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Abstract Dynamic weather such as rain and snow causes

complex spatio-temporal intensity fluctuations in videos.

Such fluctuations can adversely impact vision systems that

rely on small image features for tracking, object detection

and recognition. While these effects appear to be chaotic in

space and time, we show that dynamic weather has a pre-

dictable global effect in frequency space. For this, we first

develop a model of the shape and appearance of a single rain

or snow streak in image space. Detecting individual streaks

is difficult even with an accurate appearance model, so we

combine the streak model with the statistical characteristics

of rain and snow to create a model of the overall effect of

dynamic weather in frequency space. Our model is then fit

to a video and is used to detect rain or snow streaks first

in frequency space, and the detection result is then trans-

ferred to image space. Once detected, the amount of rain

or snow can be reduced or increased. We demonstrate that

our frequency analysis allows for greater accuracy in the re-

moval of dynamic weather and in the performance of feature

extraction than previous pixel-based or patch-based meth-

ods. We also show that unlike previous techniques, our ap-

proach is effective for videos with both scene and camera

motions.
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1 Introduction

Rain and snow are often imaged as bright streaks. Not only

can these streaks annoy or confuse a human viewer, but they

degrade the effectiveness of any computer vision algorithm

that depends on small features. For example, feature point

trackers can fail if even small parts of an image are occluded.

If these streaks are removed, then the tracker can work with

greater accuracy. Alternately, rain may need to be added to

a scene. For example, after a shot is taken, a movie director

may decide that there should be more rain. The scene could

be filmed again, but this would be costly and time consum-

ing. Rather than requiring people to wait for the weather to

be perfect, we develop techniques to digitally control the

amount of rain and snow in a video.

Rain and snow are specific examples of bad weather.

Although one good day is much like another, the proper-

ties of bad weather vary depending on the size of the con-

stituent particles. Static bad weather, such as fog and mist,

are caused by microscopic particles. Due to the small par-

ticle size, fog and mist are usually spatially and temporally

consistent. Since their effect does not vary significantly over

space and time, it is sufficient to only analyze their effect

locally, on individual pixels (Nayar and Narasimhan 1999;

Narasimhan and Nayar 2002; Cozman and Krotkov 1997).

For large particles such as raindrops and snowflakes, analy-

sis is more difficult. Spatially and temporally neighboring

areas are affected by rain and snow differently, so must be

handled differently.

Several methods have been developed to remove rain and

snow from videos. The earliest use a temporal median filter

for each pixel (Hase et al. 1999; Starik and Werman 2003).

Temporal median filtering exploits the fact that in all but

the heaviest storms, each pixel is clear more often than cor-

rupted. The problem is that anything that moves will become
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Fig. 1 (a) The snow has been detected by finding its global spatio-temporal frequencies. (b) The brightness and amount of snow is then manipu-

lated to increase from its left to right

blurred. Zhang et al. (2006) extended the idea of per-pixel

removal by correcting for camera motion via planar image

alignment and detecting rain with k-means clustering. This

method is an improvement over simple median filtering in

cases where the scene is static and the video frames can be

accurately aligned.

Garg and Nayar (2004) suggested that streaks can be seg-

mented by finding pixels in individual streaks that change

over space and time in the same way as rain. False matches

can then be reduced via a photometric constraint that models

the appearances of streaks. Searching for individual streaks

this way can theoretically work for dynamic scenes with a

moving camera. But this method is most effective when the

streaks are against a relatively textureless background.

Garg and Nayar (2005) also demonstrated how to prevent

rain from being imaged in the first place, by modifying cam-

era parameters during acquisition. They suggest using tem-

poral and spatial blurring, either by increasing the exposure

time or reducing the depth of field. This removes rain for the

same reasons as the per-pixel median filtering, and will not

cause blurring when all objects are at the same depth or the

scene is static.

In this work, we combine realistic streak modeling with

the knowledge of the statistics of dynamic weather. Unlike

previous works that detect rain by only looking at individual

pixels or patches, we treat rain and snow as image-global

phenomena. In order to determine the influence of rain and

snow on a video, we develop a global model in frequency

space. In image space, single rain and snow streaks appear

similar to any type of vertical stripe. Likewise, in frequency

space, a single streak is difficult to distinguish in the clut-

ter. But as the number of streaks increases, the pattern they

cause in frequency space becomes distinct. Although spot-

ting an individual tree might be hard, finding the forest is

easy.

We begin with a physical model of a single raindrop or

snowflake. The dynamics of falling particles are well under-

stood (Foote and duToit 1969; Magono and Nakamura 1965;

Böhm 1989), and it is simple to determine the general shape

of the streak that a given raindrop or snowflake will cre-

ate. Based on the shape, the streak’s appearance is then

approximated as a motion-blurred Gaussian. The statistical

characteristics of rain and snow have been studied in the

atmospheric sciences (Marshall and Palmer 1948; Ulbrich

1983; Feingold and Levin 1986; Gunn and Marshall 1958;

Ohtake 1965), and it is possible to predict the expected num-

ber and sizes of the streaks as well. The information of how

one streak appears, combined with a prediction of the range

of streak sizes, allows us to predict the appearance of rain

and snow in an image.

The problem with the image space model is that it is dif-

ficult to apply to real scenes. However, even such complex

and chaotic phenomena as rain and snow can be well be-

haved in frequency space (Heeger 1987; Langer and Mann

2003). Therefore, rather than trying to find every rain and

snow pixel in an image, we instead model their effect in

frequency space. Although it is not possible to predict the

exact streak sizes and locations in a video a priori, we

can create a frequency-space model by sampling in parti-

cle size, depth from the camera, and streak orientation. The

frequency model is then fit to an image sequence by match-

ing streak orientation and rain/snow intensity. The inverse

Fourier transform of the ratio between the model’s predic-

tions and the actual frequencies highlights the rain and snow

in image space.

We perform a comprehensive comparison of this work

with other methods of rain and snow detection and re-

moval. We compare each algorithm both on the amount

of rain/snow removed versus background corrupted and on

how much the removal increases the accuracy of a feature

point tracker. Six sequences are tested, half from real storms

and half with realistically rendered rain added. The results

demonstrate the advantage of image-global rain and snow

analysis.
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Once detected, we are then able to either decrease the

amount of rain and snow by subtraction, or increase it by

sampling and cloning. Other researchers have also devel-

oped methods for rain and snow synthesis. Rain can be gen-

erated via various approximate methods (Langer and Zhang

2003; Langer et al. 2004; Reeves 1983; Starik and Werman

2003; Tatarchuk and Isidoro 2006), but physically accurate

rain synthesis (Garg and Nayar 2006) involves accurately

modeling how a raindrops deforms and refracts light as it

falls. Well-designed rain textures combined with a particle

system can be used to create realistic scenes (Tariq 2007).

The advantage of combining detection, removal, and syn-

thesis is that when the scene is uniformly illuminated, no

additional scene analysis is required; the streaks are already

correctly formed and illuminated. Instead of using separate

tools to remove and to render rain and snow, we present a

framework that does both.

2 Image-Space Analysis

A frame from a movie m acquired during a storm can be

decomposed into two components: a clear image c and a

rain/snow image r . Generally, a background scene point is

occluded by raindrops or snowflakes for only a short time,

therefore we can approximate their effect as being purely

additive. For location (x, y) at time t , we have:

m(x,y, t) ≈ c(x, y, t) + r(x, y, t) (1)

In this paper, we develop an algorithm to find r , based

on the overall appearance and statistical properties of rain

and snow. Although it is sometimes possible to create clear

videos by increasing the camera aperture and exposure time

(Garg and Nayar 2005), this paper focuses on cases where

this is not possible, such as when the entire scene needs to be

in focus or when there are fast-moving objects that should

not be blurred. When in focus and not blurred by a long

exposure time, rain and snow appear in images as bright

streaks. We begin the analysis in image-space by creating

an appearance model of a streak.

2.1 The Shape of a Rain or Snow Streak

Raindrops and snowflakes can have complex shapes. How-

ever in a typical video sequence, their shapes are not promi-

nently visible, therefore we ignore any variation in their

shape and consider them to be symmetric particles. At a

given instant in time, a camera with focal length f images an

in-focus particle of diameter a at a distance from the camera

z as an image with breadth b:

b(a, z) = a
f

z
(2)

If a particle is not in focus, then its image will be broader.

For the purposes of image analysis, out of focus raindrops

or snowflakes are less important than in-focus ones, because

they have a milder effect on images. (The appearance model

in Sect. 2.2 implicitly handles slightly out-of-focus parti-

cles.)

The lengths of streaks depends on how fast the particles

are falling and how far they are from the camera. Because

they are so small, wind resistance is a major factor, and their

terminal velocities depend on their sizes. For common alti-

tudes and temperatures, a raindrop’s speed s can be approx-

imated by a polynomial in its diameter a (Foote and duToit

1969):

s(a) = −0.2 + 5.0a − 0.9a2 + 0.1a3 (3)

Finding the speed of snowflakes is more difficult (Magono

and Nakamura 1965; Böhm 1989), because they have more

complex shapes. But since our detection algorithm uses a

range of streak sizes, it is not necessary to obtain exact

bounds on individual snowflakes. As a result, snowflakes

can be assumed to fall half as fast as raindrops of similar

size. If the ratio between size and speed is approximately

correct, then the streaks can still be detected.

If the camera and particle are moving at constant veloci-

ties and the particle stays at a uniform distance, then it will

be imaged as a straight streak. A falling particle imaged over

a camera’s exposure time e creates a streak of length l:

l(a, z) = (a + s(a)e)
f

z
(4)

2.2 The Appearance of a Rain or Snow Streak

The appearance of a raindrop or snowflake depends on the

particle’s shape and reflectance, and the lighting in the en-

vironment. As shown in Fig. 2(a), under common lighting

conditions, a falling drop will produce a horizontally sym-

metric streak.

A completely accurate prediction of a streak’s coloring

would require extensive physical modeling, as was done

to render rain in Garg and Nayar (2006), and is shown in

Fig. 2(c) and (d). But in most cases, the breadth is only a few

pixels, and it is not necessary to form an exact model of light

reflecting off a snowflake or determine the exact distorted

image that will appear in a tiny drop (Garg and Nayar 2004;

Van de Hulst 1957). Instead, we use a simple, analytical

model that is fast to compute and well-behaved in frequency

space.

To begin, the image of a raindrop or snowflake is approx-

imated as a Gaussian, which appears similar to a slightly

out-of-focus sphere. As the particle moves in space, the

image it creates is a linear motion blurred version of the

original Gaussian. If the sphere is larger or closer to the

camera, the Gaussian will have a higher variance. If it is

falling faster, then it will be blurred into a longer streak. The

equation of a blurred Gaussian g, centered at image loca-



Int J Comput Vis

Fig. 2 Raindrops and snowflakes create streaks of different appear-

ances, depending on factors such as the environmental illumina-

tion, their depth from the camera, and how much they are in focus.

(a) A streak from a real water drop under illumination from a broad

source. (b) The streak’s appearance can be modeled by a blurred

Gaussian (5). (c) A rendered streak from Garg and Nayar (2006) with

broad environmental lighting. If the lighting is from a point source,

then the streak would appear as in the point lighting example (d), which

is also from Garg and Nayar (2006). In this paper, we use the blurred

Gaussian, because it has approximately the correct appearance and is

efficient to compute

tion µ = [μx,μy], with orientation θ , variance given by the

breadth b of the streak, and motion blurred over the length l

of the streak, is given by:

g(x, y;a, z, θ,µ)

=

∫ l(a,z)

0

exp

(

−
(x − cos(θ)γ −μx)2 + (y − sin(θ)γ −μy)2

b(a, z)2

)

dγ

(5)

The values for diameter a and depth z are combined with

(2), (3), and (4) to compute the correct values of breadth

b and length l. In the notation, a semicolon is used to dif-

ferentiate between the parameters of image location versus

all others. For example, (x, y;a, z, θ,µ) means at location

(x, y), with parameters a, z, θ,µ.

An example of this appearance model is shown in

Fig. 2(b). With broad environmental lighting from the sky,

the variations due to the drop oscillations discussed in Garg

and Nayar (2006), Tokay and Beard (1996), Kubesh and

Beard (1993) are subtle, so Fig. 2(a), (b), and (c) appear

almost identical. Even though blurred Gaussians are an

inaccurate approximation of raindrops illuminated with a

point light source, most outdoor scenes are not lit with point

sources during the day, so the effects of oscillation can be

ignored.

2.3 The Appearance of Multiple Streaks

The pixel intensity due to rain or snow in one movie frame

at a given location (x, y) should be the sum of the streaks

created by all N visible drops:

N
∑

d=1

g(x, y;ad , zd , θd ,µd) (6)

For a given time t , each of ad , zd , θd , and µd are drawn

from different distributions. Drops are equally likely to ap-

pear at any location in space, so the x and y positions in

µd are drawn from uniform distributions. Because a greater

volume is imaged further from the camera, more drops are

liable to be imaged at greater depths, so zd is drawn from a

simple quadratic distribution. Streak orientation has a mean

orientation θd , with a slight variance. The most problematic

parameter is the drop size ad . Fortunately, many researchers

in the atmospheric sciences have studied the expected num-

ber of each size of raindrop or snowflake, and we draw upon

their conclusions.

It is well known that in a single storm, there will be par-

ticles of various sizes. Size distributions are commonly used

for raindrops (Marshall and Palmer 1948; Ulbrich 1983;

Feingold and Levin 1986), snowflakes (Gunn and Marshall

1958; Ohtake 1965), and various other hydrometeors, such

as graupel and hail (Auer 1970; Auer 1972). Previous works

on rain removal (Garg and Nayar 2004, 2005) have used the

Marshall-Palmer (1948) distribution. For more information,

Microphysics of Clouds and Precipitation by Pruppacher

and Klett (1997) is a good general resource for the physics

of precipitation. Unfortunately, as discussed by several

authors (Jameson and Kostinski 2001, 2002; Desaulniers-

Soucy et al. 2001; Desaulniers-Soucy 1999), size distri-

butions can be inaccurate. Nevertheless, they give useful

general bounds. Both size distributions and observational

studies show that drops rarely grow larger than 3 mm. In

addition, drops smaller than .1 mm cannot be seen individ-

ually. Although not accurate for every storm, we find that

using a uniform distribution between .1 mm and 3 mm is

sufficiently accurate.

With all of the variables sampled from their distributions,

generating images with rain or snow is straightforward with

this model. But determining if part of an image is rain or

snow would require a search across all (x, y), with each pos-

sible N , µd , ad , and zd . Performing this search in image

space would be prohibitive, so we instead perform a simpli-

fied search in frequency space.

3 Frequency-Space Analysis

Since rain and snow streaks create repeated patterns, it is

natural to examine them in frequency space. Rather than

attempting to find each pixel of each streak, we can

instead find their general effect on the Fourier transforms

of the images. But applying the Fourier transform to (6) does
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Fig. 3 The center column is

three consecutive frames of rain

acquired at times t = 1,2,3.

The left column is three

two-dimensional Fourier

transforms, one for each of the

images. The right column is a

single three-dimensional

transform of all three frames,

with temporal frequency

w = −1,0,1. As expected, the

w = 1 and w = −1 frequencies

are mirror images. But what is

interesting is that all of the

Fourier transform images appear

similar, due to the statistical

properties of rain

not make it easier to analyze images. For this, we make three

key observations of the magnitude of the Fourier transform

of rain and snow.

Observation 1 The shape of the magnitude does not depend

strongly on streaks’ locations in an image. Figure 3 shows

an example of the Fourier transform of a sequence with real

rain. The middle column is a sequence of three consecutive

frames. They were generated from a sequence of heavy rain

with a stationary scene and with an almost stationary cam-

era, by finding the difference of each pixel with the median

of itself and its two temporal neighbors:

|M(x,y, t)

− median(M(x, y, t − 1),M(x, y, t),M(x, y, t + 1))|

(7)

The left column of Fig. 3 is three separate two-dimen-

sional Fourier transforms, one for each image. Notice that

even though the streaks are in different locations in differ-

ent frames, the magnitudes appear similar. Appendix A con-

tains a derivation and simulation that shows the magnitude

is only weakly dependent on the number and positions of

streaks. We find that although the expansion of the magni-

tude of the Fourier transform of rain and snow can be arbi-

trarily complex, it can still be well behaved, which explains

the phenomenon seen in the left column.

Observation 2 The shape of the magnitude is similar for dif-

ferent numbers of streaks. Although the exact Fourier trans-

forms of images with different numbers of streaks are dif-

ferent from each other, changing the number of streaks has

a similar effect to multiplying all frequencies by a scalar.

This pattern is shown in Fig. 4. Appendix A also contains

a validation of this observation, for the special case where

there are the same number of streaks of each length at each

location.

Observation 3 The magnitude is approximately constant

across the temporal frequencies. This rightmost column

of Fig. 3 shows the three-dimensional Fourier transform

of all three frames. Interestingly, apart from a few arti-

facts, the magnitude appears similar across temporal fre-

quency w. This observation allows us to predict that the

three-dimensional Fourier transform will be constant in tem-

poral frequency w.

These observations will allow us to create a simplified

model of the frequencies of rain and snow. Instead of find-

ing every streak individually, we can fit this model by only

estimating a few parameters.

3.1 A Frequency-Space Model of Rain and Snow

As shown in (6), an image full of rain or snow is the sum

effect of a group of streaks. The same is true in frequency

space, where the magnitude of the Fourier transform of (6)

is:
∥

∥

∥

∥

∥

F

{

N
∑

d=1

g(x, y;ad , zd , θd ,µd)

}
∥

∥

∥

∥

∥

(8)

which is equivalent to the sum of the Fourier transforms of

each streak g:

∥

∥

∥

∥

∥

N
∑

d=1

G(u,v;ad , zd , θd ,µd)

∥

∥

∥

∥

∥

(9)

(Note that in this work, we use only the main lobe of the

blurred Gaussian G, which has a similar appearance to a

standard oriented Gaussian.)
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Fig. 4 Three examples of images with streaks rendered by Garg

and Nayar (2006) and their corresponding two dimensional Fourier

transforms. The images have approximately (a) 50, (b) 100, and

(c) 300 streaks. To make them appear similar, each Fourier transform is

multiplied by a scalar. Apart from being scaled differently, their mag-

nitude appear similar

Based on the Observations 1 and 2 in the previous sec-

tion, (9) can be simplified as:

N
∑

d=1

‖G(u,v;ad , zd , θd)‖ (10)

Equation (10) is simpler, but still depends on the num-

ber of streaks N in the image. This is where the statisti-

cal properties of rain and snow discussed in Sect. 2.3 be-

come helpful. Since determining the exact value of each fre-

quency is not vital, we can simplify (10) further, based on

three assumptions. First, each spatial location [zmin, zmax]

is equally likely to have a raindrop or snowflake. In a per-

spective camera, the volume imaged at a given depth is rel-

ative to the depth squared. This means that in a perspec-

tive camera, the number of drops imaged at a given depth

will also be relative to the depth squared. Second, the result-

ing streaks are equally likely to have any orientation within

the range [θmin, θmax]. Third, a given particle is equally

likely to be any size between amin = .1 mm and amax =

3 mm.

Instead of trying to determine the properties of each of

the N streaks, we use a model R∗ that has frequencies pro-

portional to the mean streak and scaled by overall bright-

ness �:

R∗(u, v;�,θmax, θmin)

= �

∫ θmax

θmin

∫ amax

amin

∫ zmax

zmin

z2‖G(u,v;a, z, θ)‖dzda dθ (11)

These integrals can be approximated by sampling across θ ,

a, and z, yielding an estimate of the frequencies of rain and

snow.

From Observation 3, we can predict that the magnitude

will be constant in temporal frequency w:

R∗(u, v,w;�,θmax, θmin) = R∗(u, v;�,θmax, θmin) (12)

The scalars for rotation θ and brightness � are based on the

specific movie. In the next section, we show how to fit θ

and �.

3.2 Fitting the Frequency-Space Model to a Video

Only a single intensity � needs to be estimated per frame,

and often only one orientation θ per sequence. To estimate

these parameters, we can use the fact that rain and snow

cover a broad part of the frequency space. Most objects are

clustered around the lowest frequencies, while rain and snow

are spread out much more evenly. This means that even if the

total energy of the rain or snow is low, a frequency chosen

at random is fairly likely to contain a strong rain or snow

component. This is especially true if we only examine the

non-zero temporal frequencies, which are those that corre-

spond to changes between frames.

The model parameters can be estimated with two heuris-

tics. The scalar multiplier � should be such that the

rain/snow model is approximately the same magnitude as

the rain or snow in the movie. For the Fourier transform of

a small block of frames, � can be estimated by taking a ra-

tio of the median of all frequencies, except for the constant

temporal frequencies w = 0:

� ≈
median(‖M(u,v,w)‖)

median(R∗(u, v,w;� = 1, θmax, θmin))
(13)
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Fig. 5 Examples of the model for three video sequences. From

top to bottom, we have the original image, its two dimensional Fourier

transform, and the corresponding rain/snow model. (a) A sequence of a

black background, plus 300 rendered streaks per image. (b) The same

300 streaks, but now against a moving background with a moving cam-

era. (c) Real snow and a moving camera

Taking the median is effective, because as discussed in Ob-

servation 3 in the beginning of the section, rain and snow are

strong in non-zero temporal frequencies, while most of the

scene is concentrated in the zero temporal frequencies.

The streak orientation can be automatically computed if

there is a short subsequence where only rain and snow are

moving. Again using Observation 3, we expect that indi-

vidual rain and snow frequencies will change greatly, even

though their overall effect stays the same. To find orienta-

tion, we do not need to find the correct values for each fre-

quency, we only need to determine which are due to rain

and snow. Therefore, rather than using the median of the

frequencies as in (13), we use the standard deviation across

time as a more robust estimator. An estimate R̃ of the impor-

tant frequencies can be obtained by computing the standard

deviation over time for each spatial frequency, for T frames:

R̃(u, v) =

√

√

√

√

1

T

T
∑

t=1

(‖M(u,v, t)‖ − ‖M(u,v)‖)2 (14)

The correct θ is found by minimizing the difference be-

tween the model and the estimate:

argmin
θ

∫ ∫

(‖R∗(u, v;�,θmax, θmin)‖ − R̃(u, v))2dv du

(15)

Because the search space is one dimensional and bounded,

an exhaustive search can be performed. Different raindrops

generally fall in almost the same direction, so θmin = θmax

for rain. But since snow has a less consistent pattern, a range

of orientations is needed. Using θmin = θmax − .2 radians is

effective for most videos with snow.

Figure 5 shows the models obtained by fitting to three

videos. The frequencies corresponding to the rain are easy

to see in (a) and (b), but it easier to see the snow frequen-

cies in the movie for (c) available at http://www.cs.cmu.

edu/~pbarnum/rain/barnum08frequency.html.

4 Applications

The model that we developed in the previous sections can

be used to either decrease or increase the amount of rain

and snow. For both cases, the first step is detection, which

requires an analysis across entire images, and is performed

in frequency space. Once detected, the rain or snow can ei-

ther be directly removed by subtraction, or else the detected

http://www.cs.cmu.edu/~pbarnum/rain/barnum08frequency.html
http://www.cs.cmu.edu/~pbarnum/rain/barnum08frequency.html
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Fig. 6 Rain can be detected in several ways, with the same frequency

model. Subfigure (a) shows a frame from the original sequence, which

has rendered rain streaks. (b) With detection based on a single frame,

the rain is segmented fairly accurately, but there are many false de-

tections. Even the fairly textureless ground is mistakenly detected, be-

cause it shares many of the low frequencies of the model. In (c), de-

tection still uses a single frame, but a random 50% of the model’s fre-

quencies are set to zero. (The effect of setting some frequencies to zero

is more evident in the videos on the website.) The true magnitude of

the rain is used instead of our model in (d). The rain is still detected

accurately, although there are fewer erroneous detections. The reason

the ground truth magnitude has any errors is because our method of

computing the rain/snow component does not generally allow a com-

plete separation of rain/snow and the clear image. This example shows

the theoretical limit of using a ratio of magnitudes for a single frame.

(e) Shows detection based on three consecutive frames, with similar

accuracy to one frame. The best results are in (f) when detection is

performed on a single frame, then refined over three frames. The exact

frequencies of rain and snow change from frame to frame, and using

the two step estimation finds only those frequencies that are both rain-

like and rapidly changing

pixels can be blended with their temporal neighbors. Alter-

nately, to increase the amount of rain or snow, individual

streaks can be found by matching with blurred Gaussian in

image space and then copied onto another image.

4.1 Detecting Rain and Snow Using Frequency Space

Analysis

The frequency model can be used to detect rain and snow

in a similar way to notch filtering (Gonzalez and Woods

2002). Intuitively, we want to highlight those frequencies

corresponding to rain and snow while ignoring those corre-

sponding to objects in the scene. This can be done with a

simple ratio. For example, suppose that the model predicts

a low value for a given frequency, but the actual value is

high. Something besides rain or snow is likely causing the

high value. The frequencies that are mostly due to rain and

snow should be found first, as estimated by the ratio of the

predicted value to the true value.

Detecting streaks in a single frame is done by taking the

inverse transform of the estimate of the proportion of energy

due to rain or snow. Where M(u,v) is the two dimensional

Fourier transform of one movie frame and φ is the phase

of M(u,v), p2 is the estimate based on a single image at

time t :

p2(x, y, t) = F
−1

{

R∗(u, v;�,θmax, θmin)

‖M(u,v)‖

× exp(iφ{M(u,v)})

}

(16)

The output is an image that is bright only where rain or snow

is detected. When R∗(u, v) is less than M(u,v), then the ra-

tio is the estimated percentage of rain and snow at that fre-

quency. For example, for a given (u, v), if R∗(u, v) = 3 and

M(u,v) = 10, then R/M = .3. This means that we believe

that thirty percent of the energy at (u, v) is due to rain and

snow. If R∗(u, v) > M(u,v), then the ratio is greater than

one, which is not meaningful. The ratio of R∗ over M is

therefore capped at one. This capping is both semantically

valid as well as practical, in that it prevents frequencies with

a very high value for R∗/M from dominating the result.

Figure 6(b) shows the one-frame estimation. For visual

comparison, Fig. 6(c) shows the result if 50% of the fre-

quencies in the model are set to zero before using (16).

Figure 6(d) shows the result if the ground truth of the rain

magnitude is used in place of the rain model.
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By performing a three-dimensional transform of the im-

ages and using (u, v,w) instead of (u, v), (16) can be used

for a three dimensional transform of multiple consecutive

frames, shown in Fig. 6(e). Using multiple frames improves

the accuracy, but not significantly.

We found through experimentation that the best approach

is to perform a three dimensional analysis on a series of

consecutive two dimensional estimates. A three dimen-

sional Fourier transform is applied to p2(x, y, t) to obtain

P2(u, v,w), and the resulting rain/snow estimation is then:

p3(x, y, t) = F
−1

{

R∗(u, v,w;�,θmax, θmin)

‖P2(u, v,w)‖

× exp(iφ{M(u,v,w)})

}

(17)

Figure 6(f) shows the results from this method. At first

glance, it appears even better than the single frame ground

truth in Fig. 6(d). But the ground truth magnitude actually

correctly identifies streaks more precisely, even if it has

more false detections. But since the ground truth is not gen-

erally known, we use p3 as our final estimate of the location

of the rain and snow.

4.2 Reducing Rain and Snow Using the Frequency Space

Model

Once detected, the rain or snow pixels can be removed by

replacing them with their temporal neighbors. The detected

rain and snow p3(x, y, t) is used as a mixing weight between

the original image m and an initial estimate c̃ of the clear im-

age c. We find that a per-pixel temporal median filter works

well for c̃, although it could be the output of any rain/snow

removal algorithm. The detection p3(x, y, t) is multiplied

by the removal rate α, where the product of αp3(x, y, t) is

capped at one:

c(x, y, t) = (1 − αp3(x, y, t))m(x, y, t)

+ αp3(x, y, t)c̃(x, y, t) (18)

Since rain and snow are brighter than their background,

c(x, y, t) is required to be less than or equal to m(x,y, t).

For a large α, αp3(x, y, t) equals 1 for all (x, y, t), there-

fore c will approach c̃.

Images created with this equation will be temporally

blurred only where the rain and snow is present. But the dis-

advantage is that it can never remove more rain and snow

than the initial estimate c̃. If removal is more important than

smoothness, then we can iterate the detection and removal.

The first iteration c1 is the result from (18) on the orig-

inal sequence. Subsequent iterations are based on the last

clear estimate cn−1 and the last initial estimate c̃n−1. In this

case, c̃n−1 is the per-pixel temporal median of cn−1. Where

pn
3 is the detection from (17) as applied to cn−1, the next

iteration is:

cn(x, y, t) = (1 − αpn
3 (x, y, t))cn−1(x, y, t)

+ αpn
3 (x, y, t)c̃n−1(x, y, t) (19)

Selecting a good value for α is not difficult. We use a fixed

α = 3 for all the results in this paper. And as with (18), each

iteration is required to be less than or equal to the original.

Although the result from each subsequent iteration is

more clear than the previous, the amount of rain and snow

removed decreases per iteration. This means that it may

be necessary to iterate many times to remove most of the

streaks. Since this is time consuming, the process can be it-

erated only a few times, and subsequent cns can be linearly

extrapolated from the final two iterations. Figure 7 shows

the results from the iterative removal method on four exam-

ple sequences with moving cameras and scenes.

4.3 Increasing Rain and Snow in Image Space

Although the rain and snow can be detected using only the

frequency magnitude, creating new streaks requires manip-

ulation of phase as well. The main advantage of working in

frequency space was that the locations of the streaks could

be ignored. But since we need them for rendering, it is sim-

pler to work in image space. Our approach is to use the

blurred Gaussian model to sample real rain and snow.

We start with the rain/snow estimate m(x, t, y) −

cn(x, y, t). Large streaks are detected by filtering the rain/

snow estimate with a bank of size derivatives of blurred

Gaussians, similar to scale detection in (Mikolajczyk and

Schmid 2001). For an average a and z with orientation θ ,

the size derivative is given by:

f (x, y;γ1, γ2, a, z, θ)

= g(γ1x, γ1y;a, z, θ) − g(γ2x, γ2y;a, z, θ) (20)

where γ is a scalar, γ1 < γ2, and both of the blurred

Gaussian terms are normalized to sum to one. Each image

is filtered with a set of different γ s. The filter with the max-

imum response corresponds to the size of the streak at that

location.

This detection method will find many strong streaks, but

will have a few false matches as well. Since we do not need

to find every streak, several steps are taken to cull the se-

lection. First, locations that appear to have very large and

very small scales are eliminated, and non-maxima suppres-

sion is performed in both location and scale. Next, to ensure

that only bright streaks are used, only the streak candidates

with the most total energy are kept. (The total energy is the
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(a) The mailbox sequence: There are objects at various ranges, between approximately 1 to 30 meters from the camera. The writing on the mailbox

looks similar to snow. Most of the snow can be removed, although there are some errors on the edges of the mailbox and on the bushes

(b) Walkers in the snow: This is a very difficult sequence with a lot of high frequency textures, very heavy snow, and multiple moving objects.

Much of the snow is removed, but the edges of the umbrella and parts of the people’s legs are misclassified

(c) Sitting man sequence: This scene is from the movie Forrest Gump. The rain streaks are fairly large, as is common in films. The rain can be

completely removed, although the letters and windows in the upper portion of the images are misclassified

(d) A windowed building: The rain is not very heavy, but this sequence is difficult, because there are a large number of straight, bright lines from

the window frames and the branches. Almost all of the rain is removed, but parts of the window frames and the bushes are erroneously detected

Fig. 7 Several examples of rain and snow removal based on spatio-temporal frequency detection. Some of the sequences have several moving

objects, others have a cluttered foreground with high frequency textures, and all of them are taken with a moving camera
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Fig. 8 (a) An image from the original mailbox sequence and one with added snow. The snow is removed and then sampled, yielding a streak

database. (b) The streaks are then added to the new image, increasing the amount of snow

sum of the values of neighboring pixels within a small win-

dow.) Finally, to prevent multiple off-center copies of the

same streak, only the streak candidates that have the great-

est percentage of their energy near their centers are kept.

For a window of size (sx, sy), the energy near the center of

a streak at (x, y, t) is given by:

∑sx/2
dx=−sx/2

∑sy/2

dy=−sy/2 Q(dx, dy) m(x + dx, y + dy, t)

sxsy
∑sx/2

dx=−sx/2

∑sy/2

dy=−sy/2 m(x + dx, y + dy, t)

(21)

where

Q(dx, dy) =

√

(

sx

2

)2

+

(

sy

2

)2

−

√

d2
x + d2

y

The images of streaks of various sizes are then combined

into a database. Optionally, artifacts can be reduced by pro-

jecting the magnitude of the sampled streak onto the magni-

tude of the blurred Gaussian streak model.

Once the database is created, it can be used in the same

way as the database of streaks rendered with area-source en-

vironmental lighting from Garg and Nayar (2006). The ad-

vantage of our method is that the sampled streaks already

have natural variation in size and defocus blur. The disad-

vantage is that our method has no concept of lighting di-

rection, so will not be accurate for night scenes where drop

oscillations create complex specular effects. For scenes with

area-source illumination from the sky, streaks from both our

work and Garg and Nayar (2006) can be added in the same

way.

Since the main focus of this work is on rain and snow

detection during the day, we show only examples where the

camera exposure is short and the scene is well-illuminated

by the sky. Given an approximate depth map of the scene,

the streaks can be rendered with the appropriate sizes and

densities. However, most of the visible streaks are within

the depth of field of the camera, we sample uniformly in this

volume to create both the spatially varying example in Fig. 1

and the full-frame example in Fig. 8.

5 Comparison of Rain and Snow Detection

and Removal Methods

Various methods have been proposed to remove rain and

snow from images (Hase et al. 1999; Starik and Werman

2003; Garg and Nayar 2004; Zhang et al. 2006). Ideally, a

removal algorithm should output images of the scene as it

would appear with no bad weather effects. No algorithm to

date can completely clear an image without corrupting the

background, but some are more effective than others. In this

section, we quantitatively compare and qualitatively discuss

the accuracy of each method on several sequences with real

and rendered rain and snow.

5.1 Evaluation Methodology

Each algorithm is compared quantitatively in two ways.

First, we compare the amount of rain and snow removed ver-

sus the amount of the images incorrectly modified. Second,

we run a feature point tracker on both the original sequence

and the output of each algorithm, and compare the number

of feature points correctly tracked.

We test each algorithm on three sequences with real

snow (Fig. 12) and three with rendered rain (Fig. 11).
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Fig. 9 Two example frames and detection results for Zhang et al.

(2006). (a) k-means can often correctly segment streaks, although there

are errors around strong gradients and very bright parts of the images.

(b) In this other frame, the grayvalue intensity of the mailbox increased

by approximately 10, which causes additional false positives. Only

the false detections around strong gradients cause noticeable errors in

the snow-removed images, because areas with weak gradients do not

change when median filtered

Each sequence is either 720 × 480 or 640 × 480 pixels, and

all are 60 frames long. Since the various algorithms require

between three to thirty frames to initialize, only the accuracy

on frames 30–59 is evaluated.

In the real sequences, the camera had a small aper-

ture and a short exposure time, which causes bright, well-

defined streaks. The streaks in the rendered sequences are

generated with the photorealistic process of Garg and Na-

yar (2006). We use the streaks rendered with large area

source environmental-lighting instead of point-lighting,

because our scenes are illuminated by the sun.

5.1.1 Quantifying Removal Accuracy

The first metric is a per-pixel comparison of the amount of

rain/snow removed compared to the amount of the back-

ground erroneously changed. (All equations are given for

grayscale, although algorithms are evaluated by separately

computing the error for each channel and averaging.)

Each algorithm outputs an estimate of the true brightness

of the rain at each pixel r̃ :

r̃(x, y, t) = m(x,y, t) − c(x, y, t) (22)

Since adding rendered rain to an image only increases the

image brightness, a removal algorithm should ideally either

decrease the image brightness or leave it constant. If the im-

age is darkened, then the difference D between the true rain

component r and the estimate r̃ is the arithmetic difference.

And since any increase is an error, if the image is bright-

ened, the difference D is how much the removal algorithm

increased the image brightness:

D(x,y, t) =

{

r(x, y, t) − r̃(x, y, t) r̃(x, y, t) > 0

r̃(x, y, t) r̃(x, y, t) < 0
(23)

Once the difference D has been computed, each algo-

rithm’s accuracy is determined. H is the ratio between the

amount of rain not removed and the total rain present. E is

the ratio between the amount of the background incorrectly

changed and the background’s total energy:

H =

∑

x,y,t {D(x,y, t) : D(x,y, t) > 0}
∑

x,y,t r(x, y, t)
(24)

E = −

∑

x,y,t {D(x,y, t) : D(x,y, t) < 0}
∑

x,y,t c(x, y, t)
(25)

Figure 11 shows the removal accuracy for each method in

the following sections. Methods that use a threshold can

have varying values for H and E, and are plotted as lines.

Specifics of the results are discussed in Sect. 5.2.

5.1.2 Quantifying Feature-Point Tracking Accuracy

The second metric is the increase or decrease in the number

of feature points that can be tracked. Feature point track-

ing accuracy is selected as a comparison for several reasons.

First, it does not require ground truth like the per-pixel ac-

curacy evaluation, so sequences with real rain and snow can

be used. Second, quantitative evaluation is simple; accuracy

is the number of points correctly tracked. Third, tracking ac-

curacy should be correlated with an algorithm’s accuracy in

preserving and revealing high frequencies in the scene.
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Fig. 10 One frame each from two sequences, and its corresponding

correlation magnitude (Garg and Nayar 2004) (scaled linearly for dis-

play). (a) For the stationary sequence of the reflective ball, all of the

current streaks are visible in the magnitude image, plus ghosts from

streaks in the previous frames. (b) The general characteristics of the

scene can be seen in the magnitude image, but because the camera is

moving, the scene appears ghosted

Fig. 11 Three sequences are used for tests with rendered rain. The ori-

gin corresponds to unmodified images, and the lower right corresponds

to perfect removal accuracy. As the thresholds for the patch-based and

frequency-based (18) are changed, they become more and more sim-

ilar to the median. The per-pixel accuracy will always lie somewhere

between the original image and the aligned median, depending on how

many pixels are detected as rain. (a) Grass lawn: A stationary camera

views a grass lawn and a few buildings. All algorithms are able to re-

move most of the rain with little background corruption. (b) Park and

patio: A rotating camera was used to acquire this sequence of a small

park and patio. The scene is mostly stationary, except for the trees wav-

ing slightly in the breeze. Results are similar to the stationary grass

lawn, except all algorithms have larger error. (c) Two friends: This

video of two people greeting each other was acquired with a moving

camera. Because the foreground motion causes errors in the automatic

alignment, the median actually performs better without alignment. But

even if the background was fully aligned, the foreground motion would

cause low scores for the median filter methods. And because there are

large blocks of uniform color, per-pixel detection is able to correctly

classify most of the pixels, yielding a low corruption score. For all

sequences, the frequency-based removal performs the best

We compare the results of tracking feature points in

all six of the sequences mentioned in Sect. 5.1 and their

corresponding de-weathered versions. The features are se-

lected using the method of Shi and Tomasi (1994), and

tracked using a Lucas-Kanade tracker (Bouguet 2000). The

strongest features are selected independently for the original

sequences and the outputs of the removal algorithms.

We use the same evaluation method as Sand and Teller

(2006), which is to track points while the sequence is played

forward then backwards. Since the sequence starts and ends

on the same frame, each point should be in the same location

at the beginning and the end. Tracking accuracy is defined

as the distance between each point at the beginning and end

of the loop. For algorithms that use a threshold, results are

reported at the threshold where the highest number of points

are tracked within one pixel of accuracy.

Results are reported for the number of points tracked to

within one pixel and five pixels of accuracy. We report both
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Fig. 12 Real sequences of rain and snow. (a) Reflective sphere: This

scene is of a reflective sphere, acquired with a stationary camera. The

entire scene changes very little, except for a light amount of snow.

(b) Snowy mailbox: This sequence of a mailbox, bushes, and build-

ing is acquired with a moving camera. The camera motion is mostly

rotational, and the images can be aligned reasonably well with a pla-

nar homography. (c) Pedestrians in the snow: With multiple people

walking, heavy snow, and a moving camera, this sequence is the most

complex.

numbers, because rain and snow more often cause point

tracks to be slightly dislodged than completely lost. The nec-

essary accuracy depends on the application. Structure from

motion requires points tracked within one pixel of accuracy,

but five pixels of accuracy is sufficient for object tracking.

Figure 13 has point tracking results for all methods, with

details discussed in the next section.

5.2 Explanation and Evaluation of Algorithms Used

in the Comparison

Each detection and removal algorithm has three steps. First,

using some combination of image processing, machine

learning, and physical models, pixels are clustered into two

categories: rain and non-rain. Second, an initial estimate of

the true background is obtained as a temporal average or

median. Third, pixels detected as rain are either partially or

completely replaced by a pixel from the initial estimate. The

first step is the main difference between methods, but each

computes the initial estimate in a slightly different way. We

use the temporal median filter with image alignment as the

initial estimate for all algorithms, which allows for an indi-

rect quantitative evaluation of detection accuracy.

5.2.1 No Explicit Detection

In some cases, it is not necessary to explicitly detect rain and

snow in order to remove them. Temporal median filtering is

the simplest method for cleaning videos (Hase et al. 1999;

Starik and Werman 2003). For this method, each pixel is re-

placed with the median of its values over time. If the scene

and camera are completely static, then this is often the most

accurate and visually pleasing way of removing rain and

snow.

The main advantage of this method is that it is extremely

fast, but if the camera is not stationary or there are mov-

ing objects, then median filtering performs poorly. The prob-

lems are most noticeable when tracking feature points.

Image alignment can increase the accuracy significantly.

To align frames, we perform RANSAC (Fishler and Bolles

1981) on SIFT (Lowe 2004) features, computing either the

image translation or a full homography between images. In-

terestingly, in some difficult cases, translational alignment

can give more accurate results. This is likely because cor-

recting for translation only requires the values of the x and

y offsets to be found, which is less prone to errors than com-

puting a full homography. In both cases, the aligned image

is made the same size as the original. Pixels with unknown

values are set to their corresponding value in the unaligned

image.

The point tracking results in Fig. 13 are evidence of the

usefulness of this simple image alignment. But unless the

alignment is accurate, errors are visible in areas with strong

gradients. These errors result in low scores in comparisons

between the rain-removed and background-corrupted com-

parisons. However, the strongest features are kept and en-

hanced, allowing for superior tracking results. It is interest-

ing that aligning can increase performance even in stationary

scenes. This appears to be because strong, repeated features

are aligned first and then median filtered, enhancing them

rather than blending them with noise. On simple stationary

scenes, translation-only alignment has better 5-pixel accu-

racy, while homography alignment has better 1-pixel accu-

racy. But in general, translation-only alignment is more ac-

curate, and should be used for applications requiring either

high accuracy or large numbers of point tracks.

It would be interesting to test other types of image align-

ment. Computing layers of motion with methods such as

Torr et al. (1999), Ke and Kanade (2002), Zelnik-Manor et

al. (2006), then aligning and filtering each layer separately

could increase performance. In addition to layer extraction,

techniques such as Gaussian mixture models (Stauffer and

Grimson 1998), kernel density estimation (Elgammal et al.

2000), or robust PCA (de la Torre and Black 2001) could

model the variation caused by rain and snow more effec-

tively.



Int J Comput Vis

Maximum tracking error

Method 1 pixel 5 pixels

With no rain 838 953

With rain added 241 600

Median 750 927

Median+trans 766 924

Median+homog 817 920

Per-pixel 623 906

(a) Grass lawn

Maximum tracking error

Method 1 pixel 5 pixels

With no rain 729 814

With rain added 95 424

Median 202 698

Median+trans 618 789

Median+homog 597 802

Per-pixel 292 684

(b) Park and patio

Maximum tracking error

Method 1 pixel 5 pixels

With no rain 304 343

With rain added 151 273

Median 192 346

Median+trans 249 367

Median+homog 215 363

Per-pixel 70 281

(c) Driving car

Maximum tracking error

Method 1 pixel 5 pixels

With rain 267 680

Median 684 980

Median+trans 676 982

Median+homog 720 977

Per-pixel 528 914

(d) Reflective sphere

Maximum tracking error

Method 1 pixel 5 pixels

With rain 349 659

Median 129 687

Median+trans 700 793

Median+homog 690 808

Per-pixel 636 795

(e) Snowy mailbox

Maximum tracking error

Method 1 pixel 5 pixels

With rain 131 394

Median 14 240

Median+trans 438 642

Median+homog 289 515

Per-pixel 183 453

(f) Pedestrians in the snow

Fig. 13 Results for feature point tracking. For each method, the

columns signify the number of points that are tracked within 1 and

5 pixels of accuracy. Points tracked within 1 pixel are completely cor-

rect, while those within 5 pixels have drifted a small amount. Rain

and snow tend to slightly disrupt point tracks more often then causing

them to be completely lost, therefore we show both 1-pixel and 5-pixel

accuracy. Results are reported for median filtering with no alignment,

with translational alignment, and with homography alignment. For se-

quences where ground truth is available, accuracies with no rain are

also displayed. In the limit, both the patch-based and frequency-based

techniques are identical to the median and have identical tracking ac-

curacy, so are not included in the charts. Results for each method are

explained in more detail in their respective sections, from Sects. 5.2.1

to 5.2.4

5.2.2 Per-Pixel Detection

Instead of applying the same approach on all pixels, most

techniques first determine which pixels are rain. This is sim-

ilar to the idea of background subtraction, except the fore-

ground layer is just the rain and snow.

If the only difference between aligned frames is rain or

snow, then each pixel should have one of two values. In

Zhang et al. (2006), k-means with two clusters is used on the

grayscale intensity of each pixel over all frames. Since rain

and snow are bright, the pixels corresponding to the cluster

with the higher grayvalue intensity are tagged for removal.

Zhang et al. (2006) also discuss reducing false matches

by using the fact that rain is normally has a neutral hue. Col-

orful pixels are unlikely to be rain. In practice, this generally

requires hand tuning for each sequence, so it is not included

in the comparison.

Two examples of applying this technique are shown in

Fig. 9. In such scenes, the rain and non-rain clusters are

not always well separated, and some pixels are misclassi-

fied. Although many pixels are correctly labeled, individual

pixels sometimes flicker, causing the low numbers of tracked

feature points shown in Fig. 13. The flickering causes points

to be lost more often than slightly mis-tracked, causing low

scores for both 1-pixel and 5-pixel accuracies. A tracker that

uses more than two frames might not have as much diffi-

culty with single frame impulses, but this would be true of

unmodified rain and snow videos as well.

Proper application of morphological operators and blur-

ring have potential to improve results, although we did not

find an effective combination for the sequences tested. It

might be possible to extend this method, so that instead of

doing a hard assignment between two clusters, a distance

metric is used to determine how far a pixel is from the rain

cluster.

5.2.3 Patch-Based Detection

Instead of looking only at individual pixels, Garg and Na-

yar (2004) suggest that detection should involve examining

small patches over a long sequence of frames. The algorithm

has three steps. First, all pixels that flicker from dark to light

then back to dark are labeled as “candidate” pixels. Second,

these candidate images are thresholded and segmented with

connected components. Components that are not linearly re-

lated within a threshold are eliminated, resulting in a binary

image where each pixel is either 0 for non-rain or 1 for rain.

The correlation of individual pixels within small patches is

computed to find the magnitude and angle of the rainfall.

We found that for the second step, it is difficult to set

a threshold that allows individual streaks to be segmented.

Therefore, we skip the second step, and set all candidate

pixels to 1 to create the binary images. Figure 10 shows ex-

amples of the magnitude of the correlation.

In the original paper, a single threshold was set to dif-

ferentiate rain from non-rain. Rather than trying to find the

optimal threshold by hand, an ROC curve is computed for

the magnitude of the correlation. If the magnitude is above

a given threshold, the pixel is replaced by the three-frame

temporal median. As more and more pixels are classified as
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rain, the rain-removed images become increasingly closer to

the median images.

There is a clear trend on the removal accuracy curve, but

the point tracking accuracy is hard to quantify for this al-

gorithm. As increasingly lower thresholds are chosen, this

method converges to the median filter result, which usually

has the best tracking accuracy.

As with other removal methods, converting from hard to

soft constraints would likely improve accuracy. In addition,

no image alignment is advocated in this method, but aligning

via one of the methods discussed earlier could also improve

the results.

5.2.4 Frequency-Based Detection

Two versions of removal for the spatio-temporal frequency

method presented in this work are compared. For the method

of (19), we use a fixed removal rate α = 3 with four itera-

tions, and we linearly interpolate to predict the pixel values

at different levels of removal. As the level of removal is in-

creased, all pixels are forced to decrease monotonically. For

the method of (18) the rain/snow detection is only computed

once, and the value of α is changed to generate the ROC

curves.

Both of these frequency-based methods are usually accu-

rate in terms of amount of rain removed versus background

corrupted, but do not increase the number of tracked points

more than the aligned median, shown in Fig. 13. This is be-

cause this method is able to reduce the brightness of most

streaks with few errors, but it rarely completely eliminates

all streaks. This means that features still become occluded

by flickering streaks.

6 Conclusion

We have demonstrated a method for globally detecting rain

and snow, by using a physical and statistical model to high-

light their spatio-temporal frequencies. Previous works have

shown that examining only pixels or patches can be used

to enhance videos in some cases, but the best results come

from treating rain and snow as global phenomena.

Even a human observer can have difficulty in finding in-

dividual streaks in an image, although groups are easy to see.

By generating a rain and snow model based on the expected

properties of groups of streaks, we are able to achieve accu-

racy beyond what can be expected from local image analy-

sis. On several challenging sequences, we show that rain and

snow can be reduced or enhanced by studying their global

properties.

The advantage of working in the frequency domain is that

it allows for fast analysis of repeated patterns. The disadvan-

tage is that changes made in frequency space do not always

cause visual pleasing effects in image space. Although the

segmentation accuracy surpasses any image space method

developed so far, the removal results do not always have the

best appearance.

Local image-space detection has certain types of errors,

such as blurring across temporal edges. Frequency-based

detection has errors when the frequencies corresponding to

rain and snow are too cluttered. One possible direction for

future work will be to combine global cues, as developed

in this work, with local information. The synthesis of the

global and local approaches will allow for accurate detec-

tion even in cases where either method fails alone.
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Appendix A: Accuracy of the Rain/Snow Model

In this appendix, we derive an expression highlighting the

simple structure of (9). Rain and snow are fundamentally

random, and there is no guarantee if the magnitude of (9)

will have a simple closed form. However, we can analyze it

in the case where each image has the same number of each

size of streak, given that each streak is equally likely to ap-

pear in any location.

To begin, we show the closed form solution of the Fourier

transform of a blurred Gaussian. We show only the case

where the streak is completely vertical, and include a nor-

malizing constant for ease of reading. The notation in this

section is similar to the rest of the paper, but some symbols

are redefined.

A.1 The Fourier Transform of a Rain Streak

To begin, a Gaussian, with width b, blurred over length l is

given by:

g(x, y;b, l) =

∫ l

c=0

exp

(

−π
(x2 + (y − c)2)

b2

)

dc

The Fourier transform is given by:

G(u,v;b, l) = F

{∫ l

c=0

exp

(

−π
(x2 + (y − c)2)

b2

)

dc

}

The length integral can be moved outside of the transform:

∫ l

c=0

F

{

exp

(

−π
(x2 + (y − c)2)

b2

)}

dc
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Since a shift in space is a multiplication in frequency, the

equation becomes:

∫ l

c=0

F

{

exp

(

−π
(x2 + y2)

b2

)}

exp(2πivc)dc

=

∫ l

c=0

b2 exp(−πb2(u2 + v2)) exp(2πivc)dc

Only the rightmost exponential depends on n, so we can

take out the left part and solve the integral:

b2 exp(−πb2(u2 + v2))

∫ l

c=0

exp(2πivc)dc

= G(u,v;b, l)

= b2 exp(−πb2(u2 + v2))i
1 − exp(2πivl)

2πv

The magnitude of G is simple itself multiplied by its

complex conjugate:

‖G(u,v;b, l)‖

=

(

b2 exp(−πb2(u2 + v2))i
1 − exp(2πivl)

2πv

)

×

(

−b2 exp(−πb2(u2 + v2))i
1 − exp(−2πivl)

2πv

)

=
b4 exp(−2πb2(u2 + v2))

4π2v2

× (1 − exp(2πivl))(1 − exp(−2πivl))

=
b4 exp(−2πb2(u2 + v2))

4π2v2
(2 − 2 cos(2πvl))

=
b4 exp(−2πb2(u2 + v2))

4π2v2
(4 sin2(πvl))

= ‖G(u,v;b, l)‖

=
b4 sin2(πvl) exp(−2πb2(u2 + v2))

π2v2
(A.1)

A.2 The Fourier Transform of Multiple Identical Streaks

The next step is to determine the magnitude of multiple

streaks. To begin, we assume that all streaks are identical,

but in different locations, µ = [μx,μy]. The image of all

streak is then:

∑

n

g(x, y;b, l,µn)

The Fourier transform is:

F

{

∑

n

g(x, y;b, l,µn)

}

=
∑

n

F {g(x, y;b, l,µn)}

=
∑

n

G(u,v;b, l) exp(2πi(uμxn + vμyn))

= G(u,v;b, l)
∑

n

exp(2πi(uμxn + vμyn)) (A.2)

The magnitude is given by:

(

G(u,v;b, l)
∑

n

exp(2πi(uμxn + vμyn))

)

×

(

G∗(u, v;b, l)
∑

n

exp(−2πi(uμxn + vμyn))

)

= G(u,v;b, l)G∗(u, v;b, l)

×

(

∑

n

exp(2πi(uμxn + vμyn))

)

×

(

∑

n

exp(−2πi(uμxn + vμyn))

)

(A.3)

The two sums will multiply into pairs of exponentials,

which can be converted into cosines:

G(u,v;b, l)G∗(u, v;b, l)

×

(

N +

N−1
∑

a=1

N
∑

b=a+1

cos(2π(u(μxa − μxb) + v(μya − μyb)))

)

(A.4)

The first part with G multiplied by its conjugate is the

magnitude from (A.1):

b4 sin2(πvl) exp(−2πb2(u2 + v2))

π2v2

×

(

N +

N−1
∑

a=1

N
∑

b=a+1

cos(2π(u(μxa − μxb) + v(μya − μyb)))

)

(A.5)

The resulting equation is the magnitude of the blurred

Gaussian, multiplied by the addition of N and a sum of

cosines term.

A.3 The Fourier Transform of Multiple Streaks

of Different Sizes

In the general case of streaks of many different sizes, the

resulting expression does not reduce as cleanly as in (A.5).

But it does in the special case where at a given location,

there are the same number of each size. Starting from (A.2),

but with multiple bs and ls:

∑

n

(

∑

l

∑

b

G(u,v;b, l)

)

exp(2πi(uμxn + vμyn))
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Fig. 14 To determine the value of the sum of cosines in (A.5) com-

pared to the number of streaks N , we ran simulations with different

numbers of streaks. The dotted line is the value of the linear com-

ponent. The solid line is the mean across trials of the median of the

absolute value of the sum of cosines

Since it does not depend on n, the double sum of blurred

Gaussians can be pulled out in the same way, yielding:

(

∑

l

∑

b

G(u,v;b, l)

)

∑

n

exp(2πi(uμxn + vμyn)) (A.6)

And the remaining steps are the same as (A.3) to (A.5).

A.4 Approximating the Fourier Transform of Multiple

Streaks

The value of the sum of cosines in (A.5) varies depending

on the frequency (u, v) and the distribution of streak loca-

tions μ. It has a minimum of zero and a very large maximum

at (u, v) = (0,0), but streaks at different locations tend to

cancel each other out, so it is generally low. We ran simula-

tions to find the kind of values that the sum of cosines tends

to have.

In our experiments, we computed the value by sampling

different numbers of streaks with uniformly distribution lo-

cations. Figure 14 shows the value for the median of all fre-

quencies, for one to five hundred streaks, with one thousand

trials each. For each number of streaks N from one to five

hundred, we ran one thousand trials of randomly sampled

streak locations. The dotted line is the value of N from the

first term in the addition in (A.5). The solid line is for the

sum of cosines term. For all frequencies u and v, we com-

pute the absolute value of the sum of cosines. For each trial,

we then compute the median of the value for all frequencies

except (u, v) = (0,0). This median is computed for each

of the one thousand trials, and the solid line is the mean

across trials of the medians. The error bars represent the

mean across trials of the standard deviation for all frequen-

cies. The results show that although the value for some fre-

quencies is large, the median value is low enough that N +
∑N−1

a=1

∑N
b=a+1 cos(2π(u(μxa −μxb)+v(μya −μyb))) can

be approximated as being linear in N , which validates our

use of (10).
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