method of characteristics [Smeulers 1988; Van 

Bokhorst et al. 1993]. Then this pressure distribution is used as input for a mechanical 

response study, e.g. using a finite element code. This method does take into account that 

the pipe wall elasticity reduces the propagation velocity of fluid-borne waves, but the 

interaction of pulsations and vibrations is otherwise neglected. The uncoupled approach is 

valid for gas-filled systems, but it may lead to erroneous results when applied to systems 

with a heavier fluid, where coupling is important. 

This thesis is concerned with pipes in which the fluid-flow velocity is much smaller than 

the critical velocity at which the pipes become unstable, see Blevins [1977]. 

Several authors have presented methods to calculate the coupled dynamic behaviour of 

fluid-filled pipe systems, using the transfer matrix method (TMM) [Wilkinson 1978; 

EI-Raheb 1981; Nanayakkara & Duke Perreira 1986; Lesmez 1989; Tentarelli 1990; de 

Montussaint & Trolle 1992], the method of characteristics (MOC) [Wiggert, Hatfield & 

Stuckenbruck 1987; Tijsseling 1993], the finite element method (FEM) [Everstine 1986] or 

an iterative method based on the MOC for the fluid and on the FEM for the structure 

[Kruisbrink & Heinsbroek 1992]. Both the MOC and the FEM have the disadvantage that 

they need a much finer discretization of the piping than the TMM and consequently 
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require a larger computer. As far as linear deformations are concerned, time domain 

methods (MOC) and frequency domain methods (TMM,FEM) in principle lead to the same 

results, at least to results that may easily be converted to each other by means of Fourier 

transformation. However, it is practical to study transient phenomena with a time domain 

method and steady state phenomena with a frequency domain method. The TMM, as a tool 

to determine the steady dynamic behaviour of linear structures of pipes or beams, is 

considerably more efficient than a wave reflection description (e.g. [Homer & White 

1991]). 

All of these methods start from a (more or less elaborate) set of equations of motion for a 

flexible, fluid-filled beam. However, at somewhat higher frequencies a pipe should be 

described as a cylindrical shell instead of a beam. The equations of motion for a straight, 

infinitely long, fluid-filled, cylindrical shell have been described and solved by Fuller & 

Fahy [1982]. A study of this shell-type behaviour is important to establish the limits of 

applicability of the beam-type equations of motion. Moreover, it is important to recognize 

that shell-type deformations may influence acceleration measurements on a pipe. Fuller 

[1981; 1983; 1984] has studied the effects of different types of excitation and of wall 

discontinuities and radial constraints on wave propagation in an infinitely long, circular 

cylindrical shell. Although these studies give a good insight in the local coupling mechan­

isms, they do not lead to a method to predict the dynamic behaviour of practical pipe 

systems, that is predominated by resonances due to reflections at elbows and other 

discontinuities. (Note: for the same reason the results of a study of active control of 

coupled waves in infinitely long fluidlilled pipes [Brevart & Fuller 1993 J are not directly 

applicable to practical pipe systems). On the other hand, EI-Raheb and Wagner [1985] 

have described a method to calculate the coupled harmonic response of cylindrical and 

toroidal shells to an internal acoustic field but this is only appropriate for application to 

very short pipes. 

The literature on modelling of the generation of vibrations and pulsations in fluid-filled 

pipe-systems is scarce. To limit the scope of the subject we will only consider the 

generation of pulsations by unsteady flow. Bruggeman [1987] and Peters [1993] have 

investigated the application of vortex methods to study the generation of flow-induced 

pulsations in a pipe system with side branches. However, most sources of flow-induced 

noise in pipe systems exhibit more complicated flow patterns. At the moment their source 

strength can only be predicted on the basis of some semi-empirical models. An important 

example is Simpson's [1966; 1967] correlation formula for the generation of hydraulic 

noise in centrifugal pumps. At the first international conference on pump noise and 

vibration in Clamart (1993) (see e.g. Bolleter [1993]) it appeared that there are no other 

quantitative models that relate the unsteady flow in a centrifugal pumps to an acoustic 
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source strength. The unsteady flow field inside a centrifugal pump has been studied using 

the FEM, see e.g. Badie [1993] and Thompson et at [1993], and various measurement 

methods, see e.g. Thompson et at [1993], Chu et at [1993] and Liu et at [1994]. However, 

these studies do not give information on the pressure pulsations that are radiated into the 

suction and discharge pipes, because they do not consider the effect of the dynamic 

response of these pipes. Further investigations are required to relate the unsteady flow field 

inside a pump to its acoustic source strength. 

1.2.2 experimental methods 

A large proportion of the publications on noise and vibrations in fluid-filled pipe systems 

concerns theoretical work. However, for lack of accurate models for several pipe system 

components, experimental methods are indispensable. Single point pressure or vibration 

measurements cannot be categorized as 'experimental method'. Since the dynamic 

behaviour of a fluid-filled pipe is governed by the simultaneous presence of several types 

of propagating waves, it is necessary to perform a decomposition of the wave contributions 

for a reliable analysis of the results of experiments. 

Wave decomposition methods have been developed with application to acoustic and 

structural intensity measurement methods [Noiseux 1970; Pavic 1976; Fahy 1977; Chung 

& Blazer 1980]. Pavic [1976;1992] and Verheij [1980;1982] have described the configur­

ations of accelerometers or strain gauges to determine the energy flow per wave that is 

propagating along a beam or a pipe. Esparcieux [1986] has shown that the contributions of 

different waves to the wave field on a straight pipe can be determined by means of a 

wavenumber-frequency transformation technique. De Jong & Verheij [1992] have 

described an extension of the wave decomposition methods for a beam to higher order 

waves with shell deformation and applied this method to the first shell-type waves on an 

empty steel pipe. The same method has been applied by Bourget & Fahy [1993]. 

Measurements on a single configuration of a pipe system reveal the actual vibro-acoustic 

behaviour of the system, but give only limited information on source and transmission 

characteristics of pipe system components. Linear source and system response effects can 

be separated using measurements on multiple system configurations. Changes in configur­

ation may be achieved by connecting or disconnecting system components, or by applying 

artificial excitation to the system. 

Verheij, Janssens & Thompson [1993] describe an experimental method to determine the 

contribution of the transmission along a specific sound path (e.g. a pipe system) to the 

total sound transfer from a machine to a receiver location. This' equivalent forces' method 

involves measurements when the machine is running and extra measurements when the 
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machinery is switched off, with artificial excitation of the pipe system under investigation 

by means of substitution sources (e.g. electrodynamic shakers). The set of equivalent forces 

which between them would generate similar vibrations in the pipe system as the machinery 

does, is determined using a matrix inversion. It is assumed that the artificial excitation can 

simulate the machinery noise sufficiently accurate. Statistically, this assumption is fulfilled 

if the sound path exhibits many modes of vibration in a frequency band, of which many 

are excited. If a noise source produces some strong tonal components, or if the sound path 

exhibits a limited number of modes, it is necessary to use a deterministic inversion 

method, which is based on a correct description of the dynamic behaviour of the pipe 

system. 

Boden [1989] gives an overview of the literature that has been produced on the subject of 

experimental characterization of fluid machines as sources of fluid-borne noise. It concerns 

'inverse methods' to determine the source characteristics form a series of experiments at 

different system configurations. Recently, Frikha [1992] has proposed to use inverse 

methods to determine acoustic or vibrational source strength or transmission characteristics 

in pipe systems by means of an inverse method. However, the research into the application 

of inverse methods to characterize the vibro-acoustic behaviour of pipe system components 

is still in its infancy. 

1.3 Objective and approach 

The research programme that is described in this thesis has been aimed at the development 

of theoretical and experimental methods for a quantitative description of the generation 

and propagation of noise and vibrations in fluid-filled pipe systems. 

It was decided to concentrate on relatively low frequencies, where deterministic methods 

are most promising. The materials and the dimensions of the piping determine the upper 

frequency at which these methods are still valid. The deterministic methods are especially 

useful to investigate noise and vibrations caused by sources with strong tonal components 

(e.g. blade passage tones of a centrifugal pump) in pipe systems with a limited number of 

resonant modes. These phenomena are of interest for low-frequency noise control (which is 

highly relevant for naval, oceanographic and fishery ships) and for the reliability of pipe 

systems in power and process plants. 

A calculation method has been developed to predict the vibro-acoustic behaviour of fluid­

filled pipe systems, using the formalism of the transfer matrix method (TMM). Unlike the 

existing TMM models for pipe systems, it is based on a detailed study of the propagation 
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of fluid- and structure-borne waves in fluid-filled cylindrical shells. The interaction of fluid 

pulsations and mechanical vibrations is taken into account. The method has been imple­

mented in a computer program. The numerical accuracy has been investigated and the 

predictions have been validated by comparison with the results of some laboratory 

experiments. The program can be used to predict vibration levels and noise transfer in pipe 

systems in the design stage and to study the effects of design adjustments and noise 

reducing measures. 

New experimental methods have been developed to decompose the contributions of the 

different fluid- and structure-borne waves to the wave field in the piping. Like the 

calculation method they are based on a detailed study of the wave propagation in fluid­

filled piping. The wave decomposition gives access to descriptors of the vibro-acoustic 

behaviour of the pipe system, like for instance the vibro-acoustic energy flow, which 

quantifies the importance of the pipe system as a noise transmission path, compared with 

other paths. 

With regard to noise generation an inverse measurement method has been developed to 

separate the source characteristics from the system response. Centrifugal pumps are so 

widely used that it was considered appropriate to test the method on a centrifugal pump. 

1.4 Outline of this thesis 

This thesis describes theoretical and experimental methods for the analysis of fluid 

pulsations and mechanical vibrations in fluid-filled pipe systems. Chapter 2 presents a 

review of the theory of wave propagation in straight fluid-filled pipes. It describes the 

derivation of the simplified (low-frequency) equations on which the calculation and 

measurement methods are based. The transfer matrix model for the prediction of the 

dynamic behaviour of fluid-filled pipe systems is presented in chapter 3. Transfer matrices 

for several pipe system components (straight and curved pipes, pipe supports, flanges, etc.) 

are derived. The solution method, the computer program and the numerical accuracy are 

discussed. The importance of fluid-structure interaction for the dynamic behaviour is 

demonstrated by two numerical examples. Chapter 4 treats the fundamentals of the experi­

mental methods. Experiments have been performed on three laboratory test arrangements, 

that were designed to validate the calculation model and to test the experimental methods. 

These experiments are presented in chapter 5. Chapter 6 describes the experimental method 

to characterize a source of fluid pulsations. The method is applied to a centrifugal pump. 

Finally, an evaluation of this study is presented in chapter 7. 
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2. WA VE PROPAGATION 

IN STRAIGHT FLUID-FILLED PIPES 

2.1 Introduction 

The theory of the propagation of vibro-acoustic waves in fluid-filled, cylindrical elastic 

shells has been described in detail by Fuller & Fahy [1982], Moser, Heckl & Ginters 

[1986] and Pavic [1990]. The objective of this chapter is to present a review of the 

assumptions and equations, to describe the wave propagation and to develop the simplified 

equations that form a basis for the calculation model of Chapter 3 and the experimental 

methods of Chapter 4. 

2.2 Equations of motion 

This section describes the equations of motion for a straight, fluid-filled, circular cylindri­

cal shell of infinite length. Both pipe wall material and fluid are assumed to be homogene­

ous and isotropic. The equations describe the linear elastic behaviour of pipe and fluid. 

2.2.1 shell motion 

The derivation of the equations that describe the vibration of a circular cylindrical shell 

can be found in many textbooks [Leissa 1973; Soedel 1981; Cremer, Heckl & Ungar 

1988]. The different shell theories represent a simplification of the three-dimensional 

theory of linear elasticity. Shell theory can be applied if the thickness of the shell is small 

compared with the other dimensions, like the radius of curvature of the middle surface of 

the shell and the axial length of the shell. It is assumed that the deformation of the shell is 

small compared to its thickness and that Kirchhoff's hypothesis applies: "normals to the 

undeformed middle surface remain straight and normal to the deformed middle surface and 

suffer no extension". Through these assumptions the shell is considered to have a special 

orthotropy: an infinite stiffness in the radial direction, hence normal and shear strains 

vanish in this direction. 

The geometry and the coordinate system for the circular cylindrical shell are shown in 

figure 2.1. a is the radius of curvature of the middle surface of the shell, h is the shell's 

thickness, z, rand e are the cylindrical coordinates and u, v and w the orthogonal compo­

nents of displacement of the shell. By Kirchhoff's assumption the displacement varies 
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(a) 

(b) 

(c) 

Figure 2.1: (a) geometry and cylindrical coordinate system 

(b) stresses on an infinitesimal shell element 

(c) resultant forces and moments on the pipe wall 

CHAPTER 2 
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linearly through the shell thickness: 

awo 
u "" Uo - (r-a) __ , 

az 
(2.1) 

where the subscript '0' refers to the middle surface of the shell. The three remaining 

strain-displacement equations for the thin-walled shell are: 

au 
€z = -, az 

1 av w 
ES ~ -;las + a ' YzS ~ YSz 

av 
az 

1 au 
+ -;las 

(2.2) 

and the matching stress-strain equations: 

Es 
't zS ~ 2 ( 1 + v) Y zS . 

(2.3) 

Here Es denotes Young's modulus of elasticity and v Poisson's ratio. Hysteretic losses in 

the shell material are accounted for in a loss factor 11, so that Es=Re(Es)(l +i11)· 

Although the strains in radial direction vanish by assumption, the corresponding stresses 

crr, 'tzr and 'ter cannot be neglected a priori. The equations of motion for an infinitesimal 

element of the shell are, in cylindrical coordinates: 

(2.4) 

Only translatory inertia forces are accounted for, other volume forces, like gravity or 

thermal stress, have been neglected. 

The absence of radial stress-strain equations is compensated for by using an integral 

formulation and applying boundary conditions for the normal and shear stresses at the 

inner and outer surfaces of the shell: 

(2.5) 

where ~=a-hl2 and ae=a+hl2 denote the internal and external radii of the shell and pi and 
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pe the internal and external fluid pressures. Friction between fluid and shell has been 

neglected, so that the shear stresses vanish. 

The stress-strain equations (2.3) and the equations of motion (2.4) are expressed in terms 

of the classical force and moment 'resultants' {Nz,Nzs,Ns,Nsz,Qz,Qs,Mz,Mzs,Ms,MsJ 

(see fig.2.1) by integration of the stresses {O"z,O"s,'czs,'tzr,'tSr} across the shell thickness, 

see Leissa [1973] or Soedel [1981]. The different 'thin sheIl' (h/a«I) approximations that 

can be applied in this integration have led to many sets of shell equations that only differ 

in terms proportional to the non-dimensional shell thickness parameter ~2. This parameter 

is defined as: 

(2.6) 

NOTE: For practical pipes hla will seldom exceed 0.25, hence ~2 will be smaller than 

0.005. 

The equations of motion are expressed in terms of the force and moment resultants by 

integration of equations (2.4) over the shell thickness. The internal and external fluid 

pressures are transferred into the equations of motion by application of the boundary 

conditions (2.5) in the integration: 

(2.7) 

NOTE: The hl2a terms in this equation are the only terms in the equations of motion for 

the fluid-filled shell that are linear in hla. Many authors [Fuller & Fahy 1982; Pavic 

1990; Junger & Feit 1986] implicitly assume that these terms are negligibly small, while 

they are larger than the ~2 terms that are retained in their equations. 

The integration of the set of equations of motion over the shell thickness, neglecting some 

minor terms of order ~2, yields the Love-equations (here including the effects of internal 

and external fluid loading): 
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(2.8) 

Rotatory inertia has been neglected in the last two equations, as its effects are equally 

important as the effects of radial shear deformation, that disappear due to the Kirchhoff 

hypothesis [Leissa 1973]. 

2.2.2 fluid motion 

In the absence of sources, the fluid density Pf and the three orthogonal components of the 

fluid displacement ~z' ~r and ~e fulfil the linearized equation of continuity for a homo­

geneous, compressible fluid [Michalke 1989]: 

02~z 1 a o~r 1 02~e 
+ Pr{ __ + __ (r_)+ ___ } = O. 

oZ at r or at r 08 at 
(2.9) 

Effects of mean flow are neglected, because the Mach-number, the ratio of the mean flow 

velocity to the acoustical wavespeed in the fluid, will generally be very small (Ma<O.Ol) in 

a heavy fluid like water or oil. The isentropic equation of state relates fluid density and 

pressure: 

(2.10) 

where the fluid bulk modulus Kf is related to the velocity of sound ca in the unconfined 

fluid by Kt=PrCa
2

• 

NOTE: The presence of a small volume fraction of gas bubbles in the fluid can cause a 

dramatic reduction of the wave speed [Junger & Feit 1986]. The extra compressibility and 

damping due to a homogeneous distribution of small gas bubbles may be accounted for in 

a reduced complex fluid bulk modulus K
t 

The fluid motion is governed by the linearized Euler equations: 
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(2.11) 

Viscosity has been neglected, which is allowed when the shear number Sh=aj(roIv)1I2 is 

high (Sh» 1), where v is the kinematic viscosity [Tijdeman 1975]. Viscous losses may be 

important for damping of pressure waves in a viscous oil, at high frequencies and in 

narrow pipes. Damping by viscous friction may be taken into account by introduction of a 

frequency-dependent, complex fluid bulk modulus: KrRe(Kf)(l +i-V2/Sh). 

The combination of equations (2.9), (2.10) and (2.11), leads to the homogeneous wave 

equation for the acoustic pressure p: 

(2.12) 

Fluid pressure and wall motion are related through the condition of compatibility at the 

surfaces of the shell: 

(2.13) 

The equations (2.8) to (2.13) give a complete description of wave propagation in an 

infinitely long, fluid-filled circular pipe. 

2.3 Solution of the equations of motion 

The free motion of the coupled system of fluid and shell may be solved from the equations 

that have been presented above. This section describes the general solution of the equations 

of motion. 

2.3.1 coupled modes 

For the investigation of stationary noise and vibration problems it is convenient to solve 

the wave equations for the fluid-filled pipe in the frequency domain. Hence a Fourier 

transform with respect to time is performed. This transformation, for example for the 

acoustic pressure in the fluid, is defined as: 
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= 

p(z,r,e,t) 1 IAC e ) ilOld _ P z,r, ,{() e (() 
21t 

(2.14) 

-= 

All variables of motion must be periodic with respect to the azimuthal angle e. Hence, 

they can be expanded in circumferential modes n: 

p(z,r,e,{() = L Pn(z,r,{() e ina (2.15) 

The internal and external fluid variables, p and ~, can be expanded in radial cylinder 

modes m. For the internal fluid the condition that pi should be bounded for r -7 0, is 

fulfilled by an expansion in Bessel functions of the first kind In. For the external fluid, the 

radiation condition pe -7 0 for r -7 00, is fulfilled by an expansion in Hankel functions of the 

second kind Hn [Junger & Feit 1986; Abramowitz & Stegun 1972]: 

p~(z,r,{() = L p~m(z,{()JnCY~mr) , 
m=l 

(2.16) 

p:(z,r,{() ) L P:m(z,{() Hn(Y~mr) 
m=! 

where Ynm is the radial wavenumber in the internal or external fluids. 

For each mode (n,m) the dependence on the axial coordinate will be governed by two 

waves, propagating in opposite directions, with a complex axial wavenumber knm' e.g.: 

A i ( ) _ P i+ C ) -ik~m Z p i- ( ) ik~m Z 
Pnm Z,{() - nm {() e + nm (() e . 

(2.17) 

The amplitudes P nm are complex numbers, to account for phase differences between the 

waves that are travelling in positive and negative axial direction. Summarizing, the 

acoustic pressure in the internal fluid can be expressed as: 

(2.18) 

pi (z,r,e,t) 

The other motion variables are expanded similarly. The relationship between the radial 

wavenumber Ynm and the axial wavenumber knm can be derived by substitution of equation 

(2.18) into the wave equation (2.12): 
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( i ,e )2 = (k i ,e)2 _ (k i ,e )2 
Ynm a nm' 

(2.19) 

where ka=ffi!ca denotes the wavenumber for free acoustic waves in the internal and external 

fluids and ca is the sound velocity in the unconfined fluid. The internal and external 

acoustic pressures are directly related to the radial displacement of the pipe wall, because 

of the compatibility condition, eq.(2.13). With help of the Euler equations (2.11), the ratio 

of the amplitudes of the acoustic pressure (P) and the radial wall displacement (W) can be 

expressed as: 

(2.20) 

where the prime on the Bessel function denotes differentiation with respect to its argument. 

The ratio of external wall pressure to wall displacement is equivalent, with the Bessel 

function In replaced by the Hankel function Hn, see eq.(2.16). 

2.3.2 dispersion equation 

The equations of motion per mode (n,m) of a fluid-filled pipe can be expressed in a matrix 

equation [Leissa 1973; Fuller & Fahy 1982] : 

Lll L12 L13 U~m 0 

L21 L22 L23 
+ 

V~m 0 
(2.21) 

L31 L32 L33 W~m 0 

U, V and Ware the modal amplitudes of the three orthogonal displacements of the shell 

(see fig.2.1). The homogeneous matrix equation (2.21) gives non-trivial solutions only if 

det( [LJ) = 0 . (2.22) 

Substitution of the appropriate set of shell equations in eq.(2.21) and equating the determi­

nant to zero leads to the dispersion equation, the wavenumber-frequency relationship for 

free waves in the fluid-filled pipe. The elements of the matrix [L] are different for different 

shell theories [Leissa 1973]. The matrices [L] for all shell theories can be expressed as the 

sum of a matrix [Lmembrane]' that describes the motion of the shell under membrane stresses 

only, and a matrix ~2[~ending], that describes the effect of local bending of the shell, 

where ~2 is the non-dimensional wall thickness parameter of eq.(2.6): 
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[L] = [Lrnernbranel + ~2[Lbendingl . 

For example Fltigge's shell theory leads to the non-dimensional matrix coefficients 

I +v 
-2-~rnn 

-iKnrn{V + ~2(K~rn - I;Vn2)} 

. (1 3-v r.l,2 2 ) 
In + --I-' ~rn 

2 
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(2.23) 

(2.24) 

Here Q is the frequency, made non-dimensional with respect to the ring frequency 

(Q=flfring=ffialcp' where cp is the longitudinal wavespeed in a flat plate of the shell material) 

and Knrn is the wavenumber, made non-dimensional with respect to the middle shell radius 

a (Knm=knrna). The internal and external fluid-loading in the radial direction lead to the 

non-dimensional factors FLi.e in the matrix coefficient L33: 

and . (2.25) 

The presence of the Bessel functions in the matrix [Ll causes the dispersion equation 

(2.22) to have an infinite number of solutions at each frequency. 

Solutions to the dispersion equation have been obtained numerically, by expanding the 

Bessel function in its argument, as described in appendix A. 

2.3.3 internal and external fluid loading 

For wavelengths that are large compared to the pipe diameter, the Bessel function's 

argument -j.e nrna will be much smaller than one. Hence the approximate expressions for 

the Bessel functions with small arguments [Abramowitz & Stegun 1972] can be used to 

investigate the effect of internal and external fluid loading. For n=O it follows that: 
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2 
and 

After substitution of these approximate expressions in the dimensionless parameters FLi,e 

(eq.2.2S) we can sse that for n=O the external fluid loading is much smaller than the 

internal fluid-loading, even when the density of the external fluid is as big as the density 

of the internal fluid. External loading will be important for gas-filled pipes in an external 

heavy fluid only. For n>O the approximate fluid loading functions are: 

and (2.27) 
n n 

Hence for n;>'oO the external fluid loading will be equally important as the internal fluid 

loading if the densities of the two fluids are comparable. It may be concluded that the 

external fluid loading can be neglected for fluid-filled pipes in air. Subsequently in this 

thesis only internal fluid loading will be considered. If necessary external fluid loading can 

easily be accounted for, by applying eqs.(2.26-27). 

2.4 Dispersion curves and approximate equations 

The dispersion curves K(n) for wave propagation in a straight fluid-filled cylinder have 

been analyzed in detail by several authors [Fuller & Fahy 1982; Moser et al. 1986; Pavic 

1990). Esparcieux [1986] has validated the theoretical dispersion curves on an oil-filled 

pipe. Since we are interested in the frequency range where the wavelengths are large 

compared to the pipe diameter, only the behaviour at low non-dimensional frequencies 

(n<l) will be considered. The solutions of the dispersion equation represent waves that are 

either propagating along the pipe axis (Knrn=+krnrna), evanescent (~rn=+ikinrna), or 

propagating with a decaying amplitude (~rn=+krnrna+ikinrna). As discussed by Fuller 

[1981,1982], the complex wavenumbers always occur in pairs which together form an 

attenuated standing wave along the pipe. Evanescent and attenuated standing waves in the 

positive z-direction will decay along the pipe with a factor exp( -kinrnz), hence the ampli­

tude of these waves will be reduced to 0.2% after a distance equal to one pipe diameter 

(z=2a) if ki
nrna>1t. Therefore only solutions of the dispersion equation with ki

nrna<1t are of 

interest for the transport of vibro-acoustic energy along straight pipes with a length to 

diameter ratio greater than one. The evanescent and attenuated standing waves may be 

important for energy transport in short pipes [Bobrovnitskii 1992]. Evanescent nearfie1ds 

will also determine the vibratory behaviour of pipes near discontinuities, like supports or 



SECTION 2.4 DISPERSION CURVES AND APPROXIMATE EQUATIONS 19 

elbows. 

Figures 2.2 show the non-dimensional dispersion curves K(n) for a water-filled steel pipe 

of thickness hla=0.05 at four circumferential mode numbers: (a) n=O, (b) n=1 (c) n=2 (d) 

n=3, resulting from numerical calculations (see appendix A) using the Fltigge equations. 

2.4.1 0=0 

At n=O the shell displacement is independent of the circumferential angle e. Figure 2.2a 

shows three real dispersion curves. In the low-frequency range (n<0.15) the wave velocity 

c=ro!k of these waves is nearly constant. The matching amplitude relationships reveal the 

character of each wave. The dispersion curve 'F' describes a pressure wave in the fluid. 

The corresponding wavespeed depends not only on the fluid compressibility but also on the 

circumferential elasticity of the pipe wall. At the low frequencies that are considered here, 

it may be approximated by the Korteweg-Lamb equation [Junger & Feit 1986]: 

K K 
_f (1 + 2 ~ _f ) -1 ,:" C

F 
. 

Pf h Es 

(2.28) 

In very flexible pipes (2aKIhEs» 1) the wavespeed will be nearly independent of the fluid 

compressibility. The description of, for example, the propagation of blood pressure pulses 

in arteries can therefore be based on an incompressible fluid model [Kuiken 1984]. The 

dash-dotted line in fig.2.2a shows the approximate dispersion curve of eq.(2.28), which 

agrees to within I % with the results of numerical calculation. The curves 'E' and 'T' 

indicate an axial quasi-longitudinal extensional wave and a torsional waves in the pipe 

wall. At low frequency the pipe appears to behave as a rod, for which the propagation 

velocities of the extensional and torsional waves are approximately equal to: 

(2.29) 

2(1+v) 

2.4.2 0>0 

Only positive mode numbers will be considered, because the dispersion curves for positive 

and negative circumferential modes n are equal. Figure 2.2b shows one real dispersion 

curve and two imaginary curves at n=1. They represent travelling bending waves and 

evanescent nearfields. At very low non-dimensional frequencies (n~0.05) both the real 

curve and one of the imaginary curves follow the EulerlBernoulli beam theory (the solid 

line in fig.2.2b), for which the wavespeed equals [Cremer et al. 1988]: 
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Figure 2.2a: mode shape and non-dimensional dispersion curves for a water-filled steel 

pipe of thickness hla=O.05 at n=O, obtained by numerical calculation (0) and from the 

equations (2.28) and (2.29) (-). 
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Figure 2.2b: mode shape and non-dimensional dispersion curves for a water-filled steel 

pipe of thickness hla=O.05 at n=l, obtained by numerical calculation: real wavenumbers 

(0) and imaginary wavenumbers (+) and from eq.(2.31): (--) and eq.(2.30): (-). 
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Figure 2.2c: mode shape and non-dimensional dispersion curves for a water-filled steel 

pipe of thickness hla=O.05 at n=2, obtained by numerical calculation: real wavenumbers 

(0), imaginary wavenumbers (+) and imaginary part of complex wavenumbers (*) and 

from eq.(2.31) (--). 
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Figure 2.2d: mode shape and non-dimensional dispersion curves for a water-filled steel 

pipe of thickness hla=O.05 at n=3, obtained by numerical calculation: real wavenumbers 

(0), imaginary wavenumbers (+) and imaginary part of complex wavenumbers (*) and 

from eq.(2.31) (--). 
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(2.30) 

where Is",na3h is the second moment of inertia of the pipe cross section and 

m'=ps2nah+Pfnaj2 the mass per unit length of the pipe plus internal fluid. The divergence 

of real and imaginary wavenumbers at somewhat higher frequencies is also found in the 

Timoshenko beam theory [Kurtz 1990]. It is due to the effects of transverse shear and 

rotatory inertia. An approximate wavenumber equation that describes these effects is given 

in eq.(2.3l) below. The dashed and dash-dotted lines in figure 2.2b show that this approxi­

mate equation gives a reasonably accurate description up to 0",0.2. The upper imaginary 

wavenumber curve is of importance only for pipes with a length to diameter ratio of order 

one. 

At n=O and n=l the pipe cross-section remains undeformed. Higher circumferential modes 

display 'lobar' mode shapes. These modes exhibit a so-called 'cut-on' frequency below 

which no real wavenumber solution exists, see figures 2.2c&d. The cut-on frequencies 

coincide with the resonance frequencies of the corresponding ring modes, for which n is 

the number of bending wavelengths that fit on the circumference of the pipe. Moser et at. 

[1986] have shown that the axial phase velocity of the 'lobar' waves at their cut-on 

frequency is very high, but that the corresponding group velocity is very small. At fre­

quencies below cut-on a complex wavenumber exists, that may be of importance for 

transport of acoustic energy in short pipes [Bobrovnitskii 1992]. Above cut-on the n=2 and 

n=3 dispersion curves show both real and imaginary branches. As for n=l, these represent 

travelling waves and evanescent nearfields respectively. 

Approximate expressions may be derived for the real and imaginary dispersion curves. 

Expanding the dispersion equation for n>O in the small parameters 0 2 and ~2 leads to the 

following first-order approximation: 

n2(1 +n2+2nll)02 - n4(l_n2)2~2 

1_y2 

± 

(2.31) 

+ 

where ll=pfA/PsAs denotes the ratio of the mass per unit length of fluid and pipe. Figures 

2.2 shows that the approximate curves are in close agreement with the results of numerical 
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calculation at low values of Q. The non-dimensional cut-on frequency Q2eut_on of the lobar 

modes is found at lCnm=O, hence it can approximately be estimated from: 

(2.32) 

which has also been found by Moser [1986] (where eqA misses a square) and Pavic 

[1992]. 

NOTE: the Donnell-Mushtary equations, that are used by Fuller & Fahy [1982] and 

Junger & Feit [1986], predict cut-on frequencies for pure propagating n=1 and n=2 

waves that are 30% too low [de Jong & Verheij 1992]. Only at higher circumferential 

order n do they become comparable with the other sets of equations [Leissa 1973]. 

2.5 Amplitude ratios 

The three-dimensional motion of shell and fluid is described by the ratio of the amplitudes 

of shell displacement at each wavenumber solution, that can be determined from eq.(2.21) 

as: 

± 

Wnm 

L12L23 - L13 Ln 

LII L22 - L12 L21 

and 
+ 

W~m 

L13 L21 - Lll L23 

Lll Ln - L12L21 

(2.33) 

These ratios are fixed. This implies that each waVe may be characterised by one represen­

tative displacement component, by preference the component with the largest amplitude. 

The fixed ratio of internal wall pressure to radial wall displacement, eq.(2.20), implies that 

the internal acoustic pressure may be determined indirectly from the radial wall displace­

ment. This offers the possibility of a non-intrusive method to measure pressure pulsations 

in a pipe, which may be very interesting, in particular for situations where aggressive or 

radio-active fluids are transported and for high pressure pipes. 

2.5.1 0=0 

Since we have neglected fluid-wall friction, the torsional wave motion is independent of 

the fluid motion. In a pipe with a flexible wall internal pressure pulsations cause a radial 

'breathing' motion of the wall. Radial wall displacement is coupled to the axial displace­

ment due to Poisson contraction. The non-dimensional ratio of axial to radial displacement 

and the low-frequency (Q
2<<1) approximation of the ratio of internal wall pressure to 

radial displacement, for the fluid wave and the extensional wave, are given by: 
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1981; Williams 1991]. The membrane stresses Nz and Nze can be expressed in terms of 

the shell displacements after integration of eq.(2.3) over the shell thickness, neglecting 

terms proportional to ~2: 

(2.40) 

2.6.3 total axial energy flow 

The total energy flow in a straight pipe is obtained by summation of the energy flow over 

the circumferential and axial modes (n,m). Applying the modal expansion (eq.2.l8) to the 

energy flow equations leads to inter-modal products (n 1 ,ml)x(n2,m2). In the integration 

over e the cross-products of circumferential modes ei(nl-n2)e disappear when nl;tn2 [Pavic 

1990]. This means that the total axial energy flow can. be expanded in circumferential 

modes: 

P z = L ( (Pzf)n + (Pzs)n ) . (2.41) 
n 

The cross-products of axial modes, however, do not disappear. As argued by Pavic [1990] 

this means that an energy coupling exists between the various axial waves that may coexist 

at the same circumferential mode number n. The interference of waves that travel at 

different wavespeed causes the energy flow per wave to be dependent on the axial 

position. Nevertheless, the total energy flow, i.e. fluid-borne plus structure-borne, is 

constant along an undamped straight pipe. 

No general conclusions can be drawn regarding the distribution of energy over the modes, 

or over fluid and structure, in a straight fluid-filled pipe of finite length since this 

distribution depends strongly on the boundary conditions at both ends of the pipe. 

2.6.4 approximate energy flow equations 

Let us assume that there is just one type of wave present, with a real wavenumber, so that 

we may neglect the cross-modal coupling. This will help us to obtain equations that relate 

the energy flow per wave type to the shell displacement. The amplitude ratios are fixed 

and may be applied to select the characteristic displacement for each wave type, see 

section 2.5. 

At n==O substitution of the amplitude ratio of the displacements (eq.2.34) in the membrane 

stress equations (2.40) leads to: 
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( N )± - + i Es ~ 1(0 V
O
± . (2.42) 

z8 Om - 2(1 +v) a m m 

Hence the extensional and torsional contributions to the structure-borne energy flow in the 

three n=O waves (eq.2.28&2.29) are given by: 

(2.43) 

where As is the pipe wall cross-sectional area. As expected the pipe behaves as a rod at 

low frequency: the energy flow equations show a product of a specific impedance AsPsc 

and a squared velocity amplitude 0)21Vl2 [Cremer et al. 1988]. For (Yomai«1 the 

Bessel function 10 approximately equals I, so that the equation for fluid-borne energy flow 

at n=O reduces to the energy flow equation for plane waves in a pipe: 

(2.44) 

where Af is the internal cross-sectional area of the pipe. 

At n>O substitution of the modal expansion of the displacement amplitude ratio (eq.2.35) 

in the equations (2.40) yields: 

Note that the derivation of these equations should be performed very accurately, because 

the n2-terms in the numerator of V/W and V/W (eq.2.35) cancel after substitution in 

eq.(2.40) so that the smaller 1(2-terms determine the result. The extensional and tangential 

shear contributions to the energy flow then result in: 

(2.46) 

~ + / n2(n2+(2+V)1(n2m)CB3 2 
(p )- vO)l w± 12 

zs shear := ± m cB -2 nm' 
2 2 4 3 

(n +1(nm) Cnm 

where cB is defined by eq.(2.30). For small values of 1( (1(2«n2) both contributions are 
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equal. This supports the conclusion in section 2.4 that the pipe behaves as a simple beam 

at low frequencies and n= I, because in such a beam the contributions of transverse shear 

forces and bending moments to the energy flow are equal [Cremer et al. 1988]. For a pipe 

the bending stiffness corresponds to the product of the extensional stiffness Es and the 

moment of inertia of the cross-section Is=1ta3h. The total structure-borne energy flow at 

n>O equals: 

(2.47) 

Note that the Poisson contraction vanishes in the summation of the two contributions. The 

fluid-borne energy flow at n>O is of minor importance for Q2«1 [Fuller & Fahy 1982]. 

2.7 Beam model 

In the previous sections we have shown that the low frequency (Q2«I) vibrational 

behaviour of a fluid-filled cylindrical shell, with a ratio of length L to radius a Ua«l, is 

predominantly determined by the n=O and n=l circumferential modes. In this limit the pipe 

cross-section remains undeformed, so that the pipe behaves as a fluid-filled beam. In the 

next chapter we will present a transfer matrix model for the prediction of the dynamic 

behaviour of three-dimensional pipe systems. This model is based on a quasi one-dimen­

sional description of straight pipes. Here we will derive the equations that govern this 

beam-like behaviour of a straight pipe from the three-dimensional shell equations. 

An undeformed pipe cross-section will have seven degrees of freedom in a Cartesian 

coordinate system {x,y,z}, see figure 2.3. The corresponding variables of motion are: three 

di~pl~err:ents {ux,uy:uz} and forces {F ):i y,FJ, three rotations {$x,$y,$z} and moments 

{Mx,My,Mzl, axial fluid displacement {vrl and pressure {pl. The overbar denotes that 

these variables may be obtained by averaging of the local shell and fluid variables 

{u,v,w,~zl and {Nz,Nze'p} over a pipe cross-section, see appendix B. The resulting set of 

14 first-order differential equations may be grouped in four independent sets of coupled 

equations that describe the motion in different planes. 

EI-Raheb [1981], Lesmez [1989], Tentarelli [1990], Frikha [1992] and Tijsseling [1993] 

have come to equivalent sets of equations starting from beam theory, but there are some 

differences. EI-Raheb and Frikha neglect the effect of Poisson contraction. Lesmez 

incorrectly takes a rotary inertia for the fluid into account. Tijsseling adds the effects of 
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gravity and of friction. The latter is incorporated in terms of the Darcy-Weisbach friction 

factor. Tentarelli includes frequency-dependent fluid friction, following D'Souza & 

Oldenburger [1964]. 

x local: 
r 

z z 

y 

averaged over a cross-section: 

Figure 2.3: 

Orientation of local wall displacements and forces and of displacements, rotations, forces 

and moments in the beam model of a straight pipe. 

2.7.1 axial motion of pipe and fluid 

The axial motion concerns plane waves in the fluid and quasi-longitudinal extensional 

waves in the pipe (n=O). Pipe and fluid motion are coupled via Poisson contraction of the 

pipe wall. The four differential equations that describe the axial motion are: 

(2.48) 
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2.7.2 flexural motion 

Flexural motion of the pipe may occur in two perpendicular planes, the xz-plane and the 

yz-plane, see fig.2.3. The equations that are derived in appendix B are equivalent to the 

Timoshenko beam bending equations [Cremer et at. 1988]. These are for the xz-plane: 

dFx 
-m'ro2 u 

dux Fx 
+ <l>y , 

dz x ' dz KsGsAs 
(2.49) 

- - -
dMy - 2- d<l>y My 

dz 
- Fx - PsIs ro <l>y , 

dz EsIs ' 

where Ks=2(l+v)/(4+3v) is the shear coefficient, a shape factor that describes the effective 

area that is involved in the transverse shear on a pipe cross-section. Note that the internal 

fluid contributes to the inertia for the transverse motion of the pipe (m'=psAs+pfAf) but not 

to the rotatory inertia Is' For the yz-plane the equations are similar 

2.7.3 torsional motion 

-
F -

-=,-y-,--- - <I> x ' 

KsGsAs 
(2.50) 

As we saw in section 2.4 the torsional motion of a straight pipe is not coupled to other 

degrees of freedom. The equations of torsional motion are: 

(2.51) 

where Js"'21ta3h is the torsional moment of inertia of the pipe. 

2.7.4 review of the limitations for application of the beam model 

The quasi one-dimensional model becomes incomplete (but not incorrect) when higher­

order 'lobar' modes cut on, above Qcut-on (eq.2.32), or when higher-order acoustic modes 

occur in the fluid. In a rigid pipe the first acoustic cut-on frequency occurs at 0.293c/aj 

(see e.g. Morse & Ingard [1968]). Further the model is developed under the assumptions 

that: 

- pipe and fluid exhibit a linear elastic behaviour 

- pipe wall material and fluid are homogeneous and isotropic 
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- the wall thickness is small compared to the pipe radius (~2«1) 

- the effect of fluid flow is negligible, the Mach-number is low (Ma<<1) 

- viscosity may be neglected, the Shear-number is high (Sh»I) 

- the length of a straight pipe section is large comp .. red to its diameter (Lla» I) 

2.8 Conclusion 

The equations of motion for a straight fluid-filled circular cylinder have been reviewed in 

this chapter. Solutions are given in the form of an expansion in an infinite number of 

circumferential and axial modes (n,m). The dispersion curves for the different modes have 

been obtained numerically by truncation of the series expansion. Each mode (n,m) may 

describe two vibrational waves that are travelling along the pipe in positive and negative 

axial directions. For each wave the amplitudes of the three orthogonal components of 

displacement of the shell and of the internal fluid pressure and displacement are related 

through fixed ratios. Therefore the axial vibro-acoustic energy flow in each wave that 

propagates in the pipe may be expressed in one characteristic wave amplitude. 

The frequency range in which the pipe diameter is small compared to the wavelengths is 

very important for purposes of vibration and noise control in pipe systems. Approximate 

expressions have been derived that simplify the description of wave propagation in this 

frequency range (12<0.2). The two lowest circumferential modes (n=O and n=l) determine 

the behaviour at these low frequencies. It is shown that in the low-frequency approxima­

tion the shell equations for these modes reduce to quasi-one-dimensional beam equations. 

These approximate equations form a basis for the prediction model and the experimental 

methods that are proposed in the next chapters. 
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3. A TRANSFER MATRIX MODEL FOR THE DYNAMIC 

BEHA VIOUR OF FLUID-FILLED PIPE SYSTEMS 

3.1 Introduction 

The dynamic behaviour of fluid-filled pipe systems is quite complicated, because it is 

governed by several coupled waves in fluid and structure. Furthermore, the lay-out of 

individual pipe systems may differ considerably. A pipe system may consist of any 

combination of typical components, like straight pipe sections, elbows, pumps, valves, 

bellows, accumulators, supports, etc. The Transfer Matrix Method (TMM) [Pestel & Leckie 

1963] offers an efficient description of the harmonic behaviour of these systems. Each 

typical component may be described by a transfer matrix, that relates the structural 

vibrations and fluid pulsations at its outlet port to these at its inlet port. The vibro-acoustic 

state at each port may be described by a state vector {Q} that consists of the single 

frequency Fourier coefficients of a dynamic quantity (a force, pressure or moment) and a 

kinematic quantity (a displacement or rotation) for each degree-of-freedom of the port. The 

transfer matrix [T oa relates the state vector {Qo} at the outlet port of a component to the 

state vector {Qi} at its inlet port: 

(3.1) 

A system transfer matrix may then be assembled by succesive multiplication of the transfer 

matrices of the components of a pipe system. An NxN system matrix represents a set of N 

linear equations with 2N unknown variables. This set of equations may be solved for the N 

remaining unknown variables after the introduction of N boundary conditions. The applica­

tion of the method will have to be repeated at every frequency of interest. 

Pipe systems with fluid-structure interaction may also be modelled by the Finite Element 

Method (FEM), see for example Everstine [1986] and Yeo & Schmiq [1989], but these 

FEM calculations require impressive computer systems. The advantage of the TMM over 

the FEM is that the size of the matrices that are handled increases much less with the size 

of the system that is modelled. This may be illustrated by the following example. Let us 

consider a simple pipe system, consisting of two straight pipes and an elbow, see figure 

3.1. This may, for example, represent a system that connects a pump with a pressure 

vessel. The FEM approximates the deformation of this system as a combination of finite 

elements that are deformed according to predefined shape functions. The number of nodes 

M in a FEM model of this system will therefore depend on the highest frequency of 
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interest, or rather on the ratio of the length of the system to the smallest wavelength of 

interest. Each node will have N degrees-of-freedom, so that the system matrix will be of 

size NMxNM. In the TMM a straight pipe may be described as a distributed parameter 

system with a single 2Nx2N transfer matrix. The size of this transfer matrix is independent 

of the frequency or of the length of the pipe, because the TMM uses the exact solutions of 

the wave equations as shape functions. The system transfer matrix is obtained after 

multiplication of the transfer matrices of the components: 

[ T ] = [T pipe] [ T elbow] [T Pipe] 
rys 43 32 21 

(3.2) 

Hence the system matrix of the TMM will remain of size 2Nx2N, which is much smaller 

than the size of the corresponding FEM matrix (NMxNM). 

1 

pIpe 

2 
4 

elbow 

pIpe----

Figure 3.1: a simple pipe system 

Note that this simple example overestimates the advantage of the TMM. In the next 

sections it will be shown that the TMM system matrix may become larger than the single 

pipe transfer matrix if the system contains supports, branches or vibration and pulsation 

sources. Moreover, the size of the matrix may have to be increased to prevent round-off 

errors at higher frequencies and longer systems. Nevertheless the TMM system matrix will 

remain substantially smaller than a FEM matrix. The TMM model for fluid-filled pipe 

systems can therefore run on a personal computer (386). 
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3.2 Solution methods 

Once the system matrix has been assembled, the choice of the appropriate solution method 

depends on the desired result. Two main types of application of the TMM may be distin­

guished: 

1) To determine the system resonances and the corresponding mode-shapes, or the 

response of the system to a given excitation (section 3.2.1). 

2) To determine the impedance matrix of the system, that can be used to investigate 

the transmission of vibro-acoustic energy through the system (section 3.2.2). 

3.2.1 system response 

The determination of the system response for a pipe system that is described by an NxN 

transfer matrix requires the introduction of N boundary conditions: one boundary condition 

per degree-of-freedom at the inlet and at the outlet port. Since each degree-of-freedom (n) 

is represented by a kinematic (un) and a dynamic (Fn) variable, the boundary conditions 

may be chosen from: 

un = un
K

, F n = F n
K 

or F n - i (0 L Z!n urn = 0 , 
rn 

(3.3) 

where (n,m)==1,2, .. ,NI2, the superscript K refers to an imposed (,known') value and the 

coefficients Zn~ form a termination impedance matrix. For example, a clamped boundary 

is described by un=O and a free boundary by Fn=O, while a source of pulsations or 

vibrations at a boundary will cause uK or FK to differ from o. 

The boundary conditions may be expressed in matrix form. It is convenient to use a 

boundary condition matrix [B] to rearrange the state vector so that the known variables 

(superscript K) are separated from the unknown variables (superscript U): 

where subscript i refers to the inlet and subscript 0 to the outlet port of the system. This 

matrix equation may be rewritten as: 

(3.5) 

The unknown variables at the inlet of the pipe system can then be solved from: 
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(3.6) 

A solution only exists when the sub-matrix [T~Y] is not singular. [T~Y] may become 

singular at the resonance frequencies of an undamped pipe system. Hence the system 

resonance frequencies are found at zeros of the matrix determinant: 

(3.7) 

The singularity wil1 be prevented by the introduction of damping in the system transfer 

matrix. Once the inlet vector has been determined, the outlet vector is determined by 

substitution in eq.(3.5). 

The above method solves all unknown state variables at a single frequency. Frequency 

response functions are found by repeating the procedure for multiple frequencies. Once the 

state vectors at the inlet and outlet of the system are known, the motion of each arbitrary 

point in the pipe system may be obtained by simple matrix multiplication. Let us assume 

that we are interested in the state vector at position Z in the pipe system of figure 3.1. This 

state vector is related to the known state vector at the inlet of the system as 

(3.8) 

Mode shapes may be determined by repeating this calculation for a selection of positions 

along the system. 

3.2.2 impedance matrix 

The system transfer matrix [TSys] can be rewritten as a system impedance matrix [Zsys], 

that relates the generalized force vector {F} at both ports to the velocity vector iro(U}: 

(3.9) 

The sub-matrices [Zii] and [ZOO] are the driving-point impedance matrices on the inlet and 

the outlet of the system. The sub-matrices [Zio] and [Zoi] describe the 'blocked' transfer 

impedances [Verheij 1982]. Like in the system response calculation it is convenient to 

rearrange the state vectors. Here efforts (F) and displacements (U) are grouped. The 

reorganized system transfer matrix becomes: 
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(3.10) 

Hence the impedance matrix can be derived from the transfer matrix as: 

(3.11 ) 

The sub-matrix [T~n may become singular at frequencies where the system will resonate 

if all boundaries are clamped. 

Impedance methods are widely used to investigate the transmission of vibrational energy in 

beam and pipe structures [see e.g.: Pinnington & White 1981; Cushieri 1988; Homer & 

White 1991; Peters son 1993]. It is surprising that the TMM is seldom referred to, although 

it has been recognized long ago [Pestel & Leckie 1963] recognized as an efficient method 

to determine the impedance matrix of a system that consist of a cascade of components. 

3.3 Transfer matrix model for a fluid-filled pipe system 

In section 2.7 a quasi one-dimensional model has been presented for the low-frequency 

dynamic behaviour of a straight fluid-filled pipe. The vibrational state of a pipe cross­

section is described by 14 variables of motion: three orthogonal displacements {ux,uy,uz} 

and forces {Fx,Fy,Fz }, three rotations {<1>x,<1>y,Qlz} and moments {Mx,My,MJ, axial fluid 

displacement {v} and pressure {p} (the overbar is omitted here). These variables are 

collected in a state vector: 

(3.12) 

The beam model equations describe pressure waves in the fluid and extensional, bending 

and torsional waves in the pipe. Four groups of coupled variables may be distinguished. 

Fluid pulsations {p, v} and extensional vibrations {F z,uz} are coupled due to Poisson 

contraction of the pipe wall. The two orthogonal components of bending waves involve 

both transverse {Fx,y'uX,y} and rotational {My,x,Qly,x} vibrations. The orientation of the state 

variables has been defined in figure 2.3 (page 30) in a local coordinate system that follows 

the pipe system. The z-axis of this local coordinate system is always orientated along the 

pipe axis. If an elbow is present, the y-axis points towards the centre of curvature. The use 

of a local coordinate system has the advantage that a uniform expression can be applied 

for the transfer matrices of straight pipes. 
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3.3.1 solution of the differential equations 

The set of first order differential equations that describes wave propagation in a straight 

fluid-filled pipe (eq.2.48-51), may be represented as: 

(3.13) 

where {Qs} represents the vector of symmetrical state variables and {QA} the vector of 

anti-symmetrical variables [Brown 1967; Tentarelli 1990]. The general solution to this 

differential equation may be written as a transfer matrix equation: 

(3.14) 

where L denotes the length of the pipe between the inlet and outlet ports. 

Any function f([1:]) of a square (NxN) matrix may be expressed exactly by a power series 

of the matrix [1:], truncated at order N-l [Pestel & Leckie 1963]: 

(3.15) 

Here [I] is an NxN identity matrix. The Cayley-Hamilton Theorem states that the 

eigenvalues Am (m=I, ... ,N) have to fulfil the same polynomial equation: 

AL ~ ~2 ~N-l 
e m Co + C1!l.m + C2 !1.m + ••• + CN-1!l.m ' (3.16) 

so that the coefficients Co' C1' ... , CN_1 may be solved from this set of N linear equations 

once the eigenvalues of [1:] have been determined from the characteristic equation 

(3.17) 

The beam model for a straight fluid-filled pipe shows three sets of four coupled equations 

and one set of two coupled equations. Hence the largest matrix [1:] is of size 4x4. The 

corresponding transfer matrices may be derived analytically. 

3.3.2 scaling 

Because the solution of the system transfer matrix equation involves a matrix inversion it 

is useful to scale the equations so that the transfer matrix is non-dimensional and that the 

matrix coefficients are of the same order of magnitude. This scaling is performed using 

specific impedances, the driving point impedances for each degree-of-freedom of a semi­

infinite straight pipe. These specific impedances are estimated from the approximate 
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expressions for the wave velocities, eq.(2.2S-2.30). The effort components of the state 

vector are scaled with ffiZs' so that they have a dimension of length like the displacements. 

Denoting the scaled variables by a tilde (-) the scaling relationships are given by: 

Fx 
Iv i\ ' <l>y = (ffi/c B ) ~y , ~ fix ' My 

Iv2 -
= m CBffi Ux = m cB My , 

(3.IS) 

Fy 
Iv 

= m CBffi i\ ' <I> x = (ffi I cB ) ~ x ' uy = iiy , Mx 
Iv2 -

= m cB Mx ' 

Mz = AsPscT a ffi Mz , <l>z= ~/a . 

When modelling a pipe system that consists of more that one type of pipe (defined by 

inner and outer diameters and material properties), we will select a reference for the 

scaling and adapt the transfer matrix .of the pipes with different geometrical or material 

properties to this scaling. 

3.3.3 straight fluid-filled pipes 

The differential equations of the quasi one-dimensional model for the dynamic behaviour 

of a straight pipe (section 2.7) may be solved analytically using the method that has been 

presented in section 3.3.1. Here the transfer matrix for a pipe of length L will be derived 

per group of coupled degrees-of-freedom, using the scaling of eq.(3.IS). 

axial transmission via fluid and pipe wall 

The equations (2.4S) lead to the characteristic equation: 

with the definitions 

v = 2v ~ and 
a j 

(3.19) 

(3.20) 

The approximate wavenumbers (I() appear in this equation because the approximate wave 

velocities are used in the scaling (see eq.(3.1S)). As expected, the eigenvalues are nearly 

equal to 1.,1,2 = +ikp'"+ ikp and 1.,3,4 =+ikE=+ikE' The deviation from these approximate 

solutions is due to the Poisson term av2
. With a scaled state vector {p,Fz,Y,iizl the 

analytical expression of the non-dimensional transfer matrix for axial extensional and 

pressure waves [Tz] is given by: 
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(3.21) 

"2 
Co - kFC2 YkFkEC2 

" "2 
kF( C

1 
- kFC3 ) 

_" "2 
- vkFkEC, 

cry kFkEC2 
"2 

Co - kEC2 
"2" 

cry kFkEC3 
" "2 

-kE(C I -kEI 

" ( "2 _2"2 ) -kF C]-(kF+crv kE)C3 YkE(C I -(ki+k~)C3) 
"2 

Co - kFC2 
_ "2 

- V kEC2 

-crYkF(C] -(ki+k~)C3) "( "2 2 v2 ) kE C 1 - (kE + cry kF) C3 
"2 

- cry kFC2 
"2 

Co - kEC2 

with HIe coefficients, based on the exact solutions (kF,kE) of equation (3.19): 

Co k
2 
E 

_ k 2 
F 0 0 cos(kFL) 

C2 - 1 0 0 cos(kEL) 
(3.22) 

C] k 2 _ k 2 
E F 0 0 k

2 
E 

_ k 2 
F 

sin(kFL)/kF 

C3 0 0 - 1 sin(kEL)/kE 

transmission via flexural motion 

Both the equations (2.49) and (2.50) lead to the characteristic equation for flexural motion: 

(3.23) 

with the definitions 

(3.24) 

At low frequencies (S«l; X«1) the eigenvalues will agree with the Euler-Bernoulli beam 

theory, describing travelling waves A1,2=+ikB",,+ikB and evanescent nearfields 

A3,4 =+kN""+kB' With a scaled state vector {F x,$y,ux,My} the non-dimensional transfer 

matrix for flexural motion in the xz-plane [1' xzJ is given by 
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(3.25) 

~ 2 ~ 2 
CO-XkBCZ -kBC2 

~ ~ z ~ 3 
- kB(C) - XkBC3) - kBC3 

~2 ~2 

-kBC
2 

C
O

-/;;kBC
2 

o 3 ~ ~ 2 
kBC3 kB(C) -/;;kBC3 ) 

~ Z ~2 0 02 
kB(XC l - (1 +X )kBC3 ) kB(C) - (X +/;;)kBC3 ) 

~ z 0 Z 
Co - XkBC2 kBCZ 

oZ ~z 

kBCZ Co -/;;kBC2 

and, with a scaled state vector {i\,$x,uy,Mx}, the matrix for flexural motion in the yz­

plane [Tyzl equals 

(3.26) 

~Z 

Co - XkBC2 

~Z 

kBC2 

~ ~ 2 
- kB(C) - XkBC3 ) 

~3 

kBC3 

02 
kBC2 

~2 

Co -/;;kBCZ 
03 

- kBC3 

~ ~ 2 
kB(C1 -/;;kBC3 ) 

~ 2 ~2 

kB(XC) - (1 +X )kBC3 ) 
~ ~2 

- kB(C) - (X +OkBC3 ) 
~2 

Co -X kBC2 

~2 

- kBCZ 

~ ~2 

kB(C) - (X +/;;)kBC3 ) 
~ 2 ~2 

-kB(/;;C1 -(1 +/;; )kBC3 ) 
~2 

- kBC
2 

~2 

Co - SkBC2 

Both matrices share the same coefficients: 

Co k
2 
N k

2 
B 0 0 cos(kBL) 

C2 - 1 0 0 cosh(kNL) 
(3.27) 

C1 
Z 2 

0 0 k
Z 

k
Z sin(kBL)/kB kN t kB N B 

C3 0 0 - 1 sinh(kNL)/kN 

All coefficients of the matrices for flexural motion contain a combination of a cos- or sin­

function with a cosh- or sinh-function to describe the combined effect of propagating 

waves and evanescent nearfields, respectively. For longer pipes and higher frequencies the 

argument kNL will become large. Physically, the effect of nearfields on the vibro-acoustic 

transfer will decrease with increasing kNL. However, the cosh- and sinh-functions in the 

transfer matrix may become very large, so that the information in the cos- and sin­

functions may get lost due to numerical round-off errors. This problem can be overcome 

by dividing the straight pipe into shorter pipes, for which kNL is sufficiently small to avoid 

numerical errors. These shorter pipes have to be treated as sub-systems that are solved in 

parallel, instead of multiplying them in series, see section 3.5. 
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transmission via torsional motion 

The two equations (2.51) exhibit eigenvalues A1,2=+ikT. The scaled state vector for torsion 

is {Mz'~z}' The corresponding non-dimensional transfer matrix is given by: 

(3.28) 

complete transfer matrix of a straight pipe 

The sub-matrices that have been given above may be combined into a complete transfer 

matrix, that relates the state vectors (eq.3.12) at the inlet and outlet ports of a straight pipe: 

[Tzl [0] [0] [0] 

[0] [Txzl [0] [0] 
(3.29) [1' pipe] 

[0] [0] [1' yz] [0] 

[0] [0] [0] [Tell] 

3.3.4 curved pipes or elbows 

In analogy to the modelling of wave propagation in straight pipes (Chapter 2), shell theory 

may be applied to determine the equations of motion of a uniformly curved pipe of 

circular cross-section [EI-Raheb & Wagner 1985; Whatham 1986]. However, no analytical 

solutions to these equations are available. The solutions of toroidal shell equations cannot 

be separated in independent circumferential modes [Firth 1981; Firth & Fahy 1984]. Due 

to this modal coupling, pressure pulsations and structural vibrations exhibit a strong 

interaction in a curved pipe. Pressure waves (n=O) in a curved pipe will, for example, 

generate extensional waves (n=O) and bending waves (n=]). Bending waves will be 

coupled to n>] lobar waves. This 'junction coupling' will even be greater if the cross­

section of the curved pipe is not circular. The Bourdon gauge, consisting of a flattened 

toroidal tube, relies on this principle to measure internal fluid pressure [Tentarelli 1990]. 

Here we will restrict ourselves to the modelling of uniformly curved, fluid-filled circular 

pipes. The TMM requires a simplified model for the beam-like behaviour of curved pipes, 

that accounts for the coupling effects. 

Two totally different approaches have been reported. The discrete model represents 

the curved pipe as a series of small angle bends and short straight pipes [Wilkinson 1978; 

Lesmez 1989]. The continuous model is based on a set of first order differential equations 

for the uniformly curved pipe [Davidson & Smith 1969; Davidson & Samsury 1972; El­

Raheb 1981; Tentarelli 1990]. 
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These beam-type models do not describe higher-order (n>]) waves in the pipe wall. 

However, the coupling to lobar deformation of the wall causes the curved pipe to be more 

flexible to bending than a comparable length of straight pipe. Both discrete and continuous 

beam models can approximately account for this effect by dividing the bending stiffness 

EsIs of the curved pipe by a flexibility factor if [Von Karman 1911, Kellogg Company 

1964]. In this approximation the lobar deformation of the elbow is assumed to be locally 

reacting. For an elbow with angle y (radians), radius of curvature R, mean radius a and 

wall thickness h the flexibility factor equals .ff=\.65a2/hR, provided that R/a>\.7, that 

Ry>2a and that there are no flanges or similar stiffeners within a distance equal to a pipe 

radius from either end of the elbow. The same flexibility factor should be used for in-plane 

and out-of-plane bending of the elbow. Flexibility factors for elbows with flanges are given 

in an ASME code [ASME 1992]. The elbow flexibility is especially important for the 

response of systems where the elbows are not short compared to the length of the straight 

pipes [Everstine 1986]. 

The state vectors in the TMM are defined in local coordinates, that are connected with the 

orientation of the pipe system components. The local z-axis is orientated along the pipe 

axis and the local y-axis points towards the centre of curvature of the elbow. Therefore the 

description of an elbow or bend requires a local coordinate transformation. Generally, this 

transformation involves two consecutive rotations, ex and y, see figure 3.2. The transfer 

matrix for an elbow may therefore be expressed as a matrix product [T yHT a l 

x' 

Zj,Z 
, 

(1) 
(2) 

Figure 3.2: rotation of the local coordinate system at a bend point: (]) rotation over angle 

ex around the z-axis; (2) rotation over angle y around the new x-axis. 
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The matrix [T a] performs the rotation over angle a around the z-axis, so that the y-axis 

points to the centre of curvature: 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 I 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 Ca 0 0 0 Sa 0 0 0 0 0 

0 0 0 0 0 Ca 0 0 0 -Sa 0 0 0 0 

0 0 0 0 0 0 Ca 0 0 0 Sa 0 0 0 

[Ta] 
(3.30) 

0 0 0 0 0 0 0 Ca 0 0 0 -Sa 0 0 

0 0 0 0 -Sa 0 0 0 Ca 0 0 0 0 0 

0 0 0 0 0 Sa 0 0 0 Ca 0 0 0 0 

0 0 0 0 0 0 -Sa 0 0 0 Ca 0 0 0 

0 0 0 0 0 0 0 Sa 0 0 0 Ca 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

with Ca=cos(a) and Sa=sin(a). Note that this is a dimensional transfer matrix. 

Both the discrete and the continuous model for the elbow transfer matrix [T y] describe the 

junction coupling and the rotation over the angle y that aligns the new z-axis with the pipe 

axis. 

discrete model 

In the discrete model a curved pipe is approximated by a series of M bend points 

connected by M+ 1 straight pipes, see figure 3.3. M should be chosen so that the length 1m 

of the straight pipes is small compared with the shortest wavelength of interest. The model 

is only valid for 1m/a> 1, so that a further discretization is useless. The straight pipes are 

described by the transfer matrix of section 3.3.3. The bending stiffness EsIs is divided by 

the appropriate flexibility factor ff. The inertia and elasticity of pipe and fluid at the bend 

points are neglected. The transfer matrix for the bend points is derived from the equations 

of continuity and equilibrium of forces and results in (e.g. Lesmez [1989]): 
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(3.31 ) 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Af(l-Cy ) Cy 0 0 0 0 0 0 5y 0 0 0 0 0 

0 0 (Cy -1) 0 0 0 0 0 0 5y 0 0 0 

0 0 0 Cy 0 0 0 0 0 0 5y 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 Cy 0 0 0 0 0 0 0 -Sy 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 
[Ty] 

0 0 0 0 0 0 0 Cy 0 0 0 0 -Sy 0 

AfSy -Sy 0 0 0 0 0 0 Cy 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 -5y 0 0 0 0 0 0 Cy 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 Sy 0 0 0 0 Cy 0 

0 0 0 0 0 Sy 0 0 0 0 0 0 0 Cy 

with Cy=cos(y) and Sy=sin(y). Like [T (l] (eq.3.30) this is a dimensional transfer matrix. 

Figure 3.3: discrete model of a uniformly curved pipe 
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continuous model 

Davidson & Smith [1969] and Davidson & Samsury [1972] have developed a set of first­

order differential equations that describe the beam-type, coupled vibration of a uniformly 

curved, liquid-filled pipe. This low-frequency approximation is valid for curved pipes with 

a/R«1. Tentarelli [1990] extended the model with the effect of Poisson contraction. As in 

the discrete model, the bending stiffness is modified by the appropriate flexibility factor If. 

The orientation of the state variables is given in figure 2.3, with the y-axis pointing to the 

centre of curvature and the z-axis replaced by a curved Ry-axis. The following set of 

equations for in-plane motion may be obtained: 

dp 2 
= P fffi v , 

dv 

Rdy Rdy 

dFz 2 Fy 

Rdy 
-PsAsffi U z + -, 

R 

dFy 
- m /

ffi 2u 
F z 

+ 

duz F z a pAf uy - 2v ___ + 

If' Rdy EsAs a j EsAs 

Afp duy Fy U z 

Rdy 
y 

R T' Rdy KsGsAs 
- qJx - If ' 

dMx 
-PsIsffi2<1>x + Fy , 

d<l>x Mx 

Rdy Rdy EsIJff 

and the equations for out-of-plane motion are given by: 

dFx 
- m /

ffi
2 u 

dux Fx 
+ <l>y , 

Rdy 
x 

Rdy KsGsAs 

dMy 
= - Ps Isffi2<1>y - Fx -

Mz d<l>y My <l>z 

Rdy T' Rdy EsIJff If' 

dM z 
- PsJsffi2 qJz + 

My d<l>z M z <l>y 

T' Rdy 
+ 
R' Rdy GsJs 

(3.32) 

(3.33) 

These equations differ from the straight pipe equations (2.48-51) in the terms proportional 

to l/R, that describe the junction coupling. Due to these coupling terms the equations of 

motion cannot be separated further than in a set of eight coupled in-plane equations (3.32) 

and a set of six coupled out-of-plane equations (3.33). The procedure that has been given 

in section 3.3.1 may be applied to solve the equations. No analytical solutions have been 

obtained, but the eigenvalues and the non-dimensional transfer matrix [Ty] may be readily 

derived numerically. 
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Figure 3.4: non-dimensional dispersion curves for waves in a uniformly curved, water­

filled steel pipe of thickness hla=O.05 and curvature Rla=6. The markers denote real (0), 

imaginary (+) and complex (*) wavenumbers. The lines give the curves for fluid (F), 

extensional (E), torsional (T) and bending (B) waves in a straight pipe of the same 

thickness and flexibility (ff=5.5). 

As an illustration of the effect of curvature on the wave propagation in a uniformly curved 

pipe, figure 3.4 shows the non-dimensional dispersion curves K(Q) for a pipe with hla=O.05 

and Rla=6. From comparison with the waves in a straight pipe of the same dimensions (the 

solid curves in fig.3.4) it can be seen that the fluid waves are hardly influenced. Torsional 

and extensional waves in a curved pipe appear to exhibit a cut-on frequency, below which 

they are evanescent. The solid curve (B) describes the Bernoulli-bending of a straight pipe 

with the bending stiffness divided by the flexibility factor for the curved pipe. The bending 

waves in the curved pipe propagate at a somewhat lower velocity. A small difference in 

wavenumber for in-plane and out-of-plane bending waves, that can be seen as nearly 

coinciding markers ('0,+') in figure 3.4, is caused by a different coupling to other waves 

(e.g. the out-of-plane bending is not coupled to longitudinal waves as is the in-plane 

bending). 
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comparison 

The discrete and continuous models give two different approximations for the three-dimen­

sional equations of motion of the elbow. The continuous model is based upon the assump­

tion that a/R«l. The discrete model may also be used for short radius elbows, provided 

that the elbow length is small compared to the shortest straight pipe bending wavelength of 

interest. 

60 10 

Figure 3.5: a water-filled steel 90 0 elbow (Es=2.1·1011(1+0.010 Nlm2, Ps=7800 kglm3
, 

v=0.3, K;=2.15 '109 Nlm2, p,;=1000 kglm3
). The sizes are in mm. At one end the elbow is 

clamped and closed, the other end is open and driven by an in-plane transverse force. 
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Figure 3.6: non-dimensional input admittance (uIFy) for transverse vibration of the elbow 

of figure 3.5, for the continuous (solid line) and discrete (dashed line) models, as a 

function of the Helmholtz number He=jUcF. 
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The models are compared by calculating the response of a fluid-filled elbow to in-plane, 

transverse excitation. Geometry and material parameters are given in figure 3.5. Both 

models use the same flexibility factor .ff=1.6Sa2lhR"'S.5. Figure 3.6 shows the resulting 

spectrum of the non-dimensional input admittance (ZBu!F y) at the free end. It appears that 

the continuous model (solid line) predicts that the elbow is stiffer than the discrete model 

(dashed line) predicts. Note that the height of the peaks is determined by the finite 

resolution in the frequency (Helmholtz number), so that no conclusions may be drawn 

from the comparison of peak heights. Doubling the number of bending points (to 12) did 

not change the impedance curve for the discrete model. The choice of model for an elbow 

will have to depend on the specific geometry of the elbow. In practice elbows often are of 

short radius (aIR= 1/3 is very common). Short radius elbows can probably better be 

modelled by the discrete model than by the continuous model, that assumes that aIR«1. 

However, the difference between the models is not very important if the length of the 

elbows is small compared with the straight pipe lengths in the system. TMM calculations, 

with both models, have been compared with three-dimensional FEM calculations (using 

ANSYS) for an empty pipe system consisting of a 90° elbow (aIR",0.37) between two 

straight pipes (L/yR"'4.S) [Van Boven 1993], see figure 3.7. 

p=o 

900 

127 

p=l 

900 

Figure 3.7: geometry of the empty pipe-elbow-pipe system. Sizes are in mm, the figure is 

not to scale. The pipe material is steel (Es=2.1·lOll(l+O.OOli) Nlm2, v=O, 

Ps=7800 kglm3
). 

The FEM mesh was built of 1008 eight-node shell elements, with 12 elements on a pipe 

circumference. Hence, the pipe cross-section can deform, so that no flexibility factor is 

needed. The discrete TMM model of the elbow consisted of two bend points. Table 3.1 

gives the lowest four resonance frequencies for clamped/free boundary conditions. 
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f J [Hz] f2 [Hz] f3 [Hz] f4 [Hz] 

FEM model 28 65 387 506 

TMM continuous 28 62 375 496 

TMM discrete 28 61 362 480 

Table 3.1: resonance frequencies of a pipe-elbow-pipe system, for three different models. 

The comparison shows small differences between the models, up to 6% at higher fre­

quencies. Although the continuous model appears to give a better agreement with the 

three-dimensional FEM model, it cannot be concluded that this model is better, because it 

is not unthinkable that the flexibility factor (that is equal for the TMM models) is too high. 

Both models will be compared with an experiment in chapter 5. 

Elbows may be modelled by either a discrete or a continuous model in the TMM. Both 

models are approximate, therefore one should be careful with the interpretation of response 

calculations for systems in which elbows take up a significant part of the length of the 

system. 

3.3.5 other components 

Apart from straight pipes and elbows, pipe systems may consist of many different compo­

nents, for example flanges, bellows, accumulators, valves, orifice plates, pumps, supports 

or suspensions, branches, diameter or material transitions, etc. Here we will consider the 

passive transmission of pulsations and vibrations through components. Pumps and valves 

may also act as source of pulsations or vibrations. This active behaviour will be described 

in section 3.3.6, as an imposed boundary or intermediate condition to the system. 

Some of these components may be modelled as a combination of lumped impedances 

(masses, springs and dashpots), that can be described in a transfer matrix [e.g. Pestel & 

Leckie 1964; Snowdon 1971], We will rearrange the state vectors at the inlet (designated 

by subscript i) and outlet (subscript 0) of the component, to group efforts (superscript F) 

and displacements (superscript U), as in section 3.2.2. 

in-line mass 

The unscaled transfer matrix for a lumped, in-line mass may thus be expressed as: 
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(3.34) 

If the mass does not cause fluid-structure interaction, which is for example the case for a 

flange, then the sub-matrix [M] will be diagonal. The seven matrix coefficients on the 

diagonal contain the appropriate mass and rotatory inertia terms. The fluctuating pressure 

difference across a valve or an orifice plate may drive structural vibrations and this fluid­

structure interaction will cause off-diagonal terms in the lumped transfer matrix. 

in-line stiffness 

Flexible components, for example rubber bellows or accumulators, are sometimes applied 

to relieve the system of mechanical stress, to compensate for volume changes due to 

temperature fluctuations and to isolate sources of vibrations and pulsations from the piping. 

The unscaled transfer matrix for an in-line flexible component may be expressed as: 

(3.35) 

where sub-matrix [K] may be complex to describe stiffness and damping. Unlike the mass 

sub-matrix, this stiffness sub-matrix will not be diagonal, because the translational and 

rotatory degrees-of-freedom may be coupled. For example, a rubber bellows may be 

described by means of a stiffness matrix. A complex 'distensibility' parameter [Purshouse 

1986] is introduced to describe the effect of the radial stiffness of the bellows on the 

effective compressibility of the fluid. Coupling factors can be introduced to account for 

fluid-structure interaction. The estimation of the stiffness, damping and coupling factors for 

a rubber bellows, however, will be difficult, because these parameters may depend heavily 

on temperature, internal static pressure and static deflection of the bellows [Veit 1976; 

Verheij 1982]. 

out-of-line impedance 

Pipe hangers, mechanical supports and side branches may be modelled as out-of-line impe­

dances, for which the transfer matrix can be written as: 

(3.36) 

A side branch can consist of a linear cascade of components, for which the system transfer 

matrix can be found by multiplication of component matrices, as for the main pipe line. 
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The system impedance matrix of the side branch may be determined by the method that 

was described in section 3.2.2. The sub-matrix [Z] then follows after applying boundary 

conditions at the end of the branch. The impedance matrix of a pipe hanger or support can 

be obtained from theoretical modelling. The impedance matrix of a support that is much 

more flexible than its foundation might be determined in a test rig for the characterization 

of flexible components [Verheij 1982]. Whenever the impedance of a support is much 

larger than the local impedance of the pipe system, it should be considered as rigid. In this 

way one avoids introducing into the model an impedance matrix that contains very large 

numbers, which may cause numerical instability. A rigid support is not described by a 

transfer matrix, but by an intermediate boundary condition, see section 3.3.6. 

The experimental determination of the relevant transfer matrix coefficients of in-line 

components will be discussed in chapter 4. An example of an experimentally determined 

transfer matrix is given in chapter 6 (pulsation transfer through a centrifugal pump). 

Transfer matrices of larger components in which higher-order internal modes become 

important, can be modelled by means of the finite element method (FEM) and then intro­

duced into the TMM. A hybrid method that combines the TMM with the FEM has been 

successfully applied by Craggs & Stredulinsky [1990] to acoustic wave propagation in a 

rigid pipe system. The hybrid method is also known as the Finite Element Transfer Method 

(FETM) in structural mechanics [Tesar & Fillo 1988]. The development of such a hybrid 

method would be a useful extension of the work that is described in this thesis. 

3.3.6 intermediate boundary conditions 

The modelling of boundary conditions at the inlet and outlet of a pipe system in the TMM 

has been treated in section 3.2.1. Internal sources of pulsations or vibrations and rigid 

supports will locally impose a value for one or more state variables in the system. These 

are designated ' intermediate boundary conditions'. These intermediate boundary conditions 

will influence the size of the transfer matrix that describes the pipe system, as will be 

explained below. 

internal sources 

Let us consider an internal source, for example a centrifugal pump, that excites vibrations 

or pulsations in a pipe system. The 'passive' transmission of pulsations and vibrations 

through the pump is described by a transfer matrix [T s], whilst the 'active' generation of 

pulsations or vibrations may be described by a source strength vector {Qs}. The state 

vectors at the inlet and the outlet of the pump are then related as: 
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(3.37) 

In the TMM it is convenient to represent this sum of vectors by increasing the number of 

columns in the NxN transfer matrix with the number of variables that are imposed by the 

source eNs): 

(3.38) 

where the intermediate boundary condition matrix Bs (of N rows and Ns columns) selects 

the appropriate state variables to be imposed to the system. If this source is preceded by a 

pipe system that may be described by a transfer matrix [T d and followed by a system with 

matrix [T 2]' the transfer matrix equation for the total system will become: 

(3.39) 

This equation may be readily solved after application of boundary conditions, because the 

imposed vector (Qs} does not introduce any new unknown variables. 

rigid supports 

Let us assume that a rigid support imposes NR local displacements or rotations to be equal 

to zero. This implies that the support sustains NR reaction forces FR, that will appear as 

extra unknown variables in the equations that describe such a support. Hence the NxN 

transfer matrix for this support will be extended with both NR rows and NR columns. The 

transfer matrix equation may be expressed as: 

(3.40) 

where the sub-matrix [Bu] selects the imposed displacement or rotation variables and the 

sub-matrix [BF] the corresponding forces or moments. Like the internal source above, a 

rigid support may be located between two pipe systems with transfer matrices [T d and 

[T 2]. The total system can then be described by 

(3.41 ) 

This transfer matrix equation contains NR extra unknown variables in the inlet state vector. 
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It also introduces NR extra known variables (equal to zero) in the outlet state vector, so 

that the unknown variables may be solved. 

3.4 Computer program PRESTO 

The above transfer matrix model for fluid-filled pipe systems is built into a computer 

program, that is called PRESTO (Pipe system RESponse and Transfer of nOise). The 

program is based on the mathematical software package MATIAB. The program consists of 

several subroutines to determine the transfer matrices of pipe system components, to build 

the system matrix and to solve the matrix equation. 

3.4.1 numerical solution 

The solution method for the TMM has been given in section 3.2. In the program the 

matrix equation [T~Y]{QY}=={Q~HT~~]{Q~} is solved for {QY} by means of Gaussian 

elimination with partial pivoting. {Q~} is then obtained by substitution of {QY} in 

eq.(3.5). In section 3.4 it was shown that the size of the system transfer matrix increases if 

the pipe system contains internal sources or rigid supports, but this does not influence the 

solution method. With the first version of the program it appeared that the applicability 

was seriously hampered by numerical round-off errors due to the cosh- and sinh-terms in 

the transfer matrices for flexural motion of straight pipes, see section 3.3.3. Problems 

occurred when the condition number, defined as the ratio of the largest and smallest 

singular values of the sub-matrix [T~Y], see eq.(3.5), reached the order of magnitude of the 

inverse of the numerical resolution of the computer. The condition number for the straight 

pipe matrix is of the order of magnitude of exp(kNL). In MATIAB the resolution is 10-16
, 

so that round-off errors become important (greater than 0.1 %) when kNL~ln(l 013
), i.e. 

when the pipe length is more than 4% times longer than the wavelength of the bending 

nearfield. A solution to this problem has been found in dividing the pipe system into sub­

systems, for which the condition number of the relevant part of the transfer matrix is 

smaller than a predefined value (e.g. 1013
). These sub-system transfer matrix equations are 

then solved in parallel. The size of the system transfer matrix increases by 14 columns and 

14 rows for each new sub-system. This may be illustrated by the following example. Let 

us consider a pipe system that is divided into two sub-systems with transfer matrices 

[Tsubd and [Tsub2]' A parallel solution of these sub-systems involves not only the solution 

of the state vectors at the inlet {Qi} and outlet {Qo} of the system, but also of the state 

vector {Qc} at the pipe cross-section where the sub-systems are connected. The system 

matrix equation can then be written as: 
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(3.42) 

The 14 unknown variables in {Qc} may be solved, because 14 extra equations have been 

introduced. Hence the same approach can be chosen to solve a local response at a pipe 

cross-section directly, instead of deriving it from the state vector at a system boundary by 

matrix multiplication. A similar solution method has been applied by Tentarelli [1990]. In 

PRESTO the matrix condition number is introduced as the parameter that governs the 

necessity to introduce sub-systems. The ratio of pipe length to bending nearfield wave­

length decreases with frequency, so that more sub-systems will be needed at higher 

frequencies. The numerical efficiency is greatly enhanced by letting the program decide at 

each frequency whether or not sub-systems are required, with the condition number of the 

(sub-)system transfer matrix as control parameter [van Boven 1993; 1994]. 

3.4.2 accuracy 

The relative error in the solution vector Qju due to perturbations in the input data can be 

expressed as: 

II i\ { Qju }II 

II {Qju }II 

+ cond( {F}) II {i\F} II , 
II {F} II 

(3.43) 

with {F}={Q~}-[T~f]{Qf}. Here II II denotes the norm of a matrix or vector. The 

condition numbers can be calculated from: 

II[To~urlll·II{F}II. (3.44) 

II {QjU }II 

The condition number of the sub-matrix [T~V] may become quite large (it may easily be 

larger than 101O!). This means that small perturbations in the input data may be greatly 

amplified. However, as long as analytically determined transfer matrices are used, the 

relative error in [T~V] will be predominantly determined by numerical round-off errors, the 

effect of which can be limited by bounding the size of the subsystems, as described in 

section 3.4.1. Perturbations in the boundary conditions, for example due to the use of 

measured data, are amplified proportional to the condition number of the boundary 

condition vector cond( {F}), that is close to one. Hence the accuracy of the results of the 

numerical model can be acceptable, in spite of the large condition numbers cond([T~V]). 

However, one should be very careful with the introduction of experimentally determined 

transfer matrices into the model. 
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3.5 Examples 

This section shows two examples of the application of the TMM computer program 

PRESTO. More examples will be given, in relation to experiments, in chapter 5. 

3.5.1 fluid-structure interaction at an end plate 

The first example concerns a straight, water-filled, steel pipe, see figure 3.8. At one side 

the fluid is driven by an oscillating piston, the other end is closed by a mass-less end plate. 

The aim of this example is to show the effect of fluid-structure interaction on the dynamic 

behaviour of pipe and fluid. Poisson contraction has been neglected (v=O), so that the fluid 

pulsations will only couple to pipe wall vibrations at the end plate if it is free to move. 

The interaction at the end plate (at z=L) is governed by the equations of continuity and 

equilibrium: 

(3.45) 

This configuration is compared with a configuration in which fluid-structure interaction is 

suppressed by clamping the end plate. Figure 3.9 shows the input impedance of the fluid at 

the piston as calculated by PRESTO for both configurations. These can be explained as 

follows. Because the fluid is driven by an ideal volume source at x=O, the impedance of 

the fluid at the end plate equals: 

Afp(z =L) 

v(z=L) 

-ipfAfcF 

tan(kFL) 
(3.46) 

Without coupling, maxima in the impedance will occur at the resonance frequencies of a 

pipe with closed ends (Z~L)~oo), where the pipe length agrees with multiples of half a 

wavelength in the fluid (kFL=1t). The impedance of the pipe, that is clamped at z=O, is: 

F (z=L) 
Z (z=L) = _z_....,..,... 

P uz(z=L) 

iPsAscE 

tan(kEL) 
(3.47) 

Without coupling, the pipe (with clamped/free boundary conditions) will show a resonance 

when its length agrees with a quarter of the wavelength of quasi-longitudinal waves in the 

wall (kEL=1tI2). The resonance frequencies of the coupled system occur at frequencies 

where Z~L)=Zp(L), as can be seen from eqs.(3.45)-(3.47). Since the ratio of the wave 

velocities of quasi-longitudinal and fluid waves cE/c~3.9 for the given pipe, the uncoupled 

structural resonance would nearly coincide with the second uncoupled fluid resonance. 

However, the end plate would show a large displacement at the structural resonance, while 

the uncoupled fluid resonance requires a minimum displacement at the end plate. Therefore 
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both resonances will show a strong interaction, resulting in two coupled resonances at 

frequencies that are shifted in comparison with the uncoupled resonance frequencies. 

Similar effects are shown by Fahy [1985] for a mass-spring system that is coupled to a 

fluid column. 

2.5 

I 

v=1 I 1 
-----------------

z=o 3000 z=L 

50 

Figure 3.8: a straight water-filled steel pipe (E
s
=2.1·JOll( l+O.OOli) Nlm2, v=O, 

Ps=7800 kglm3
, K

r
2.JS·l09 Nlm2, PrJOOO kglm3

). The sizes are in mm. At one end the 

pipe is clamped and the fluid is driven by an oscillating piston, at the other end the pipe is 

closed with a massless end plate that is either clamped or free to move. 
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Figure 3.9: non-dimensional input impedance (fJ/if) of the fluid at the piston in figure 3.7, 

with a free (-) or clamped (--) end plate, as a function of the Helmholtz number He=jIJc
F

. 
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3.5.2 response of a simple pump circuit 

A response calculation of a simplified model of a pipe system with a centrifugal pump and 

a pressure vessel is considered. With this example it is intended to show that similar 

coupling effects as in the simple example of section 3.5.1 are found. Geometry, material 

properties and boundary conditions are given in figure 3.10. The fluid is non-viscous and 

the mean flow does not affect the pulsations and vibrations. Since the pump only excites 

the fluid, it is interesting to compare the results with the results of a calculation for the 

fluid only, to study the effect of fluid-structure interaction. The reduced fluid wave 

velocity, due to the effect of the circumferential stiffness of the pipes (eq.2.28), is used in 

the uncoupled calculation. Figure 3.11 shows the spectrum of the pressure pulsation at the 

suction side of the pump (position A), scaled with the pulsation source strength ilp. The 

results of coupled (solid line) and uncoupled (dashed line) calculations are compared. Let 

us look at the resonance peaks between 50 and 100 Hz. Here the second uncoupled fluid 

resonance (where the system length equals one fluid wavelength) nearly coincides with a 

structural resonance, so that two new coupled resonances arise, just like in the example of 

section 3.5.1. This again illustrates the practical importance of a coupled calculation when 

predicting the vibration response of a fluid-filled pipe system. The mode shape for the 

coupled resonance at 87 Hz is displayed in figure 3.12, where the displacement is 

exaggerated. 

1200 5200 ........................... . 

~p 

245 

R=-O.95 
2140 560 

...... '>. 

Figure 3.10: a pipe system with a pump and a pressure vessel. Sizes are in mm. The pipes 

are made of steel (Es=2.1·1Oll(l+0.0Ii) Nlm2, Ps=7800 kglm3
, v=O.3) and filled with 

water (Kr 2.15·](f Nlm2, Pr1000 kglm3
). The pipe system model is terminated at the 

vessel with clamped boundary conditions for the structure and a reflection coefficient R=-

0.95 for the fluid. The pump is modelled as an intermediate boundary condition: clamped 

for the structure and a source strength fl.p for the fluid. 
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Figure 3.11: pressure, scaled with the pressure source strength, at position A in figure 

3.10. The solid line is the result of the PRESTO-calculation and the dashed line is the 

result of a calculation without fluid-structure interaction. 

Figure 3.12: Mode shape for the coupled resonance of the pump circuit at 87 Hz. 



60 TRANSFER MATRIX MODEL CHAPTER 3 

3.6 Conclusion 

A transfer matrix model for the beam-like dynamic behaviour of fluid-filled pipe systems 

has been presented in this chapter. This model may be applied to determine the response of 

pipe systems to a source of pulsations or vibrations, with the source strength as input, or to 

investigate the transmission of vibro-acoustic energy through the system, in terms of its 

impedance matrix. 

Analytical expressions have been derived for the transfer matrix coefficients for a straight 

fluid-filled pipe. Two different approximate models (a continuous and a discrete model) for 

elbows have been reviewed and their results have been compared, with a three-dimensional 

FEM calculation as a reference. The comparison shows that the approximate elbow models 

introduce an uncertainty in the response predictions of pipe systems, that may become 

serious when modelling pipe systems in which elbows take up a large part of the system 

length. This difficulty may possibly be overcome in a hybrid method, in which the elbow 

transfer matrix is determined from a three-dimensional FEM calculation. A procedure for 

modelling other pipe system components (flanges, bellows, supports, etc.) has been 

described, as well as the handling of intermediate boundary conditions. 

The model has been built into the computer program PRESTO. The sensitivity for input 

errors has been evaluated and a method to control the convergence of the solution with 

respect to numerical round-off errors has been described. Finally two examples have been 

given to demonstrate the applicability of the program and the importance of fluid-structure 

interaction for the response of fluid-filled pipe systems. 
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4. EXPERIMENTAL :METHODS 

4.1 Introduction 

This chapter describes methods for the experimental determination of quantities like vibro­

acoustic energy flow, terminating and transfer impedances or source strength in fluid-filled 

pipe systems. In chapter 2 we saw that the vibro-acoustic behaviour of fluid-filled pipes is 

governed by the simultaneous propagation of multiple types of waves. In practical pipe 

systems many of these waves wiU be coupled strongly at elbows, supports and other 

discontinuities, so that it is very likely that several wave types will be excited. For 

measurements this means that each single transducer signal and each quantity of interest 

may consist of contributions of multiple waves. Therefore, performing measurements of 

pressure pulsations or accelerations on a pipe without applying a wave decomposition 

technique or, at least, checking that the wave type under investigation is predominant, may 

lead to serious errors in the interpretation and in the results of further processing of the 

data. 

The experimental wave decomposition technique involves the estimation of the complex 

amplitude spectra of the separate waves from measurements of accelerations or pressure 

pulsations (or other physical quantities for which practicable transducers are available) at a 

number of positions in a section of the pipe system. The estimation relies on the analytical 

model for wave propagation in a straight fluid-filled pipe that has been given in chapter 2. 

The resulting wave amplitudes give a complete description of the local wave field in the 

pipe section. All other wave field descriptors, like energy flow, acoustic and mechanical 

impedances and reflection coefficients, can directly be derived from these amplitudes. 

Wave decomposition lies at the basis of the well-established two-microphone-method for 

measuring the reflection coefficient for acoustic waves in a duct [Chung & Blazer 1980]. It 

is related to the techniques for measuring acoustic intensity [Fahy 1977; Pavic 1977] and 

structure-borne energy flow [Noiseux 1970; Pavic 1976; Verheij 1980], that are based on a 

finite difference approximation of the wave fields. However, the wave decomposition 

technique has the advantage that it does not suffer from finite difference approximation 

errors and that it gives direct access to a whole series of wave field descriptors. Recently 

the application of wave decomposition techniques has been studied in relation to higher 

order waves in ducts by Stahl [1987] and Abom [1989], in relation to beam flexure by 

Taylor [1990], TroUe & Luzzato [1990] and Halkyard [1993] and in relation to waves in 

fluid-filled pipes by Pavic [1992,1993]. The appropriate wave type decomposition 
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techniques for application to fluid-filled pipes are described in section 4.2 

The experimental methods to determine the wave field in a given pipe system, provide a 

tool for the more elaborate methods to determine the vibro-acoustic characteristics of pipe 

system components. We saw in chapter 3 that passive components may be characterized in 

terms of their impedance or transfer matrix and active components in terms of their vibro­

acoustic source strength vector. Generally the number of characteristic parameters (e.g. 

matrix coefficients) is too large to be solved from measurements in a single pipe system 

configuration, so that the characterization methods have to rely on successive 'measure­

ments on different configurations. Experimental characterization methods that rely on 

measurements on different configurations to determine source and transfer characteristics, 

have been studied for components of duct systems. The 'two-load' method [Kathuriya & 

Munjal 1976] and the 'two-source-location' method [Munjal & Doige 1990], have been 

applied to ventilation and exhaust systems in which the influence of pipe vibrations on the 

duct acoustics may be neglected. Section 4.3 describes the application of this type of 

'inverse' methods for the characterization of components of fluid-filled pipe systems. 

4.2 Wave decomposition 

It has been shown in chapter 2 that the solutions to the equations of motion of a straight 

fluid-filled pipe may be decomposed in mutually independent circumferential modes 

(n=O,l, .. ). At each circumferential mode n, multiple axial waves (m=I,2, .. ) may exist. 

Fortunately, many of these waves are evanescent at frequencies far below the ring 

frequency of the pipe, so that they are only of importance for measurements on very short 

pipes or very close to discontinuities. For practical application the wave decomposition 

method can be restricted to a limited number of relevant wave types. Here, we will limit 

ourselves to the frequency range below the cut-on frequency (fe3) of n=3 propagating 

waves. The extension of the methods that are presented in this chapter to the next higher 

order (n=3,4, .. ) modes is straightforward, since these lobar waves all exhibit a behaviour 

like the n=2 mode. It is assumed that the higher order (n>2) evanescent waves do not 

contribute to the measured wave field in the frequency range below fe3. The validity of this 

assumption depends on the modal content of the excitation and the distance between the 

measurement cross-section and the locations where these evanescent waves are excited. 

Figure 2.2d shows that the non-dimensional complex wavenumber for n=3 at low fre­

quencies (for a water-filled steel pipe with wall with h/a=0.05) is approximately equal to 

k3a"'O.7, so that the corresponding evanescent wave amplitude (that is proportional to e-kz
) 

is reduced to 1 % at a distance of 6.6 times the pipe radius from the excitation location. 

Excitation of higher order evanescent waves may for example take place at elbows. The 
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modal content of the excitation is geometry dependent. For example, an elbow may be 

connected to the pipes by means of flanges, that are stiffer than the pipe wall. Below 

frequencies where the flanges exhibit lobar deformation, these flanges will suppress the 

excitation of higher order modes. 

4.2.1 circumferential mode decomposition 

The circumferential modes (n=0,1,2) are decomposed by application of an array of trans­

ducers at a pipe cross-section. Each motion variable 4 (q=u,v,w,p,etc.) may be described 

as: 

(4.1) 

Consequently the three amplitudes (40,q1,q2) and the two polarization angles (U1,U2) may 

be derived from measurements at five, or more, circumferential positions at the pipe wall. 

Measurements using less transducers per pipe cross-section may cause an ambiguity with 

respect to the type of wave that is responsible for the measured response. It is advantage­

ous to select the circumferential positions of the transducers in such a way that the 

decomposition results in simple addition and subtraction of transducer signals. These 

operations may be performed by means of special purpose analogue electronic devices so 

that a single electrical signal remains for each modal amplitude at each pipe cross-section. 

It remains to select which variables of motion are to be measured. 

In section 2.5 it was argued that each wave may be characterized by the complex ampli­

tude spectrum of one representative quantity, for example a component of the pipe wall 

motion. The spectra of all other quantities may be obtained by multiplication of this 

representative spectrum with fixed amplitude ratios that have been given in section 2.5. 

The choice of the characteristic variable of motion for each wave will depend on which 

variable is predominating and, moreover, for which variable appropriate transducers are 

available. 

The wave type decomposition techniques that are described in this thesis rely on the use of 

accelerometers and pressure transducers. The application of accelerometers is well-estab­

lished and procedures to calibrate the amplitude and phase characteristics and to select sets 

of accelerometers with matched sensitivities are readily available [Verheij 1982,1990]. The 

accelerometers are mounted on the pipe wall in radial, axial or tangential direction with the 

help of aluminium studs, see figure 4.1. Although there is a direct relationship between the 

pressure in a flexible pipe and the radial 'breathing' motion of the pipe wall (eq.2.20), the 

corresponding radial acceleration may be too small to be measured with accelerometers (as 

will be explained in section 4.2.4. Where possible, acceleration compensated piezo-electric 
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pressure transducers, mounted flush in the pipe wall, are used to measure the internal fluid 

pressure. Pinnington and Briscoe [1992,1993] have recently demonstrated the use of a 

piezo-electric (PVDF) wire, wrapped circumferentially around the pipe, to determine the 

internal fluid-pressure from the circumferential strain of the wall. This type of sensor 

seems very interesting for situations where non-intrusive measurement of the fluid pressure 

is necessary. Strain gauges may also be used for the wave decomposition [Pavic 

1992,1993]. Halkyard & Mace [1993] have shown that the wave decomposition for flexural 

waves in a beam can be improved by applying a combination of accelerometers and strain 

gauges, instead of only accelerometers. However, the amplitude and phase calibration is 

more difficult for strain transducers than for accelerometers. 

Figure 4.1: Stud for mounting accelerometers on the pipe wall in axial, radial and trans­

verse directions. 

In practice a set of four accelerometers will be used for the circumferential mode decom­

position of the pipe wall motion. They are mounted at equidistant positions (9 A =00
, 

9B=90°, 9c= 1800
, 9D=2700

), see figure 4.2a. Their operation may be explained as follows. 

In this configuration all accelerometer signals will be in-phase for the n=O mode. Signals 

of transducers at opposite sides of the pipe will be out-of-phase for n=1. For the n=2 mode 

the signals of transducers at opposite sides of the pipe will be in-phase, but out-of-phase 

with the signals of the other two transducers. The modal amplitudes are then derived from: 
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where a 1 and a 2 are the initial polarization angles of the n=l and n=2 modes. To deter­

mine the polarization angle of the n=2 motion an extra measurement is performed after 

rotating the set of accelerometers through 45°, see figure 4.2b, so that: 

(4.6) 

Note that the measurement with the rotated set of accelerometers is only necessary if one 

is interested in obtaining the amplitude and polarization angle of the n=2 waves, while the 

measurement with the first set is sufficient to determine the contributions of the other two 

modes, while suppressing the n=2 motion. 

(a) (b) 

Figure 4.2: Transducer configuration for circumferential wave decomposition for n<3. 

(a) first measurement; 

(b) second measurement after rotation of the set of transducers through 45°. 
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4.2.2 axial wave decomposition 

Once the circumferential modes n have been decomposed, the axial modes m correspon­

ding to each mode n=O, I ,2 may be decomposed by selection of the appropriate transducer 

configuration, at a number of axial positions along the pipe. The modal amplitude of the 

generalized motion variable CI at each cross-section may be expressed as: 

M 
~ A+ ( ) -iknrnz A- ( ) iknrnz 
L nm (J) e + nm (J) e . (4.7) 

m:l 

The 2M complex wave amplitudes (Anm ±,Anm ±) may then be estimated from 2M measure­

ments CIj. To separate the waves that are travelling in positive and negative axial direction 

measurements should be performed at, at least, two different axial positions. The waves 

with different wavenumbers may be identified on the basis of measurements at different 

cross-sections, or on the basis of measurements of different physical variables (e.g. 

different components of wall acceleration, internal pressure, or axial strain [Halkyard 

1993]). To estimate the wave amplitudes, the relation between the measured variables and 

the wave amplitudes (eqAA) may be best expressed in matrix form: 

{Q} '" [F] {A} , (4.8) 

where the measurements are collected in the vector {Q} and the wave amplitudes in vector 

{A}. The coefficients of the matrix [F] can be deduced from the wave propagation model, 

with the introduction of numerical values for geometrical (e.g. transducer positions) and 

material (e.g. wavenumbers) properties. The matrix equation may be solved provided that 

the matrix [F] is not singular. This imposes limitations on the selection of transducers and 

transducer positions. The matrix condition number (see section 3.5.2) can be used as an 

indicator for a matrix that is close to singular. 

This general description of the wave decomposition technique will become clearer when it 

is applied to specific waves. We saw in chapter 2 that the following groups of axial waves 

playa role in the low frequency range of interest: 

- torsional waves in the pipe wall at n=O 

- plane waves in the fluid and extensional waves in the pipe wall at n=O 

- bending waves and evanescent bending waves at n= 1 

- lobar waves and evanescent lobar waves at n=2 

Torsional waves can only be measured using the transverse acceleration of the pipe wall. 

At low frequencies axial wall acceleration dominates over radial acceleration for 

extensional waves and fluid waves and both waves can also be measured in the fluid 
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pressure. The acceleration of the pipe wall is predominantly radial for the higher order 

waves (n>O). 

For a certain circumferential mode the measured signal may be determined by either one, 

two, three or four waves, travelling in either positive or negative axial direction. The 

number of waves determines the size of the square matrix [F] and thereby imposes the 

number of measurement 'channels' that are required for the wave decomposition. The 

'one-channel method' will only apply to uncoupled waves in a semi-infinite pipe at 

positions sufficiently far from the excitation point and is therefore not very interesting for 

practical application. The 'two-channel method' is much more interesting because it applies 

to all uncoupled waves in pipes of finite length. This method has been developed for 

acoustic waves in a duct, resulting in the well-known two-microphone method [Chung & 

Blazer 1980; Boden & Abom 1986]. With respect to fluid-filled pipes, it always applies to 

torsional waves. It applies to propagating bending waves at positions far (e.g. more than 

half a wavelength) from discontinuities (like elbows or supports). Plane waves in the fluid 

and extensional waves in the wall are coupled via Poisson-contraction, the coupling being 

governed by the parameter vcr (see eq.3.20 and eq.3.21). If vcr<1 (i.e. if the wall is much 

less flexible than the fluid) both waves may be considered to be uncoupled and may be 

treated separately, so that the 'two-channel method' applies. The 'three-channel method' 

applies in the presence of a single nearfield (evanescent bending or lobar wave), that is, 

close to a discontinuity but sufficiently far from the next discontinuity in the pipe. Finally, 

the 'four-channel method' applies to coupled fluid waves and extensional waves in pipes 

with a significant Poisson-coupling or to bending and lobar waves in pipes that are short 

compared to the decay distance of the evanescent waves. 'Three-channel' and , four­

channel' decomposition methods for flexural waves in thin beams have been described by 

Taylor [1990] and Halkyard & Mace [1993]. In the next sections we will describe 'two­

channel' and 'four-channel' methods for axial wave decomposition in fluid-filled pipes. 

4.2.3 the two-channel method 

We will follow Taylor [1990] to demonstrate the equivalence between the 'two-channel' 

axial wave decomposition method and well-known methods like the two-microphone 

method for acoustic waves in a duct and the cross-spectral methods for measuring 

structure-borne power flow on beams and pipes [Verheij 1980]. Under the conditions that 

have been discussed above, the two-channel method is applicable to all propagating waves 

in a fluid-filled pipe. The method involves a single two-channel FFf measurement for each 

wave type, which makes it an elegant method for practical application. A procedure for 

vibro-acoustic energy flow measurements on pipes has been developed on the basis of this 

method [de Jong, Verheij & Bakermans 1992] and will be presented below. 
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The matrix equation (4.5) for a two-channel method, that is based on the measurement of 

two equal variables at two different axial positions, can be written as: 

(4.9) 

The wave amplitudes may be obtained by matrix inversion, resulting in: 

[

A + : [iknrnZ2 iknrn"ll [qA (z) 1 nm -1 e -e nm ! 

A - = 2iro2 sin(k Ll ) _ -iknrnZ2 -iknrnZI A ( ) , 

nm nm nm e e qnm z2 

(4.10) 

with Llnm==zTz!. The matrix inversion is subject to errors when the transducer spacing ~m 

is close to zero or to an integral number of half-wavelengths. The accuracy with which the 

complex wave amplitudes are determined will depend on the accuracy of the measurements 

(amplitude and phase of qnm) and on the accuracy of the estimations of the wavenumber 

(knm) and the axial positions (zl,z2)' We may generalize the main results of the extensive 

study of the influence of errors on the two-microphone method by Boden & Abom [1986] 

and state that the two-channel method will be least sensitive to errors if the condition is 

fulfilled that 

(4.11) 

Hence, the optimum transducer spacing will be different for waves with different wave 

numbers and for different frequency ranges. 

All wave field descriptors may now be expressed in terms of the two complex wave 

amplitudes. However, for practical application it is advantageous to relate relevant descrip­

tors, like the reflection coefficient and the vibro-acoustic energy flow, directly to the auto­

and cross-power spectra that are obtained from two-channel FFT analysis: 

Gil (ro) = ~ E ( q;m (z! ,ro) . qnm (z! ,ro )) , 

G 12 (ro) = ~ E ( q;m (zl'ro) . qnm (z2'ro )) , 

(4.12) 

where the expected value E(q) is determined by averaging over a number of spectra and q* 

the complex conjugate of q. 

The reflection coefficient Rnm is defined as the ratio of the amplitudes of incident and 
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reflected waves at a given pipe cross-section (axial position zo). Its relationship to the 

measured two-channel frequency response function H 12=G12/G ll can be found from 

eqs.(4.6) and (4.9) as: 

H ( ) 
_ -iknm ""12 

12 0) e 
(4.13) 

This formula, which is well known from the two-microphone method for acoustic waves in 

a duct, appears to be valid for all uncoupled vibro-acoustic waves in a pipe. 

In section 2.6.4 it has been shown that the time-average, fluid- and structure-borne, vibro­

acoustic energy flow in each wave type is proportional to the difference of squared wave 

amplitudes: 

(4.14) 

where Cnm(O) is a constant of proportionality that depends on the type of transducer that is 

used and on the specific impedance of the waves. The cross-spectral method for measuring 

vibro-acoustic intensity in beams and pipes [Verheij 1980] is based on the fact that this 

difference of squared amplitudes is directly proportional to the imaginary part of the 

measured cross-spectrum G i2. Substitution of eq.(4.6) into the definition of the cross­

spectrum leads to the conclusion that the power spectrum of the time-averaged energy flow 

may be determined from 

(4.15) 

Simplified expressions result for the measurement of vibro-acoustic energy flow in the five 

types of wave propagation that are responsible for noise transmission at frequencies below 

the cut-on frequency of n=3 waves in long, straight, fluid-filled pipes. The structure-borne 

energy flow measurement is performed by means of sets of accelerometers, the fluid-borne 

energy flow measurement by means of pressure transducers. The following expressions are 

found (these expressions are less approximate than the expressions that have been 

presented in [de long & Verheij 1992]) : 



70 EXPERIMENTAL METHODS CHAPTER 4 

- pressure waves in the fluid: 

(4.16) 

- longitudinal extensional waves: 

(4.17) 

- torsional waves: 

(4.18) 

- bending waves: 

(4.19) 

- n=2 lobar waves: 

(4.20) 

In these equations the double dot denotes acceleration (the second time derivative of 

displacement). The wave velocities (cp,cE,cpcB,cL) and the corresponding wavenumbers 

(k=rolc) are the exact solutions of the dispersion equation, see section 2.4. Note that cB 

equals the bending wave velocity according to the EulerlBernoulli beam theory (eq.2.30). 

The equations for structure-borne energy flow in longitudinal, torsional and bending waves 

are comparable with the corresponding equations for energy flow in a beam by Verheij 

[1980]. However, Verheij's equations are based on simple beam theory and on a finite 

difference approximation. The above equations are based on shell theory and avoid finite 

difference errors, by applying the sine function instead of its approximation for a small 

argument: sin(k~)"'k~. The equation for torsional waves (eq.4.1S) contains a correction 

factor because the transverse accelerations are measured at radius b (see fig.4.1). The 

correction factor in the expression for bending waves (eq.4.16) allows this equation to be 

used beyond the frequency range where simple beam bending is valid. The expression for 

n=2 lobar waves (eq.4.17) is equivalent to the equation for bending waves and can be 
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easily extended to the next few higher circumferential orders, with the help of eq.(2.47). 

Note, however, that the assumption that the structure-borne energy flow is governed by 

membrane stresses in the shell (see section 2.6.2) becomes less valid for higher order 

modes, so that it is preferable to use more elaborate energy flow expressions for higher 

order waves in a pipe, like those given by Fuller & Fahy [1982] or Pavic [1990]. 

Note: The two-channel equations for measuring structure-borne energy flow along pipes 

have been applied successfully in shipboard measurements, on a cooling water pipe of a 

diesel engine and on the propeller shaft (i.e. a thick-walled, air-filled pipe), see [de long, 

Verheij & Bakermans 1992; Verheij, Hopmans & Van Tol 1993]. 

4.2.4 non-intrusive measurement of pressure pulsations 

It is of great practical interest to be able to determine pressure pulsations in a pipe from 

measurements at the outer surface of the pipe. Drilling holes in pipes to insert pressure 

transducers will in many situations be undesirable or even impossible. We have seen in 

chapter 2 that there is a direct relation between the internal wall pressure and the radial 

motion of the wall (eq.2.34). But we have also seen that the circumferential stiffness of the 

pipe is so high that the corresponding axial motion, due to Poisson contraction of the wall, 

predominates over the radial motion at low frequencies. Moreover, measurements of the 

n=O radial acceleration will contain contributions of both fluid waves and extensional 

waves. 

To investigate whether it is possible to separate the contributions of these two wave types 

in measurements of the wall motion, we will first consider one-directional propagation of 

coupled fluid waves and extensional waves in a semi-infinite pipe (see also [Pavic 1992; 

Pinnington & Briscoe 1992]). We can estimate the energy flow distribution for each wave 

by inserting the approximate wave velocities (eq.2.28&29) into the equations (2.34) and 

(2.43&44). It follows that the ratio of fluid-borne to structure-borne energy flow for the 

fluid wave is approximately equal to the inverse ratio for the extensional wave: 

(i'zs)~ 
---'" (4.21) 

(Pzf)~ 

This ratio is generally small (for example: for a water-filled, steel pipe with hla=0.05 the 

ratio equals 0.0016). Hence the energy flow in the fluid wave is mainly fluid-borne and the 

energy flow in the extensional wave is mainly structure-borne. The ratio of the wall 

displacement amplitudes corresponding to these waves depends on the ratio of the 

energies: 



72 EXPERIMENTAL METHODS 

y2 AsPscE (I>zs)~ 
- ---
4 ArPrcF (I> )± 

zr F 
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This implies that the fluid wave (F) predominates in the radial displacement and the 

extensional wave (E) predominates in the axial displacement if the energy flow distribution 

is even (for the above example the factors in eq.(4.19) are 0.079 and 0.0066, respectively). 

However, the ratio of radial amplitudes shows that an accurate measurement of the radial 

displacement amplitude WF is only possible if the fluid-borne energy flow predominates 

over the structure-borne energy flow. The axial displacement amplitude UE is less 

disturbed by the simultaneous presence of a fluid wave. 

The measurement of the radial displacement amplitude by means of accelerometers has the 

extra difficulty of their inherent sensitivity to transverse accelerations. The ratio of axial to 

radial acceleration is approximately equal to 

(Pzr)~ 

(P zs)~ 

(4.23) 

In the low frequency approximation that we have adopted here, the non-dimensional 

frequency waJcE is very small. Considering that a transverse axis sensitivity of 3% is quite 

good for an accelerometer, it follows that the signal that is measured by a radially mounted 

accelerometer will only be related to the fluid wave if the energy flow in the extensional 

wave is negligibly small. 

Note that the above considerations are based on one-directional propagating waves. In 

practice there will be partial standing wave patterns in pipes, due to reflections at discon­

tinuities. This means that the ratios of wave amplitudes and wave energies will highly 

depend on the axial position relative to the wave field. It may be concluded that it is 

necessary to use a four-channel method for the decomposition of axial waves in a pipe that 

is filled with a heavy fluid. This method may be based on non-intrusive measurement of 

axial wall accelerations. It is recommended that the measurement of radial wall acceler­

ations (n=O) is not adopted, since these measurements will very likely be hampered by the 

transverse axis sensitivity of the accelerometers. The application of a piezo-electric wire 

that measures circumferential strain [pinnington & Briscoe 1992] might overcome this 

problem. 
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4.2.5 the four-channel method 

We saw above that the vibro-acoustic behaviour of short pipes and of pipes with a 

significant Poisson-coupling is determined by groups of four coupled waves. The wave 

amplitudes may be obtained from four measurements, by solving eq.(4.5), where [F] is a 

4x4 matrix. We will illustrate this method by applying it to the experimental analysis of 

coupled axial waves (n=O) in fluid and pipe wall. 

Let us first consider the application of four equal sets of transducers (e.g. pressure trans­

ducers, axially mounted accelerometers or circumferential piezoelectric wires) at four pipe 

cross-sections (Zj,Z2,z3,z4)' The corresponding wave amplitudes are solved from the matrix 

equation 

CIo(Zj) 
e -ikpz, e ikpz, e -ikEz, e ikEZ, A+ 

F 

CIO(z2) e -ikpz2 e ikpz2 e -ikEz2 e ikEz2 Ai (4.24) 

CIO(z3 ) -ikpz3 e ikpz3 e -i kEz1 e ikEz3 A+ e E 

CIO(z4) l e -ikpz4 eikpZ4 e -ikE z4 e ikEz4 
A~ 

The two axial wave types exhibit two different wave velocities (for a water-filled steel 

pipe with h/a=O.05: cIicF",,4.2). Hence, on the basis of the error-sensitivity condition for 

the two-channel method (eq.4.8), it is suggested that the axial array of sensors should 

comprise two different spacings, that fulfil eq.(4.8) for both wave types. Figure 4.3 (page 

74) shows the matrix condition number for a symmetrical (solid line) and an asymmetrical 

(dashed line) array, as a function of the array spacing in wavelengths. The ratio of the 

largest spacing to the shortest spacing is chosen to be equal to the ratio of the wavelengths 

(i.e. 4.2). A large value of the condition number indicates that the matrix is close to 

singular. The symmetrical array appears to be more useful, because it is better conditioned 

over a wider frequency range than the asymmetrical array. But still the inversion will only 

be reliable in limited ranges of the spacing to wavelength ratio. 

The relative error in the norm of the vector of wave amplitudes will be smaller than the 

product of the matrix condition and the relative error in the norm of the measurement 

vector, see eq.(3.43). The absolute accuracy with which the four elements of the wave­

number vector are determined is not equal, because they are not necessarily of equal 

magnitude, but rather depend on which wave type is predominant. The weaker amplitudes 

will become very inaccurate when they are of the same order of magnitude as the absolute 

error in the largest amplitude. 
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Figure 4.3: Matrix condition number for axial wave decomposition in a water-filled steel 

pipe (hla=0.05), using a symmetrical (-) or an asymmetrical (--) array offour equal sets of 

transducers. 
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Figure 4.4: Matrix condition number for axial wave decomposition in a water filled steel 

pipe (hla= O. 05), using a hybrid array consisting of two sets of pressure transducers (0) 

and two sets of axial accelerometers (*): (1) symmetrical array, (2) asymmetrical array, 

(3) array of reduced length. 
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The accuracy of the decomposition may be improved by using a four-channel method, that 

is based on a hybrid array, for example on two axial acceleration measurements and two 

pressure measurements. Halkyard & Mace [1993] have shown that the same applies for 

bending wave decomposition on a beam. With this hybrid array the fluid wave will be 

characterized by a pressure and the extensional wave by an axial displacement of the wall. 

After scaling of the data (p=p/Pf:p<O, U=_ii/<o2, see eq.(3.18», the equations of motion 

(2048) lead to the following matrix equation: 

po(z\,<O) 

PO(z2'<O ) 

UO(z3'<O ) 

UO(z4'<O) 

with 

e -ikFz] e ikFZ] 

e -ikFz2 e ikFz2 

'P -ikFz3 
Fe 

'P ikFz3 - pe 

'P -ikpz4 
pe 

'P ikFz4 - pe 

±i cry kpkp 

k 2 
_ k2 

P E 

(4.25) 

(4.26) 

The factors cr and Y have been defined in eq.(3.20). The frequency-independent factors 

'PF.E contain both the exact solutions (kp,kE) of the dispersion equation (eq.3.19) and the 

approximate solutions (kF,kE) that are defined in eq.(2.28&29), because the latter are used 

to scale the data. Poisson coupling is responsible for the small difference between the two. 

Figure 404 shows the condition number of the matrix for the hybrid array as a function of 

the spacing in wavelengths (for a water-filled steel pipe with h/a=O.05, i.e. 'Pp""O.048i and 

'PE",-O.16i). As in the above example the ratio of the smallest to the largest spacing is 

equal to the ratio of the wave velocities. The range of applicability appears to be much 

greater than for the array of equal sensors (figAA). The matrix condition remains reason­

ably good, if the total length of the array is reduce to twice the fluid wave spacing. This is 

important for practical application, since it will not always be possible to measure on 

sufficiently long pipes. The symmetry appears to be unimportant for the matrix condition 

of the hybrid array. 

Although the matrix condition number will give an indication of the frequency range in 

which the method is insensitive to input errors, it does not give direct information on the 

accuracy of the results, because this acuuracy also depends on the accuracy of the 

measurements. The accuracy can best be evaluated by numerically disturbing the input data 
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with amplitude and phase errors of the same order of magnitude as the estimated input 

errors. The resulting variation in the wave amplitudes, or other wave field descriptors, will 

give a reliable indication of their accuracy. In chapter 5 we will show the application of 

the wave decomposition method with this accuracy estimation, applied to some laboratory 

experiments. 

4.3 Inverse methods 

We saw in chapter 3 that the vibro-.. tic transmission through each pipe system compo­

nent (that behaves linearly) can be characterized by a 'passive' transfer matrix [T] and, if it 

generates pulsations or vibrations, an additional ' active' source vector {Qs}, so that the 

state vectors (eq.3.12) at its inlet and outlet are related as: 

(4.27) 

Further, the boundary conditions for a fluid-filled pipe system may be expressed by means 

of an impedance matrix [Zb]' that relates the generalized forces {F) to the velocities iro{U) 

(see eqs.(3.3) and (3.9)): 

where 

{Fb } = { p,Fz , Fx,My, Fy,Mx' M z }b ' 

{Ub} = { v,uz' ux,<I>y' uy,<I>x' <l>z }b . 

(4.28) 

(4.29) 

The wave decomposition method allows us to determine the state vectors {Qd, {Qo} and 

{Fb} and {Ub} from measurements in straight pipes at the inlet and outlet of a pipe system 

component or at the boundaries of the pipe system. The objective of the 'inverse' methods, 

that are considered here, is to determine the characteristic matrices and vector ([T], [~] 

and {Qs}) from these state vectors. Because the number of unknown variables (matrix and 

vector coefficients) is generally too large to be solved directly from eqs.(4.24) or (4.25), 

the inverse methods involve repeated measurements on different system configurations. 

The system configuration may be varied through variation of the excitation or by applying 

geometrical changes to the system. 

To determine all elements of a 14x14 transfer matrix (or a 7x7 impedance matrix) requires 

at least 14 (or 7) different configurations. It is of great practical interest to establish the 

properties of symmetry and the absence of coupling between degrees of freedom, that 
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cause matrix coefficients to be equal or to vanish. A reduction of the number of unknown 

matrix coefficients may lead to an important reduction of the experimental effort. 

NOTE: Frikha et al. [1990;1992] and TroUe et at. [1993] describe an 'inverse' method to 

determine boundary conditions and excitation forces in pipe systems, which is based on 

multiple measurements on a single piping configuration. However, no matter how many 

measurement points are available in the pipe system, one can only determine the state 

vectors at the system boundaries for this single configuration. This will only yield correct 

boundary conditions if there is no mutual coupling between degrees of freedom at the 

boundaries, i.e. if the boundary conditions can be described by a vector instead of a 

matrix with cross-coupling terms. This fact should be recognized as a serious limitation for 

application of their inverse method to practical pipe systems. 

In chapter 6 we will show the application of an inverse method to characterize a centrifu­

gal pump, with respect to the generation and transmission of fluid pulsations. A rigidly 

mounted pump is considered, so that the problem is reduced to the determination of 6 

unknown coefficients: a 2x2 transfer matrix and 2 source vector coefficients. These 

coefficients can be determined from measurements on three different configurations. 

Other examples of the application of inverse methods will be given in chapter 5. To 

illustrate the principle we will describe here the inverse method required to determine the 

mobility matrix that characterizes a system boundary at which pressure pulsations couple 

only to extensional wall vibrations. This may occur when a straight pipe is closed by 

means of an end plate (or a large mounting block as in the experiments that are described 

in chapter 5). In this case the two test configurations may be achieved by first exciting the 

fluid and then exciting the pipe wall in axial direction. In both configurations we can 

determine the state vector at the boundary, using the wave decomposition method 

(preferably with a hybrid array consisting of pressure transducers and axial accelerometers, 

see section 4.2.5). The results of measurements on the two configurations (A) and (B) can 

be expressed in the following matrix equation: 

(4.30) 

The mobility matrix [Yj may be derived from this equation as will be shown in section 

5.2.3. 
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4.4 Conclusion 

Because of the complex vibro-acoustic behaviour of fluid-filled pipe systems it is not easy 

to interpret the results of pressure or acceleration measurements in such systems. In this 

chapter we have described methods to extract useful information out of this type of 

measurements. It has been shown how the amplitudes of the individual waves that 

propagate simultaneously in the pipe can be determined on the basis of measurements with 

appropriate arrays of transducers. Further a description has been given of how one can 

determine the transfer matrix of a pipe system component, the mobility matrix at a pipe 

cross-section, or the source strength vector of a component that generates pulsations or 

vibrations, using an 'inverse' method on the basis of repeated measurements on different 

system configurations. Practical aspects of the methods that have been described here will 

be discussed further in the next chapters in relation to application of the methods to 

laboratory experiments. 
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5. VALIDATION EXPERIMENTS 

5.1 Introduction 

In the previous chapters methods have been developed to predict and to analyze theor­

etically and experimentally the coupled pulsations and vibrations in a fluid-filled pipe 

system. This chapter describes the results of a practical application of these methods. 

To facilitate the interpretation of the results, it was decided to test the methods on some 

simple laboratory test arrangements. The aim of the experiments was both to validate the 

theoretical description of the vibro-acoustic behaviour of some pipe system components 

and to test the applicability of the measurement methods. 

The first set of experiments validates the model for wave propagation in a straight pipe 

(section 5.2). It is shown that an inverse method can be applied to determine the boundary 

conditions. The next two sets of experiments were designed to verify the transfer matrix 

model for the elbow (section 5.3) and to measure the reflection and transmission charac­

teristics of a rubber bellows (section 5.4). 

S.2 A straight pipe 

The axial wave decomposition techniques of section 4.2 rely on an appropriate model for 

the wave propagation in a straight fluid-filled pipe. Therefore this model can be validated 

by applying the wave decomposition technique to a set measurements on a straight pipe 

and comparing the results with the results of additional measurements. 

S.2.1 test arrangement and instrumentation 

Figure 5.1 shows a sketch of the first test arrangement. It consists of a 1.45 m long, 

stainless steel pipe with an outer diameter of 159 mm and a wall thickness of 4.5 mm, 

filled with water. Table 5.1 gives an overview of the material parameters that are used for 

this pipe and some relevant secondary parameters, like cut-on frequencies and wave 

velocities (see the List of Symbols). The accuracies in table 5.1 are based on the estimated 

accuracy of the primary parameters (aj,h,Es,ps,v,Kf,pf). The cut-on frequency for the n=2 

lobar waves (fe2) has been experimentally determined as 387 Hz (±O.6%), a value that 

deviates by only 3% from the above estimate. This indicates that the real accuracy is 

probably better than the estimates in table 5.1 suggest. Note that the approximate axial 

wave velocities (cp and cE) agree very well with the exact solutions of the equations of 
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vibration excitation 
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excitation 

120T 
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360 
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362 
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365 

mm + bolts 

572 kg 

Figure 5.1: straight pipe test arrangement, see also the annotations in the text. 

aj == 75 mm (±1%) Es == 2.1'10
11 

N/m
2 

(±7%) Kf = 2.15'109 N/m2 (±2%) 

h == 4.5 mm (±2%) Ps = 7800 kg/m3 (± 1 %) Pf == 1000 kg/m3 (±O.1 %) 

~2 = 0.28'10-3 (±6%) V = 0.3 (±3%) 

fe2 == 374 Hz (±8%) c
p 
= 5439 m1s (±4%) ca = 1466 m1s (±1%) 

fe3 = 1123 Hz (±8%) fring == 11.2 kHz (±5%) fe = 5.7 kHz (±2%) 

cF = 1271 m1s (±2%) cE == 5189 m1s (±4%) cB = 14.09vffi m1s (±4%) 

CF = 1259 m1s (±2%) CE = 5259 m1s (±4%) CB "" 13.26vffi m1s (±4%) 

Table 5.1: parameters for the straight, water-filled, stainless steel pipe. 



SECTION 5.2 A STRAIGHT PIPE 81 

motion (cp and cE). The velocity of the propagating bending wave (cB) is 6% lower than 

the Euler-Bernoulli beam bending wave velocity (cB), which is due to effects of transverse 

shear and rotational inertia. 

The pipe has been mounted vertically, to allow air to escape from the water. The presence 

of small air bubbles will considerably decrease the effective compressibility of the water, 

and hence have a significant influence on the acoustics of the system. In spite of the 

vertical arrangement it took about five days for the system to stabilize after filling it up 

with tap water. This problem might be overcome by pressurizing the system. The pipe is 

mounted on a mass-spring system to decouple its vibrations from the floor of the building. 

The resonance frequency of the system on the bottom springs is about 10 Hz so that it 

may be assumed that the bottom mass moves freely in the frequency range where the 

measurements have been performed (50-1000 Hz). In this frequency range the (steel) 

bottom mass behaves as a rigid body. Excitation takes place at the top of the system. The 

fluid is excited by an underwater loudspeaker (Aquavox). To avoid a direct excitation of 

the pipe wall by the hydrodynamic nearfield of the loudspeaker it is suspended in an 

annular mass (176 kg) for which the circumferential stiffness is 13 times larger than for 

the pipe. The fluid is free at the top surface. An electrodynamic shaker (Derritron VP4) is 

used to excite system vibrations in axial or transversal direction. The pipe is flanged at 

both ends and connected to the top and bottom masses by means of four bolts. The 

connections are sealed by rubber gaskets. 

Pressure pulsations are measured by four piezo-electric pressure transducers (Birchall 

DJBIM02fTA), that are flush mounted in the pipe wall at four axial positions, as indicated 

in figure 5.1. A single pressure transducer has been used per cross-section. This means that 

the contributions of the different waves to the measured pressures cannot be distinguished. 

However, the selective excitation, that is either axial (n=O) or transversal (n=l) prevents 

problems in the interpretation. Pipe wall accelerations are measured by an array of four 

accelerometers (B&K 4382) per pipe cross-section. These accelerometers are mounted on 

the pipe wall in either axial or radial direction by means of aluminium studs, see figA.!, to 

perform the circumferential mode decomposition that has been described in section 4.2.1. 

The sources are driven with a periodically swept sine signal (from 50 to 1000 Hz in 0.5 s) 

that is generated by a digital waveform generator (Wavetek 95). The signals of pressure 

transducers and accelerometers are recorded by a four channel FFr analyzer (Scientific 

Atlanta SD380C). Averaged auto- and cross-power spectra (400 lines, M=2.5 Hz, 100 

averages, Flat top window) are determined. The spectra are transferred from the analyzer 

to a PC, where they are processed using MATLAB software. The software has been tested 

by application to data that were generated by the PRESTO computer program. 
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Figure 5.2a: spectra of the fluid (F) and extensional (E) wave contributions to the pressure 

at position '2' in the straight pipe, for fluid excitation. 
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Figure 5.2b: spectra of the fluid (F) and extensional (E) wave contributions to the axial 

wall acceleration at position '2' on the straight pipe, for fluid excitation, 
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Figure 53a_' spectra of the fluid (F) and extensional (E) wave contributions to the pressure 

at position '2' in the straight pipe, for axial vibration excitation, 
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Figure 53b: spectra of the fluid (F) and extensional (E) wave contributions to the axial 

wall acceleration at position '2' on the straight pipe, for axial vibration excitation, 
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5.2.2 axial wave decomposition 

The test arrangement exhibits two mechanisms of interaction between fluid pulsations and 

axial pipe wall vibrations: 'junction coupling' at the bottom mass and 'Poisson coupling' 

in the straight pipe. Consequently, fluid waves and extensional waves will propagate 

simultaneously in the pipe, both when the fluid is excited and when the wall is excited in 

axial direction. This situation is suitable for testing the four-channel method for axial wave 

decomposition that has been described in section 4.2.5. 

Two successive measurements have been performed. First the system was excited by the 

underwater loudspeaker, then by the axial shaker. The axial waves have been decomposed 

by means of the hybrid four-channel method of eq.(4.21), using the pressure transducers at 

positions 1 and 3 and the axial accelerometers at positions I and 4 (see fig.5.!). A 

perturbation of 1 % and 10 has been applied to the measured input data to investigate the 

error sensitivity of the method. The perturbed data caused a deviation of less than 5% in 

all four wave amplitudes. 

Figures 5.2 and 5.3 show the results of the decomposition for the two measurements. 

These curves show the total contribution of both wave types to the pressure and the axial 

acceleration at position 2 in the pipe. The complex amplitudes of the corresponding waves 

that are propagating in positive and negative axial directions have been added to obtain 

these spectra. In section 5.2.6 the shape of the spectra will be discussed, here we consider 

the wave decomposition. It is clear that the wave type that is directly excited predominates, 

that is the fluid wave when the fluid is excited (fig.5.2a) and the extensional wave when 

the shaker is used (fig.5.3b). This means that these waves could be treated with a two­

channel method. The indirectly excited spectra (fig.5.2b and 5.3a), however, show 

contributions of both wave types that are of the same order of magnitude. This means that, 

for the indirectly excited waves, the application of a two-channel method would lead to 

large errors in the interpretation. This experiment confirms that it is valuable to apply a 

four-channel method for axial wave decomposition if the excitation mechanism is not 

known a priori. 

NOTE: the effect of Poisson coupling on the accuracy of the two-channel method for the 

experimental determination of vibro-acoustic energy flow in this experiment has been 

presented at the 4th intemational congress on intensity techniques in Sen lis {de long & 

Verheij 1993]. It was concluded that the coupling will cause the measurement of the 

energy flow in the indirectly excited waves to be unreliable. 
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The quality of the model for the coupled axial wave propagation may best be tested by 

looking at the indirect excitation. The pressure at position 2 can be predicted from the 

wave decomposition, for the experiment with axial vibration excitation, by summation of 

the two wave contributions that are shown in figure 5.3a. This predicted pressure spectrum 

may be compared with the measured pressure spectrum, see figure 5.4. Note that the 

measured pressure P2 has not been used in the wave decomposition. To show the import­

ance of Poisson contraction the wave decomposition has been repeated while neglecting the 

Poisson coupling (using v=O). The pressure spectrum that is predicted on the basis of this 

assumption is given by the dash-dotted line in figure 5.4. It is clear that the predicted 

spectrum without Poisson coupling is less accurate than the result of the model that takes 

the Poisson coupling into account. The model with v=O predicts a pressure cancellation 

near 500 Hz that is not seen in the direct measurement. The agreement between the 

directly measured spectrum and the prediction that includes the effect of Poisson coupling 

is good, at least up to 750 Hz. Apparently the low-frequency model loses its validity above 

750 Hz. This shows that the model is still correct far above the cut-on frequency of n=2 

waves (fc2=374 Hz). This comparison demonstrates that the model gives a reliable 

description of the propagation and coupling of fluid waves and extensional waves in a 

straight pipe. Of course the effect of Poisson coupling will be smaller in practical pipe 

systems where junction coupling (e.g. in elbows) is more important. But even then Poisson 

coupling may be responsible for a coherent noise in single-channel or two-channel 

measurements, that can be suppressed by a four-channel method. 
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Figure 5.4: pressure spectrum at position '2', caused by axial vibration excitation, directly 

measured (-) and determined by wave decomposition, for v=O.3 (--) and v=O.O (-.). 
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5.2.3 axial mobility matrix at the bottom mass 

Fluid-structure interaction takes place by Poisson coupling in the straight pipe and by 

'junction' coupling at the bottom mass. It has been shown above that the Poisson coupling 

is described accurately in the model on which the axial wave decomposition method is 

based. In this section the junction coupling is investigated. The boundary conditions at the 

interface (z=O) of a fluid-filled pipe and a massless endplate have been given in section 

3.6.1. With introduction of a mass M in place of the end plate these boundary conditions 

become: 

(5.1) 

The boundary conditions at the bottom mass are further complicated because the pipe is 

connected to the mass via a finite stiffness S. Here S denotes the axial stiffness of the 

bolts, which cannot be neglected in comparison with the axial stiffness of the pipe. 

Additionally, the rubber gaskets, which seal the connection, may expand under influence of 

the fluid pressure. This effect may be described by a 'distensibility' parameter D, which 

introduces an effectively increased compressibility of the fluid (see e.g. Lighthill [1978]). 

Neglecting the mass of the flange and the bolts, the following boundary condition matrix 

may be derived to describe the coupling effects at the bottom mass. It may be expressed as 

a mobility matrix [Y BM]' that relates the axial velocities of fluid and wall to the axial force 

and fluid pressure. 

[

V(O) 1 = [YBM ] [AfP(O) I", [- M~2 -D 

uz(O) iro Fz(O») __ 1_ 

M0l2 

(5.2) 

It has been shown in section 4.3 that the mobility matrix [Y BM] can be determined from 

two measurements on two different configurations. These are available in form of the 

experiments with fluid excitation and axial vibration excitation that have been described in 

the previous section. Figure 5.5 shows the resulting spectra of the magnitude of the four 

matrix coefficients. These results may be compared with the simple model of eq.(5.2). As 

indicated by the model reciprocity requires that the cross-mobilities Y vF and Y up are equal. 

Figure 5.5 shows that this condition is fulfilled at frequencies below 550 Hz. Apparently 

the results are less accurate at highre frequencies. Below 150 Hz these cross-mobilities 

follow a mass curve (for a mass of 580 kg) as predicted by eq.(5.2). Above this frequency 

the mobility curves deviate from the simple model. In reality there may, for example, be 

cross-coupling due to Poisson contraction of the gasket, that is not included in the model. 

The fluid mobility Yvp deviates from the cross-mobilities, which shows that there is indeed 

a distensibility effect. The structural mobility Y uF shows a minimum at 400 Hz. Such a 

minimum will occur at the resonance frequency (ro2=SIM) of the mass-spring system in 
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eq.(S.2). Hence the axial stiffness of the bolted connection between pipe and bottom mass 

is about equal to S",3.7·109 N/m. This value is not far below the estimated axial stiffness 

S",S.S·109 N/m of the bolts (four steel rods of 30 mm length and 16 mm diameter). 
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Figure 5.5: spectra of the four components of the experimentally determined mobility 

matrix [YBMJ for the bottom mass: Yvp (-), YvF (--), Yup ( .. ) and YuF (-.). 

This experiment clearly demonstrates that it is possible to determine a mobility matrix on 

the basis of experimental wave decomposition in a pipe using different configurations of 

the system, although further investigations are required to establish the accuracy of the 

method. This inverse method is a valuable tool for laboratory experiments, for example to 

characterize pipe system components. It remains to be shown whether such a method can 

be applied to determine larger mobility matrices, that describe system boundaries at which 

more degrees-of-freedom are coupled. For example, the mobility matrix of a pipe elbow 

will have to describe a coupling between axial and transverse motion. 

5.2.4 transverse wave decomposition 

The decomposition of bending waves and nearfields has been studied in a third experiment. 

The shaker has been moved to provide transverse excitation of the top mass. The under­

water loudspeaker has been removed from the water. The n= I accelerations are determined 

at four positions (see figSl), in each case by taking the difference of the signals of two 

accelerometers that are radially mounted in the plane of excitation at opposite sides of the 

pipe (qA and qc in figure 4.2a). These four acceleration signals allow the amplitudes of the 

two propagating bending waves and the two bending nearfields in the pipe (see figure 5.6) 
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Figure 5.6: schematic representation of the four bending (n=]) waves in the straight pipe. 
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Figure 5,7: spectra of the four bending wave amplitudes at position '3' in the straight 

pipe: OB+ (-), 0B_ (--), ON+ (.,) and ON. (-.). 
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to be detennined, using a four-channel method. Figure 5.7 shows the resulting wave 

amplitudes, at position 3 in the pipe. No data are given between 250 and 290 Hz, because 

the measured spectra were disturbed by noise in this frequency range. The error sensitivity 

of the dominating wave amplitudes was found to be small. The perturbation of the input 

data with 1 % and 10 resulted in a maximum error of 2% in the propagating wave 

amplitudes. The nearfield amplitudes show errors up to 35% at frequencies where they are 

much smaller than the bending wave amplitudes, but remain within 10% at other fre­

quencies. As expected, the contribution of the nearfields to the wave field diminishes at 

higher frequencies. In the frequency range where the accelerometers are at least a half 

bending wavelength fonn the ends of the pipe the axial wave decomposition can also be 

perfonned by a two- or three-channel method. 

5.2.5 internal wall pressure caused by transverse acceleration 

Another interesting result of this experiment is the confinnation that transverse acceler­

ations of the pipe generate pressure fluctuations at the pipe wall. Equation (2.36) states that 

the internal wall pressure for n:::I waves is caused by the inertance of the internal fluid. 

The wall pressure has been measured with pressure transducers that are positioned at 45° 

relative to the excitation direction. Hence these transducers measure a component of the 

fluid inertia force: 

(5.3) 

Figure 5.8 shows the comparison of the directly measured pressure spectrum and the 

pressure spectrum that is derived from the decomposed n=l transverse acceleration, using 

eq.(5.3). Generally the agreement is seen to be good. The deviations at 175, 530 and 

900 Hz are due to plane wave resonances in the fluid column, see section 5.2.6. Although 

the model of chapter 2 does not describe a coupling between the n= 1 and n=O pressure 

pulsations in a straight pipe, small irregularities in the test arrangement may be responsible 

for the observed excitation of plane waves. 

Two important conclusions follow from this comparison. The first is that transverse 

vibrations of a fluid-filled pipe may contribute to the internal wall pressure that is 

measured with a flush mounted pressure transducer. This implies that it may be necessary 

to use more than one pressure transducer per pipe cross-section, to separate the contribu­

tions of pressure waves and pipe vibrations. This technique has been applied for the source 

characterization that is described in chapter 6. Another option is to use a hydrophone that 

is positioned at the centre of the pipe cross-section, but such a hydrophone would be 

difficult to position and it would disturbe the flow in the pipe. Secondly it may be 

concluded that small irregularities in a pipe system will cause most resonant modes of a 

pipe system to be excited. This conclusion is illustrated by the presence of fluid column 
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resonances 10 the laboratory experiment, where they were not expected because the 

excitation was purely transverse. 
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Figure 5.8: measured pressure spectrum at position '2' (-), caused by transverse 

excitation, compared with the predicted pressure (--) on the basis of the measured 

transverse acceleration spectrum, eq.(5.3). 

5.2.6 comparison with PRESTO calculations 

The program PRESTO has been used to determine the vibro-acoustic response of the test 

rig. The transfer matrix model consisted of the following components: 

an annular mass, modelled as a thick-walled, steel, fluid-filled pipe 

an in-line stiffness, representing the bolted connection of pipe and mass 

a flange, modelled as a short, thick-walled pipe 

the straight fluid-filled pipe 

a second flange, equal to the first 

- a second in-line stiffness, equal to the first 

a bottom mass, with boundary conditions (eq.5.!) for the fluid 

The fluid column has a free surface at the top (p=O). The bottom and top masses are 

assumed to be free to move. The rubber mounting blocks of the test rig are neglected, 

because the system response is determined in a frequency range (50-1000 Hz) that is far 

above the resonance frequency (10 Hz) of the system on these springs. The data for the 
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straight pipe are given in table 5.1. The internal radius of the steel top mass is somewhat 

smaller than the internal radius of the pipe (aj=70 mm), its thickness is 90 mm and its 

length is 348 mm. The transfer matrix for the in-line stiffness contains the following 

coefficients that are estimated for the four steel bolts: an axial stiffness Sz=5.5·109 
N/m, a 

shear stiffness St=0.9·109 N/m and a rotational stiffness Sr=22·106 Nm, all with a loss 

factor 0.1. It also contains a fluid distensibility due to the rubber gasket D=0.9·1012 Palm. 

It is assumed that these values are independent of frequt:ncy. The steel flanges have a 

thickness of 65 mm and an axial length of 22 mm. The bottom mass (577 kg) has a 

transverse moment of inertia 1=17.1 kg/m2 and a polar moment of inertia J=20.4 kg/m
2

. It 

is important to note that the input parameters for the PRESTO calculations are estimated a 

priori and that no attempt has been made to 'tune' the model on the basis of the experi­

mental results. 

Three calculations have been performed, with excitations that correspond with the three 

experiments that have been described in the previous sectio:1s. In the first calculation the 

underwater loudspeaker has been represented by an ideal, frequency-independent pressure 

source (Ap=60 Pa), that is positioned just below the free surface of the fluid. This assump­

tion has to be taken for lack of information about the source-strength and the internal 

impedance of the loudspeaker. Consequently it is likely that the system response will not 

be predicted correctly. Figure 5.9 shows the measured and calculated pressure spectra at 

position 1 in the straight pipe. It is clear that the loudspeaker has a significant influence on 

the sound field. The most striking effect is the enormous overestimation of the pressure 

level at the resonances in the calculation. Obviously the loudspeaker exhibits a complex 

impedance that is responsible for a shift in the resonance frequencies and for a significant 

damping. In the calculation the fluid pulsations are only damped yia coupling to mechan­

ical vibrations, that are damped by a material loss factors of 0.002 for the pipe and 0.1 for 

the connections. The three resonance frequencies that are calculated are close to the lowest 

three eigen-frequencies of a fluid column with open-closed boundary conditions. The 

measurements show resonance frequencies that are 8 to 9% higher. Because the loud­

speaker is mounted in a box that may contain some air, it can impose a free boundary 

condition at its surface. Then the effective length of the fluid column is smaller. which 

accounts for the increased resonance frequencies. The pressure spectrum shows minima at 

frequencies where the distance between the bottom mass and the measurement position is 

equal to one or three quarters of a wavelength of the fluid wave. These frequencies, that 

are independent of the source impedance, are shown to be predicted very accurately. This 

confirms that the deviation between the calculated and the measured spectra is due to the 

unknown source characteristics only. Figure 5.10 shows an indirect response: the axial 

acceleration spectrum at position 1 for fluid excitation. This indirect response is determined 

by the ratio of the contributions of fluid-borne and scructure-bome waves. 
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Figure 5.9: measured (-) and calculated (--) pressure spectra at position 'I' in the straight 

pipe, for pressure excitation. 
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Figure 5.10: measured (-) and calculated (--) spectra of the axial acceleration at position 

']' in the straight pipe, for pressure excitation. 
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Figure 5.11: measured (-) and calculated (--) spectra of the axial acceleration at position 

'1' on the straight pipe, for axial vibration excitation. 
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Figure 5.12: measured (-) spectrum of the transverse acceleration at position 'J', for tran­

sverse excitation, compared with calculated spectra, for a pipe (--) and for a thin beam 

(Euler-Bernoulli) (-.). 
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The overestimation of the fluid pressures therefore leads to an overestimation of the 

acceleration levels. These results show that it is difficult to get an accurate estimation of 

the levels of vibration and pulsation in a pipe system if the boundary conditions cannot be 

determined accurately. 

A second calculation has been performed with axial force excitation of the top mass. The 

input impedance of the shaker is negligibly small compared with the impedance of the 

system. The excitation force is nearly constant in the frequency range of excitation (50-

1000 Hz). Figure 5.11 shows the measured and calculated acceleration spectra at position I 

for this configuration. The spectrum shows a single resonance just above 200 Hz. This 

lowest mode of the system may be described as the resonance of a mass-spring system, 

with the top mass as mass and the pipe as spring. The small difference between the 

measured and calculated resonance frequencies is probably due to the error in the 

estimated stiffness of the bolt connections. The minimum in the acceleration spectrum 

corresponds to the bottom mass vibrating on the stiffness of the pipe. 

Finally the response of the system to transversal force excitation has been calculated. The 

result of this calculation is compared with the result of measurements in figure 5.12. The 

solid line shows the measured transverse acceleration spectrum at position 1. The dashed 

line gives the result of the PRESTO calculation at the same position. The calculated 

resonance frequencies are too high (about 6% at 320 Hz and about 12% at 600 Hz), but 

the shape of the spectrum is predicted well. The dash-dotted curve gives the result of a 

calculation with a thin beam model (Euler-Bernoulli) for the pipe. Its large deviation shows 

that it is necessary to include transverse shear and rotatory inertia for this pipe, because the 

ratio of length to diameter is only 10 and the wavelength is of the order of magnitude of 

the pipe length. Figure 5.13 shows the mode shapes that correspond to the resonance 

frequencies. Only the displacement and the deformation of the pipe and the two masses are 

shown, the flange connections are omitted from these plots. It can be seen that the 

rotational stiffness of the connection of the top mass to the pipe is very important for the 

highest mode. This increases the plausibility of the suggestion that the resonance frequency 

of this mode is overestimated due to an inaccurate estimate of this stiffness. 
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Figure 5.13; calculated mode shapes corresponding to the resonance frequencies in figure 

5.12; (a) 55 Hz, (b) 140 Hz, (c) 340 Hz and (d) 670 Hz. 

5.3 A pipe system with a 90° elbow 

Following the straight pipe experiments, experiments have been performed on a pipe 

system with a 90° elbow. The objective of these experiments was to compare the results of 

PRESTO calculations with experimental observations. 

5.3.1 test arrangement 

The test arrangement consists of the components of the straight pipe arrangement studied 

above, extended with an extra, identical straight pipe and a 90° elbow, see figure 5.14. The 

system rests on three rubber isolators. One isolator is placed under the bottom mass, the 

other two isolators support the top mass. The rigid body resonance of the system on these 

isolators occurs below I Hz, so that they may be neglected in the calculations of the 

system response. The elbow has a radius of curvature R=O.239 mm and it has a circular 

cross-section. It is flanged and connected to each pipe by means of 8 bolts. The connec­

tions are sealed with rubber gaskets. Four measurement positions are available, at which 

pressure pulsations and accelerations have been measured. As in the straight pipe experi­

ment, measurements have been performed with a single pressure transducer and a set of 

four accelerometers per cross-section. The accelerometers have been mounted in different 

directions to determine axial, transverse and rotational acceleration of the pipe (see also 
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section 5.2.1). The structure has been excited by a shaker at the top mass, mounted in each 

of the three orthogonal directions. The excitation force was measured with a force 

transducer (B&K 8200). The excitation signal consisted of a periodically swept sine (20-

600 Hz). Pressure and acceleration cross-power spectra (400 lines, M=1.25 Hz, 100 

averages, flat top window) have been recorded, with the signal of the force transducer as a 

reference. 

mass 176 kg 

430 

774 (a) 

210 mass 572 kg 

mm 

120 965 

Figure 5.14: test arrangement with a 90° elbow, see also the annotations in the text. (a) 

the supports of the top mass, out of the plane of the elbow. 

5.3.2 comparison with PRESTO calculations 

The program PRESTO has been used to determine the vibro-acoustic response of the test 

rig. The transfer matrix model consists of the following components: 

- an annular mass, modelled as a thick-walled, steel, fluid-filled pipe 

- an in-line stiffness, representing the bolted connection of pipe and mass 

- a flange, modelled as a short, thick-walled pipe 

- a straight fluid-filled pipe 
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- a second flange, equal to the first 

- a second in-line stiffness, equal to the first 

- a third flange, equal to the first 

a 900 elbow 

- a fourth flange, equal to the first 

- a third in-line stiffness, equal to the first 

- a fifth flange, equal to the first 

a straight pipe, equal to the first 

- a sixth flange, equal to the first 

a fourth in-line stiffness, equal to the first 

- a bottom mass, with boundary conditions (eq.5.l) for the fluid 

97 

The fluid column has a free surface at the top (p=O). The bottom and top masses are 

assumed to be free to move. The stiffness of the connection of the flanges at the elbow is 

assumed to be equal to the stiffness of the connections to the masses. The number of bolts 

at the elbow is twice the number of bolts at the masses, but this is compensated by the fact 

that the free length of the bolts is also twice as large. The parameters of most components 

have been discussed in section 5.2.6, only the elbow is new. Material, radius and wall 

thickness of the elbow are the same as for the straight pipe. Both the discrete and the 

continuous model have been used to calculate the system response. These models share the 

same flexibility factor to describe the reduced bending stiffness of the elbow. The 

flexibility factor is not very large because the flanges suppress ovalization of the elbow. 

The appropriate factor (ff=2.8) is found from [ASME 1992]. 

As an example, figure 5.15 compares the measured and calculated response spectra at 

position 3 for transverse excitation of the top mass in the plane of the elbow. The four 

figures show the axial, transverse and rotational accelerations and the fluid pressure 

respectively. The rotational accelerations are measured at a radius b, see figure 4.1. The 

measured and calculated data are scaled with the measured excitation force. Both the 

response that has been obtained with the discrete model for the elbow (dashed lines) and 

the response for the continuous model (dash-dotted lines) are shown. The difference 

between the two elbow models appears to be small. On the basis of this experiment it 

cannot be decided which model is best. Apparently both simplified descriptions for the 

elbow are satisfactory. The calculated and measured spectra deviate at higher frequencies. 

This is not surprising since the straight pipe experiments showed a similar deviation, due 

to inaccurate modelling of the boundary conditions. Although the shape of the spectra is 

predicted correctly, the predicted vibration levels are significantly higher than the measured 

levels, especially at resonance frequencies. This means that the actual damping in the 

system is higher than assumed in the calculations. The predominant losses occur at the 
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Figure 5.15a.· axial accelerance at position '3' for transverse excitation in the plane of the 

elbow: measured (-) and calculated with the discrete model for the elbow (--) and with the 

continuous model ( .. ). 
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Figure 5.15b: transverse accelerance at position '3' for transverse excitation in the plane 

of the elbow: measured (-) and calculated with the discrete model for the elbow (--) and 

with the continuous model ( .. ). 
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Figure 5.15c: rotational accelerance at position '3' for transverse excitation in the plane 

of the elbow: measured (-) and calculated with the discrete model for the elbow (--) and 

with the continuous model (..). 
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Figure 5.15d: normalized fluid pressure at position '3' for transverse excitation in the 

plane of the elbow: measured (-) and calculated with the discrete model for the elbow (--) 

and with the continuous model ( .. ). 
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connections, by deformation of the rubber gaskets and by friction of the bolts. For lack of 

a better model, it has been assumed in the calculation that these connections can be 

described by a spring with 10% damping. A more accurate prediction of the pulsation and 

vibration levels can only be achieved on the basis of a more reliable description of the 

damping in the system. 

The model calculations give direct access to the mode shapes of the test rig. Some 

structural mode shapes are shown in figure 5.16. The other predominant peaks in figure 

5.15 correspond to fluid column resonances. Without coupling to the structure (but taking 

into account the lowering of the fluid wave speed due to the circumferential stiffness of 

the pipe wall) these resonances would occur at 87 Hz, 261 Hz and 435 Hz. The coupled 

model predicts these resonance frequencies at 93 Hz, 261 Hz and 454 Hz. Apparently, the 

model predicts that fluid resonances are not strongly influenced by coupling at the elbow. 

This is due to the fact that the resonan,ces do not closely coincide with structural reson­

ances. In reality the fluid resonances are measured at somewhat lower frequencies. This 

causes the second fluid mode to interact with the structural mode at 240 Hz. For these 

coinciding modes the mutual influence is much larger, as has been shown in section 3.6, 

which will introduce higher damping in the fluid mode, as seen in fig.5.15d. 

~[] 
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~ 
~=========D 

(b) 
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Figure 5.16: calculated structural mode shapes of the test rig at (a) 56 Hz, (b) 169 Hz, 

(c) 240 Hz, (d) 374 Hz. 
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5.4 Axial transmission through a rubber bellows 

Flexible components, like bellows and hoses, are often introduced in pipe systems to 

compensate for misalignment and mechanical or thermal stresses. They are also used as 

resilient elements to reduce the transmission of vibrations and fluid pulsations into the 

system. To be able to select the appropriate compensator and to predict its effectiveness 

the designer needs a method to characterize these components. 

The methods to characterize the vibro-acoustic transmission properties of fluid-filled 

bellows and hoses are much less established than, for instance, the methods to characterize 

flexible mounting elements for machines. Verheij [1982] describes how a test rig for 

measuring the transmission characteristics of flexible components can be modified to 

determine the 'blocked' transmission of structure-borne vibrations through fluid-filled 

hoses and bellows. The blocked transmission is sufficient to describe the element if its 

impedance is much smaller than the impedance of its seating. The applicability of this 

method is hampered by the fact that the impedance mismatch may be quite small in a 

practical situation and by the fact that the fluid-borne transmission cannot be handled. A 

transfer matrix description of the flexible components does not have these limitations. Veit 

[1976] describes measurements to determine the coefficients of the transfer matrix for axial 

fluid- and structure-borne waves through a bellows, neglecting fluid-structure interaction, 

but his measurement method has the disadvantage that the bellows cannot be pressurized. 

Oyadiji and Tomlinson [1985] have investigated the transfer matrix for structure-borne 

vibration transmission through reinforced rubber hoses. They take into account that the 

Young's modulus and the loss factor of the pipe wall material are essentially dependent on 

frequency and temperature. They have shown that a rubber pipe that is reinforced with 

fabric braids and a single helical spring wire may be treated as a pipe with a homogeneous 

isotropic wall material. However, they do not describe the important effect of the internal 

pressure on the dynamic stiffness (see e.g. [Kinns 1986]). 

In an early stage of the research that is described in this thesis it was attempted to 

determine the axial fluid-borne and structure-borne transmission characteristics of a 

bellows from measurements in two straight pipes at its inlet and outlet, with application of 

circumferential and axial wave decomposition techniques. At that time the inverse methods 

(section 4.3) were not yet available. Unfortunately, the data that were obtained then are not 

sufficient to determine the bellows transfer matrix. Nevertheless, some interesting 

conclusions may be drawn from these data, which will be presented below. 
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Figure 5.17: test arrangement with a rubber bellows. see also the annotations in the text. 
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5.4.1 test arrangement 

The test arrangement with the bellows is shown in figure 5.17. The straight pipes and the 

bottom and top masses are the same as have been used in the 'straight pipe' and 'elbow' 

experiments. The bellows (Elaflex EVR 150) under investigation has been connected 

between the two pipes by means of bolts. A second bellows, equal to the first, is applied in 

combination with a 32 kg mass to close the system at the top without introducing a strong 

fluid-structure interaction. The fluid has been excited by an underwater loudspeaker 

(Aquavox) and the axial acceleration and the fluid pressure are measured at four positions 

in each pipe. A second experiment has been performed with the bottom mass replaced by a 

rubber membrane, to create a different fluid boundary condition. The bottom mass is 

mounted on soft rubber blocks and the top pipe is supported at the top mass by two ropes. 

The distance between the two flanges of the bellows is kept equal (120 mm) in both 

experiments. 

5.4.2 measurement results 

The wave amplitudes could be determined very well with the axial and circumferential 

decomposition methods. Figure 5.18 shows the resulting wave amplitudes for the fluid 

wave and the (quasi-longitudinal) extensional wave in the top and bottom pipes. The 

amplitudes of the upward and downward propagating waves are nearly equal. This implies 

that the bellows and the bottom mass form highly reflective terminations for both fluid­

borne and structure-borne axial waves. As result, the vibration and pulsation levels in the 

bottom pipe are much smaller than the levels in the top pipe, where the source is located. 

The fluid waves in the top pipe show maxima close to the resonance frequencies of the 

fluid column between the bellows (for open-open boundary conditions these would occur at 

350 Hz and 700 Hz). The amplitude of the upward propagating extensional waves in the 

top pipe is larger than the amplitude of the downward propagating waves. This shows that 

these waves are driven by coupling to the fluid waves at the bellows. They exhibit the 

fluid column resonances and a strong mechanical resonance at 550 Hz. The fluid waves in 

the bottom pipe show peaks at the fluid and mechanical resonance frequencies of the top 

pipe and at frequencies close to the resonance frequencies of the fluid column between 

bottom mass and bellows (for open-closed boundary conditions these would occur at 

217 Hz and 652 Hz). 

The experiment with the bottom mass replaced by a rubber membrane shows similar 

results, see figure 5.19. In this case the levels in the bottom pipe are even lower, because 

the membrane induces a weaker interaction of fluid pulsations and structural vibrations 

than the bottom mass. The amplitudes of the propagating waves in the top pipe (A) are 

hardly influenced by the change in boundary condition of the bottom pipe. 
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Figure 5.18a: wave amplitudes of the pressure waves in the top (A) and bottom (B) pipes 

for the geometry with the bottom mass, propagating away from the source (-) and reflected 

(--). 
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Figure 5.19a: wave amplitudes of the pressure waves in the top (A) and bottom (B) pipes, 

for the geometry with the rubber membrane at the bottom, propagating away from the 

source (-) and reflected (--). 
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pipes for the geometry with the rubber membrane at the bottom, propagating away from 
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NOTE: Esparcieux [l986} found in his experiment that a rubber membrane at the end of a 

pipe (internal diameter 76 mm, filled with hydraulic oil) caused negligible reflections. 

However, our experiment (fig.5.19a) does not confirm this conclusion. It shows the high 

reflectivity that might be expected for such a pressure release boundary. 

The measurements have been performed with fluid excitation at the top only. Although the 

measurements have been repeated for two different acoustic loads at the bottom, these two 

measurements are not sufficient to determine the 4x4 transfer matrix for the coupled fluid­

borne and structure-borne waves through the bellows. 

Purshouse [1986] has proposed describing the fluid pulsation transmission through a 

bellows by means of a frequency dependent distensibility parameter. This parameter 

accounts for the dynamic stiffness, the hysteretic losses and inertial effects. Although 

Purshouse recognizes the importance of the inertia of the fluid, he incorrectly neglects the 

pressure difference across the bellows that is caused by this inertia. Nevertheless, it is 

useful to investigate whether it is possible to represent a bellows by a lumped mass-spring 

model. A simple model for the fluid pulsation transmission describes the distensibility of 

the bellows as a stiffness K, located at its centre, and the fluid inertia by two masses M 

one on either side of this stiffness. This model leads to a transfer matrix: 

Mw 2 

1-_ 
K (5.4) 

where the SUbscripts A and B refer to the top and bottom sides of the bellows respectively. 

The input mobility (v A/AfPA) of the bellows is much larger than the input mobility of the 

bottom pipe, so that it is approximately equal to 

iro (5.5) 

Figure 5.20 shows the magnitude of the input mobilities at the top side of the bellows, 

both for the experiment with the bottom mass and for the experiment with the membrane. 

The fluid mobilities at the top side of the bellows are nearly equal for these geometries, 

while they are found to be totally different at the bottom side. The shape of the spectrum 

agrees with the simple model of eq.(5.5), as shown by the dotted curves. The fluid mass 

that is involved is M",1.2 kg, about half the mass of the fluid in the bellows. The stiffness 

is K", 1.5 '106 kg/s2 with the bottom mass and K", 1.2'106 kg/s2 with the rubber membrane. 

As expected, the distensibility is somewhat lower if the axial mobility of the bottom pipe if 
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increased. The beJIows exhibits about 25% damping of the fluid pulsations, due to coupling 

with mechanical vibrations in the system and hysteretic losses in the bellows. 

The lumped mass-stiffness model gives a good description of the reflection characteristics 

of the bellows. Now it is interesting to investigate whether the same model can be used to 

describe the transmission characteristics. The measured spectra of pressure p A and fluid 

displacement v A' for the experiment with the bottom mass, are inserted into equation 5.4. 

The resulting pressures PB are compared with the measured pressure in figure 5.21. The 

comparison shows large differences. This implies that the fluid-structure interaction may 

not be neglected. 

A more accurate prediction can only be given if the cross-mobilities, that relate pressure 

pulsations and axial pipe vibrations, are taken into account. These may be determined in a 

similar test arrangement, using an inverse method (section 4.3). This method involves 

measurements with pulsation excitation and experiments with vibration excitation. 

Geometrical variations at the bottom of the system, to create different acoustic loads, result 

in a badly conditioned inversion, because these changes hardly influence the excitation side 

of the bellows. Of course this is only true for the very soft, non-pressurized bellows that 

has been investigated here. In practice, bellows will often be stiffer, through their design or 

due to a high internal static pressure. It is therefore interesting to investigate whether the 

transfer matrix of a stiffer bellows can be determined by an inverse method. 

5.5 Conclusion 

A series of laboratory experiments has been performed to partially validate the models for 

wave propagation in fluid-filled pipes and to test the practicability of the experimental 

methods that have been developed in this study. 

It has been shown that it is possible to decompose the different waves in a straight pipe by 

applying the appropriate combination of transducers. This lead also to the conclusion that 

the 'beam model' that lies at the basis of the compute program PRESTO gives a correct 

description of wave propagation in a straight fluid-filled pipe up to twice the cut-on 

frequency for n=2 lobar waves. 

It has been shown that pressure measurements with a single pressure transducer mounted 

in the pipe wall are sensitive to transverse vibrations of the pipe, due to the inertia of the 

fluid in the pipe. This effect can be suppressed by applying two pressure transducers per 

cross-section, at opposite positions in the pipe wall. 
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A soft rubber bellows is shown to be a very good isolator for both structure-borne and 

fluid-borne waves. Its reflective properties may be characterized by a simple mass and 

stiffness. Its transmission characteristics are strongly influenced by fluid-structure interac­

tion. 

The results of PRESTO calculations have been compared with experimental data. Gen­

erally, the agreement is satisfactory. Like all deterministic calculation methods, the transfer 

matrix method will only give an accurate prediction of resonance frequencies and vibration 

and pulsation levels in a pipe system when the input parameters are estimated correctly. 

Especially boundary conditions and loss factors may be difficult to estimate. An accurate 

prediction of, for example, maximum stress levels in a pipe system, requires the input of 

actual measurement data or data that are based on experience with similar systems. 

Nevertheless, the calculation method is a valuable tool to investigate the vibro-acoustic 

behaviour of systems. It gives access to mode shapes and can be used to study the effect 

of modifications to the system. 



6. ACOUSTIC CHARACTERIZATION 

OF A CENTRIFUGAL PUMP 

6.1 Introduction 

111 

Centrifugal fluid pumps are widely used as machines for the transportation of fluids, heat 

or hydraulic power. Pumps may be responsible for both mechanical and hydraulic 

excitation of the piping, leading to excessive noise levels or to problems with reliability 

and control in the pumping circuit. The impact of such problems may be enormous. For 

example the lead unit of the Darlington Nuclear Generating Station has been shut down for 

a period of 18 months after serious damage to a fuel pipe bundle that appeared to be 

caused by pump-induced pulsations [Telfer 1993]. 

In a centrifugal pump the generation of fluid pulsations will be the main source of noise 

and vibrations [Mtihle 1975]. We will limit ourselves to the characterization of a rigidly 

mounted pump with respect to the generation and the transmission of fluid pulsations. Dif­

ferent mechanisms may be responsible for the generation of pressure pulsations in a 

centrifugal pump (see e.g. [Guelich & Bolleter 1992; Makay et al. 1993]). One may 

distinguish volume fluctuations (monopole type sources) and fluctuating forces (dipole type 

sources). In a centrifugal pump the volume fluctuations will be mainly related to 

cavitation. Both the formation of vapour filled cavities when the local pressure drops 

below the vapour pressure of the fluid and the collapse of the bubbles when they are 

convected into regions of higher pressure are responsible for pulsations. The fluctuating 

forces will for example be caused by rotational unbalance of the pump shaft, by the 

interaction of the flow circulations around the rotating impeller blades and the fixed volute 

or diffuser blades and by the interaction of turbulent flow with the blades. 

Apart from the examples given, other mechanisms of pulsation generation in centrifugal 

pumps have been recognised, such as rotating stall [Mongeau 1992] or rotor dynamic 

instability [Makay 1993]. There is very little information available about the pulsation 

source strength in relation with the different source mechanisms. Simpson et al. [1966-67] 

have investigated hydraulic noise generation both theoretically and experimentally. Their 

theoretical work considers unsteady forces at the blade passing frequency, caused by 

unsteady blade circulation and viscous wake effects. From experiments on 7 different 

centrifugal pumps they deduced a semi-empirical formula that correlates the sound pressure 

in the discharge pipe with the specific speed (a number that characterizes similar pumps 

[Stepanoff 1957]) and the power consumption of the pump. Mtihle [1975] rewrote this 
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formula in international units. Although the experiments show only a ±2 dB spread 

compared to the correlation formula, several objections can be made. Bartenwerfer [1980] 

argues that the variables in Simpson's formula are not independent so that 'dubious func­

tional relationships' follow. Bartenwerfer suggests an acoustic similarity law for hydraulic 

noise production in pumps, in analogy to fans, but no experimental verification of this law 

has been given. The level of pressure pulsations measured in a pumping system is 

dependent on both the source strength of the pulsation generation in the pump and the 

response of the piping. It is not clear to what extent system response has influenced the 

measurements on which Simpson's correlation formula is based. 

The aim of the research that is described in this chapter was to develop an experimental 

method that allows source and system response effects to be separated. The inverse method 

will lead to a characteristic transfer matrix and a source strength vector, see eq.(3.37), so 

that the centrifugal pump can be introduced into the calculation model for predicting 

pulsations and vibrations in fluid-filled pipe systems that was described in chapter 3. Note 

that the characteristic parameters will depend on the operating conditions of the pump and 

on specific geometrical details of the pump. The source characterization method can help 

to identify pulsation generating mechanisms and to study the effect of geometrical 

modifications. Hence the method is relevant for both pump designers and designers of 

pumping systems. 

The experimental characterization of acoustic sources in pipe and duct systems has been 

studied since the early seventies, mainly with application to fan noise and engine exhaust 

noise. Overviews of these studies are given by Boden [1989] and Prasad [1991]. Assuming 

that the source behaves as a linear, time-invariant system, it is modelled as a 'black box' 

with one or more inlet and outlet ports. The approach is limited to frequencies below the 

cut-on frequency of non-planar waves in the suction and discharge pipes. Then the acoustic 

state at the ports is described completely by two independent variables, like for example 

the travelling wave amplitudes p+ and p. [Boden J989]. To stay in agreement with the 

transfer matrix formalism of chapter 3 here the local pressure pulsation p and volume 

velocity fluctuation q are used. 

The determination of the one-port source characteristics of fluid pumps is available as a 

British Standard Method [BS 6335: Part 1 1990]. This method is valid for positive 

displacement pumps, that have no significant acoustic coupling between inlet and outlet. 

For application to centrifugal pumps it requires that the piping attached to the inlet remains 

unchanged, so that it can be treated as a part of the source [Davidson 1977; Whitson & 

Benson 1993]. The centrifugal pump itself should be described as a two-port. Recently 

methods have been developed to determine the two-port source and transmission character-
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istics of in-duct fans [Terao & Sekine 1992; Abom et al. 1992; Lavrentjev et al. 1993]. 

Centrifugal pumps have received less attention. Experiments on the two-port transmission 

characteristics of a centrifugal pump have been reported by Ng & Brennen [1978] and by 

Stirnemann et al. [1987]. In these studies the generation of pulsations in the pump has 

been left out of consideration. The experimental characterization of centrifugal pumps has 

also been reported by Trolle et al. [1989], by Lauro & Trollat [1993] and by Jacob & 

Prenat [1993], but objections can be made against their source model, as will be explained 

in the next section. 

This chapter gives a description of the two-port model for the centrifugal pump. An experi­

mental source characterization method is presented. To investigate the applicability of this 

method, experiments have been performed on a single stage centrifugal pump in a 

laboratory test loop. The transmission and generation of fluid pulsations in this pump have 

been studied in relation to the operating condition. 

6.2 A two-port model for the centrifugal pump 

We are interested in the frequency range where only plane waves can propagate in the 

suction and discharge pipes of the centrifugal pump. It is assumed that the centrifugal 

pump behaves as a linear, time-invariant system [Boden & Abom 1990]. The results of the 

measurements will indicate to what extent these assumptions hold. The pump is modelled 

as an acoustic two-port. The active two-port is characterized, in the frequency domain, by 

a passive transfer matrix [1'] and two active source variables: a pressure source strength ~p 

and a volume velocity source strength ~q. 

-v 

S 
PUMP R 

u ~ 

Figure 6.1: Schematic representation of the centrifugal pump as a two-port. 
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At a given angular frequency w, the state vectors at the suction (subscript's') and 

discharge (subscript 'd') ports, see figure 6.1, are related by: 

(6.1) 

The frequency spectra of the six complex parameters ([T],L'lp,L'lq) in this model give a 

complete description of the two-port. 

The four elements of the transfer matrix [T] describe the transmission of pressure waves 

between the inlet and outlet ports of the pump. The ports may be chosen at the suction and 

discharge flanges of the pump, but for reasons of interpretation it is advantageous to 

consider the suction and discharge channels in the pump as a part of the piping. All 

sources should, however, be located between the ports. The propagation of plane waves in 

these channels is described using the transfer matrix for a fluid column of length dz: 

- (i/Yo)sin(kfdz) l' 
cos(kfdz) 

(6.2) 

where kf is the wavenumber for plane waves and Yo is the specific admittance 

(Yo=A/p~f). It is assumed that the viscous losses in these channels are negligibly small 

compared to the losses in the source region. 

Stirnemann et at. [1987] (see also Bolleter et at. [1990,1993]) have shown that the coeffi­

cients of the passive transfer matrix can be fitted to a lumped parameter model in the low­

frequency range. In this model the transfer matrix is described by analogy with a so-called 

1t-equivalent electrical network, consisting of two parallel elements with admittances Y\ 

and Y 3 and a series element with impedance Z2' see figure 6.2. The transfer matrix is then 

expressed as: 

(6.3) 

The admittances Y\ and Y3 are dominated by the total compliance C inside the pump 

(Y=+iwC). This compliance is determined by the compressibility of the fluid and the 

flexibility of the pump casing. The compliance will increase dramatically when air or 

cavitation bubbles are present inside the pump. The series impedance Z2 mainly represents 

the inertia L of the fluid in the pump in combination with a damping R: Z2=R2+iwL2. 

BoHeter et at. [1990] attribute this damping to the quasi-steady resistance that is related to 

the gradient of the head-flow curve of the pump at the operating point, but the real part of 

Z2 represents the effect of any kind of damping. More sophisticated models may be 
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developed to describe larger pumps at higher frequencies [Jacob & Pre nat 1993; Tavernier 

et al. 1993], whereas a multi-stage pump can probably be modelled by a network consist­

ing of a series of single stage models [KHiui 1993]. However, for the small single stage 

pump on which we performed our experiments the simple model of figure 6.2 does suffice. 

Figure 6.2: Lumped parameter model for the pump 

The total effect of all pulsation generating, or absorbing, mechanisms in the pump is 

described by an equivalent source vector, consisting of a monopole Llq and a dipole Llp. 

The equivalent source vector will generate the same pressure field in the pipe system as 

the actual sources. Here we have chosen to locate the source vector at the outlet, see figure 

6.2. It could equally be replaced by any combination of two independent source variables 

at either inlet or outlet (e.g. by a monopole at the inlet and a monopole at the outlet). 

NOTE: A definition of two source vectors, one at the inlet and one at the outlet, as in the 

models by TroUe [l989} and Jacob [l993} introduces two dependent source variables. 

Although multiple sources may be present in the pump, the two-port model can only 

distinguish two independent equivalent sources. The approach of Trolle and Jacob is 

therefore not an improvement of the model presented here. 

Without extra information it is not strictly possible to identify individual sources in the 

pump from the two-port model. However, different source mechanisms may sometimes be 

recognized from their frequency characteristics, see for instance Makay et al. [1993]. The 

ratio of the source vector elements Llp and Llq will give further information about the 

nature and or the location of the source mechanism in the pump. 
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6.3 Characterization method and procedure 

This section describes the experimental method used to determine the frequency spectra of 

the transfer matrix [T] and the source vector (.L\p,.L\q) that characterize the centrifugal pump 

as a two-port (eq.6.1). The method is based on pressure measurements in the suction and 

discharge pipes. The volume velocities q are derived from these pressures using the 'two 

microphone' method, that has been described in section 4.3.1. 

First the passive transfer matrix is determined from experiments with external fluid 

excitation. Assuming that linearity holds, the external source creates pressure pulsations 

that are not correlated with the pump source vector (.L\p,.L\q). Using coherence analysis with 

the excitation signal as a reference allows us to determine the passive transfer matrix while 

the pump is running, provided that the external source is sufficiently strong to dominate 

the pulsations that are generated in the pump. An extra advantage of this coherence 

analysis is that disturbing noise due to turbulent flow across the pressure transducers is 

suppressed. A 'two source-location' method, that has been introduced by Munjal and Doige 

[1990], is used to create the two different acoustical test states 'A' and 'B' that are needed 

for the determination of the transfer matrix. This method is valid under the condition of 

reciprocity. Strictly speaking, reciprocity is not valid for a pipe with flow [Munjal & 

Doige 1990], but at low Mach-numbers this condition is approximately fulfilled. The two 

test states are achieved by first applying fluid excitation at the suction side of the pump 

and next at the discharge side. The 'two source-location' method is preferable to the 'two­

load' method, in which the source location is kept constant and the test state is varied by 

variation of the acoustic load the pump, because it produces independent states in any pipe 

system [Abom 1992]. At both test states we determine the pressure and volume velocity 

spectra at the suction and discharge ports of the pump, using a 'two-microphone' method. 

The unknown two-port matrix [T] is then determined from the matrix equation: 

(6.4) 

At each frequency this equation is solved for [T] by Gaussian elimination. The accuracy 

with which [T] is determined depends on the condition number of the matrix of pressures 

and volume velocities that are measured at the suction side of the pump. The determinant 

of [T] indicates whether the assumption of reciprocity hold, because its magnitude should 

in this case be equal to one [Munjal & Doige 1990]. 

Once the passive transfer matrix [T] has been determined, the source vector follows from 
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pressure measurements in a single configuration with the pump running and without 

external fluid excitation. In this situation the pressure pulsations in the pipe system are 

generated by the pump. The source vector is then determined using equation (6.1). 

Instead of directly using the experimentally determined transfer matrix for the determina­

tion of the source vector, the lumped parameter model of eq.(6.3) is used. The lumped 

parameters are obtained by fitting to the measured transfer matrix coefficients. This has the 

advantage that random errors in the transfer matrix are averaged, so that they do not 

contribute to the error in the source vector. 

6.4 Description of the test facility and instrumentation 

The validity of the two-port model and the inverse method for determining the model 

parameters has been tested in a laboratory test loop with a centrifugal pump. 

6.4.1 the centrifugal pump 

The experiments have been performed on a single stage, in-line, centrifugal pump 

(Grundfos LPlOO-125/134). Its nominal power is 7.5 kW and it has a nominal speed of 

n=2870 rpm (48 Hz), a nominal head of H=18 m H
2
0 (1.8 bar) and a nominal flow rate of 

96 m3/h (Q=0.027 m3/s), hence its specific speed equals ns=nQ1I2H3/4=54 min-1m3
/
4sl12. 

The impeller has six blades and it has a diameter of 134 mm and a width at the outlet of 

22 mm. The suction and discharge openings of the pump have a diameter of 10 cm. The 

operating condition of the pump can be changed by variation of the pump speed (continu­

ously from zero to 2870 rpm) and by variation of the flow using valves in the test loop, 

downstream of the pump. The Reynolds number, based upon the impeller tip velocity V tip ' 

the impeller diameter D and the kinematic viscosity v, is high: 

(6.5) 

The fluid dynamic performance of the pump is then governed by two non-dimensional 

parameters [Stepanoff 1957], the capacity coefficient <I> and the head coefficient 'P: 

(6.6) 

Here Q is the time averaged volume velocity in the pump and LlP the time averaged 

pressure difference across the pump. b is the width of the impeller at the tip. Figure 6.3 

shows the non-dimensional head-flow curve of the pump ('II against <1» as measured in the 
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test loop at two different pump speeds. This shows that the performance of the pump, 

including hydraulic losses, can indeed be described by a single non-dimensional curve. 
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Figure 6.3: Non-dimensional head-flow curve of the pump, measured in the test loop at 

two different pump speeds (+: 1460 rpm, 0: 2365 rpm) 

6.4.2 the test loop 

The laboratory test loop is shown schematically in figure 6.4. Water is circulated from the 

reverberant water tank of TNO-TPD (lengthxwidthxdepth=12x6x5 m3
). This tank 

guarantees a constant head of 5 m and the use of 'stable' water, which has been in the 

tank for several years (T=20°C, pr=lOOO kg/m3
, Kr=2.19·109 Pa). Two membrane valves 

and one butterfly valve are installed in the discharge line, together with a constant flow 

resistance in the form of a nine hole restriction plate with a 50% opening. The piping has 

an internal diameter of 15 cm. The flow speed is measured, with an accuracy of 

±0.002 mis, using an electro-magnetic flow meter (Altometer K380/0). The static pressure 

is measured, relative to atmospheric pressure, at the suction and discharge flanges of the 

pump, using capacitive ceramic transducers (Cerabar PMC 130 & 133) with an accuracy 

of ±O.OI bar. The pump speed is determined at the pump shaft with an optical revolution 

counter (Hioki 3402, ±0.01 s-'). 

The pump is installed between two straight steel pipes, each of 3 m length with an internal 

diameter of 15 cm and a wall thickness of 4.5 mm (Ps=7800 kg/m3, Es=2.1·1011 Pa, 

v s=0.31). Short PVC contractions (length 43 mm) adapt the inlet and the outlet diameter of 
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the pump (<»=10 cm) to the pipes. Both the pump and the T-joints at the end of these pipes 

have been bolted to heavy concrete masses, to minimize pipe vibrations. 

reverberant basin (360 m3) 

5m 

dJ d2d l : ' S3 5 2 5 1 

r------------il-+I--+I ---1i pump ~ I -1 
1.5 0.5 0.5 0.5 0.4 0.5 0.5 1.6 m 

-0- pressure transducers cr static pressure meter 

~ fluid exciter 
@ flow meter 

t)l<] valve (m: membrane valve) 

(b: butterfly valve) ~ restriction plate 

Figure 6.4: Schematic representation of the laboratory test loop 

6.4.3 external excitation 

For application of the two-source method for determination of the pulsation transfer matrix 

of the pump two external fluid exciters have been installed, see figure 6.4. They are 

connected to the pipe system via T-joints. They can be disconnected from the system by 

means of butterfly valves. Both exciters are driven by either single frequency sine waves 

or periodically swept sine signals that are generated by a digital waveform generator 

(Wavetek 95) 

Two different types of excitation source are used. The source at the suction side of the 

pump is based on an existing electro-dynamic underwater loudspeaker (Actran J 11), see 

figure 6.5. It has been bolted to a pipe flange. The hydrostatic pressure at the piston is 

compensated via a small diameter flexible hose that pressurises the air bag behind the 

piston. The acceleration of the piston is measured by a sealed accelerometer (Endevco 

226). This excitation source has been used earlier to demonstrate the experimental source 
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characterization [de Jong 1993]. It appeared that the piston acceleration cannot be used to 

characterize the source strength, due to acoustic 'leakage' to the air bag, via the membrane, 

along the sides of the piston. 

Figure 6.6 shows the fluid exciter that has been installed in the discharge pipe of the 

pump. It consists of a PVC piston that is mounted in a rubber bellows and excited by an 

electro-dynamic shaker (Derrirron VP-4). The excitation force is measured by a force 

transducer (B&K 8200). 

hose 

oil 

magnet 

coil 

membrane 

accelerometer 

Figure 6.5: Underwater loudspeaker, adapted for use as a fluid exciter in the test loop. 

shaker 

/' force transducer 

~~@5~~ pvc plate 

rubber bellows 

Figure 6.6: Fluid exciter, consisting of a rubber bellows, a PVC end plate, a PVC piston 

and a shaker. 
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6.4.4 pressure transducers, calibration and data processing 

The pressure pulsations in the pipe are measured using piezo-electrical transducers 

(PCB 116A02), that are mounted flush in the pipe wall. Special adapter blocks have been 

used to guarantee that the transducers are mounted at the prescribed torque. The pressure 

transducers have been calibrated individually, while mounted in the adapter blocks, using a 

hydrophone calibrator (B&K 4223). This calibrator is provided with a chamber in which 

the pressure transducer is exposed to the same air pressure (63 Pa at 250 Hz) as a 

reference microphone (B&K 4134). The voltage signals of the transducers are fed into 

TPD-made source followers and amplifiers. In this configuration the sensitivity of the 

transducers is partly determined by the capacity of the cable between transducer and source 

follower. It has been ensured that cables of equal capacity (± 1 %) were used for all 

transducers. This calibration procedure allowed the sensitivity of the transducers to be 

determined to an accuracy of ±2%. As the piezo-electrical transducers are operated far 

below their resonance frequency of 130 kHz, the accuracy of the phase relationship 

between the transducer signals is mainly determined by the amplifiers and the anti-aliasing 

filters of the analyzer. This phase relationship was calibrated by feeding equal electrical 

noise signals into the source followers. The phase between the channels is matched within 

0.20 in the frequency range up to 1000 Hz. This is considered to be sufficiently accurate, 

so that no phase correction has been applied to the data. The transducers are compensated 

for acceleration in their axial direction with a resulting vibration sensitivity of about 

1.4 Pa/(m/s2
). Transverse vibration of the pipe may disturb the pressure pulsation measure­

ment due to the inertia of the water in the pipe. Therefore the average is taken of the 

signals of two pressure transducers that are mounted at opposite sides in the pipe wall at 

each measurement position. 

Data processing is performed using a four-channel FFT analyzer (Scientific Atlanta 

SD380C). The auto- and cross-power spectra are transferred from this analyzer to a PC, 

where they are processed using MATLAB software. 

6.4.5 linearity, stability and accuracy 

The reliability of the measurement method for source characterization depends on the 

linearity and the stability of the pulsations in the pipe system. These conditions may easily 

be violated when air bubbles are present in the fluid-filled pipe system. After filling the 

system it takes a few days, in which the pump is operated, before stable pressure measure­

ments can be performed. The stability and the accuracy of the measurements have been 

checked regularly. 

The linearity, or rather the homogeneity, of the transmission of pulsations in the system 

has been tested with the pump at standstill. The fluid was excited in the suction line, using 
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a periodically swept sine (40-400 Hz) at three different levels (ratios I: 1.5:2.5). The 

frequency averaged amplitude error between the spectra is ±2%, the phase accuracy is ±3°. 

The random error related to non-perfect coherence in the frequency response function Hxy 

for a two-channel pressure measurement may be estimated from the coherence function 

Yx/ [Bendat & Piersol 1980]: 

(6.7) 

where Navg is the number of averages. For the three frequency response functions the 

frequency averaged random error is ±0.6%. Hence the variance in the linearity check 

cannot be attributed to random errors only. However, the variance is sufficiently small to 

accept the linear approach. 

The stability of the pulsation transmission in the pipe system has been checked. As an 

example the frequency response function between the pressures at the positions dl and d2 

in the discharge pipe, due to excitation in the suction line, as measured on two occasions 

(66 days apart) is shown in figure 6.7. During these measurements the pump was running 

at 24 Hz close to its best efficiency (design) point. The frequency response functions have 

been measured with the external source signal as a reference. It appears that the measure­

ment is stable within about 5% in magnitude and 5° in phase. During the source strength 

measurements the stability of the pump-generated pulsations has been checked regularly. 

The shaft rotation frequency showed a maximum variation of 0.2% during a single 

experiment, while the pressure fluctuations at equal load were stable to within 10%. The 

linearity of the pulsation generation in the pump will be discussed in section 6.6. 

As said before, two pressure transducers have been used at opposite positions at each pipe 

cross-section to suppress measurement errors due to transverse vibration of the pipe. The 

average value of the signals of these transducers gives the n=O fluid pressure, whereas the 

difference of the signals gives the fluid pressure due to transverse vibrations of the pipe. A 

comparison of the sum and the difference of the signals of two transducers at the same 

cross-section showed that the apparent pressure pulsations due to transverse vibration are at 

least 30 dB lower than the actual plane wave pressure pulsations. The effect of transverse 

vibrations on the sum of the pressure transducer signals will therefore be negligible. Note 

that the low level of vibration is achieved through a purposefully rigid design of the test 

loop. In a common, less rigid, pipe system the suppression of transverse vibrations will be 

essential for reliable pressure measurements. 
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Figure 6.7a: Amplitude spectrum of the frequency response function between the pressures 

at positions dl and d2, with excitation in the suction line and the pump running at 24 rps. 

The dashed line has been measured 66 days later than the solid line. 

SO~--------~----~----~--------~----~----, 

-SO 

-100 

-ISO 
o SO 100 ISO 200 2S0 300 3S0 400 

frequency [Hz] 

Figure 6.7b: Phase spectrum of the frequency response function between the pressures at 

positions dl and d2, with excitation in the suction line and the pump running at 24 rps. 

The dashed line has been measured 66 days later than the solid line. 
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6.5 Experimental determination of the passive transfer matrix 

The passive transfer matrix of the pump has been detennined experimentally using the 

'two source-location' method. The two-microphone method [Chung & Blaser 1980] (see 

also section 4.3.1) is applied to determine the acoustic pressure and volume velocities at 

the suction and discharge ports of the pump. Plane wave propagation through the contrac­

tions at the inlet and outlet flanges of the pump and in the suction and discharge channels 

in the pump (respectively 30 and 20 cm long) are taken into account by transfer matrix 

multiplication (eq.6.2). The pressure pulsations are measured at three equidistant positions 

(llz=0.5 m) in both the suction and the discharge pipe, see fig.6.4. The wavespeed c is 

calculated from geometrical and material properties using eq.(2.28), which results in 

c= J 260 mls. This prediction has been verified using the three transducer method that is 

given in the appendix C 4.2 of the British Standard [BS 6335 Part I 1990]. Repeated 

measurements in both suction and discharge pipes result in c=1265 mls (±3%). The 

calculated wavespeed is considered to be sufficiently accurate for the data processing. 

According to Boden & Abom [1986] the two-microphone method is only convergent with 

regard to errors in the input data when 0.11t<kllz<0.81t. Hence the shortest separation 

(llz=0.5 m) is applicable in the frequency range between 126 and 1008 Hz, the largest 

separation (llz= 1.0 m) between 63 and 504 Hz. The excitation signal was a periodically 

swept sine (40 to 400 Hz in 0.5 s). The maximum pressure amplitude in the system was 

about 1.5% of the static pressure. A 400 line FFf was taken of the signals of the pressure 

transducers with a resolution of 1 Hz. A flat top window was applied to the data and 200 

averages were taken. 

6.5.1 pump at standstill 

At standstill the pump will behave as a passive element, which influences the pulsation 

transmission in the circuit. The transfer matrix of the pump at standstill is considered to be 

the reference against which the influence of the operation condition of the pump to the 

pulsation transmission has been investigated. 

The lumped admittances Y1 and Y3 and impedance Z2 of the model of eq.(6.3) are derived 

from the experimentally detennined transfer matrix coefficients: Y 1=(l-Hll)/HI2, 

Y3=(l-H22)1H12 and Z2=-H12. A linear least squares fit is used to determine the inertance 

L2 and the compliances C, and C3 from the imaginary parts of Z2' Y1 and Y3. In the fit 

only those frequency lines are considered where the coherence function of all measured 

pressures is greater than 0.95 and where the two-microphone method is insensitive to 

errors. The fit yields C
1
=4.0·IQ-12 m3/pa (±18%), C3=2.4·IQ-12 m3/pa (±50%) and 

L2=58·IQ3 kg/m
4 (±23%). The inaccuracies given have been derived from the standard 

deviation of the data in the fitting procedure. Figure 6.8 shows the real and imaginary parts 
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of the four coefficients of the transfer matrix. The lumped parameter model appears to give 

a reasonably good approximate description of the transfer matrix. However, a frequency 

independent resistance term R2 does not seem to give a realistic model for the damping in 

the pump. The real part of Z2 shows an increase near 225 Hz and 375 Hz. This effect 

might indicate the excitation of mechanical resonances in the pump. This experiment, 

however, does not give information about the nature of these resonances. 

The determinant of the transfer matrix indicates the reliability of the description of the 

pump as a reciprocal element. The spectrum of the determinant, which is given in figure 

6.9, shows a scatter of ±1O% around 0.95. Given the accuracy of the results, this implies 

that the linear description is useful. The accuracy of the results has been investigated by 

means of a study of the sensitivity to errors in the measured pressure spectra. The analysis 

has been repeated while one by one each of the measured pressure spectra has been 

disturbed numerically with an error of +5% and +5°. This disturbance will cause a 

maximum error in C1 of +23%, in C
3 

of +42% and in L2 of -18%. These errors agree with 

the bounds that were indicated by the fitting procedure. Note that the influence of 

experimental errors might be reduced by creating more than two independent test states. 

This overdetermination can be achieved by changing the system impedance [Bolleter et at. 

1990] or by driving both external sources simultaneously by coherent electrical signals, 

with a phase delay applied to one of them [Abom 1992]. 

The experimentally determined parameter values may be compared to estimations on the 

basis of the pump geometry and material parameters. The volume of the pump is estimated 

to be roughly equal to 3.10-3 m3
. The compliance of an equivalent volume of water at 

18°C is 1.4.10-12 m3lPa. This is substantially smaller that the sum of the experimentally 

determined compliances C1+C3",6.4·1O-12 m3lPa. The difference is too big to be explained 

from the elasticity of the cast iron pump casing. Since the pump is operating at a low static 

pressure «2.5 bar), it is more likely caused by the presence of an air pocket in the vertical 

casing of the pump. A similar effect has been observed in the experiment of France & 

Bilyk [1993]. The equivalent air volume that corresponds to the measured compliance is 

0.7.10-6 m3
, about 0.02 % of the total volume. The inertance L2 is estimated from 

L=pV/A
2

, where p is the density of the fluid, V is the volume of the pump and A is the 

area of the inlet and outlet of the pump. This leads to L2=49·103 kg/m4
, which agrees 

with the 56.103 kg/m4 (±21%) that has been derived from the measurements. 
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Figure 6.8a: frequency spectrum of coefficient TJJ of the transfer matrix of the pump at 

standstill, measured (real part (-), imaginary part (--)) and determined by fitting a lumped 

parameter model to the measured data (-.). 
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Figure 6.8b: frequency spectrum of coefficient TJ/Yo of the transfer matrix of the pump at 

standstill, measured (real parte -), imaginary part (--)) and determined by fitting a lumped 

parameter model to the measured data (-.). 
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Figure 6.8c: frequency spectrum of coefficient T21 Yo of the transfer matrix of the pump at 

standstill, measured (real part (-), imaginary part (--)) and determined by fitting a lumped 

parameter model to the measured data (-.). 
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Figure 6.8d: frequency spectrum of coefficient Tn of the transfer matrix of the pump at 

standstill, measured (real part (-), imaginary part (--)) and determined by fitting a lumped 

parameter model to the measured data (-.). 
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Figure 6.9: real (-) and imaginary (--) frequency spectra of the determinant of the the 

passive transfer matrix for the pump at standstill. 

pump operating 

When operating, the pump will act as an active element in the test loop. The pulsation 

source strength will be discussed in section 6.6. Here we consider the influence of the 

operating condition of the pump on the passive transfer matrix. In this experiment pump 

induced pulsations are suppressed by coherence analysis with the external source signal as 

a reference. Our aim is to identify significant changes in the transfer model parameters 

that would influence the determination of the source strength vector. Measurements have 

been performed at three different operating points of the pump at speed n",,24 S-I: close to 

the pump's best efficiency point (<1>==0.14) and at a low (<1>==0.01) and a high (<1>==0.20) flow 

rate. Table 6.1 shows the flow data and the lumped parameters that are derived from these 

measurements. Note that the frequencies at which strong tonal pulsations are generated in 

the pump (e.g. blade passing frequency, see section 6.6) are rejected in the fitting 

procedure. 

Table 6.1 shows that there is no significant change of the lumped parameters with 

increasing flow rate. This has been confirmed by measurements at other pump speeds. 

Even the real part of the series impedance (i.e. the damping) appears to be practically 

independent of the operation of the pump, the above mentioned 'resonances' at 225 and 

375 Hz appear at all four operating points, see figure 6.10. 
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«I> Q'103 L1P C '1012 
1 C '1012 

3 
L '10-3 

2 

[m3/s] [bar] [m3/pa] [m3/pa] [kg/m4] 

0 0 0 4.0 (±18%) 2.4 (±50%) 58 (±23%) 

0.01 0.58 0.54 3.8 (±17%) 2.1 (±36%) 58 (±22%) 

0.14 13 0.40 3.9 (±16%) 2.3 (±28%) 53 (±22%) 

0.20 19 0.14 3.7 (±17%) 2.2 (±30%) 53 (±23%) 

Table 6.1: lumped compliances CJ and C3 and inertance L2 of the pump at four different 

operating points (flow rate «1>, actual volume flow Q and pressure difference M). 
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Figure 6.10: real part of TJ/Yo at four different flow rates: «1>=0 (-), «1>=0.01 (--), 

«1>=0.14 ( .. ) and «1>=0.20 (-.). 

We may conclude from the experimental results that the transmission of low-frequency 

pulsations through this pump is governed by a transfer matrix that is approximately 

independent of the operating condition. The matrix coefficients can be described by two 

compliances C I and C3 and an inertance Lz. We will use the modelled matrix for the 

determination of the source strength vector. This has the advantage that the transfer matrix 

determination does not have to be repeated for all pump operating points. The real part of 

the series impedance is ignored in the model. Consequently the damping will be reflected 

in the measurements as a negative pulsation source strength (a sink) in the pump. 
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6.6 Experimental determination of the fluid pulsation source strength 

Once the passive transfer matrix for the pump is known, the pulsation source strength of 

the pump can be determined. With the external sources switched off, the source strength 

vector is derived from pressures and volume velocities at the suction and discharge ports, 

using eq.(6.l). 

Let us first consider a typical pressure spectrum as it is measured in the discharge pipe of 

the pump. Figure 6.11 shows the auto-power spectrum of the pressures at the measurement 

position 'dl' in the discharge pipe and 's3' in the suction pipe (see fig.6.4). The spectra 

are dominated by strong tonals at the blade passing frequency (145 Hz) and its first 

harmonic (290 Hz). They further show much weaker tonals at harmonics of the pump 

speed and a broad-band noise spectrum. The influence of resonances in the pipe system on 

the spectrum can be seen in the minimum near 210Hz, that indicates a local node in the 

pressure. Both the tone and the broadband noise near the blade passing frequency appear to 

be enhanced by a resonance. 

The use of an inverse method to determine the source strength vector requires a high 

coherence of the measured pressures. Non-perfect coherence may be caused by disturbing 

noise in the measurements, for example caused by the turbulent flow across the surface of 

the pressure transducers. It may also indicate that more than one, incoherent, source 

mechanism is responsible for noise generation in the pump [Abom et al. 1992; Okamoto 

1993] or that the source mechanism is not linear, which is not unlikely for flow-induced 

noise. Figure 6.11 shows both the coherent part (Yx/Gyy) and the incoherent part ((1-

Yxy 2)Gyy) of the pressure. The acceleration of the piston of the external source in the 

suction pipe (fig.6.S) has been used as a reference signal. When the source is turned off 

the piston follows the pressure pulsations in the fluid and it is not disturbed by flow noise. 

The coherence function between the piston acceleration and the pressure in the suction pipe 

appeared to be higher than the coherence function between pressures across the pump. The 

higher level of incoherent pressure fluctuations in the discharge pipe might be caused by a 

more disturbed flow after passing through the pump. However, the dominant tonals and the 

broadband noise around the blade passing frequency are coherent across the pump. This 

means that the source strength will be determined correctly at these frequencies. The 

coherence function gives no significant evidence of multiple incoherent source mechanisms 

or non-linearities at these frequencies. 
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Figure 6.11a: coherent (-) and incoherent (--) auto-power spectra of the pressure at posi­

tion 's3', with the pump running (n=24.14 rps; Q=O.013 m3/s; M=0.40 bar; N=l Hz). 
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Figure 6.11b: coherent (-) and incoherent (--) auto-power spectra of the pressure at posi­

tion 'dl', with the pump running (n=24.14 rps; Q=O.013 m3/s; M=0.40 bar; N=l Hz). 
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The magnitudes of the two components of the source strength vector are shown in figure 

6.12. They give a much clearer picture of the tonal phenomena that are generated by the 

pump. Compared to the directly measured pressure spectra of figure 6.11 more harmonics 

of the shaft rotation frequency can be recognised. They are indicated by their order number 

in fig.6.12. In the pressure source strength, the first harmonic of the blade passing 

frequency (order 12) displays sidebands (indicated by '*') at ±6 Hz. These might be 

caused by a low frequency whirl motion of the pump shaft, which seems to be supported 

by the presence of a peak at 6 Hz. Near the harmonics of the blade passing frequency 

(orders 6 and 12) one can observe an extra tonal phenomenon (indicated by '+'), which is 

most clear in the volume velocity source strength. There is no integer relationship between 

the frequency of this phenomenon and the shaft rotation frequency, but it is closely related 

to the harmonics of the blade passing frequency. It occurs at 1.055 times these frequencies. 

It is not clear what mechanism is responsible for these particular peaks. 

The source mechanism can be investigated by comparing the non-dimensional ratio 

Yo~q/~p of the monopole (~q) and dipole (~p) components of the source vector, where Yo 

(=A/Ptcf) is the specific admittance for plane waves in the suction and discharge pipes. In 

an infinitely long pipe the monopole and dipole sources will generate travelling waves with 

equal amplitudes if this non-dimensional ratio is equal to one. The ratio depends not only 

on the source mechanisms, but also on the transfer from the actual source position in the 

pump to the position of the equivalent source vector at the outlet port. In the worst case 

the actual source may be located at the inlet port. Equation (6.1) can be rewritten for this 

case: 

(6.8) 

Hence, the inlet source vector can easily be derived from the outlet source vector: 

(6.9) 
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Figure 6.12a: auto-power spectrum of the pressure source strength for the pump operated 

at its design point (n=24.14 rps; Q=O.OJ3 m3/s; !lP=0.40 bar; N=l Hz). The numbers 

refer to orders of the shaft rotation frequency (see the text for the symbols + and *). 
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Figure 6.12b: auto-power spectrum of the volume velocity source strength for the pump 

operated at its design point. The numbers refer to orders of the shaft rotation frequency 

(see the text for the symbol +). 
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Figure 6.13: non-dimensional ratio Yo I L1p/L1q I of the source vector components, for sources 

located at the outlet (-) or at the inlet (--) of the pump, using eq.(6.8). 

Figure 6.13 shows the non-dimensional ratio of the source vector amplitudes for both the 

outlet and the inlet source vector. The predominant source mechanisms appear to be 

fluctuating forces (dipole type). 

Note: This finding contradicts the results of Chatel et al. {1993], who conclude from a 

reciprocity experiment that the dipole type source mechanism has a negligible contribution 

to the noise that is transmited in the outlet pipe of the pump. However, this reciprocity 

experiment is based upon an incorrect model in which the fluctuating force with which the 

impeller acts on the fluid is represented by an acoustic dipole in front of an impeller 

blade, instead of the pressure difference across the impeller. 

The dipole source strength at the tonals at harmonics of the shaft rotation frequency is 

largest for the outlet source vector, which suggests that these tones are generated near the 

outlet port. This supports the idea that the interaction of the flow around the impeller 

blades with the fixed volute tongue is the main source of pressure pulsations in the 

centrifugal pump (see e.g. [Guelich & Bolleter 1992]). On the other hand, the above 

mentioned phenomenon related to the blade passing frequency (indicated by '+') seems to 

be of dipole type and generated near the inlet port. Based on the available information it is 

not possible to identify the generating mechanism. Since the objective of the experiments 

was only to show the practicability of the source characterization method, we have not 

further investigated this phenomenon. 
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The error sensitivity of the results has been tested by applying numerical errors to the 

input data. The random errors due to non-perfect coherence in the measured pressures are 

estimated on the basis of the coherence function [Bendat & Piersol 1980]. These errors 

result in a maximum error of 5% in the magnitude of the source vector. The pressure 

source strength is not very sensitive to errors in the lumped parameters for the transfer 

matrix model. A 20% error in C1 or L2 or a 50% error in C3 results in a maximum error of 

20% in ilp. The maximum error in ilq/Yo, that is small compared to ilp, is 50%. Using the 

actually measured transfer matrix instead of the lumped parameter model matrix results in 

similar errors. The linearity of the source strength has been tested by repeating the 

measurements at a different acoustic load of the pump. For this purpose the butterfly valve 

in front of the discharge source (see fig.6.4) has been opened in the second measurement, 

while it was closed during the first. Opening this valve mainly affects the system reson­

ance near 140 Hz. Therefore we only compare the levels at the blade passing frequency. 

The magnitude at the peak has been estimated with the help of a Hanning-window based 

interpolation technique [Burgess 1975]. The rms-pressure levels (Ips I and IPd I) at the 

suction and discharge ports respectively and the pressure source strength (Iilpl) at the two 

loads are: 

- valve closed: 

- valve open: 

IPsl=169 Pa; 

IPsl=168 Pa; 

IPdl=741 Pa; 

IPdl=229 Pa; 

lilpl=590 Pa 

lilp 1=504 Pa 

Opening the valve causes the outlet pressure to decrease by a factor 3.2. This shows again 

that the system response has a large influence on the pressure levels in the pipes. The 

resulting pressure source strength ilp shows only a 17% difference. This difference is of 

the same order of magnitude as the 20% error that might be expected on the basis of the 

error sensitivity. An accuracy of 20% (1.6 dB) for the dominant component of the source 

vector is considered to be sufficiently small to accept the method that is presented here as 

a means to achieve a useful estimate of the source strength of the pump. 

6.6.1 source strength at different operating conditions 

Now the source characterization method can be used to investigate the source strength at 

different operating conditions of the pump. A detailed study of the pulsation generation in 

the centrifugal pump falls beyond the scope of this thesis, but we will show some trends 

and investigate the scaling of the pulsation source strength. The operating conditions are 

varied through independent variation of the pump speed and the flow resistance using a 

valve in the discharge line (see fig.6.4). To facilitate the comparison we will scale the 

source pressure and volume velocity with a dynamic pressure, based on the circumferential 

impeller velocity Vtip : 
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~p ~q 

(6.10) 

First we will compare the source strength at the pump's best efficiency point, as deter­

mined above, to the source strength at two extreme operating conditions. Figure 6.14 

shows the non-dimensional pressure source strength for the pump operating near its best 

efficiency point (<<1>=0.14, solid line), at partial flow (<<1>=0.01, dashed line) and at large flow 

(<<1>=0.20, dotted line). Both extreme operating conditions show an increased source 

strength. Especially at partial flow, flow separation and recirculation in the impeller 

[Guelich & Bolleter 1992] cause a strong increase of the broadband noise level. 

-20,----~---~---~----~---..., 

·30 

-90 

-IOOL----~---~---~----~---~ 

o 0.5 1.5 2 2.5 

order of blade passing frequency 

Figure 6.14: non-dimensional spectrum of the pressure source strength, scaled with 

lhp Vti/' versus the order of the blade passing frequency, for the pump operating at three 

different conditions: «1>=0.14 (-), «1>=0.01 (--) and «1>=0.20 ( .. ), at pump speed n",24 rps 

(N=1 Hz). 

The source level at the blade passing frequency (f/n=6) has been determined at a range of 

flow rates at shaft rotation frequency n=24 Hz. Figure 6.15 shows the non-dimensional 

pressure and volume velocity source strengths as a function of the flow rate «I> (eq.6.6). 

The comparison of ~p and ~q (see eq.5.IO) confirms that the source mechanism is of the 

dipole type. The source level shows a maximum variation of 9 dB. The minimum source 

strength is found at a flow rate (<<1>"'0.05) far below nominal flow (<<1>",0.14). This effect has 

also been observed by Tourret et al. [1985] for a pump that was installed between 
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anechoic terminations to reduce the effect of system resonances. It contradicts 

Bartenwerfer's [1980] assumption that the source strength is minimal at the best efficiency 

point <l>REP and approximately increases proportional to (<I>-<I>BEP)2 away from this point. 

Bartenwerfer's assumption seems to be supported by statistical data on pressure pulsations 

of 36 pumps in different loops [Guelich & Bolleter 1992], but it is not clear to what extent 

these data are influenced by the system response. 

Figure 6.16 shows the source strength at a constant flow rate (<1>",0.13) as a function of the 

rotating speed. The shaft rotation frequency n has been scaled with a reference frequency 

no=50 Hz. Again the pressure source strength is dominant over the volume velocity source 

strength. The non-dimensional pressure source strength shows nearly 20 dB variation. Note 

however that the volume velocity source strength is found to be rather high at the 

minimum pressure source strength. 

It is interesting to compare the measured source strength levels to preditions based on the 

only prediction model that is currently available: the correlation formula by Simpson et at. 

[1966-67]. This formula predicts the pressure level at the blade passing frequency for 

operation at the pump's design point: 

with: 

Lp = 3510g(~P) + 1010g(Q) - 4010g(n) - 2010g((D/2)2b) - 116 

Lp = source pressure at blade passing frequency [dB re I Pa] 

,1.P = pressure rise across the pump [Pal 

Q = volume flow through the pump [m3/s] 

n = shaft rotation frequency [Hz] 

D = outer diameter of the impeller [m] 

b = width of the impeller at the outlet [m] 

(6.11 ) 

This formula predicts that the source pressure will vary in proportion to n2 at a constant 

non-dimensional flow rate <I> [Bartenwerfer 1980], hence that the non-dimensional source 

pressure ~p1Y2P Vtip 
2 will be independent of n. At <1>=0.13 equation (6.11) predicts a non­

dimensional source pressure level of -43 dB. This value agrees very well with the 

measured source pressure for nino in the range of 0.68 to 0.85 (see fig.6.16), but the 

measured data outside this range show significant deviations from the predicted source 

strength. 
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Figure 6.15: non-dimensional source strength vector components I1p (0) and I1q/Yo (+) at 

the blade passing frequency, versus flow rate <1>, at pump speed n",,24 rps, 
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the blade passing frequency, versus shaft rotation frequency nino (no=50), at flow rate 
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6.7 Conclusion 

In this chapter we have presented the application of an experimental inverse method to 

characterize a centrifugal pump as a source and a transmission path of fluid pulsations. A 

test loop has been designed in which this method has been tested on a single stage pump. 

Pressure pulsations have been measured in the suction and discharge pipes, using two 

acceleration compensated, flush mounted, piezo-electric pressure transducers per pipe 

cross-section. This configuration the disturbing effect of transverse vibrations of the pipes 

on the pressure measurements. 

The measured pressure signals have been shown to be sufficiently stable to be able to rely 

on successively measured data for the inverse measurement method. The linearity of the 

pulsations in the system and the accuracy of the measurement method have been investi­

gated. 

It has been shown that the transmission of pulsations through a centrifugal pump can be 

characterized by a linear transfer matrix. For the pump under investigation this frequency­

dependent matrix appears to be approximately independent of the operating condition. As 

shown before by Stirnemann et al. [1978], the coefficients of this matrix can be related to 

the lumped compliances and inertance of a simple lumped network model, at low fre­

quencies. The inertance appears to agree with the value that may be estimated on the basis 

of the pump geometry. The experimentally determined compliance is nearly five times 

larger than expected, probably due to the presence of a small air pocket in the pump. 

The generation of pulsations in the pump has been characterized by an equivalent source 

vector, consisting of a monopole and a dipole source strength. The spectra of the source 

strengths give a much clearer picture of the pulsations that are generated in the pump than 

the pressure spectra that are measured in the suction and discharge pipes. The results of 

experiments on a single stage centrifugal pump confirm that fluctuating forces (dipole type 

sources) form the dominating source mechanism in the pump, if no cavitation occurs. We 

have been able to determine the source strength with an accuracy of about 20%. It is 

shown that the source strength depends on the operating condition of the pump. Simpson's 

correlation formula [Simpson et at. 1966-67], the only tool that is presently available for 

estimation of the source strength of centrifugal pumps, appears to give a reasonable first 

approximation for the source strength at the blade passing frequency when the pump is 

operating at its design point. However, it does not give information on the source strength 

at other frequencies and operating conditions. The results of the experimental method show 

that, for off-design conditions, the actual source strength deviates by up to 13 dB from the 
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predicted value. 

Of course measurements on a single pump in a single test loop do not allow general 

conclusions. The practicability of the method that is presented here will have to be proved 

by further application. It promises to be an interesting tool for investigation of pulsation 

generation in centrifugal pumps. In combination with detailed measurements or calculations 

of the complex flow field in the pump it can help to identify quantitative relationships 

between the flow field in the pump and the generation of pressure waves in the piping. 
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7. EVALUATION 

In the literature there is only limited information available on the mechanisms which are 

responsible for the generation and transmission of fluid pulsations and mechanical 

vibrations in pipe systems. This thesis presents some useful tools for the analysis of these 

mechanisms. 

While fluid pulsations and mechanical vibrations in gas-filled pipes can usually be treated 

separately, a strong coupling can occur in flexible pipe systems filled with a fluid for 

which the mass per unit pipe length is of the same order of magnitude as that of the pipe. 

This coupling requires a simultaneous analysis of fluid pulsations and pipe vibrations. At 

higher frequencies the coupled behaviour will generally be so complex that it can only be 

described in terms of spatial and temporal averaged quantities, using a statistical method, 

like SEA [Lyon 1975]. However, many practical problems occur at lower frequencies 

where strong tonal phenomena (e.g. blade passage tones of a centrifugal pump) may excite 

resonant modes of the pipe system. For this type of problem a deterministic method is 

more appropriate. The methods that have been developed in this study aim primarily at a 

deterministic analysis of the coupled, linear elastic, dynamic behaviour of pipe systems 

filled with a heavy, homogeneous fluid (e.g. water or oil). 

Prediction method for the dynamic behaviour of a pipe system 

The linear dynamic behaviour of fluid-filled pipe systems can now be predicted, using the 

computer program PRESTO, that is based on the transfer matrix method (TMM). Unlike 

the few TMM models for pipe systems that have been described in the literature, it is 

based on a detailed study of the propagation of fluid-borne and structure-borne waves in 

fluid-filled cylindrical shells. Analytical expressions have been obtained for the transfer 

matrix coefficients of several pipe system components (straight pipes, elbows, pipe 

supports, etc.). The sensitivity of the method to input errors has been evaluated and a 

method has been described to control the convergence of the program with respect to 

numerical round-off errors. Numerical examples confirm that the interaction of pulsations 

and vibrations has significant effects on the resonance frequencies and pulsation and 

vibration levels at resonance when normal modes of fluid and structure closely coincide. 

The TMM is a useful tool to investigate coupled pulsations and vibrations in pipe systems 

of not too complex geometry. It is particularly suited for treating systems that can be 

modelled as a linear cascade of components. The modelling of branched systems and 

systems with pipe loops requires further investigation. One of the main advantages of the 

TMM is that the transfer matrix coefficients of pipe system components can be obtained 
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by different methods. Where possible, analytical expressions should be used (as derived for 

straight and curved pipes). The transfer matrices of components that cannot be described 

analytically can be derived experimentally. However, the introduction of experimentally 

determined transfer matrices in the TMM model may seriously influence the accuracy of 

the results. This problem requires further investigations. Another option is to use the Finite 

Element Method to determine the transfer matrix of components for which no analytical 

expressions are available. It would be an interesting extension of the present study to 

investigate this option. 

Validation experiments have been performed on two simple pipe systems: a straight pipe 

and a system consisting of two straight pipes connected by an elbow. These experiments 

contribute to the limited experimental data that are available in literature, where the 

experiments of Davidson et al. [1969;1972] are still used as a benchmark. Predictions of 

the dynamic behaviour of these systems (using the TMM) appeared to agree reasonably 

well with the results of measurements. As for all calculation methods, the major difficulty 

is to obtain accurate input data, especially for the boundary conditions and the damping in 

the system. The accuracy of the calculated response might be improved by using measured 

data to establish correct input data. Nevertheless, the results of the calculations provide 

insight into the dynamic behaviour of a pipe system that cannot be obtained as easily from 

measurements. Calculations can be performed in the design stage, so that problems can be 

identified and modifications to the design can be evaluated before the construction of the 

system. Model calculations can also be used to evaluate experimental methods with respect 

to their applicability and accuracy. 

Experimental methods 

An important achievement of the experimental methods that are described in this study is 

the correct decomposition of the measured signals into wave amplitudes, using the signals 

of multiple transducers (accelerometers, pressure transducers). This decomposition is 

essential for the interpretation of measurements on a pipe, because each measured signal 

may consist of contributions of several types of waves. Once this wave decomposition has 

been performed, the wave amplitudes give information on, for example, the amount of 

vibro-acoustic energy that is transmitted in each wave. Using this method, it is possible to 

identify sources and predominant transmission paths of pulsations and vibrations. 

The vibro-acoustic source strength and transmission characteristics of pipe system 

components can only be derived in a well-defined pipe system. In-situ measurements are 

always influenced by the response of the pipe system. In this thesis the effects of system 

response are removed by means of an 'inverse' method. Such a method involves a series 

of measurements on different system configurations. Different configurations can be 
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obtained by geometrical changes, e.g. by opening valves or disconnecting pipes or pipe 

supports from the system, (i.e. the 'two-load method', as suggested by Kathurija & Munjal 

[1976]) or by artificial excitation of the system (i.e. the 'two-source-Iocation method', as 

suggested by Munjal & Doige [1990]). 

Two examples of the application of an inverse method have been presented in this thesis: 

the determination of the 2x2 axial mobility matrix of a mass at the end of a straight pipe 

(section 5.2.3) and the determination of the 2x2 fluid pulsation transfer matrix of a 

centrifugal pump and the source vector to match (sections 6.5 and 6.6). These examples 

demonstrate that such a method can indeed be used. Further investigations are required to 

investigate whether it is possible to use an inverse method to determine a larger matrix or 

the source vector of a source which excites mechanical vibrations in more than one degree 

of freedom. To determine more matrix or vector coefficients will require measurements on 

more system configurations. It would be interesting to establish what the limitations are 

(with respect to matrix size, maximum frequency, measurement accuracy, etc.) to the 

applicability of the inverse method. 

It has been shown that an inverse method can be applied to investigate the generation of 

fluid pulsations in a centrifugal pump as a function of its operating condition. This 

experiment gives evidence that a centrifugal pump, in the absence of cavitation, imposes 

fluctuating forces on the fluid at harmonics of its blade passing frequency. This implies 

that the pump may be modelled as a dipole source of pulsations. As far as the author 

knows, experimental evidence for this has not been published before (see [Bolleter 1993]). 

The characterization method may be of interest for the design of pumps, to investigate 

experimentally the influence of modifications in the .design on the generation of fluid 

pulsations. The method might also be used for condition monitoring of pumps. Further 

investigations should reveal which relationships exist between the acoustic source strength 

and specific defects in the pump. Finally the quantitative information on the source and 

transmission characteristics of the pump can be used directly as input to the PRESTO 

program, to predict the vibrational response of the circuit in which the pump will be 

installed. 
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APPENDIX A: Numerical solution of the dispersion equation 

Following Pavic [1990] the dispersion equation (eq.2.22) is solved numerically, using the 

series expansion for the Bessel functions in the dimensionless wavenumber ](=kmna: 

Eq.(2.20) has been used to eliminate the radial wavenumbers Ymn. The dimensionless 

parameter \fI is defined as the ratio of the plate wave speed c
p 

in the pipe wall and the free 

wave speed in the fluid Co squared: \fI=(clc
o

)2 and the superscript "i" referring to the 

internal fluid has been omitted. 

Equation (A. 1 ) can be rewritten in the form: 

with: 

C2nk = (_I)k~ U )\fIQ2)j-k Cl nj , 

C3 nk = C-lli:(j)\fIQ2)j-k(2j+n)Clnj. 
j:k k 

The dispersion equation can be expanded in ](2 : 

(A.2) 

CA.3) 

CA.4) 

where the factors C4nj and C5nj can be derived from the matrix elements L, eq.C2.24), for 

each set of shell equations. 

Without fluid-loading (FL=O) the dispersion equation reduces to an eighth order poly-
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nomial equation in 1(2. For fluid-filled pipes substitution of eq.(A.2) into eq.(A.4) results in 

a polynomial equation of infinite order: 

4 2 2 

~ {~C4 C3 ,-,.2 Praj ~ CS C2 } (1(2)k , (A.S) 
~ ~ nj n(k-j) - ~'" -- ~ nj n(k-j) 
bO j=O psah j=O 

where the coefficients C3n(k_j) and C3n(k_j) are equal to zero for k<j. 

It can be shown that a truncation of the series expansion in equation (A.4) after 20 terms 

leads to sufficiently accurate wavenumbers for Q<l. The resulting polynomial equation has 

been solved numerically, using the companion matrix method. Pavic [1990] gives the 

results of a similar numerical solution method for determining the dispersion equation, 

based on the Fli.igge equations. Our computer program, that can be used for any set of 

shell equations, has been tested by the reproduction of PaviC's results. 
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APPENDIX B: Derivation of the beam model for a straight flnid-filled pipe 

State variables 

The state variables for a quasi one-dimensional model of the straight fluid-filled pipe are 

obtained by integration of the local shell and fluid variables over the pipe cross-section. At 

low frequencies membrane stresses are predominant so that the local bending and radial 

shear stiffness of the shell may be neglected. Figure 2.3 shows the orientation of the local 

and averaged variables, which are related through: 

21t 21t 

- 1 f -
- fNzesinSadS, (B.1) 

U
X 

= - (wcosS - vsinS)dS , Fx 
21t 0 0 

21t 21t 

_1_ f (wsinS + vcosS)dS 
- f NzecosS adS (B.2) uy Fy 

21t 0 0 

21t 21t 

_1_ f udS 
- f Nz adS 

(B.3) U
Z Fz 

21t 0 0 

21t 21t 
-

_1_ f_u_ dS 
- f N z a

2 
sinS dS (BA) 

<I> x Mx 
21t 0 asinS 

0 

21t 21t 
- __ 1_ f_u_ dS 

- -f N z a 
2 

cosS d S , (B.5) 
<l>y My 

21t 0 acosS 
0 

21t 21t 
-

-1-f~dS 
- f Nze a2dS , 

(B.6) 
<l>z Mz 

21t 0 a 
0 

21t a i 21t a i 

-
2 f f~zrdrdS -

2 f fprdrdS 
(B.7) v f = P 

1t a j o 0 1t a j o 0 

The dependence on rand S is suppressed in the integration process. Substitution of the 

circumferential mode expansion (eq.2.1S) into the equations (B. 1-7) yields: 
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- -
<l>x = iu]/a, <l>y = -u]/a, <l>z = vola, 

(B.8) 

- .2 A - 2A - 2A 
Mx = 11t a (NJ], My = - 1t a (Nz)], Mz = 21t a (Nzs)o ' 

As expected, the contributions of all modes n> 1 disappear in the integration. 

Equations of motion: 

Neglecting bending stiffness, the stress-strain equations (eq.2.3) yield: 

(B.9) 

And the equations of motion (eq.2.8) yield: 

. (Nzs )] 
+1 __ _ 

a 

(B.IO) 

The fluid equations (2.9-11) result in: 

(B.ll) 

And the equation of compatibility, eq.(2.13), yields: 
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(B.12) 

Using the Bessel function approximation for a small argument 'Y'li leads to 

(B.13) 

and the integration (eq.B.7) of the fluid equations (B.ll) over the fluid area results in: 

(B.14) 

Beam equations 

The quasi one-dimensional model for the straight fluid-filled pipe may now be found by 

elimination of the shell variables from the equations (B.8-14). After some manipulation 

these will lead to a set of 14 first order differential equations. The resulting equations are 

given in section 2.7. 



NOMENCLATURE 

Roman undercast: 

a 

c 

C 

ca 

cp 

cond( ) 

det( ) 

f 

k 

n,m 

n 

p 

q 

{r,e,z} 

t 

{u,v,w} 

{ ux,uy,uz } 

v[,v 

{x,y,z} 

Roman capital: 

A[,As 

Anm 

[B] 

C 

D 

mean radius 

internal radius 

external radius 

width of pump impeller at the outlet 

wave velocity 

approximate wave velocity (defined in section 2.4) 

velocity of sound in the unconfined fluid 

plate wave velocity in the pipe wall (E/Ps(l-V2
))1/2 

matrix condition number 

matrix determinant 

frequency 

cut-on frequency of n=l waves in the fluid 

cut-on frequency of n=n waves in the shell 

elbow flexibility factor 

wall thickness 

(-1)1/2 

wavenumber (ro/c) 

mode numbers 

pump speed 

specific pump speed (nQI/2H-3/4) 

mass per unit length of pipe and fluid 

dynamic pressure 

dynamic fluid volume velocity 

cy lindrical coordinates 

time 

shell displacement vector in cylindrical coordinates 

shell displacement vector in Cartesian coordinates 

axial fluid displacement 

Cartesian coordinates 

cross-sectional area of fluid, pipe wall 

wave amplitude 

boundary condition matrix 

compliance 

distensibility parameter or pump impeller diameter 
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E( ) 

Es 

FL 

{Fx,Fy,Fzl 

Gxx 

Gxy 

Gs 

H 

Hn 

Hxy 

[J] 

[m( ) 

Is 

I n 

Js 

K 

Kf 

L 

[L] 

Lp 

M 

{Mx,My,Mz} 

{Mz,Me,Mze } 

N avg 

{Nz,Ne,Nze,Qz,Qe} 

P nm 

Pzf,Pzs 

Q 

R 

Rnm 

Re 

Re{ } 

S 

[T] 

{Unm,V nm,W nm} 

Y 

NOMENCLATURE 

ensemble average 

Young's modulus of elasticity 

fluid loading parameter 

force vector in Cartesian coordinates 

auto-power spectrum 

cross-power spectrum 

shear modulus of elasticity (E/2(l +v)) 

pump head 

Hankel function 

frequency response function 

identity matrix 

imaginary part 

second moment of inertia 

Bessel function 

polar moment of inertia 

stiffness 

fluid bulk modulus of elasticity 

length or inertance 

non-dimensional shell equations of motion matrix 

pressure level 

mass 

moment vector in Cartesian coordinates 

thin shell moment resultants 

number of averages 

thin shell force resultants 

complex amplitude of modal pressure 

fluid- and structure-borne axial energy flow 

state vector or pump flow rate 

radius of curvature or resistance 

reflection coefficient 

Reynolds number 

real part 

stiffness 

transfer matrix 

complex amplitudes of modal shell displacement 

admittance or mobility (liZ) 

specific admittance 

impedance 



Greek undercast: 

a 

~2 

Y 

Ynm 
2 

Yxy 

{ cz,ce,Yzel 

e[ ] 

S 
11 

K 

Ks 

Am 

11 

V 

Pf,ps 
0" 

{ O"z,O"e,"tzel 

{<I>x,<»y'<»z l 

{ ~z'~e'~rl 

X 
(0 

Greek capital: 

NOMENCLATURE 

rotation angle 

wall thickness parameter (h2/12a2
) 

bend angle 

radial wavenumber 

coherence function 

strain components 

relative error 

see eq.(3.24) 

loss factor 

non-dimensional wavenumber (ka) 

shear coefficient (2( 1 +v )/(4+ 3v» 

eigen-value 

mass ratio (PfAiPsAs) 

Poisson's ratio or kinematic viscosity 

density of fluid, shell 

see eq.(3.20) 

stress components 

rotation vector in Cartesian coordinates 

fluid displacement vector in cylindrical coordinates 

see eq.(3.24) 

angular frequency 

,1nm axial transducer spacing 

{,1p,,1ql pump source vector 

,1P static pressure difference across the pump 

<I> pump capacity coefficient, see eq.(6.6) 

\fI pump head coefficient, see eq.(6.6) 

n non-dimensional frequency ((Oalcp) 

super- and subscripts 

d discharge 

e external 

f fl~d 

n,m 

o 

r 

internal or input or imaginary part 

mode number 

output or shell middle surface 

radial or real part 
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s 

z 

e 
+,-

B 

E 

F 

K 

N 

S 

T 

U 

other symbols: 

x 
* x 

X 
-
x 

<x>t 

Ilxll 
{x} 

[xl 

NOMENCLATURE 

shell or suction 

axial 

tangential 

propagating in positive,negative z-direction 

bending wave 

extensional wave 

fluid wave 

known 

bending nearfield 

source 

torsional wave 

unknown 

Fourier transform 

complex conjugate 

scaled (see eq.(3.IS)) 

averaged over a pipe cross-section 

time averaged 

norm of vector or matrix 

vector 

matrix 
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STELLINGEN behorende bij het proefschrift "Analysis of pulsations and vibrations in fluid­

filled pipe systems" door Christ de long, oktober 1994 

1. De overdrachtsmatrix methode is aanzienlijk efficienter voor het berekenen van trillingsover­

dracht in pijp- of balksystemen dan de eindige elementen methode of op reflectie- en 

transmissiecoefficienten gebaseerde methoden, zoals het rekenmodel van Homer. 

J.L. HORNER & R.G. WHITE 1991 Journal of Sound and Vibration 147(1): 87-103 

2. Stulemeijer's beschrijving van drukpulsaties in hydrostatische systemen geeft geen directe 

informatie over het afgestraalde geluid, aangezien hij het aan de pulsaties gekoppelde 

trillingsgedrag van de pijpen buiten beschouwing laat. 

LP.J.M. STULEMEIJER 1981 proefschrift Technische Universiteit Eindhoven 

3. De formule van Simpson et al. voor het voorspellen van de bronsterkte van centrifugaal­

pompen is ten onrechte gebaseerd op metingen waarbij de invloeden van pomp en leiding­

systeem niet zijn gescheiden. 

H.C. SIMPSON, et al. 1967 Journal of Sound and Vibration 5(3): 456-488 

4. In zijn numerieke berekeningen van de instationaire potentiaalstroming in een centrifugaal­

pomp veronderstelt Badie dat de stroming station air is in de inlaat en de uitlaat. In de 

praktijk zal de stroming aan deze randen echter bepaald worden door de tijdsafhankelijke 

responsie van het pijpsysteem. 

R. BADIE 1993 proefschrift Universiteit Twente 

5. De door Worman afgeleide uitdrukking voor de hydrodynamische "Bernoulli" kracht op het 

riet van een klarinet gaat uit van de veronderstelling dat de vergelijking van Bernoulli 

uniform geldig is in het mondstuk. Deze veronderstelling is echter in strijd met het voor zijn 

model noodzakelijke verband tussen rietopening en volumedebiet. 

W.E. WORMAN 1971 PhD Thesis, Case Weston Reserve University, Cleveland 

6. De klarinet kenmerkt zich door een rijke klank, een groot dynamische bereik en een hoge 

mate van flexibiliteit bij de bespeling. Theoretische modellen, zoals die van Schumacher en 

Brod, schieten te kort in de beschrijving van dit gedrag, aangezien hierin essentiele niet­

lineaire verschijnselen zoals de beweging van het riet over de kromming van de baan, de 

effecten van stroming in de buis en vooral ook de invloed van de bespeler ontbreken. 

R.T. SCHUMACHER 1978 Acustica 40: 298-309; 1981 Acustica 48: 71-85 

K. BRaD 1990 Acustica 72: 72-79 

7. In het belang van het merendeel van de bewoners van het stiltegebied Waddenzee dient er 

naast de beperking van het luchtgeluid ook een eis gesteld te worden aan het maximaal 

toegestane geluidniveau onderwater. 

8. Gezien de kans op het optreden van frontale botsingen zouden de NS het gebruik van 

duwtreinen uit veiligheidsoverwegingen dienen te vermijden. 

9. Het dynamisch bereik van de Compact Disc is overdreven groot voor de meest toegepaste 

functie, het verdrijven van de stilte uit de gemiddelde huiskamer. 
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