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SUMMARY

Suppose that under the conventional randomized clinical trial setting, a new therapy is compared

with a standard treatment. In this article, we propose a systematic, two-stage estimation procedure

for the subject-level treatment differences for future patient’s disease management and treatment

selections. To construct this procedure, we first utilize a parametric or semi-parametric method to

estimate individual-level treatment differences and use these estimates to create an index scoring

system for clustering patients. We then consistently estimate the average treatment difference for

each cluster of subjects via a nonparametric function estimation method. Furthermore, pointwise

and simultaneous interval estimates are constructed to make inferences about such individual-

specific treatment differences. The new proposal is illustrated with the data from a clinical trial for

evaluating the efficacy and toxicity of a three drug combination vs. a standard two drug combination

for treating HIV-1 infected patients.

Keywords: Cross-validation; HIV-infection; Nonparametric function estimation; Personalized medicine;

Subgroup analysis.
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1. INTRODUCTION

One of the major components for modern evidence-based medicine is to utilize the patient’s

“baseline” information for personalized disease management and treatment selection. For instance,

in a recent study it was demonstrated that the benefit of giving toxic chemotherapy prior to hormone

therapy with tamoxifen for postmenopausal women with lymph node-negative breast cancer varies

depending on the estrogen receptor (ER) status of the tumor. Those with ER-negative tumors

benefited substantially from chemotherapy whilst those with ER-positive tumors did not benefit

as compared to receiving tamoxifen alone (IBCSG, 2002). In another example with an observa-

tional study, Sabine (2005) suggested that the efficacy and toxicity profiles for the highly active

antiretroviral therapy (HAART) vary markedly across different subgroups of HIV infected patients

and recommended certain subject-specific treatment strategies. These individualized decision rules

can be extremely useful in practice. However, there are numerous examples that the results from

the so-called subgroup analyses, which were not properly planned or executed subgroup analyses,

could not be validated (Rothwell, 2005; Pfeffer & Jarcho, 2006; Wang et al., 2007).

In this paper, we consider the case that a new therapy was compared with a control under the

standard randomized comparative clinical trial setting. Generally the main goal of a randomized

clinical trial is to make inferences about an overall treatment difference with respect to efficacy

and toxicity. On the other hand, a “positive” trial does not imply that all future patients would

benefit from the new treatment. Moreover, a “negative” study does not mean all patients should

be treated by the standard therapy. In fact, based on the extensive collection of the study patient’s

baseline information from a clinical trial, it would be valuable to utilize such information to make

inferences about the individual-level treatment efficacy.

In practice, a commonly employed first step to perform subgroup analyses is to examine whether

there are statistically significant interactions between the treatment assignment indicator and var-

ious baseline covariates via, for example, parametric regression models (Byar, 1985). This ad hoc

“fishing expedition” approach may not accurately or efficiently identify proper subgroups of pa-

tients who would benefit from the new treatment. Recently, Song & Pepe (2004) proposed a novel

procedure to identify a critical value for a single covariate, which may guide us to split the future

population into two groups. Patients in one group would be treated by the new therapy and those
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in the other group would take the control. Although such a approach is interesting with respect

to an overall utility for the entire population, it does not provide a treatment choice scheme at a

subject-specific level. Moreover, if the treatment difference is not monotonically associated with

this single covariate, such a procedure may not be appropriate. To examine the treatment difference

at a subject-level with a single covariate, Bonetti & Gelber (2000; 2005) clustered the patients with

their covariate values and utilized a moving average procedure to make inferences about the profile

of the treatment differences over the covariate. Recently, in her unpublished thesis, Park (2004)

proposed a procedure to identify patients who may or may not benefit from the new treatment

based on generalized linear models and the Cox proportional hazards models. The validity of her

procedure heavily relies on the model assumptions.

In this paper, we consider the case that each patient has multiple baseline covariates and propose

a systematic, two-stage method to identify patients who would benefit from the new treatment.

Specifically, for the first stage, we use a parametric or semi-parametric model to estimate the

subject-specific mean response for each treatment group. We then utilize the resulting difference of

these two estimates as an index scoring system to cluster patients. That is, subjects in each cluster

would have the same parametric index score. For the second stage, we calibrate the estimated

treatment differences with a consistent, nonparametric function estimation procedure and provide

valid pointwise and simultaneous inferences about the true average treatment difference for each

cluster of patients by controlling the desirable confidence level locally and globally . The new

proposal is illustrated with a data set from a clinical trial for evaluating a three-drug combination

vs. a standard two-drug combination for treating HIV-infected patients. For cost-benefit decision

makings, we also provide the underlying mean treatment response for each treatment group over

the index score and the estimated relative frequency for the parametric score.

2. POINT AND INTERVAL ESTIMATION FOR TREATMENT DIFFERENCES

Suppose that study subjects in a population of interest are randomly assigned to two treatment

groups, {Gk, k = 0, 1}. Let Yk and Uk denote the response Y and the covariate vector U for the

kth group, respectively. Now, suppose that for subjects with U = u, we are interested in estimating

the treatment difference

S(u) = E(Y1 − Y0 | U1 = U0 = u).

3
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Our data consist of {(Yki,Uki), i = 1, ..., nk}, nk independent and identical copies of (Yk,Uk), k =

0, 1. Assume that as n0 → ∞, the ratio n1/n0 goes to a constant in the open interval (0, 1). To

estimate S(u), one may consider a non-parametric function procedure. In practice, however, when u

is not univariate, generally it is difficult, if not impossible, to estimate S(U) well non-parametrically.

To reduce the complexity of the high dimensional problem, conventionally one utilizes a paramet-

ric or semi-parametric procedure to estimate S(u). For the present case, we consider the following

generalized linear working model to approximate the mean of Yk with a function of Uk:

E(Yk | Uk) = gk(β
T

kZk), k = 0, 1, (2·1)

where Zk, a p × 1 vector, is a function of Uk with first column being 1, gk is a known, strictly

increasing link function, and βk is an unknown vector of regression coefficients. Note that for

(2.1), we only model the mean function of Y. To estimate the parameter vector βk in (2.1) without

distribution assumptions about the response, one may use a solution β̂k to the following estimating

equation
nk∑
i=1

Zki {Yki − gk(β
TZki)} = 0. (2·2)

Using the arguments given in Tian et al. (2007), one can show that β̂k converges to a deterministic

vector β̄k even when Model (2.1) is incorrectly specified. This stability property is crucial for

developing our new procedure. It follows that for a given u or z, a parametric estimator for S(u) is

ŝ(u) = g1(β̂
T

1z)− g0(β̂
T

0z).

Note that when Model (2.1) is correctly specified, β̄k is the true parameter for Model (2.1) and

ŝ(u) is a consistent estimator of S(u).

Let U0 be a typical baseline covariate vector for a future subject from the study population.

If this subject is treated by treatment k, the response is Y 0
k , k = 0, 1. For U0 = u0, we may use

ŝ(u0) to decide which treatment this specific subject should be treated with. The adequacy of such

a decision heavily depends on the appropriateness of Model (2.1). On the other hand, ŝ(·) may be

used as an index scoring system for clustering future subjects with potentially similar treatment

differences. That is, we divide the future population into many strata based on the score ŝ(·) such

that patients in the same stratum have the same parametric score value.
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Now, consider subjects in a stratum such that ŝ(U0) = v, a given value, we are interested in

consistently estimating the average treatment difference

∆̄(v) = µ1(v)− µ2(v),

where µk(v) = E(Y 0
k | ŝ(U0) = v), k = 0, 1, and the expectation is taken with respect the data

and (Y 0,U0). To estimate ∆̄(v), we utilize a nonparametric function estimation procedure for µk(v)

with a local likelihood score function (Tibshirani & Hastie, 1984; Fan & Gijbels, 1996). Specifically,

we obtain the root {âk(v), b̂k(v)} to the local weighted estimating equation, Ŝkv(a, b) = 0, where

Ŝkv(a, b) =

nk∑
i=1


 1

h−1Êkvi


 Kh(Êkvi)

{
Yki − g(a + bÊkvi)

}
, (2·3)

h is the smoothing parameter, Kh(x) = K(x/h)/h, K(x) is a symmetric kernel function with a finite

support, Êkvi = ψ{ŝ(Uki)} − ψ(v) and ψ(·) is a known, non-decreasing function. Here, g(x) = x if

the response Y is continuous and g(x) = exp(x)/{1 + exp(x)} if Y is binary. Note that we choose

a transformation ψ{ŝ(Uki)} of ŝ(Uki) to implement the smoothing. In practice, a proper choice

of ψ(·) can be critical (Wand et al., 1991; Park et al., 1997). The µk(v) can then be estimated

by µ̂k(v) = g{âk(v)}. This estimator corresponds to the local linear least square estimator for

continuous Y and local linear logistic likelihood estimator for binary Y . Subsequently, we estimate

∆̄(v) as

∆̂(v) = µ̂1(v)− µ̂0(v).

In Appendix A, for h = Op(n
−ν) with 1/5 < ν < 1/2, we show that ∆̂(v) is uniformly consistent

for ∆̄(v), for v in an interval which is properly contained in the support of ŝ(u).

For the above fixed value v, we show in Appendix B that with h = Op(n
−ν) and 1/5 < ν <

1/2, Ŵ(v) = (nh)
1
2{∆̂(v) − ∆̄(v)} is approximately normally distributed, where n = n0 + n1.

Furthermore, we show that for large n, the distribution of Ŵ(v) can be approximated by the

conditional distribution of a mean-zero normal variable

Ŵ∗(v) =(nh)
1
2

[∑n1

i=1 Kh(Ê1vi){Y1i − µ̂1(v)}Z1i∑n1

i=1 Kh(Ê1vi)
−

∑n0

i=1 Kh(Ê0vj){Y0j − µ̂0(v)}Z0j∑n0

j=1 Kh(Ê0vj)

]

+(nh)
1
2

{
∆̂(v, β̂

∗
1, β̂

∗
0)− ∆̂(v)

}
, (2·4)
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given the data, where Z = {Zki, i = 1, · · · , nk, k = 0, 1} is a random sample from the standard

normal variable and is independent of the data, ∆̂(v, β̂
∗
1, β̂

∗
0) is obtained by replacing β̂k in ∆̂(v)

with β̂
∗
k = β̂k + {∑nk

i=1 ġk(β̂
T

kZki)ZkiZ
T
ki}−1[

∑nk

i=1 Zki{Yki − gk(β̂
T

kZki)}Zki], for k = 0, 1, where ġ(·)
is the derivative of g(·). Note that β̂

∗
k is a solution to the counterpart of estimating equation (2.2),

which is perturbed with the same set of Z in (2.4). Also, note that the Z are the only random

quantities in (2·4), whose distribution can be approximated easily by simulating Z repeatedly. A

(1 − α) pointwise confidence interval estimates for ∆̄(v) can be constructed via this large sample

approximation, which is ∆̂± d(nh)−
1
2 σ̂(v). Here, σ̂(v) is the standard error estimate of Ŵ∗(v) and

d is the upper (1− α/2) percentile of the standard normal.

To control the global error rate, one may construct a simultaneous confidence band. To make

inference about the treatment differences over a range of v, one may construct a simultaneous

confidence band for {∆̄(v), v ∈ J = [ρl, ρr]}, which is properly contained in the support of ŝ(·). A

conventional way to obtain such a confidence band is based on a sup-type statistic

M̂ = supv∈J
∣∣∣σ̂(v)−1Ŵ(v)

∣∣∣ . (2·5)

However, as a process in v, Ŵ(v) does not converge weakly to a proper stochastic process, as n →∞.

Therefore, we cannot use the standard large sample theory for empirical processes to obtain a finite

sample approximation to the distribution of M̂. On the other hand, by the strong approximation

arguments and extreme value limit theorem (Bickel & Rosenblatt, 1973), in Appendix C, we show

that a standardized version of M̂ converges in distribution to a proper random variable. In practice,

for large n, one can approximate the distribution of M̂ by M̂∗, the sup of the absolute value of

Ŵ∗(v) divided by σ̂(v), with (2·4) perturbed by the same set of perturbation variables Z for all

v ∈ J . It follows that the 100(1− α)% simultaneous confidence interval for ∆̄(v) is

∆̂(v)± (nh)−1/2γ σ̂(v), (2·6)

where the cutoff point γ is chosen such that pr(M̂∗ < γ) ≥ 1− α.

As for any nonparametric functional estimation problem, the choice of the smoothing parameter

h for ∆̂(v) is crucial for making inferences about ∆̄(v). It is important to note that for the present

case, we need to choose a single smooth parameter for two nonparametric function estimates, µ̂0(·)
and µ̂1(·). Since each study subject is assigned to a single treatment group, therefore, we cannot use
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the standard cross-validation method with the integrated mean square error criterion to choose h for

∆̂(v). A reasonable, feasible alternative to choose an “optimal” smooth parameter is minimizing an

average squared distance between the observed cumulative treatment difference and their predicted

counterparts in the validation samples under the K-fold cross validation setting. Specifically, we

randomly split the data into K disjoint subsets of about equal sizes, denoted by {Jι, ι = 1, · · · ,K},
where Jι = {Jι1,Jι0} and Jιk denotes the collection of the observations in the ιth subset that belong

to the kth treatment group, for k = 0, 1. For each ι, we use all observations not in Jι to obtain

estimators for the parametric index score and ∆̂(v) with a given h. Let the resulting estimators be

denoted by ŝ(−ι)(U) and ∆̂(−ι)(v), respectively. We then use the observations from Jι to calculate

the empirical integrated cumulative square error

∫ 



∑

i∈Jι1

I(U1i ≤ u)Y1i

∑

i∈Jι1

I(U1i ≤ u)
−

∑

j∈Jι0

I(U0j ≤ u)Y0j

∑

j∈Jι0

I(U0j ≤ u)
−

1∑

k=0

∑

i∈Jιk

I(Uki ≤ u)∆̂(−ι)(ŝ(−ι)(Uki))

1∑

k=0

∑

i∈Jιk

I(Uki ≤ u)





2

dĤ(u), (2·7)

where I(·) is the indicator function and Ĥ(u) is an empirical weight function such as the empirical

distribution function. Lastly we sum (2·7) over ι = 1, · · · ,K, and then choose h by minimizing this

sum. It is important to note that since the bandwidth is selected by minimizing a quantity which

is composed of cumulative predicted errors, the order of such optimal bandwidth is expected to be

n−1/3 (Bowman et al., 1998). Thus the selected bandwidth satisfies the condition required for the

resulting functional estimator ∆̂(v) with the data-dependent smooth parameter to have the above

desirable large sample properties.

3. ESTIMATING TREATMENT DIFFERENCES FOR HIV-INFECTED

PATIENTS

We use a data set from a clinical trial conducted by the AIDS Clinical Trials Group (ACTG) to

illustrate the new proposal. Here, we present two cases, the first one is for a continuous response and

the second case is for a binary endpoint. This study, ACTG 320, is one of early studies for examining

the clinical added value from a protease inhibitor with two nucleoside analogues for treating human

immunodeficiency virus type 1 infection (Hammer et al., 1997). A total of 1156 patients were

randomized to two treatment groups. Here, treatment 0 is the two drug combination, zidovudine

7
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and lamivudine, and treatment 1 is the three drug combination consisting of the above two and

indinarvir. The study was terminated at the second formal interim analysis due to substantial

overall improvements from the three drug combination over the standard two drug combination

with respect to various study endpoints. However, even with this potent new treatment, some

patients may not respond to the therapy, but instead suffer from non-trivial toxicity. Therefore, for

future patients’ disease management, it is important to predict patient’s treatment responses based

on certain “baseline” markers.

For the first example of the illustration, we let the response Y be the patient’s change of CD4

count at Week 24 from the baseline level, an important endpoint for evaluating HIV treatments.

In our analysis, we only considered subjects who had baseline covariate and week 24 CD4 count

values (n0 = 429, n1 = 427). Here, the vector u of baseline covariates consists of CD4, log10RNA

and age. To accommodate the potential non-linear relationship between CD4 and the response,

we let z in Model (2.1) be the vector (1, CD4, log(CD4), log10 RNA, Age)T. Furthermore, we let

g0(·) and g1(·) be the identity function. The estimated regression coefficients for fitted models via

the estimating equations (2·2) are summarized in Table 1(a). It appears that the two resulting

fitted regression functions ŝ(u) are rather different, indicating that there are potential interactions

between the baseline covariates and the treatment response. It is interesting to note that for the two

drug combination group, only age is marginally significant. On the other hand, the baseline CD4

and RNA are highly associated with the response for the three drug combination group. Moreover,

note that younger patients with higher baseline RNA tend to have high scores. For example, among

the 44 patients with age below 40, baseline log10RNA more than 5 and baseline CD4 between 100

and 150, the average score is 95. On the other hand, among the 46 patients with age above 40,

baseline CD4 above 150 and log10RNA below 5, the average score is only 25.

For the second step, we used this continuous score index ŝ(u) to group future patients and predict

the true treatment difference ∆̄(v) for patients with ŝ(U0) = v with ∆̂(v). Here, since the estimated

score has a left skewed distribution, we let ψ(v) = log(− log[Φ{(v−70)/25}]) be the transformation

for choosing the smooth parameter h. The kernel function K(·) is the Epanechnikov kernel and

the smoothing parameter h was obtained through a 10-fold cross validation as a minimizer for the

criterion (2·7). Furthermore, in (2.7), the weight function Ĥ(u) = F̂(u)I(F̂(u) ∈ [0.05, 0.95]), where

F̂(u) = n−1
∑1

k=0

∑nk

i=1 I(Uki ≤ u). The resulting bandwidth h 0.93 for the transformed score which
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has a range of . Here, the confidence intervals for ∆̄(v) were constructed for the transformed score

ψ(v) ∈ [−1.73, 1.12]. This corresponds to v ∈ [30, 94], which is [ψ−1{ψ(q̂0.01)+h}, ψ−1{ψ(q̂0.99)−h}],
where q̂p is the pth percentile of the observed ŝ(U). In Figure 1(c), we present the estimate ∆̂(v),

the solid curve. This curve, in some region, seems markedly different from the 45-degree line. For

example, subjects with score 60 have an estimated average treatment difference of 45, indicating

that the parametric risk estimates need to be calibrated.

To make further inferences about ∆̄(v), we approximated the distribution of the estimator

∆̂(v) via the aforementioned perturbation-resampling method (2·4) with 500 independent realized

Normal samples of Z. In Figure 1(c), we present the resulting 0.95 pointwise intervals (bounded by

the dotted curves) and its simultaneous band (gray area). For risk-cost-benefit decision makings, we

also present the estimates µ̂k, k = 0, 1, the underlying mean changes at Week 24 for both treatment

groups in Figure 1(b). We present the relative frequency of patients in the study population based

on the index score ŝ(u) in Figure 1(a). Since most patients have estimated scores between 50 and

90, the estimation of the true treatment differences tends to be more precise in this region.

The average treatment response from the three drug combination group is uniformly higher

than its counterpart from the two drug combination. However, the treatment differences do not

change much when index score values are low, but for score values higher than 50, the treatment

differences appear to increase significantly. The confidence interval estimates displayed in Figure

1(c) play important roles for treatment selections, especially with additional information regarding

the toxicity profiles over the index score.

For the second example, we considered the patient’s response being a binary variable, which

is one if the week 24 RNA is below 500 copies per milliliter (the criterion for the RNA response

used for ACTG 320). Since the linear effects of the baseline CD4 are almost 0 for both groups,

we only included log(CD4) for this analysis. It follows that z = (1, log(CD4), log10 RNA, Age)′

and g0(x) = g1(x) = exp(x)/{1 + exp(x)} for Model (2.1). Here, n0 = 408 and n1 = 416. In

Table 1(b), we present the estimates for the regression parameters and their estimated standard

errors. For the present case, the estimated score is between -1 and 1, we applied a transformation

ψ(x) = log{(x+1)/(1−x)} for choosing smooth parameter. The optimal bandwidth corresponding

to the transformed score is 0.49 using the 10-fold cross-validation procedure as the one for the

continuous response case. The confidence intervals for ∆̄(v) were constructed over ψ(v) ∈ [0.72, 1.76]

9
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which corresponds to v ∈ [0.34, 0.71]. In Figure 2(c), we present the estimated treatment differences

(solid curve) over the index score. For this endpoint, the three drug combination is substantially and

uniformly better than the two drug combination as shown in Figure 2(b). For instance, for patients

with a score of 0.35, the probability of having RNA suppressed below the limit of quantification is

46% if treated with the three-drug therapy and only 8% if treated with the two drug alternatives. For

this subgroup, the true treatment difference was estimated as 0.38 with 95% pointwise confidence

interval [0.32, 0.43] and 95% simultaneous confidence interval [0.30, 0.46].

4. REMARKS

Firstly, it is important to note that with the parametric estimate ŝ(u), the corresponding simul-

taneous confidence interval estimates for S(u), if valid, can be quite conservative since they would

be obtained via a sup-statistic over u, whose dimension can be rather large. Secondly, one may

use the same approach presented in this article to estimate individual-specific treatment differences

from an observational study. Such estimates, however, may not have the causal interpretation for

the treatment intervention. Thirdly, the treatment difference may be quantified using other mea-

sures for the contrast between two treatment groups, for example, the relative risk or odds ratio for

binary response variable. Fourthly, using the same idea presented in this article, one may develop

subject-level inference procedures for the treatment differences with a censored event time endpoint.

Lastly, an interesting and important question is how to evaluate the parametric index scoring sys-

tem, which can “efficiently” cluster patients for the first stage of our proposal. Unlike the standard

risk prediction problem, there is no obvious metric such as the receiver operating characteristic

(ROC) curve to evaluate the performance of the index system globally or locally. On the other

hand, heuristically one would choose a scoring system such that its frequency distribution of the

resulting calibrated estimates for the treatment differences has wide spread over a large support.
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Appendix

Throughout, unless noted otherwise, we use the notation ' to denote equivalence up to op(1) uni-

formly in v, . to denote being bounded above up to a universal constant, and Ḟ(x) to denote

dF(x)/dx for any function F . We use P̂k and Pk to denote expectation with respect to the em-

pirical probability measure of {(Yki,Uki), i = 1, · · · , nk} and the probability measure of (Yk,Uk),

respectively. Similarly Ĝk = n
1
2 (P̂k − Pk).

Let pk = limn0→∞ nk/n, β̄k denote the solution to the equation E[Zki{Yki − gk(β
′Zki)}] = 0,

s̄(U) = g1(β̄
′
1Z) − g0(β̄

′
0Z), ψ̄(U) = ψ{s̄(U)} and ψ̂(U) = ψ{ŝ(U)}. We assume that ξ(·), the

density function of ψ̄(U), is continuously differentiable with bounded derivatives and bounded away

from zero on the interval [ψ(ρl), ψ(ρr)], where [ρl, ρr] ⊂ Ωs and Ωs is the support of s̄(U). We also

assume that the marker values are bounded, βk belongs to a compact set Ωβ̄k
. For the bandwidth

h, we assume that h = O(n−ν), 1/5 < ν < 1/2.

A Uniform Consistency of ∆̂(·)

To derive the asymptotic properties of ∆̂(·), we first note that from Tian et al. (2007) and Uno

et al. (2007), there exists some deterministic function Ψk such that

n
1
2
k (β̂k − β̄k) = n

− 1
2

k

nk∑
i=1

Ψk(Yki,Zki) + op(1) = Op(1), for k = 0, 1. (A·1)

Since ∆̂(v) = µ̂1(v)− µ̂0(v) = g{â1(v)} − g{â0(v)}, to establish the uniform consistency of ∆̂(v) =

µ̂1(v)− µ̂0(v), it suffices to show that âk(v) is uniformly consistent for ak(v) = g−1{µ̄k(v)},for k = 0

and 1. To this end, we aim to show that d̂k(v) = {d̂ak
(v), d̂bk

(v)}T = [âk(v) − ak(v), h−1{b̂k(v) −
bk(v)}]T → 0 in probability uniformly in v, where bk(v) = d[g−1{µ̄k(v)}]/dv = ˙̄µk(v)/ġ{ak(v)}. At

any given v, recall that {âk(v), b̂k(v)}T is the root of the estimating equation (2.3). It follows that

d̂k(v) is the solution to the estimating equation

Ŝk(d, v) =


Ŝk1(d; v)

Ŝk2(d; v)


 = n−1

n∑
i=1


 1

h−1Êkvi


 Kh(Êkvi)

{
Yki − G(d, v; ψ̂(Uki), h)

}
= 0

where d = (da, db)
T and G(d, v; y, h) = g[ak(v) + bk(v){y − ψ(v)}+ da + dbh

−1{y − ψ(v)}].
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The first step is to show that Ŝk(d; v) is uniformly consistent for

Sk(d; v) =


Sk1(d; v)

Sk2(d; v)


 = ξ(v)


µ̄k(v)− ∫

K(t)g{ak(v) + da + dbt}dt

− ∫
tK(t)g{ak(v) + da + dbt}dt




Since supd,v |Ŝk1(d, v)− Sk1(d, v)| ≤ supv |ε(1)
k (v)|+ supd,v |ε(2)

k (d, v)|, we first show that

sup
v
|ε(1)

k (v)| = Op{(nkh)−
1
2 log(nk)} and sup

d,v
|ε(2)

k (d, v)| = Op{(nkh)−
1
2 log(nk)}, (A·2)

where ε
(1)
k (v) = n−1

k

n∑
i=1

Kh(Êkvi)Yki − ξ(v)µ̄k(v), and

ε
(2)
k (d, v) = n−1

k

n∑
i=1

Kh(Êkvi)G{d, v; ψ̂(Uki), h)} − ξ(v)

∫
K(t)g{ak(v) + da + dbt}dt.

We only prove the rate of convergence for supd,v |ε(2)
k (d, v)| since similar arguments could be used

to establish the rate of convergence for supv |ε(1)
k (v)|. To this end, we note that from with (A·1) and

the same arguments as given in Cai et al. (2008),
∣∣∣ε̂(2)

k (d, v)
∣∣∣ . n

− 1
2

k

(
h−1‖Ĝk‖Hε+

∣∣∣∣
∫

Kh(y − v)dĜk

[G{d, v; ψ̄(U), h}I{ψ̄(U) ≤ y}]
∣∣∣∣
)

+ Op(n
− 1

2
k + h2)

where Hε = {I{g1(β
′
1z)− g0(β

′
0z) ≤ y}− I{g1(β̄

′
1z)− g0(β̄

′
0z) ≤ y} : ‖β1− β̄1‖+‖β0− β̄0‖ ≤ ε, y}

is a class of functions indexed by β0, β1 and y. By the maximum inequality of van der Vaart &

Wellner (1996) and (A·1), we have n
− 1

2
k h−1‖Ĝk‖Hε . Op{(nkh)−

1
2 (nkh

2)−
1
4 log(nk)}. On the other

hand, with the standard arguments used in Bickel & Rosenblatt (1973), it can be shown that∣∣∣∣n
− 1

2
k

∫
Kh(y − v)dĜk

[G{d, v; ψ̄(U), h}I{ψ̄(U) ≤ y}]
∣∣∣∣= Op{(nkh)−

1
2 log(nk)}.

Therefore, supd,s |ε̂(2)
k (d, v)| = Op{(nkh)−

1
2 log(nk)}. This implies (A·2) and hence supd,v |Ŝk1(d, v)−

Sk1(d, v)| = Op{(nkh)−
1
2 log(nk)} = op(1).

The same arguments as given above can be used to show that supd,s |Ŝk2(d, v) − Sk2(d, v)| =

Op{(nkh)−
1
2 log(nk)+h} = op(1). Therefore supd,s |Ŝk(d, v)−Sk(d, v)| = op(1). This uniform conver-

gence, coupled with the fact that 0 is the unique solution to the equation Sk(d, v) = 0 with respect

to d and all the eigenvalues of Ak(v) = −∂Sk(d; v)/∂d′|d=0 = ξ(v)ġ{ak(v)}diag{1, ∫ v2K(v)dv} are

uniformly bounded above zero, suggests that supv |d̂k(v)| = Op{(nkh)−
1
2 log(nk)+h} = op(1), which

implies the consistency of µ̂k(v) = g{âk(v)}. Therefore, supv |∆̂(v)− ∆̄(v)| ≤ supv |µ̂1(v)− µ̄1(v)|+
supv |µ̂0(v)− µ̄0(v)| = op(1).
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B Asymptotic distribution of Ŵ(v) = (nh)
1
2{∆̂(v)− ∆̄(v)}

It follows from a Taylor series expansion that

(nkh)
1
2 d̂ak

(v) = (nkh)
1
2{âk(v)−ak(v)} = B̂k1(v)′(nkh)

1
2 Ŝk(0; v)+Op

{
(nkh)

1
2 (|d̂ak

(v)|2 + |d̂bk
(v)|2)

}
,

where B̂k1(v) is the first row of B̂k(v) = Âk(v)−1. Using the similar arguments in the previous

section, one can show that B̂k1(v) converges to [ξ(v)−1ġ{ak(v)}−1, 0]T, the first row of Ak(v)−1,

uniformly in v. Furthermore, with the convergence rate of Ŝk(d, v), it is not difficult to show that

the remainder term is bounded by Op{(nkh)−
1
2 log(nk)

2 + (nkh)
1
2 h2} uniformly in v. It follows that

(nkh)
1
2 d̂ak

(v) = (nkh)
1
2 bSk1(0;v)

ξ(v)ġ{ak(v)} +Op{(nkh)−
1
2 log(nk)

2 +(nkh)
1
2 h2}. Coupled with the convergence rate

of Ŝk1(0; v), we have supv |d̂ak
(v)| = Op{(nkh)−

1
2 log(nk)}. Thus,

(nkh)
1
2 d̂ak

(v) = [ξ(v)ġ{ak(v)}]−1(nkh)
1
2 P̂k

[
Kh(Êkv){Yk − ηk(v, ψ̂(Uk))}

]
+ op(1).

where ηk(v, y) = g[ak(v) + bk(v){y − ψ(v)}]. We next show that

(nkh)
1
2 d̂ak

(v) = (nkh)
1
2 d̃ak

(v) + op(1), (B·1)

where (nkh)
1
2 d̃ak

(v) = [ξ(v)ġ{ak(v)}]−1(nkh)
1
2 P̂k

(
Kh(Ekv)

[
Yk − ηk{v, ψ̄(Uk)}

])
and Ekv = ψ̄(Uk)−

ψ(v). Noticing the fact that ξ(v)ġ{ak(v)} is bounded away from zero uniformly in v, we have

(nkh)
1
2

∣∣∣d̂ak
(v)− d̃ak

(v)
∣∣∣ . h−

1
2‖Ĝk‖Fε + h−

1
2‖Ĝk‖Hε + Op{(nkh)

1
2 |β̂1 − β̄1|+ (nkh)

1
2 |β̂0 − β̄0|+ h2}

where Fε =
{
yI{g1(β

T

1z)−g0(β
T

0z) ≤ c}−yI{g1(β̄
T

1z)−g0(β̄
T

0z) ≤ c} : ‖β1− β̄1‖+‖β0− β̄0| ≤ ε, c
}

is the class of functions indexed by β0, β1 and c. By the maximum inequality and (A·1) we have

h−
1
2‖Ĝk‖Fε = Op{h− 1

2 n−
1
4 log(nk)}. This along with the convergence rate for h−

1
2‖Ĝk‖Hε implies

(B·1). Furthermore, by a delta method and the standard arguments for local linear regression

fitting, we have

Ŵ(v) ' (nh)
1
2{ξ(v)}−1

(
P̂1 [Kh(E1v) {Y1 − µ̄1(v)}]− P̂0 [Kh(E0v) {Y0 − µ̄0(v)}]

)
(B·2)

which converges to a normal with mean 0 and variance σ1(v)2 + σ0(v)2, where

σ2
k(v) = m2{pkξ(v)2}−1var{Yk|s̄(Uk) = v} and m2 =

∫
K(v)2dv.
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To justify the resampling method, we first note that since |β̂∗1− β̂1|+ |β̂
∗
0− β̂0| = Op(n

− 1
2 ), one

may use the same argument as given above to show that

Ŵ∗(v) =(nh)
1
2

[∑n1

i=1 Kh(Ê1vi){Y1i − µ̂1(v)}Z1i∑n1

i=1 Kh(Ê1vi)
−

∑n0

i=1 Kh(Ê0vj){Y0j − µ̂0(v)}Z0j∑n0

j=1 Kh(Ê0vj)

]
+ op(1).

Furthermore, conditional on the observed data, (nh)
1
2 P̂k[Kh(Êkv){Yk − µ̂k(v)}Z]/P̂k{Kh(Êkv)} is

asymptotical normally distributed with mean 0 and variance

σ̂2
k(v) = hP̂k[Kh(Êkv)

2{Yk − µ̂k(v)}2]/[pkP̂k{Kh(Êkv)}]2.

It follows from the arguments given in Appendix A to show that σ̂2
k(v) converges to σ2

k(v), as n →∞.

C Justification for the Validity of the Confidence Band for ∆̄(v)

We first justify that after proper standardization, the supermum type statistics M̂ converges weakly.

It follows from (B·2) and the consistency of σ̂(v) for σ(v) that

M̂ = sup
v

∣∣∣∣ (nh)
1
2
P̂1 [Kh(E1v) {Y1 − µ̄1(v)}]− P̂0 [Kh(E0v) {Y0 − µ̄0(v)}]

ξ(v)σ(v)

∣∣∣∣ +op(1).

This, together with the continuity of µ̄k(·) and ξ(v)σ(v), implies that

M̂ = sup
v

∣∣∣∣ n−
1
2 h

1
2

n∑
j=1

Kh(Evj)Vj

∣∣∣∣ +op(1).

where we rewrite the data as {(Yj,Uj, Gj), j = 1, ..., n} with Gj being the treatment group indicator

for the jth subject, Evj = ψ̄(Uj)− ψ(v), and

Vj = (−1)Gj+1Yj −Gjµ̄1{s̄(Uj)} − (1−Gj)µ̄0{s̄(Uj)}
ξ{s̄(Uj)}σ{s̄(Uj)}

Using similar argument in Bickel & Rosenblatt (1973), we have pr{an(M̂ − dn) < x} → e−2e−x
,

where

an = (2 log[{ψ(ρr)− ψ(ρl)}/h])
1
2 and dn = an + a−1

n log

{∫
K̇(t)2dt/(4m2π)

}
.

Now, to justify the resampling procedure for constructing the confidence band, we note that

M̂∗ = sup
v

∣∣∣∣ n−
1
2 h

1
2

n∑
j=1

Kh(Êvj)V̂jZj + (nh)
1
2

{
∆̂(v; β̂

∗
1, β̂

∗
0)− ∆̂(v)

} ∣∣∣∣,
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where V̂j is obtained by replacing all the theoretical quantities in Vj by their empirical counterparts.

Again, since |β̂∗1 − β̂1|+ |β̂∗0 − β̂0| = Op(n
− 1

2 ), from Appendix B, we have

M̂∗ = sup
v

∣∣∣∣ n−
1
2 h

1
2

n∑
j=1

Kh(Êvj)V̂jZj

∣∣∣∣ +op(1).

It follows from the same argument as given in Tian et al. (2005) that,

sup
x

∣∣∣pr
{

an(M̂∗ − dn) < x | (Yi,Ui, Gi), i = 1, · · · , n
}
− e−2e−x

∣∣∣ → 0

in probability as n → ∞. Therefore, the conditional distribution of an(M̂∗ − dn) can be used to

approximate the distribution of an(M̂ − dn) for large n.
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Table 1: Estimated regression coefficients and their standard error estimates for the two treatment

groups with the data from ACTG 320.

(a) Continuous outcome: change in CD4 from baseline to week 24

log10 RNA CD4 log(CD4) Age

Two Drug
Estimate 3.47 0.04 -0.07 0.44

Std. Error 3.40 0.07 3.91 0.26

Three Drug
Estimate 28.65 -0.24 24.14 -0.22

Std. Error 6.65 0.14 8.05 0.49

(b) Binary outcome: RNA at week 24 ≤ 500 copies/ml

log10 RNA log(CD4) Age

Two Drug
Estimate -1.14 -0.31 0.00

Std. Error 0.22 0.16 0.02

Three Drug
Estimate -0.60 0.32 0.06

Std. Error 0.18 0.10 0.01
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Figure 1: (a): The estimated density function of the parametric score with respect to Week 24 CD4

changes; (b): Estimated group averages of Week 24 CD4 changes over the score for two- and three-

drug combination groups; (c): Estimated treatment differences (thick curve), three drug combo

minus two drug combo, with respect to Week 24 CD4 changes over the score, and the corresponding

95% pointwise (dashed curve) and simultaneous (shaded region) confidence intervals.
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Figure 2: (a): The estimated density function of the parametric score with respect to Week 24 HIV-

RNA; (b): Estimated averages of Week 24 RNA over the score for two- and three-drug combination

groups; (c): Estimated treatment differences (thick curve), three drug combo minus two drug combo,

with respect to Week 24 RNA over the score, and the corresponding 95% pointwise (dashed curve)

and simultaneous (shaded region) confidence intervals.
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