
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1978-05

Analysis of Real-Time Systems by Data Flowgraphs

Kodres, Uno R.

IEEE Transactions on Software Engineering, Vol. SE-4, No. 3, May 1978
http://hdl.handle.net/10945/41300

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 3, MAY 1978

Analysis of Real-Time Systems by Data Flowgraphs

UNO R. KODRES

Abstract-The concept of a data flowgraph is formalized as a bipartite
directed graph. Each execution sequence of a computer program has a
corresponding data flowgraph which describes functionally what
happens to the data if that execution sequence is followed.
The data flowgraph gives information which is useful in analyzing

parallel processing, test case preparation, error analysis, and program
verification.
An attack aircraft tactical system is used to illustrate how the concept

of data flowgraphs is applied to analyze real-time systemrs.

Index Terms-Bipartite graph, control complexity, data flowgraph,
discrete systems, execution sequence, independence, parallel processes,
program analysis.

I. INTRODUCTION
T HE basic inadequacy in program documentation in both

flowchart and programming languages form is that both
forms concentrate on how a problem is being solved rather
than what the problem is.

If we design a multiplier either in hardware, firmware or
software, it is essential to know what the problem is. In
proving correctness of programs we must first state what the
problem is before we can verify that our method of solving
it is correct.
There are three major ways in which we state what the

problem is:
1) by the use of formulas;
2) by drawing boxes and joining them by lines;
3) by the use of decision tables.

Formulas have the advantage that we have learned to manip-
ulate them in order to derive equivalent expressions which
serve to simplify the problems. Also, formulas can directly
and easily be communicated to computers if compilers are
available.
Formulas have disadvantages when they extend over several

lines or several pages, or when a large collection of formulas
are used to describe a problem. Computer designers have used
both formulas and drawings to document the designs. IBM is
a major user of drawings. Design documents which describe
computer hardware are documented with box/line drawings.
Box/line drawings have both advantages and disadvantages.

The major disadvantages of these documents are that we must
releam to manipulate the drawings in order to simplify them
and that we have no compilers for graphics. Generally human
transcribers are used to translate graphic pictures into notation

Manuscript received December.22, 1977; revised February 8, 1978.
The author is with the Department of Computer Science, Naval Post-

graduate School, Monterey, CA 93940.

understandable to the computer. The computer redraws the
pictures usually losing positional integrity for both boxes and
lines and thus losing some possibly important information.
The major advantages of box/line drawings are that data

flow can be explicitly shown across formulas, information is
not constrained to lines (one-dimensional) but can easily
extend into pages (two-dimensional), and levels of abstraction
are conveniently achieved by functionally labeling boxes
and lines.
This paper formalizes the concept of box/line drawings.

Such drawings form a bipartite directed graph, bi-digraph,
which we shall also call data flowgraphs.
A program flowchart also corresponds to a graph construct

called a flowgraph. To each execution sequence in the flow-
graph corresponds a data flowgraph which describes at a
chosen level of abstraction what happens to the data.
A similar data flow analysis is carried out by Allen and

Cocke [1], although both their control flow and data flow
are differently conceived and applied.
A control complexity analysis which makes use of a control

flowgraph and introduces a complexity measure, the cyclomatic
number of the control flowgraph, by McCabe [9], has some
similarities to our concept of the flowgraph. The flowgraph
in this paper is abstractly the same as graphs used in circuit
theory, discrete systems analysis, and cost-oriented network
flow problems.
Shneiderman et al. [10] showed experimentally that flow-

charting has little value in increasing programmer productivity.
The value we see in flowcharts or flowgraphs is related to
automated computer analysis of algorithms, both the execution
time analysis and the data flow analysis.
In Section II the flowgraph corresponding to the flowchart

is defined and shown to be abstractly identical to similar
graphs encountered in discrete systems analysis. In Section
III the data flowgraph corresponding to an execution sequence
in the flowgraph is defined. Section IV illustrates the useful-
ness of the concept by applying it to the analysis of an airborne
real-time tactical system (A6-E). Section V is a summary of
what the paper contains.

II. FLOWCHARTS AND FLOWGRAPHS

The language of flowcharts has been intimately tied to
computer programmAng from the very beginning. However,
there is no universal agreement about what a flowchart repre-
sents. Much of the literature in computer science conceives
of flowcharts as composed of actions, represented by vertices
of a directed graph, and possible successor actions, represented

0098-5589/78/0500-0169$00.75 @) 1978 IEEE

169

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 3, MAY 1978

V(t)

a1

a2

a3

a4

a5

a6

al -.' RI

a2 r% R2

a3 - R3

a4 CURRENT GENERATOR I(t)

a5 V ERE5

a6 el.. VOLTAGE SOURCE V(t)

'IV

A.

1%,

Al

Al

IIU

SUM = 0; I = 1

SUM = SUM + I**3; I < 5

(I < 5) = TRUE; I = I + 1

NO OPERATION

(I < 5) = FALSE; PRINT SUM

END - START SEQUENCE

Fig. 1. Abstract similarity of three problems.

by vertices, which are joined by arcs indicating that for the
given action there is one or more possible successor actions.
An alternate conception of flowcharts associates vertices

with control points in the flowchart and arcs with actions and
control transitions. This view is abstractly identical to discrete
systems analysis of two terminal elements [6]. This view also
is abstractly identical to network flow problems in which unit
transportation costs are associated with arcs [4]. It is this
view of flowcharts which we shall use in what follows. For
further information and a formal presentation of this view of
flowcharts, see [7]. Fig. 1 illustrates the abstract similarity
of an electrical network, a hydraulic network, and a flowchart.
All three problems are representable by the directed graph.
The dual set of variables in electrical networks are currents
and voltages; in hydraulics, flows and pressures; in flowcharts,
number of executions of a program sequence and total
execution time of that sequence.

The execution time analysis of a program can be carried out
in a similar way in which electrical network problems are

solved. The system of equations solved reduces to a linear
system of ordinary equations instead of a linear system of
differential equations which is typical of electrical discrete
systems.

III. DATA FLOWGRAPHS

Although the flowchart analysis gives us an effective way

of determining execution times and the complexity of pro-

grams, it does not give much information on the independence
of processes or how processes can be executed simultaneously
without interfering with each other. The concept of data
flowgraphs helps to graphically display what happens to data,
how data are transformed, and how one can partition the
process into subprocesses with a minimal need of data transfers.
We illustrate the ideas first before we formalize the concepts.

Referring back to Fig. 1, consider the graph consisting of arcs

a1 and vertices vi. Each arc of this graph corresponds to an

instruction sequence which carries out a computation on some

input data. For example, arc a, corresponds to a typical

C1

C2

C5

170

RI

KODRES: REAL-TIME SYSTEMS AND DATA FLOWGRAPHS

0 SUM 1 I

d1 L ---- d2 d3 L - - d4

01 02

Fig. 2. Two components of the graph corresponding to the flowgraph
arc aI.

SUM

a2:

SUM

a3:

a4:

a5:

NULL GRAPH

SUM m3 _. OUTPUT

Fig. 3. Components of the data graph.

instruction sequence

LDA 0

STA SUM

LDA 1

STA I

We associate with each data item a vertex di (Fig. 2) and
with each operation another vertex O0, in a manner used by
digital circuit designers ever since computers were first de-
signed and manufactured. We connect the data item to the
operation which uses the data item as an input by an arc
directed into the operation vertex. The output data item
or items are connected to the operation by arcs directed
away from the operation vertex. The graphs resulting from
carrying out this association with flowgraph arcs are graphs
which contain two types of vertices where arcs connect data
vertices to operation vertices and where operation vertices in
tum are only connected to data vertices. Such graphs (Fig. 3)
are known as bipartite directed graphs, or bi-digraphs [8].
For each arc in the flowgraph we construct a corresponding

bi-digraph. We note that control operations such as branch
or halt instructions do not alter any data and hence do not
require a correspondent bi-digraph.
We next determine an execution sequence or all execution

sequences for a given flowgraph.
We are now ready to formalize the defiition of a data flow-

graph.
Definition 1: A data flowgraph corresponds to an execution

sequence in a flowgraph as follows. Let

Fig. 4. A6-E tactical program flowchart.

S=- (a,,,a2 , *.* *an)

be an execution sequence in a flowgraph. To each arc ai, there
corresponds a mapping of input variables xl, x2,..*, Xk into
output variables y 1, Y2 '* - ,Xy,m,. This functional relationship
is denoted by some operation 0i and indicated as a subgraph

Xi Yixl y2x2~~~~~~~~~~
x33~~~~~~~~Y

m

If one or more of the input variables of 0i is identical to an
output variable of some other operation O0, then we identify
such variables by the same vertex in the data flowgraph.
Similarly, if there is a common input or output variable to
one or more operations O0, we identify such variables by the
same vertex in the data flowgraph. If this procedure is suc-
cessively carried out for each arc in the execution sequence
S, the resulting graph is a data flowgraph of S.
We have given so far very simple examples to illustrate the

idea of a data flowgraph. It is easy to see that in a complex
program there are large numbers of execution sequences and
hence data flowgraphs. Therefore this method of analysis
would become so complex that it becomes useless.
Fortunately the idea of a data flowgraph lends itself very

naturally to levels of abstraction. We can illustrate this with
the example which comes from the A6-E tactical system.

IV. AN ILLUSTRATIVE REAL-TIME SYSTEM

A. Data Flowgraph Construction

An attack aircraft (A6-E) tactical system is used to illustrate
the flowchart and data flowgraph analysis techniques.

Fig. 4 illustrates the top level flowchart which describes
the systems operation. After a hardware checkout and initial-
ization programs have been executed, the program goes into
the infinite loop described by the flowchart. In this system

171

I T

1_k

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 3, MAY 1978

KEYSET DISPLAYS

A6 - E
NAV
SENSORS TACTICAL

SYSTEM ORDNANCE
TARGET RELEASE
SENSORS

Fig. 5. Data flowgraph of the A6-E tactical system.

STR

AIR DATA I
QUANTITIES - 1

AIR DATA S
QUANTITIES - 2

AIRCRAFT AIR S3
MASS ANGLES

DOPPLER
VELOCITIES

SYSTEM
VELOCITIES

BARO-INERTIAL
VERTICAL LOOP

AIRCRAFT INERTIAL
ANGLES
.-I

PLATFORM
CORRECTIONS

enD

Fig. 6. Flowchart of the navigational subsystem.

the executive program is very simple: a sequence of tasks is
executed without a set of priorities. The task is bypassed
whenever there is no need to execute it. The analog inputs
from the sensors are sampled periodically based on a real-time
system's clock.
On execution of the infinite loop, that is, the transition

from the control point above "Steering Commands ."
to the control point below "Ballistics Calculations" in
Fig. 4, may be regarded either as a set of all possible execu-
tion sequences, or as a single transition of control. If we
regard it as a single transition of control, then we can repre-
sent what happens to the data with a single data flowgraph as
shown in Fig. 5. This representation corresponds to the overall
view of what the program does. Each data set vertex represents
data items which serve as inputs or outputs of the system,
whereas the operation carried out by the system is represented
by a single vertex.

If we wish to consider a more detailed view of the operation
under the same transition of control, then each distinct execu-
tion sequence gives rise to a data flowgraph and the set of all
such data flowgraphs describe in more detail what the single
flowgraph expresses in Fig. 5.
The Navigational Subsystem consists of eight sequential

steps in Fig. 6. The first step is entitled Air Data Quantities-I
in Fig. 7. This flowchart gives the finest level of detail and
enables a programmer to proceed directly to writing a higher
level language or an assembly language program.

Fig. 7. Flowchart of air data quantities-i.

Corresponding to the flowchart in Fig. 7 we construct a
flowgraph in Fig. 8. In the flowgraph we have distinguished
between the vertices from which exactly one arc issues and
the vertices from which more than one arc issues. The latter
vertices are symbolized by a small diamond indicating that
several execution sequences emanate from that vertex.
We also distinguish between two types of arcs: one (sym-

bolized by a square) corresponds to a statement which perma-
nently alters a data value; the other (symbolized by an arrow)
corresponds to a transition in control which does not perma-
nently alter any data values.
The heavy arrows constitute a spanning tree of the flowgraph

which is of significance in execution time analysis as well as
control complexity apalysis.
Further simplification of the analysis can be obtained by

subdividing the flowgraph into so-called control segments,
which are segments of a program with a single entry and
single exit. The control segment from v0 to v5 in Fig. 8 is
shown in the flowchart form in Fig. 9, and in the flowgraph
form in Fig. 10(a).

172

KODRES: REAL-TIME SYSTEMS AND DATA FLOWGRAPHS

First Control

Segment

Second Control

Segment

Third Control

Segment

Fig. 8. Flowgraph of air data quantities-1.

Fig. 9. First control segment of air data quantities-i.

173

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 3, MAY 1978

DATA FLOW4 GRAPH

o q1 15

I'l P -
K P~~~

O I - q1
1 _ 4 } Ko

n-11M

0 Ei--Ko
O -4 alls

O K0

0 q I 1

O

Fig. 10. Flowgraph and execution sequence tree. s2 S4 S7
n- I~~~~~r-Mn _M~~~M-

1

KU

Fig. 12. Data flowgraphs corresponding to five statement sequences.

M

mn-i

MKPa

q1 15

Fig. 11. Data flowgraph of control segment in Fig. 9.

As before, we can generate a data flowgraph which describes
an overview of what takes place in the control segment, as

shown in Fig. 11. If we are interested in more detail, then
we look at all possible execution sequences which are de-
scribed as a rooted tree in Fig. 10(b). Corresponding to the
six possible execution sequences, there are five distinct state-
ment sequences and their corresponding data flowgraphs in
Fig. 12.
The control segment v5 to V7 can similarly be described in

flowchart form in Fig. 13, as an overview in Fig. 14, or in
complete detail as in Fig. 15(a) and 15(b).
The control segment from V7 to vI5 is shown in flowchart

form in Fig. 16 and as an overall data flowgraph in Fig. 17.
The overall view of the entire page and how the control
segments fit together is displayed in Fig. 18.

If a program contains a loop, then the corresponding flow-
graph is a repetition of flowgraphs each of which describes
the data flow for a single execution sequence.
We wish to note that in the A6-E tactical program there

are about sixty pages of flowcharts-some less complex, some

more complex. The page used to illustrate the data flowgraph

Fig. 13. Flowchart of second control segment.

P _ PRESSURE - , hp
ALTITUDE

CALCULATIONS TSTD

Fig. 14. Overview data flowgraph of Fig. 13.

concept is thus a small but sufficiently complex example to
illustrate the usefulness in:

1) analyzing parallel processing,
2) test case preparation,
3) error analysis,
4) program verification.

STATEMENT
SEQUENCE

S4 s6

S4 S7

S2

a3

a5

a4

a6

Ia8
V4

(a)

S2 54 S6
a8

v5

(b)

174

il

KODRES: REAL-TIME SYSTEMS AND DATA FLOWGRAPHS

P S
TST D

hp

S l

4.4771 29.921 SD- --i> TSTD
216 . 7°0K

(b)
Fig. 15. Detailed data flowgraph of Fig. 13.

Fig. 16. Flowchart of control segment three.

M

Tcor
TM
K
y

Fig. 17. Overview data flowgraph of Fig. 16.
Fig. 18. Data flowgraph describing three control segments of air data

quantities-1.

cor

175

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 3, MAY 1978

B. Analysis ofParallel Processing
The main concerns in distributing a process among several

computers is the resulting inefficiencies introduced by the
distribution:

1) greater communication problems between computers;
2) duplication of data and programs;

3) imbalance in execution times and program size among
the processors.

The data flowgraphs allow us to explicitly determine the
number of data elements which must be communicated to
other processes.

In Fig. 18 the data flowgraph shows that the Pressure
Altitude Calculations have no data values in common with
the Mach Number Calculations. We can conclude that these
processes could be carried out in different computers com-

pletely independently without creating communications
problems. The same graph also shows that the Effective
Temperature Calculations use two data values generated by
Mach Number Calculations and two data values from Pressure
Altitude Calculations.

If a single computer must solve the problem, then eight data
values are used as inputs and five values are used as outputs. If
two computers are to solve the problem, and if Mach Number
Calculations are done in one computer and the Pressure
Altitude and Effective Temperature Calculations are done
in the other, then the communication problems are increased
by the two data values which must be communicated. Effec-
tive Temperature Calculations may not-be started after Mach
Number Calculations are ready. This causes timing problems
in addition to communication problems; however, data flow-

graphs allow the analysis of both problems.
Data flowgraphs reduce the distributed system design

problem to a graph partitioning problem with side constraints.
Several effective algorithms exist for solving that problem.
Reference [21 reviews the published literature on graph
partitioning. The side constraints may be taken to be program

size and maximal execution time. The problem then becomes:
partition the graph into a minimal number of partition
elements so that the number of arcs cut is niinimized, and
the bounds on program size and maximal execution times
are satisfied. The problem is completely analogous to the
hardware partitioning problem for creating mother-boards
in computer design. The mother-board design problem had
to satisfy input-output constraints which permitted only a

certain maximum number of input-output connections for
each mother-board, as well as a certain maximum number
of daughter-cards on each mother-board.

C. Test Case Preparation

As all of us who write computer programs know, a program

is seldom correct when first executed. Therefore it is safe to
assume that programs contain errors, and we would like to
generate test cases which are:

1) exhaustive enough to discover all errors;
2) small enough in number so that we can effectively test

the cases;
3) suggestive of what must be done to make corrections.

Computer programming is in many ways analogous to a
lengthy derivation in solving calculus problems. The way in
which one gains confidence in a lengthy derivation is by look-
ing in the answer section to see if the result obtained agrees
with the one given in the book. If the results agree, then we
usually are satisfied. If not, then we try to establish equiva-
lence. Failing that, we check algebraic manipulations, signs,
differentiations, integrations, etc., until an error is discovered.
If we work on an even-numbered problem which does not
have an answer in the back of the book, we resort to different
schemes. If we trust a friend we call him to find out what
result he obtained. If the results do not agree, we check
back to see when the results first disagreed.

In programming we use similar techniques. We write a
program in some higher level language such as Fortran. If
we write a special-purpose routine to evaluate a trigonometric
function, we compare our results with the corresponding
library routine. How many test values do we use? If we have
a polynomial of degree n, then theory tells us that n + 1 points
are sufficient to establish identity. By using a random number
generator to generate a set of n + 1 random numbers in the
interval of interest and by finding that the results agree with
sufficient accuracy, we become confident that no further
errors exist. We remain confident until someone discovers
that for a particular case the results are incorrect. We fix
the program and add these particular cases to our repertoire
of test cases. Usually the endpoints of finite intervals, zero
value, or undetected underfiows and overflows are a cause
of trouble. How does the data flowgraph concept help us
generate test cases?
We observed in the previous segment that the control seg-

ment vo to vs had six different execution sequences and five
different statement sequences. Each statement sequence gives
rise to a different function. Therefore we must prepare at
least five different data sets, one for each function. As shown
in Fig. 12 each function is a constant function, and, hence,
theoretically, one data value for each data set would be
sufficient to check identity to a previously computed constant
function.

If one considers the flowgraph in Fig. 8 in its entirety, then
the total number of execution sequences between vo and v15
is 72. The number of execution sequences may be calculated
by a vertex labeling process which labels each vertex by the
number of distinct access paths from the entry point.
Because several execution sequences give rise to the same

statement sequence, only 50 distinct statement sequences exist.
If each statement sequence yielded a unique function, we
would have to construct at least 50 different data sets, each
data set containing at least one set of values. In the A6-E
tactical program there are 60 pages of flowcharts of control
complexity with about an average of 20 statement sequences
each. Therefore, there are approximately (20)60 statement
sequences in the entire program. If each statement sequence
gave rise to a different function, we would have to generate
(20)60 data sets, each containing at least one set of data
values. Clearly testing the program would become impossible.
The data flowgraph corresponding to the control segment

(i.e., a program segment with a single entry and a single exit)

176

KODRES: REAL-TIME SYSTEMS AND DATA FLOWGRAPHS

vo to vs in Fig. 11 is disconnected from the data flowgraph
for the next control segment. This means that the two func-
tions are independent and can be tested independently from
each other.
Theoretically, the first control segment requires five data

sets, the second two data sets. Altogether 5 + 2 data sets are
necessary instead of 5 - 2 = 10.
The third control segment is a rational function containing

five statement sequences. Hence five data sets would need
to be constructed to test out that function. In order that two
rational functions be identical, it is sufficient to form the
product polynomial.

if

R1Q2 EQ1R2

then

R1 _ Q~
-

R1 Q2

for all x for which R2(x) #0 and Q2(x) # 0.
In the above example, four data values per data set would

be sufficient. Thus 5 + 2 + 5 = 12 data sets are sufficient to
test the identity of the functions calculated in the flowgraph
in Fig. 8 instead of the 50 data sets estimated on the basis of
the statement sequences in the flowgraph.
The flowchart page used in this example has average com-

plexity. If we assume that the complexity of each page is
on the average similar to this page and the data flowgraphs
exhibit the same degree of independence as they do on this
page, then only

60- 12=720

data sets need to be constructed instead of (20)60. Clearly
720 data sets would be a reasonable number to construct
even if each data set contained ten sets of data values.

D. Error Analysis
The data flowgraphs lend themselves to numerical error

analysis. McCracken and Dom [3] present an elementary
but complete treatment of roundoff error propagation for
both fixed-point and floating-point arithmetic. They use
data flowgraphs (or process graphs in their terminology) to
develop the error-bound estimates for each function. We shall
not repeat their presentation here but refer the reader to
their book.
In addition to numerical error-bound analysis, data flow-

graphs give strong indications of possible trouble spots or
errors in the program. For example, in the statement sequence
S2 S4 S7 in Fig. 12, variable M is set to Mn..i in S2 and reset
to Mmi in S4 S7. Although the function may be correctly
calculated, it is done clearly in an inefficient fashion. It is not
hard to reconstruct the program to eliminate this inefficiency
and still compute the same function.

E. Program Verification
For real time tactical systems, program verification is par-

ticularly difficult to accomplish. In order to verify that a

program does what is intended, there must be an unambiguous
statement of intention. Frequently the statement of inten-
tion is in a flowchart form. Because flowcharts imply a
sequence of statements and a sequence of controls, the state-
ment of intention not only specifies what is wanted, but also
in what sequence it should occur. This overspecifies the
program, causes inefficiency, and removes useful flexibility.
Program verification, as described by Hantler and King [5],

consists of:
1) stating formally what assumptions are made about input

variables before entry into a procedure;
2) asserting algebraically or by logical statements what the

output variables will contain when the procedure is completed;
3) symbolically executing the program as described in some

programming language to show that the results agree with the
specification.
The data flowgraph is a graphic expression of one or more

algebraic statements. Therefore algebraic statements can be
interpreted into data flowgraphs. This allows us to construct
a data flowgraph or a set of data flowgraphs for the specification
statement.
The symbolic execution of a program is equivalent to the

process of constructing a data flowgraph for each execution
sequence in the program. The verification process is the
process of checking whether or not the data flowgraphs cor-
responding to the specification are equivalent to the data
flowgraphs obtained from the execution sequences.
An automated process of showing equivalence is by no

means an easy process to construct. Conceptually, however,
data flowgraphs will enhance program verification.

V. SUMMARY
This paper introduces the data flowgraph concept as a

useful tool in the analysis of real-time systems. Although
there are more applications, this paper has focused attention
on four applications which are particularly useful in systems
analysis:

1) process partitioning into subprocesses for distributed
processing;
2) generating test cases to establish that the program under

design is identical to a known, correctly functioning test
program;
3) numerical error analysis and the analysis of inefficiencies

occurring in the program;
4) program verification.
The data flowgraph is useful conceptually as well as in the

practical domain of implementation of algorithms to carry
out the analysis tasks.

REFERENCES
[1] F. E. Allen and J. Cocke, "A program data flow analysis pro-

cedure," Commun. Ass. Comput. Mach., vol. 19, pp. 137-147,
Mar. 1976.

[2] M. A. Breuer, Ed., Design Automation ofDigitalSystems: Theory
and Techniques. Englewood Cliffs, NJ: Prentice-Hall, 1972.

[3] D. D. McCracken and W. S. Dorn, Numerical Methods and
Fortran Programming. New York: Wiley, 1964.

[4] L. R. Ford, Jr., and D. R. Fulkerson, Flows in Networks. Prince-
ton, NJ: Princeton Univ. Press, 1962.

[5] S. L. Hantler and J. C. King, "An introduction to proving cor-

177

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 3, MAY 1978

rectness of programs," Computing Surveys, vol. 8, pp. 331-353,
Sept. 1976.
H. E. Koenig, Y. Tokad, and H. K. Kesavan, Analysis ofDiscrete
Physical Systems. New York: McGraw-Hill, 1967.
U. R. Kodres, "Discrete systems and flowcharts," IEEE Trans.
Software Eng., to be published.
-, "Logic circuit layout," in Proc. Joint Conf on Mathematical
and Computer Aids to Design, Oct. 1969, pp. 165-191.
T. J. McCabe, "A complexity measure," IEEE Trans. Software
Eng., voL SE-2, pp. 308-320, Dec. 1976.
B. Shneiderman, R. Mayer, J. McKay, and P. Heller, "Experi-
mental investigation of the utility of detailed flowcharts in
programming," Commun. Ass. Comput. Mach., voL 20, pp.
373-381, June 1977.

Uno R. Kodres received the B. A. degree in 1954 from Wartbug College,
Waverly, IA, and the M.A. and Ph.D. degrees from Iowa State Univer-
sity, Ames, in 1956 and 1958, respectively.

.__ 11 While at Iowa State University he had a teach-
ing fellowship in mathematics. He joined IBM
in 1958 on the Design Automation Project at
Poughkeepsie, NY. In 1963 he joined the Naval
Postgraduate School, Monterey, CA, where he

.-~ is presently an Associate Professor in the De-
partment of Computer Science. In 1967 he was

l_
=

a consultant to IBM in Menlo Park on the Ad-
vanced Computational Systems Project. Most
recently his interest is in homogeneous, dis-
tributed computer architectures making use of

large-scale integrated technology. He is a coauthor of a book on design
automation, has lectured at the UCLA sponsored short courses, and was
invited as a Fulbright Scholar to Yugoslavia to lecture on automated
design.

Dr. Kodres is a member of the Association for Computing Machinery,
the Society for Industrial and Applied Mathematics, the Mathematical
Association of America, and Sigma Xi.

Testing Software Design Modeled by Finite-State
Machines

TSUN S. CHOW

Abstract-We propose a method of testing the correctness of control
structures that can be modeled by a finite-state machine. Test results
derived from the design are evaluated against the specification. No
"executable" prototype is required. The method is based on a result
in automata theory and can be applied to software testing. Its error-

detecting capability is compared with that of other approaches. Appli-
cation experience is summarized.

Index Terms-Control structure, finite-state machines, reliability,
software testing, test covers, validity.

INTRODUCTION
ONE of the most difficult problems in testing is finding a

test data selection strategy that is both valid and reliable
[4]. The general problem is not solvable [13]. However, by
restricting ourselves to look at the "control structure" of soft-
ware systems only, and only those that can be modeled by a

finite-state machine, we do find a testing strategy that is both
valid and reliable.
This paper presents a new testing strategy that we call

"automata theoretic." It has the following characteristics:

Manuscript received December 7, 1977; revised February 3, 1978.
The author is with Bell Laboratories, Naperville, IL 60540.

1) only the control structure of the design is checked;
2) it does not require an "executable" specification;
3) test sequences are guaranteed to reveal any errors in the

control structure, provided that some reasonable assumptions
are satisfied.
As far as testing the correctness of the control structure in a

design is concerned, our method is superior to those existing
testing strategies that are based on the structure of the design.
By means of examples, we will show that there are errors that
are detected by our method, while going undetected by other
testing strategies.
In addition, we will define a new hierarchy consisting of

"n-switch set covers," a generalization of the modified "switch
cover." Although we prefer the automata theoretic method to
n-switch set covers, we are able to specify analytically the
classes of errors that can be detected by an n-switch set cover.

Up until now, the best one could do was to obtain empirical
data concerning the reliability of a testing strategy [131. Of
course, we remind the reader that here we are only dealing
with the verification of the control structures at the design
level, and only those that can be modeled by finite-state
machines.
Next, our discussion proceeds to an examination of the

0098-5589/78/0500-0178$00.75 X) 1978 IEEE

161

[7]

[81

19]
[10]

178

