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Abstract: In the last decade, face-recognition and -verification methods based on deep learning have
increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy.
Hence, these architectures are limited to powerful devices that can handle heavy computational
resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-
time performance on limited devices and embedded systems. However, real-time face-verification
methods struggle with problems usually solved by their heavy counterparts—for example, illumi-
nation changes, occlusions, face rotation, and distance to the subject. These challenges are strongly
related to surveillance applications that deal with low-resolution face images under unconstrained
conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping
with specific problems in surveillance applications. To this end, we created an evaluation subset from
two available datasets consisting of 3000 face images presenting face rotation and low-resolution
problems. We defined five groups of face rotation with five levels of resolutions that can appear
in common surveillance scenarios. With our evaluation subset, we methodically evaluated the
face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also
evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When
examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0
could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face
rotation over 80 degrees.

Keywords: face verification; lightweight face recognition; video surveillance; MobileFaceNet;
EfficientNet; GhostNet

1. Introduction

Biometric recognition has played an important role in different application fields in
recent decades. Frequent examples include face, iris, voice, palm, and fingerprint recogni-
tion [1]. One of the most widely used methods is facial recognition, which has experienced
gains in its development in the last decade, with improvements in face processing, de-
tection, and recognition [2]. Its primary objective is identifying which faces belong to
individual identities within a dataset. On the other hand, face verification consists of ana-
lyzing the facial features of an image to determine if it belongs to the person it claims to be.
Facial recognition and verification have shared problems related to illumination changes,
occlusions, face rotation, and distance to the subject. These challenges are strongly related
to video-surveillance applications; hence, the trending computer vision solution of deep
learning can be used to address the mentioned problems. Deep neural networks (DNNs)
are composed of several hidden layers with millions of artificial neurons connected and
running parallel to handle a large amount of data [3]. Among DNNs, convolutional neural
networks (CNNs) are the best-fitting option for image classification and object detection [3].
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Currently, CNNs are more frequently used than traditional feature-extraction methods
for face recognition, as they can solve common related issues such as changes in facial
expressions, illumination, poses, low resolution, and occlusion [1]. CNNs are commonly
built with complex architectures and high computational costs [4], with examples such
as DeepFace [5], FaceNet [6], ArcFace [7], and MagFace [8]. Due to the huge amount of
memory that these methods require, their applications are not designed to work in real-time
on embedded devices with limited resources [4,9]. Therefore, lightweight CNN architec-
tures have arisen that cover some of the mentioned requirements [9]. MobileFaceNet [10],
EfficientNet-B0 [11], and GhostNet [12] are some of the lightweight architectures employed
for face recognition and verification. Nonetheless, these methods struggle with problems
usually solved by their heavy and more complex counterparts, such as face rotation and
low-level face inputs.

The main contributions of this paper are three-fold: In this paper, we present an analy-
sis of current SOTA methods for face verification based on lightweight architectures. The
analysis specifically focuses on the problems of different facial rotations and low resolution
present in video-surveillance camera applications. The SOTA methods used in the analysis
include the aforementioned MobileFaceNet [10], EfficientNet-B0 [11], and GhostNet [12], as
they are lightweight architectures that can be implemented in real-time and limited embed-
ded devices. The datasets used to test methods were Cross-Pose LFW (CPLFW) [13] and
QMUL-SurvFace [14], as they include facial images in different poses and low-resolution
images, which are the problems analyzed in the present work. Furthermore, to methodically
analyze the effect of face rotation and low-resolution problems, we propose an evaluation
subset with 3000 facial images including the combination of the CPLFW [13] and Celebrities
in Frontal-Profile in the Wild (CFPW) [15] datasets. We specifically define five groups of
face rotation degrees with five levels of resolution that appear in common surveillance
scenarios. With our complete analysis and based on the three datasets employed, we found
that EfficientNet-B0 can deal with rotation and resolution problems, while MobileFaceNet
is better at handling extreme face rotation over 80 degrees. The main contributions of this
paper are three-fold:

• An evaluation subset with 3000 facial images obtained from CPLFW [13] and CFPW [15]
was divided into five intervals of rotation degree and five resolution levels to evaluate
rotation and resolution variations methodically.

• An analysis of three SOTA lightweight architectures (MobileFaceNet [10], EfficientNet-
B0 [11], and GhostNet [12]) was carried out to deal with face-verification problems on
conventional datasets (CPLFW [13] and QMUL-SurvFace [14]).

• A methodical analysis of the effect of facial rotation and low resolution was conducted
for the face verification of the three aforementioned architectures.

2. Related Work
2.1. Datasets

This section presents conventional datasets divided into training and evaluation
subsets conventionally used to test face-recognition and -verification methods. Training
datasets usually include huge numbers of images containing information that the system
should use in the learning process (variations in pose, light, occlusions, etc.). On the other
hand, evaluation datasets focus on images with real-life conditions that attempt to emulate
the ultimate face-recognition/-verification applications. In this paper, we introduced an
evaluation subset that emulates security-video-surveillance applications, so one face is
in the frontal view, and the other has a rotation angle. Using this methodology, we can
evaluate face verification with five intervals of rotation angles and five resolution levels.

2.1.1. Training Datasets

As mentioned, training datasets need large amounts of data with a robust distribution
containing many identities. Here, we present some datasets commonly used to train CNN
architectures. CASIA-WebFace (2014) [16] comprises 494,414 images from 10,575 identities
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with different facial rotations. VGG-Face (2015) [17] comprises 2622 identities with a total of
2.6 million images with different facial rotations and inclinations. MS-Celeb-1M (2016) [18]
includes 100,000 identities with 100 pictures each, forming 10 million images with different
poses and lighting. GANFaces-5M (2018) [19], with 10,000 identities, has five million
images and is entirely made up of synthetic images with different expressions, poses, and
lighting. One of the most-recent large-scale datasets is WebFace260M (2021) [20], which
has four million identities and a total of 260 million images. It is worth noting that the
pre-trained models used in this paper were trained with the MS-Celeb-1M-v1c [21] dataset,
which consists of 3,923,399 aligned images (86,876 identities) cleaned from the standard
MS-Celeb-1M [18] dataset.

2.1.2. Evaluation Datasets

There are many public and private datasets available for face-verification assessment.
However, this paper focuses on datasets that include significant sample variations related
to face rotation and distance to the subject (low-resolution faces). Labeled Faces in the
Wild (2007) [22], well-known as the LFW dataset, includes 5749 identities, in which 1680
have 2 or more images, with a total of 13,233 images showing different poses, expressions,
and lighting. Multi-PIE (2010) [23] consists of 750,000 images from 337 identities with
different poses, expressions, and lighting. Surveillance Cameras face (2011) [24] involves
130 identities with 4160 images with different facial resolutions resulting from varying the
distance to the subject, and the images were collected from surveillance cameras. Trillion-
Pairs [21] (2019) consists of 5700 identities with a total of 274,000 images with different
ages and poses. All these datasets are frequently used in the literature to obtain facial-
verification performance in general. However, we specifically focus on two problems
related to surveillance applications: face rotation and distance to the subject. Therefore, the
datasets chosen for our analysis were Celebrities in Frontal-Profile in the Wild (CFPW) [15],
Cross-Pose LFW (CPLFW) [13], and QMUL-SurvFace [14], which will be detailed in the
Experimental Results Section.

2.2. Face-Recognition Methods

Over the years, different CNN-based methods have been developed for face recog-
nition and verification. Specifically, face verification in unconstrained environments is
the primary task when evaluating the performance of conventional face-recognition sys-
tems [25,26]. While older approaches can obtain outstanding results in controlled environ-
ments, they tend to degrade significantly when real-life variations in facial pose, resolution,
illumination, and occlusions are encountered [26,27]. To tackle these latent problems,
Schroff et al. proposed a CNN-based approach called FaceNet [6], which is a conventional
architecture that obtains compact 128D embedding based on a triplet loss function. FaceNet
proved that the loss function is crucial in deep feature learning because it significantly
improved face-recognition performance by penalizing the distance between negative and
positive embeddings.

In the same way, several margin-based functions have been employed to regulate
training and improve feature discrimination [28]. For instance, the A-SoftMax loss function
with an angular margin was employed using the SphereFace [29] method. CosFace [30] uses
the large margin cosine loss function to learn highly discriminative features. ArcFace [7]
introduced an additive angular margin to maximize intraclass similarity and interclass
diversity. AdaCos [31] proposes an adaptive scale parameter to automatically strengthen
the training supervision using a cosine-based loss function. Similarly, MV-Softmax [32]
adaptively emphasizes the misclassified feature vectors to guide the training, compiling
feature-margin and feature-mining advantages in a single loss function. ElasticFace [33]
relaxes the fixed penalty margin constraint to enable flexibility in class separability. In a
more recent approach, MagFace [8] introduces an adaptive mechanism to learn a structured
feature distribution within each class by pulling easy samples to class centers while pushing
complex samples away.
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On the other hand, there are works in the literature that propose CNN architectures
or complete systems to solve specific face-recognition problems. For example, to tackle
the pose-variation problem, Zhao et al. [34] used a generative adversarial network (GAN)
to synthesize the frontal view of the face with pose variation. Ju et al. [35] proposed a
Complete Face Recovery GAN (CFR-GAN) to restore collapsed textures, occlusion, and
rotation. Likewise, to solve the problem of low-resolution faces, Nam et al. [36] introduced
PSI-CNN, which uses a generic CNN architecture based on scale-invariant pyramids
that can learn information at a different level in low-resolution images. Shahbakhsh
and Hassanpou [37] presented a GAN to consider the image edges, which reconstructs
the details to preserve the facial structure. Some works solve both the aforementioned
problems of facial recognition in video-surveillance camera applications. For instance,
Sayan et al. [38] used a multimodal recognition system that extracts the frontal view while
walking and applies it to low-resolution facial images. Mishra et al. [39] introduced
a multiscale parallel deep CNN to solve problems in low- and high-resolution images.
Nadeem et al. [40] proposed integrating frontal and profile face image recognition using
different CNNs in parallel, combining their predictions based on a single voting scheme.

The mentioned architectures and frameworks usually add extra parameters and com-
putation to conventional CNNs, which limits their operability on limited devices and
embedded systems. Therefore, in this paper, we focused our analysis on lightweight
architectures that do not employ external blocks or add-ons. Specifically, we analyzed
the performance of MobileFaceNet [10], EfficientNet-B0 [11], and GhostNet [12], which
are trained with a cutting-edge loss function (MV-Softmax [32]), and their architectural
details are described in the following section. It is worth noting that, to the best of our
knowledge, there have been no previous analyses of real-time face-verification methods
coupling the problems of security-video-surveillance applications, such as face rotation
and low dimensionality.

3. Face Recognition in Real-Time

We considered the number of parameters and multiply–accumulate operations (MACs)
to choose the real-time face-recognition methods for our analysis. Specifically, we limited
our search to architectures that have about 30 M params. and about 200 M MACs. In this
case, we ensured that they could be applied on limited devices and embedded systems.
Thus, the three methods chosen are detailed below.

3.1. MobileFaceNet

In 2018, Cheng et al. [10] proposed MobileFaceNet (1.2 M params. and 228 M MACs),
which is based on the inverted residual bottlenecks introduced by MobileNetV2 [41], with
small expansion factors as its main building blocks. The residual bottleneck block contains a
three-layer convolution with direct access to the bottleneck connection, as shown in Figure 1.
The depth-separable convolutions of MobileNetV1 [41] are used to reduce the size and
complexity of the network [10]. In addition, the architecture uses the nonlinear activation
function PReLU, helping face-verification performance. One of the main contributions of
MobileFaceNet is the replacement of the global average pooling (GAPool) layer with the
global depth convolutional layer (GDConv), which can obtain a more discriminating face
representation. The GDConv layer deals with different levels of importance of different
output feature maps, as it generates a 512-dimensional facial feature vector. GDConv is
represented by:

Gm = ∑
i,j

Ki,j,m · Fi,j,m (1)

where K is a depth convolutional kernel of size W × H ×M, F is the input feature map
of size W × H ×M, and (i, j) is the spatial dimension in K and F. M refers to the channel
index, and Gm is the m-th channel in G. G is the output of size 1× 1×M. W is the spatial
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width. H is the spacial height of a feature map. M is the number of input channels. The
GDConv layer has a computational cost assigned by

W · H · M. (2)

Figure 1. Bottleneck residual blocks in MobileFaceNet [41].

The MobileFaceNet architecture is shown in Table 1. The expansion multiplier is
defined as t. c is the number of channels. n is the blocked repeated time. s is the step
stride [10]. It is worth noting that MobileFaceNet has been tested and employed in different
face-recognition applications, such as in [42–44].

Table 1. MobileFaceNet architecture [10].

Input Operator t c n s

1122 × 3 Conv3×3 - 64 1 2
562 × 64 Depthwise Conv3×3 - 64 1 1
562 × 64 Bottleneck 2 64 5 2
282 × 64 Bottleneck 4 128 1 2

142 × 128 Bottleneck 2 128 6 1
142 × 128 Bottleneck 4 128 1 2
72 × 128 Bottleneck 2 128 2 1
72 × 128 Conv1×1 - 512 1 1
72 × 512 Linear GDConv7×7 - 512 1 1
12 × 512 Linear Conv1×1 - 128 1 1

3.2. EfficientNet

In 2019, Tan and Le [11] introduced EfficientNet (33 M params. and 78 M MACs),
which combines a neural architecture search (NAS) with a composite scaling method to
optimize the training speed and efficiency jointly. The idea of EffcientNet is to expand
the width, depth, and resolution of the grid through the composite-scaling method, as
shown in Figure 2e. In addition, a single variable is used to uniformly scale the width,
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depth, and resolution of the network [11]. The following equations show the composite
scaling method:

Depth : d = αφ

Width : w = βφ

Resolution : r = γφ

s.t. α ◦ β2 ◦ γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(3)

where α, β, and γ are the distribution coefficients of the network depth, width, and resolu-
tion, respectively (all found by the NAS using MBConv blocks). A composite coefficient phi
is used to find the alpha, beta, and gamma parameters that maximize the recognition accu-
racy. It is important to note that phi is adjusted according to the desirable computational
resources [11].

Figure 2. Architectural representation of standard and composite scaling methods. (a) ConvNet
generic, (b) ConvNet with width scaling, (c) ConvNet with Depth scaling, (d) ConvNet with resolution
scaling, and (e) ConvNet with compound scaling.

The reference network of EfficientNet-B0 is obtained by calculating the coefficients α,
β, and γ using a small grid search when φ = 1. More complex versions of EfficientNet have
been proposed by scaling the reference network with different φ (EfficientNet-B1-7) [11].

The EfficientNet-B0 architecture is shown in Table 2. The number of output fea-
ture channels and convolutional layers of each stage are shown as channels and layers,
respectively. EfficientNet mainly comprises mobile inverted bottleneck convolution (MB-
Conv1, MBConv6), standard convolutional layers, pooling layers, and one fully connected
layer [11].
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Table 2. EfficientNet-B0 architecture [11].

Stage Operator Resolution Stride # of
Channels Layers

1 Conv3×3 224 × 224 2 32 1
2 MBConv1, k3×3 112 × 112 1 16 1
3 MBConv6, k3×3 112 × 112 2 24 2
4 MBConv6, k5×5 56 × 56 2 40 2
5 MBConv6, k3×3 28 × 28 2 80 3
6 MBConv6, k5×5 14 × 14 1 112 3
7 MBConv6, k5×5 14 × 14 2 192 4
8 MBConv6, k3×3 7 × 7 1 320 1
9 Conv1×1 and Pooling and FC 7 × 7 1 1280 1

3.3. GhostNet

In 2020, Han et al. [12] presented GhostNet (27 M params. and 194 M MACs), mainly
constituted by the proposed Ghost modules. The main contribution of these modules is to
substitute a significant part of the convolutional filters with a series of linear transforma-
tions. Ghost feature maps are generated by economic operations, saving computation from
the standard convolutions. A Ghost module is shown in Figure 3, and it can be expressed by

Y′ = X × F′ (4)

where Y′ is the m intrinsic feature map generated by the primary convolution, X is the input
feature map, × is the convolution operation, and F′ is the kernel size of the convolutional
filter. Thus, the feature maps are given by

yij = Φi,j(y′ i), ∀ i = 1, . . . , m, j = 1, . . . , s, (5)

Φi,j is the j-th linear operation used to generate the j-th Ghost feature map. yij, except for
the last Φi,s, is the identity mapping used to preserve the intrinsic feature maps. y′ i is the
i-th intrinsic feature map in Y′. The Ghost module is plug-and-play and can be used to
update existing CNNs [12].

Figure 3. Representation of a GhostNet module [12].

The GhostNet architecture is shown in Table 3, where t denotes the expansion size,
c is the number of output channels, SE indicates whether the squeeze-and-excitation (SE)
module is used, and stride is the number of steps that the neural network filter moves in the
image [12]. Bottlenecks are gathered according to the sizes of the input feature maps [12].
The average pooling and a convolutional layer are used to transform the feature maps into
a 1280-dimensional vector for the classification [12].



J. Imaging 2023, 9, 21 8 of 19

Table 3. GhostNet architecture [12].

Input Operator t c SE Stride

2242 × 3 Conv2d3×3 - 16 - 2

1122 × 16 G-bneck 16 16 - 1
1122 × 16 G-bneck 48 24 - 2

562 × 24 G-bneck 72 24 - 1
562 × 24 G-bneck 72 40 1 2

282 × 40 G-bneck 120 40 1 1
282 × 40 G-bneck 240 180 - 2

142 × 80 G-bneck 200 80 - 1
142 × 80 G-bneck 184 80 - 1
142 × 80 G-bneck 184 80 - 1
142 × 80 G-bneck 480 112 1 1

142 × 112 G-bneck 672 112 1 1
142 × 112 G-bneck 672 160 1 2

72 × 160 G-bneck 960 160 - 1
72 × 160 G-bneck 960 160 1 1
72 × 160 G-bneck 960 160 - 1
72 × 160 G-bneck 960 160 1 1
72 × 160 Conv2d1×1 - 960 - 1

72 × 960 AvgPool7×7 - - - -

12 × 960 Conv2d1×1 - 1280 - 1

4. Experiment Setup

This section presents the implementation details used for evaluating the MobileFaceNet,
EfficientNet-B0, and GhostNet architectures. We specifically compared their performance
in face verification, where the conventional CPLFW and QMUL-SurvFace datasets were first
used to analyze scenarios where face rotation and low-resolution images appeared in video
surveillance cameras (Experiment 1). In addition, the proposed evaluation subset was used
to methodologically analyze the impact of face rotation using a particular rotation degree
group and low resolution by using specific image sizes. The main goal of our analysis
was to understand how images with rotation or low resolution affect the facial-verification
performance of the SOTA lightweight architectures (Experiment 2).

4.1. Implementation Details

All experiments were run on a computer with a 7th-generation Intel Core i7 processor,
32 GB of RAM, and a single NVIDIA GTX 1060 GPU. We used Python 3.10, Torch 1.12.0, and
Torchvision 0.13.0 with CUDA 11.3. To obtain the verification accuracy, we employed the
pre-trained models (MobileFaceNet [10], EfficientNet-B0 [11], and GhostNet [12]) shared by
the FaceX-Zoo repository [45]. These models were trained with the MS-Celeb1M-v1c [21]
dataset with a stochastic gradient descent (SGD) optimizer, a momentum of 0.9, and the
MV-Softmax [32] loss function. The training batch size was 512, with a total of 18 epochs
and a learning rate initialized at 0.1 and divided by 10 at Epochs 10, 13, and 16. To perform
the test with the CPLFW dataset, QMUL-SurvFace, and the proposed evaluation subset,
the images were normalized to 112 × 112 pixels using the same parameters from [45].

4.2. Datasets

The CPLFW [13] dataset contains 11,652 images of 3930 identities at a resolution of
250 × 250 pixels with different facial pose variations. We used 6000 total pairs (3000 positive
and 3000 negative pairs) for the evaluation. The QMUL-SurvFace [14] dataset comprises
463,507 video-surveillance images with 15,573 identities. Out of 10,638 identities, 2 or more
images were included with resolutions between 6 × 5 and 124 × 106 pixels. The average
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resolution was 24 × 20 pixels and can be used for facial verification and identification [14].
A total of 10,640 pairs (5320 positive and 5320 negative) were used in our evaluation.

To methodologically analyze face-verification performance in scenarios where vari-
ations such as face rotation and low resolutions are present, we designed an evaluation
subset using the CPLFW [13] and CFPW [15] datasets. The CFPW [15] dataset has 7000
images from 500 identities, with 10 frontal and 4 profile pictures each. For the construction
of our evaluation subset, we used a facial-pose-estimation method (6DRepNet [46]) to
determine the rotation degree and thus divide the images into 5 angle intervals ([0◦; 20◦],
[20◦; 40◦], [40◦; 60◦], [60◦; 80◦], and [80◦; 180◦]).

The facial-pose estimation method 6DRepNet [46] is based on a CNN and uses a 6D
continuous rotation matrix for compressed regression. Thus, it can learn the entire facial
rotation appearance using a geodesic loss to penalize the network with respect to the special
orthogonal group SO(3) geometry. The publicly available code of 6DRepNet [46] was used
to obtain the rotation angle from all faces.

It is worth noting that, from each pair of images in our evaluation subset, we specif-
ically selected one image in frontal view and another with a rotation angle. In this way,
we emulated security-video-surveillance applications. Table 4 shows the numbers of our
evaluation subset, with 200 pairs for the intervals of [0◦; 20◦], [20◦; 40◦], [40◦; 60◦], and
[60◦; 80◦] and 700 pairs of [80◦; 180◦]. Figure 4 shows some examples of the pairs included.
Furthermore, to overcome the challenges of distance to the subject in the video-surveillance
cameras, we resized the resolution of our evaluation subset. Figure 5 shows an example of
the five resolution levels, their equivalent at the standard resolution, and the resized input
to the three methods.

Figure 4. Examples of the pairs chosen for the proposed evaluation subset.
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Table 4. Number of images and pairs per interval of each dataset used to build the proposed
evaluation subset.

Intervals # of CPLFW # of CFPW Total # of # of Positive # of Negative Total # of
Images Images Images Pairs Pairs Pairs

[0◦; 20◦] 326 74 400 100 100 200
[20◦; 40◦] 400 - 400 100 100 200
[40◦; 60◦] 400 - 400 100 100 200
[60◦; 80◦] 400 - 400 100 100 200
[80◦; 180◦] - 1400 1400 350 350 700

Total 1526 1474 3000 750 750 1500

Figure 5. Example of the five levels of resolution in the proposed evaluation subset.

5. Experimental Results
5.1. Evaluation with Conventional Datasets

In the first experiment, we analyzed the performance of lightweight architectures with
6000 pairs from CPLFW [13]. Table 5 shows the facial-verification performance for the three
pre-trained models.

Table 5. Verification performance with the CPLFW [13] dataset.

Model Accuracy (%)

MobileFaceNet 83.08
EfficientNet-B0 85.16

GhostNet 83.51
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Table 5 shows that, for the CPLFW [13] dataset, the EffcientNet-B0 [11] model has the
best verification performance compared to the other two models. To analyze the facial-
verification performance using angle rotation, we also used the 6DRepNet [46] method.
Unfortunately, we could only obtain 5864 pairs. The pairs not included were misdetections
caused by heavy occlusions generated by rotations greater than 90◦, soccer helmets, cropped
images, etc. Figure 6 shows examples of the occlusions found in the faces not included. We
grouped the detected pairs by the angle difference between each image pair. Hence, we
also defined five intervals, [0◦; 20◦], [20◦; 40◦], [40◦; 60◦], [60◦; 80◦], and [80◦; 180◦]. Table 6
shows the results of the verification performance for each angle interval.

Figure 6. Examples of the occlusions found in the faces not included.

Table 6. Verification performance over the five intervals using the CPLFW [13] dataset.

Intervals # of Pairs MobileFaceNet (%) EfficientNet-B0 (%) GhostNet (%)

[0◦; 20◦] 1237 86.41 87.55 86.82
[20◦; 40◦] 1127 88.55 89.17 87.57
[40◦; 60◦] 1258 84.18 87.28 85.77
[60◦; 80◦] 1017 80.13 83.77 82.10
[80◦; 180◦] 1225 78.93 81.06 78.53

As we can see in Table 6, EfficientNet-B0 [11] has the best verification performance for
all intervals. It is important to note that the accuracy of the [0◦; 20◦] interval is lower than
that of [20◦; 40◦]. This inconsistency in the results can be attributed to angle-detection prob-
lems. Figure 7 shows examples of image pairs that are supposed to belong to the [0◦; 20◦]
interval, where we can see the apparent misdetection problems. However, with this test, we
can see that, in general, if the rotation angle increases, the verification accuracy decreases.

Figure 8 shows examples of image pairs incorrectly classified by EfficientNet-B0. In
these two intervals, the images present occlusions (images with missing pixels in the face,
glasses, and cap) and extreme rotations, making facial verification difficult.

Next, we also analyzed the performance of the THREE methods using 10,640 image
pairs from the challenging QMUL-SurvFace dataset [14]. Table 7 shows the verification
performance, where EffcientNet-B0 achieved the best results again. It is important to note
that the results of all methods are low due to the image quality, capture distance, occlusions,
and extreme rotations. Figure 9 shows examples of image pairs incorrectly classified by
EfficientNet-B0.



J. Imaging 2023, 9, 21 12 of 19

Figure 7. Example of image pairs with facial pose estimation error (attributed to the [0◦; 20◦] interval).

Figure 8. Example of CPLFW image pairs incorrectly classified by EfficientNet-B0.
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Table 7. Verification performance with the QMUL-SurvFace [14] dataset.

Model Accuracy (%)

MobileFaceNet 63.78
EfficientNet-B0 63.82

GhostNet 62.58

Figure 9. Example of QMUL-SurvFace image pairs incorrectly classified by EfficientNet-B0.

5.2. Evaluation with the Proposed Evaluation Subset

We started this test by analyzing the performance of the three methods with 1500 pairs
from the proposed evaluation subset. Table 8 shows the face-verification performance,
where MobileFaceNet [10] surprisingly had the best verification performance. We also
analyzed the performance of all methods with facial rotations divided into five angle
intervals. Table 9 shows the verification performance of each interval.

Table 8. Verification performance with the proposed evaluation subset.

Model Accuracy (%)

MobileFaceNet 76.93
EfficientNet-B0 75.06

GhostNet 75.86

Table 9. Verification performance over the five intervals with the proposed evaluation subset.

Intervals # of Pairs MobileFaceNet (%) EfficientNet-B0 (%) GhostNet (%)

[0◦; 20◦] 200 93.50 91.50 82.50
[20◦; 40◦] 200 91.50 91.50 90.00
[40◦; 60◦] 200 88.00 90.50 90.00
[60◦; 80◦] 200 85.00 89.50 88.50
[80◦; 180◦] 700 62.42 57.14 59.42

We can see from Table 9 that MobileFaceNet [10] has the best verification performance
in the intervals [0◦; 20◦], [20◦; 40◦], and [80◦; 180◦]. Meanwhile, EfficientNet-B0 [11] has
the best verification performance for [20◦; 40◦], [40◦; 60◦], and [60◦; 80◦]. Thus, Mobile-
FaceNet [10] has the best general accuracy, and it is the best method for handling extreme
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facial rotation for angles greater than 80◦. It was found that the verification accuracy
decreased as the rotation angle increased in each interval because all of the images were at
an extreme angle, and the feature vector had less information to provide. Figure 10 shows
examples of image pairs misclassified by MobileFaceNet.

Figure 10. Example of evaluation subset pairs incorrectly classified by MobileFaceNet.

Furthermore, we analyzed the performance of the three methods with the resolutions
of 142, 282, 422, 842, and 1122 pixels in our evaluation subset. Table 10 shows the obtained
results of the verification accuracy with different resolution levels. MobileFaceNet [10]
achieved the best results for 28 × 28 to 112 × 112 pixels. This may be attributed to the
richness of the feature vector generated with the GDConv of the architecture. On the other
hand, EfficientNet-B0 [11] had the best verification performance for 14 × 14 pixels, which
can be attributed to the specific filter sizes found by the NAS procedure.

Table 10. Verification performance of the five resolution levels with the proposed evaluation subset.

14-Pixel 28-Pixel 42-Pixel 84-Pixel 112-Pixel
Model Accuracy Accuracy Accuracy Accuracy Accuracy

(%) (%) (%) (%) (%)

MobileFaceNet 59.06 72.26 75.33 76.80 76.93
EfficientNet-B0 61.93 71.26 73.80 75.00 75.06

GhostNet 61.40 71.86 74.73 75.46 75.86

We also analyzed the facial rotation together with different resolutions. Figure 11
shows plots for each angle interval with different resolution levels. In Figure 11a, it can be
seen that MobileFaceNet [10] had the best performance when working with images equal
to or greater than 84 pixels, EffcientNet-B0 [11] was the best for images of 14 and 42 pixels,
and GhostNet [12] was the best for images of 28 to 42 pixels. In Figure 11b, it can be seen
that MobileFaceNet [10] had the best performance for working with images equal to or
larger than 84 pixels, while EffcientNet-B0 [11] was the best for images from 14 to 42 and
112 pixels. Figure 11c shows that MobileFaceNet [10] had the best performance for images
with 28 pixels; EffcientNet-B0 [11] was the best for 14, 42, and 112 pixels, and GhostNet [12]
was the best for 84 pixels. Figure 11d shows that EffcientNet-B0 [11] achieved the best
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results for 14- to 112-pixel images. Figure 11e indicates that MobileFaceNet [10] had the
best performance when working with 28- to 112-pixel images, while GhostNet [12] was the
best for 14-pixel images.

Figure 11. Plot results for each angle range with different resolution levels, where the following
intervals are shown: (a) [0◦; 20◦], (b) [20◦; 40◦], (c) [40◦; 60◦], (d) [60◦; 80◦], and (e) [80◦; 180◦]. Pixel
resolutions of 14 × 14, 28 × 28, 42 × 42, 84 × 84, and 112 × 112 are used in all intervals.

In summary, EfficientNet-B0 [11] is the best method for working with 14 × 14-pixel
images in all of the different intervals, except for the [80◦;180◦] interval. MobileFaceNet [10]
with image resolutions from 28 × 28 to 112 × 112 pixels proved to be the best method
to work in the interval [80◦;180◦], where extreme rotations are found. Figure 12 shows
examples of image pairs misclassified by MobileFaceNet, where we can qualitatively
corroborate the challenges for each angle and resolution interval.
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Figure 12. Examples of evaluation subset pairs per resolution interval incorrectly classified by
MobileFaceNet.

Finally, in Table 11, we present the inference time of each method running on a single
GPU (NVIDIA GTX 1060) and CPU (Intel Core i7). The time was averaged over 500 single
passes of 112 × 112-pixel images. In this table, we can see that MobileFaceNet is the
only approach that can surpass the real-time barrier of 30 FPS. However, all methods can
run over 15 FPS, which is considered efficient on a CPU and low-cost GPU such as the
GTX 1060.

Table 11. Inference time.

Method GPU (GTX 1060) CPU (Intel Core i7)

MobileFaceNet 27.0 ms (37.0 FPS) 29.9 ms (33.4 FPS)
EfficientNet-B0 52.1 ms (19.2 FPS) 55.6 ms (18.0 FPS)

GhostNet 30.3 ms (32.9 FPS) 33.5 ms (29.9 FPS)

6. Discussion

Based on the analysis using two conventional datasets, EfficientNet-B0 demonstrated
that it could handle different facial rotations, prominent occlusions, illuminations, and
low resolutions. This is because the mobile inverted bottleneck convolution in the first
layer expands the channels and compresses them. Consequently, the layers with fewer
channels skip connections to obtain discriminative feature maps to generalize facial features.
Therefore, such features (facial contour, nose, eyes, eyebrows, mouth, etc.) can be enriched
between each pair of images in training.
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An evaluation subset was designed to analyze only the variations with different
rotations and low resolutions to understand how the methods work with images that can
be obtained in video-surveillance cameras. This evaluation subset has well-defined image
pairs for each angle range and five resolution levels. EfficientNet-B0 proved to be the best
method to work with resolutions of 14 × 14 pixels and a rotation of less than 80◦. On the
other hand, MobileFaceNet proved to be the best with extreme rotations (greater than 80◦)
with resolutions from 28 × 28 to 112 × 112 pixels. This might relate to the global depthwise
convolutional modules responsible for obtaining rich feature maps in specific regions of the
face. GhostNet, on average, did not perform well because Ghost modules lack features that
better represent the face, which is attributed to the “cheap” features calculated by linear
transformations instead of standard convolutional operations.

7. Conclusions

In this paper, we analyzed the real-time face-verification methods of MobileFaceNet,
EfficientNet-B0, and GhostNet using datasets explicitly focusing on problems present in
video-surveillance applications. We tested their performance on conventional datasets
(CPLFW and QMUL-SurvFace) that also have different illuminations, occlusions, and
facial expressions. In addition, we proposed an evaluation subset that focused only on the
problems of facial rotation and low resolutions, divided into five angle intervals and five
levels of resolution. The experimental results showed that, for resolutions of 14 × 14 pixels
with angles less than 80◦, EfficientNet-B0 was the best method. MobileFaceNet, at angles
greater than 80◦ and with resolutions of 28 × 28 up to 112 × 112 pixels, proved to be
the best method compared to the other two. Therefore, we can conclude that using the
three mentioned datasets, EfficientNet-B0 can cope with facial rotation variations and low
resolutions in general, while MobileFaceNet can cope with extreme rotations. Nonetheless,
all analyzed methods can run on limited devices and embedded systems in real-time.
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