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Analysis of Reassignment Operators Used in
Synchrosqueezing Transforms: With an Application

to Instantaneous Frequency Estimation
Sylvain Meignen and Neha Singh

Abstract—In this paper, our goal is first to investigate the
behavior of reassignment operators used in synchrosqueezing
transforms applied to multicomponent signals made of the
superposition of amplitude and frequency modulated modes.
Indeed, while these operators are associated with instantaneous
frequency estimators very accurate on specific types of modes,
the quality of the former worsens drastically when the modes
depart from the ideal case they are designed for. We show in this
paper that this particularly true when the modes interfere in
the time-frequency plane or when some noise is present. Based
on that analysis, we propose a novel instantaneous frequency
estimator that only makes use of some specific points located
on the ridges of synchrosqueezing transforms, and compare its
performance with state-of-the-art techniques based on the same
type of time-frequency representations.

Index Terms—time-frequency analysis, Fourier-based syn-
chrosqueezing transform, reassignment methods

I. INTRODUCTION

MULTICOMPONENT signals (MCSs) are very often
used to represent non-stationary signals encountered

in many different fields such as pathology diagnosis [1], [2],
structural damage [3], [4] or physiological signals [5]. To
analyze this type of signals the short-time Fourier transform
(STFT) is very often considered since, with that time-frequency
representation (TFR), the modes making up a MCS are associ-
ated with specific regions around ridges in the time-frequency
(TF) plane [6], which consist of instantaneous frequency (IF)
estimators of the modes [7], [8]. In that context, the IF
estimates correspond to some specific local maxima of the
spectrogram along the frequency axis. Other IF estimators can
be designed by considering the reassignment operator used in
the synchrosqueezing transform (SST), which can be applied
to STFT [9], [10], to obtain the so-called Fourier-based syn-
chrosqueezing transform (FSST), or to the continuous wavelet
transform [11], [12]. SST has been widely used in various
domains of applications among which fault diagnosis [13],
[14], analysis of seismic signals [15], medical data analysis
[5], [16], [17] and characterization of voice jitter [18] to name
a few.

Variants of FSST were proposed to take into account the
different nature of the modes to be reassigned. Indeed, in
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the seminal work of [9], [10] FSST used an IF estimator
proved to be very accurate only when the modes can be locally
approximated by pure harmonic modes. This approach was
then extended by considering local linear chirp approximation
for the modes in [19], [20], and then by assuming the modes
have higher degree polynomial phases [21].

Nevertheless, the quality of the IF estimators used in FSSTs
strongly depends on how well the modes are separated in the
TF plane and on whether some noise is present. In particular,
these estimates are ill-defined when the modes are crossing
in the TF plane and a separation condition is assumed on
the modes. It is worth noting here that recent works have
aimed at dealing with crossing modes by estimating the chirp
rate and IF simultaneously [22]. Meanwhile, many different
techniques have been developed to improve mode separation
by considering the so-called adaptive STFT [23]–[26].

However, to adapt the window length in STFT as is done in
adaptive STFT does not warranty perfect IF estimation in noisy
situations, and windows with different lengths at each time are
to be used to estimate the IF of the different modes [24]. When
only one window is used, the optimal window length is often
computed using the properties of the Rényi entropy [27], [28],
which is proved to lead to optimal concentration measure in
the case of a linear chirp [29].

Our goal in this paper is three-fold. The first objective is
to introduce a novel matricial form for the derivation of IF
estimators used in FSSTs. This is done in Section II, in which
we also introduce the notations that are used throughout the
paper. The second objective is to characterize the zeros of the
reassignment vectors associated with different types of FSSTs,
then to derive approximations of these reassignment vectors,
as explained in Section III, to finally investigate the behaviors
of the reassignment vectors in the case of interfering pure
harmonic modes and of noisy linear chirps. This is carried
out respectively in Sections IV and V. The last objective of
this paper is to propose a new IF estimator based on the
determination of relevant points extracted from FSSTs ridges.
The motivation for the selection of these relevant points is
detailed at the beginning of Section VI, and the presentation of
the new IF estimator follows. Numerical results illustrating its
performance compared with state-of-the-art techniques based
on FSSTs on both simulated and real signals conclude the
paper.
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II. NOTATIONS

A. Short-Time Fourier Transform

In this section, we introduce a series of definitions we use
throughout the paper. Considering a signal f ∈ L1(R)∩L2(R)
and a real window h ∈ L∞(R)∩L2(R), the (modified) Short-
Time Fourier Transform (STFT) is defined as:

V hf (t, η) =

∫
R
f(τ)h(τ − t)e−2iπ(τ−t)ηdτ. (1)

In the sequel, we are going to study multicomponent signals
(MCSs), defined as the superposition of several AM-FM
components as follows:

f(t) =

P∑
k=1

Ak(t)e2iπφk(t), (2)

in which we assume Ak(t) is positive, and φ′k(t) > 0 such
that φ′k+1(t) > φ′k(t) where φ′k(t) denotes the instantaneous
frequency (IF) of mode fk at time t.

B. Instantaneous Frequency Estimators Used in
Synchrosqueezing Transforms

The IF of each mode of f can be estimated from STFT
by means of a so-called local instantaneous frequency (LIF)
estimator, used in Fourier-based synchrosqueezing transform
(FSST). First, one considers the complex estimate:

ω̃f (t, η) =
∂tV

h
f (t, η)

2iπV hf (t, η)
= η − 1

2iπ

V h
′

f (t, η)

V hf (t, η)
, (3)

and then defines the LIF estimator as

ω̂f (t, η) = <{ω̃f (t, η)} = η −<

{
1

2iπ

V h
′

f (t, η)

V hf (t, η)

}
. (4)

FSST then consists of reassigning STFT through:

Thf (t, ω) =

∫
|V hf (t,η)|>γ

V hf (t, η)δ(ω − ω̂f (t, η))dη, (5)

where δ is the Dirac distribution and γ some threshold.
The quality of LIF estimator ω̂f is however only satisfactory

when the signal is made of perturbed purely harmonic modes.
To overcome this limitation, a second-order LIF estimator was
introduced based on a local linear chirp approximation [19],
[20] and then used in the definition of second-order Fourier-
based synchrosqueezing transform (FSST2). More precisely,
introducing the complex time delay:

t̃f (t, η) = t−
∂ηV

h
f (t, η)

2iπV hf (t, η)
= t+

V thf (t, η)

V hf (t, η)
, (6)

and then the complex frequency modulation operator [21] (we
omit (t, η) for the sake of simplicity):

q̃f =
∂ηω̃f

∂η t̃f
=

1

2iπ

V h
′

f V thf − V hf V th
′

f −
(
V hf

)2
V hf V

t2h
f −

(
V thf

)2 , (7)

the second-order complex LIF estimator is defined by:

ω̃
[2]
f =

{
ω̃f + q̃f × (t− t̃f ) if ∂η t̃f 6= 0

ω̃f otherwise, (8)

and ω̂[2]
f = <

{
ω̃
[2]
f

}
is the sought second-order LIF estimator.

FSST2 is then defined by replacing ω̂f by ω̂[2]
f in (5).

New LIF estimators were then proposed to handle MCSs
containing AM-FM modes having non-negligible lth order
phase derivative with l ≥ 3, especially those with fast oscil-
lating phase [21]. In a nutshell, let us consider the Gaussian
modulated linear chirp such that f(τ) = A(τ)ei2πφ(τ) with
log(A(τ)) (resp. φ(τ)) a polynomial of order S (resp. N ) for
τ close to t, with S ≤ N , namely:

f(τ)

= exp

 N∑
j=0

(
[log(A)](j)(t) + i2πφ(j)(t)

)
(τ − t)j

j!

 .
(9)

From (9), and the definition of STFT we may write:

∂tV
h
f (t, η) = ([log(A)]′(t) + 2iπφ′(t))V hf (t, η)

+

N∑
j=2

r
[N ]
j (t)V t

j−1h
f (t, η)

= r
[N ]
1 (t)V hf (t, η) +

N∑
j=2

r
[N ]
j (t)V t

j−1h
f (t, η)

(10)

where r[N ]
j (t) = [log(A)](j)(t)+2iπφ(j)(t)

(j−1)! .

Now, when f is a multicomponent signal defined as in (2)
and made of modes following (9), the equality (10) turns into
an approximation, namely for (t, η) in the vicinity of (t, φ′k(t))
for some k, one may write:

∂tV
h
f (t, η)

= r
[N ]
1 (t, η)V hf (t, η) +

N∑
j=2

r
[N ]
j (t, η)V t

j−1h
f (t, η),

(11)

where r
[N ]
j (t, η) ≈ [log(Ak)]

(j)(t)+2iπφ
(j)
k (t)

(j−1)! . In that context,

ω̂
[N ]
f (t, η) := <

{
r
[N]
1 (t,η)
2iπ

}
is the N th order LIF estimator

of fk. A simple way to compute r[N ]
1 is to come back to Eq.

(11) which, remarking that ∂ηV hf (t, η) = −2iπV thf (t, η), can
be written under the matrix form:

∂tV
h
f

i
2π∂η∂tV

h
f

...
iN−1

(2π)N−1 ∂
N−1
η ∂tV

h
f



=


V hf V thf · · · V t

N−1h
f

V thf V t
2h
f · · · V t

Nh
f

...
...

. . .
...

V t
N−1h
f V t

Nh
f · · · V t

2(N−1)h
f



r
[N ]
1

r
[N ]
2
...

r
[N ]
N

 = DR.

(12)

Based on simple properties of the determinant of matrices,
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one obtains that:
r
[N ]
1 =

det(M1)

det(D)
, (13)

with

M1 =


∂tV

h
f V thf · · · V t

N−1h
f

i
2π∂η∂tV

h
f V t

2h
f · · · V t

Nh
f

...
...

. . .
...

iN−1

(2π)N−1 ∂
N−1
η ∂tV

h
f V t

Nh
f · · · V t

2(N−1)h
f

 . (14)

Then, as ∂tV hf = i2πηV hf − V h
′

f , one gets, for any l ≥ 1:

∂lη∂tV
h
f = (−2iπ)l

(
−kV t

l−1h
f − V t

lh′

f + 2iπηV t
lh
f

)
, (15)

leading to: det(M1) = i2πηdet(D)−det(U1)−det(V1) with:

U1 =


0 V thf · · · V t

N−1h
f

V hf V t
2h
f · · · V t

Nh
f

...
...

. . .
...

(N − 1)V t
N−2h
f V t

Nh
f · · · V t

2(N−1)h
f



V1 =


V h
′

f V thf · · · V t
N−1h
f

V th
′

f V t
2h
f · · · V t

Nh
f

...
...

. . .
...

V t
N−1h′

f V t
Nh
f · · · V t

2(N−1)h
f


, (16)

and thus

ω̂
[N ]
f =

=
{
r
[N ]
1

}
2π

= η − 1

2π
=
{
det(U1) + det(V1)

det(D)

}
. (17)

C. Simplified LIF Estimators when h is a Gaussian Window

When h is the Gaussian window e−π
t2

σ2 , the LIF estimators
introduced above have simpler expressions. Indeed, as h′(t) =
− 2π
σ2 th(t), one has:

ω̂f = η + =

{
1

σ2

V thf
V hf

}
, (18)

and we may rewrite ω̂[2]
f as:

ω̂
[2]
f = ω̂f + <

{
1

2iπ

(V hf )2 + V hf V
th′

f − V h′f V thf

V hf V
t2h
f − (V thf )2

V thf
V hf

}

= ω̂f + <

{
1

2iπ

V hf V
th
f

V hf V
t2h
f − (V thf )2

}
−=

{
1

σ2

V thf
V hf

}

= ω̂f + <

{
1

2iπ

V hf V
th
f

V hf V
t2h
f − (V thf )2

}
− (ω̂f − η)

= η + =

{
1

2π

V hf V
th
f

V hf V
t2h
f − (V thf )2

}
.

(19)

An alternative technique to compute a LIF estimator still
assuming a local linear chirp approximation for the modes
is to consider that the complex modulation operator is not

defined by (7) but by [19]:

q̄f =
∂tω̃f

∂tt̃f
=

1

2iπ

V h
′′

f V hf − (V h
′

f )2

V thf V h
′

f − V th
′

f V hf
. (20)

Replacing q̃f by q̄f in (8), one obtains a new LIF estimator,
which is actually the same as the one introduced in [21].
Indeed, one has

1

2iπ

V h
′′

f V hf − (V h
′

f )2

V thf V h
′

f − V th
′

f V hf

=
1

2iπ

(−V hf + 2π
σ2 V

t2h
f )V hf − 2π

σ2 (V thf )2

−(V thf )2 + V t
2h
f V hf

=
1

iσ2
−

(V hf )2

2iπ(V t
2h
f V hf − (V thf )2)

,

(21)

and the LIF estimator obtained using q̄f instead of q̃f reads:

ω̄
[2]
f

= ω̂f + <

{
(− 1

iσ2
+

(V hf )2

2iπ(V t
2h
f V hf − (V thf )2)

)
V thf
V hf

}

= ω̂f + <

{
V hf V

th
f

2iπ(V t
2h
f V hf − (V thf )2)

}
−=

{
1

σ2

V thf
V hf

}
= ω̂

[2]
f .

(22)

As far as higher order LIF estimators, i.e. N > 2, are
concerned, to use the Gaussian window also brings interesting
simplifications. Indeed, in such a case, the first two columns
of matrix V1 introduced in (16) are colinear and thus its
determinant is null. In that context, one may thus write:

ω̂
[N ]
f =

1

2π
=
{
r
[N ]
1

}
= η − 1

2π
=
{
det(U1)

det(D)

}
. (23)

In the following sections, we will stick to the use of Gaus-
sian windows since the studied LIF estimators have simpler
forms. Also, as shown in the following section, to use Gaussian
windows enables us to give very simple characterizations of
the zeros of reassignment vectors and then to mathematically
study the latter in the vicinity of their zeros.

III. ON APPROXIMATIONS OF REASSIGNMENT VECTORS
IN THE VICINITY OF THEIR ZEROS

In this section, we first investigate more in detail the
nature of the zeros of the reassignment vectors namely of
ω̂
[N ]
f (t, η)− η, focusing in particular on the cases N = 1 and
N = 2. Then we propose different simple approximations of
reassignment vectors in the vicinity of their zeros that will help
us understand the differences between reassignment processes.

A. Characterization of the Zeros of Reassignment Vectors

To study the zeros of the reassignment vector, when N =
1, we first recall that (omitting again (t, η) for the sake of
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simplicity):

ω̂f − η = =

{
1

σ2

V thf
V hf

}

= −=

{
∂ηV

h
f

2iπσ2V hf

}
=

1

4πσ2

∂η|V hf |2

|V hf |2
,

(24)

whose zeros correspond to the points (t, η) such that
∂η|V hf (t, η)|2 = 0.

Now, we investigate the zeros of ω̂[2]
f − η corresponding to:

ω̂
[2]
f − η = =

{
1

2π

V hf V
th
f

V hf V
t2h
f − (V thf )2

}
(25)

that is to say

0 = =
{
V hf V

th
f (V hf V

t2h
f − (V thf )2)∗

}
= |V hf |2=

{
V thf (V t

2h
f )∗

}
− |V thf |2=

{
V hf (V thf )∗

}
= |V hf |2<

{
V thf ∂η(V thf )∗

}
− |V thf |2<

{
V hf ∂η(V hf )∗

}
= |V hf |2∂η|V thf |2 − |V thf |2∂η|V hf |2.

(26)

which can also be viewed as

det

[
|V hf |2 ∂η|V hf |2
|V thf |2 ∂η|V thf |2

]
= 0.

The reassignment vector when N = 2 thus reads:

ω̂
[2]
f − η =

|V hf |2∂η|V thf |2 − |V thf |2∂η|V hf |2

|V hf V t
2h
f − (V thf )2|2

. (27)

To extend (26) to higher order N is possible by considering
the points (t, η) such that ={det(U1)det(D)∗} = 0, but this
leads to much more complex expressions, whose analysis is
left for future work.

B. Approximating Reassignment Vectors in the Vicinity of their
Zeros

We are now interested in approximating the different re-
assignment vectors in the vicinity of their zeros. We first
approximate second order reassignment vector, i.e. N = 2,
considering that, in the vicinity of its zeros, V thf is small.
Indeed, let us remark that the STFT of a linear chirp f(t) =

Ae2iπφ(t) computed with the Gaussian window g(t) = e−π
t2

σ2

reads [19]:

V hf (t, η) = V hf (t, φ′(t))e
−πσ2(1+iφ′′(t)σ2)

1+(φ′′(t)σ2)2
(η−φ′(t))2

. (28)

Then from (28), we immediately get that V thf (t, φ′(t)) =
i
2π∂ηV

h
f (t, φ′(t)) = 0 and more generally that:

V t
lh
f (t, η) =

(
i

2π

)l
∂lηV

h
f (t, η) =

−σ2(1 + iφ′′(t)σ2)

1 + (φ′′(t)σ2)2[
i(η − φ′(t))V t

l−1h
f (t, η)− l − 1

2π
V t

l−2h
f (t, η)

]
,

(29)

implying that V t
lh
f (t, φ′(t)) is null when l is odd. Based on this

analysis, it is natural to consider the following approximation

of ω̂[2]
f (t, η)− η in the vicinity of its zeros:

ω̂
[2]
f (t, η)− η = =

{
1

2π

V hf V
th
f

V hf V
t2h
f − (V thf )2

}

= =

 1

2π

V thf

V t
2h
f

1

1− (V thf )2

V hf V
t2h
f


≈ =

{
1

2π

V thf

V t
2h
f

}
+ =

{
1

2π

(V thf )3

V hf (V t
2h
f )2

}
.

(30)

When
(V thf )2

V hf V
t2h
f

<< 1, one can approximate ω̂[2]
f only including

the first order term in V thf in approximation (30), which we
denote by ω̂[2]

f,1. In the opposite case, one should consider two
terms in the approximation, namely third order terms in V thf .
We denote by ω̂[2]

f,2 this approximation.

From now on, we call second order zeros the zeros of ω̂[2]
f −

η, and we define approximations of ω̂[3]
f in the vicinity of these

points when f is a monocomponent satisfying (9) with S ≤ 2.
For that purpose, we first rewrite ω̂[3]

f as a perturbation of ω̂[2]
f ,

namely:

Proposition III.1. Assume f satisfies (9) with log(A) a second
order polynomial, then:

ω̂
[3]
f = ω̂

[2]
f + =

{
r
[3]
3

2π

}
<

{
(V t

2h
f )2 − V t3hf V thf

(V thf )2 − V t2hf V hf

}
. (31)

The proof is available in Appendix A. Assuming that both
V thf and V t

3h
f are small close to the second order zeros, we

get the following approximation of ω̂[3]
f close to these points:

ω̂
[3]
f,1 = ω̂

[2]
f + =

{
r
[3]
3

2π

}
<

{
−V t2hf

V hf

}
. (32)

The quality of this estimate will be investigated later in the
paper.

IV. ANALYSIS OF REASSIGNMENT VECTORS ON
INTERFERING PURE HARMONIC MODES

In this section we study the behavior of reassignment vectors
when the signal is made of interfering pure harmonics. First,
we investigate the zeros of the reassignment vectors when
N = 1 or N = 2, and the behavior of the latter in the
vicinity of spectrogram ridges, corresponding to the points
∂η|V hf (t, η)|2 = 0. We then investigate the behavior of the
third order reassignment vector in that context.

Let us consider that f(t) = f1(t) + f2(t) with f1(t) =
Aei2πξ1t and f2(t) = ei2πξ2t, where ξ1 < ξ2. For such a signal
and when h is the Gaussian window mentioned above, one has
V hf1(t, η) = ĥ(η − ξ1)Aei2πξ1t = σAei2πξ1te−π(η−ξ1)

2σ2

and
V hf2(t, η) = σei2πξ2te−π(η−ξ2)

2σ2

, and the spectrogram reads:

|V hf (t, η)|2 = σ2(A2e−2πσ
2(η−ξ1)2 + e−2πσ

2(η−ξ2)2

+2Ae−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t))

(33)
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Fig. 1: (a): STFT of two interfering modes, with the two ridges associated with local maxima superimposed; (b): FSST of the
signal in (a); (c): FSST2 of the signal in (a)

A. Determination of the Zeros Common to First and Second
Order Reassignment Vectors

We here investigate the set of TF points consisting of the
zeros common to the first and second order reassignment
vector. In the previous section, we showed that the zeros at
time t of ω̂f−η corresponded to η satisfying ∂η|V hf (t, η)|2 = 0

and V hf (t, η) 6= 0. We can then prove the following result:

Proposition IV.1. A zero (t, η) of ω̂f−η, such that V hf V
t2h
f −

(V thf )2 6= 0 is a zero of ω̂[2]
f − η if and only if

A(η − ξ1)e−πσ
2(η−ξ1)2 = ±(η − ξ2)e−πσ

2(η−ξ2)2

The proof is available in Appendix B. The time instants
associated with these points then obey the following rule:

Proposition IV.2. If (t, η) is a zero common to ω̂f − η

and ω̂
[2]
f − η such that A(η − ξ1)e−πσ

2(η−ξ1)2 = −(η −
ξ2)e−πσ

2(η−ξ2)2 (resp. A(η − ξ1)e−πσ
2(η−ξ1)2 = (η −

ξ2)e−πσ
2(η−ξ2)2 ), then t = tk = k

ξ2−ξ1 for some k ∈ Z (resp.
t̃k = k+1/2

ξ2−ξ1 for some k ∈ Z).

The proof is available in Appendix C. Note that the time
instants tk (resp. t̃k) when k varies are associated with local
maxima (resp. minima) of |V hf (., η)|2. Furthermore, we can
also remark that the locations tk (resp. t̃k) correspond to
local maxima (resp. minima) of the spectrogram along the
spectrogram ridges.

B. Analysis of Second Order Reassignment Vector in the
Vicinity of Spectrogram Ridges

Let us first remark that at location tk and t̃k defined in the
previous section we have for any η:

|V hf (tk, η)|2 = (Ae−πσ
2(η−ξ1)2 + e−πσ

2(η−ξ2)2)2

|V hf (t̃k, η)|2 = (Ae−πσ
2(η−ξ1)2 − e−πσ

2(η−ξ2)2)2.
(34)

At time tk, when the level of interference is not too
high |V hf (tk, .)|2 has three extrema, located respectively at
ηmax
0 < ηmax

1 < ηmax
2 . We use the superscript max to recall

that |V hf (., η)|2 is maximum at tk. Note that ηmax
0 and ηmax

2

correspond to maxima and ηmax
1 to a minimum of |V hf (tk, .)|2.

Similarly, at time t̃k, |V hf (t̃k, .)|2 has three extrema located

at ηmin
0 < ηmin

1 < ηmin
2 (the superscript min recalling that

|V hf (., η)|2 is minimum at t̃k). Note that ηmin
0 and ηmin

2

correspond to maxima and ηmin
1 to a minimum of |V hf (t̃k, .)|2.

Finally, one can also remark that the point (t̃k, η
min
1 ) is a zero

of the spectogram.
The points (tk, η

max
2 ) and (t̃k, η

min
2 ) are part of what we

call from now on the upper spectrogram ridge (see the blue
curve in Fig. 1 (a)) , while (tk, η

max
0 ) and (t̃k, η

min
0 ) belong to

the lower spectrogram ridge (see the red curve in Fig. 1 (a)).
Investigating the behavior of the second order reassignment
vector on the upper and lower spectrogram ridges, one founds
the following property:

Proposition IV.3. On the upper (resp. lower) spectrogram
ridge the second order reassignment vector is oriented towards
higher (resp. lower) frequencies except at time instants tk and
t̃k.

The proof is available in Appendix D. An illustration of
Proposition IV.3 is given in Fig. 1 (c), in which we see that,
by comparing with Fig. 1 (a), the TF coefficients are not
reassigned onto the spectrogram ridges with FSST2: the point
on the upper (resp. lower) spectrogram ridge (except those
at time tk and t̃k) are reassigned at a higher (resp. lower)
frequency. Finally, note that, even if the spectrogram ridges
are the zeros of the first order reassignment vector, this does
not mean FSST ridges, i.e. TF curves corresponding to local
maxima of the modulus of FSST along the frequency axis, are
the same as the spectrogram ridges (see Fig. 1 (b)). Indeed,
from Fig. 1 (b), FSST ridges appear to be accurate estimates
of the IF of the modes which is not the case of the spectrogram
ridges.

To explain why FSST ridges lead to better IF estimates
than FSST2 ridges, we investigate the behavior of the different
reassignment operators ω̂f and ω̂[2]

f in the vicinity of the lower
spectrogram ridge, at location tk and t̃k, in Fig. 2 (a) and (b),
respectively. We notice from Fig. 2 (a) that, at location tk,
all the STFT coefficients below this spectrogram ridge are all
reassigned with ω̂f to a TF location closer to the true IF than
when ω̂[2]

f is used. From Fig. 2 (b), a similar conclusion can be
drawn at time t̃k. On the contrary, both reassignment vectors
are very inaccurate between the spectrogram ridges.

Also to better understand the behavior of ω̂[2]
f in the vicinity
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Fig. 2: (a): ω̂f and ω̂
[2]
f in the vicinity of the lower spectrogram ridge at time tk; (b): same as (a) but at time t̃k; (c): ω̂[2]

f ,
ω̂
[2]
f,1, and ω̂[2]

f,2 in the vicinity of the lower spectrogram ridge at time tk; (d): same as (c) but at time t̃k.
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Fig. 3: (a): ω̂[3]
f , ω̂[3]

f,1 around TF point (tk, η
max
1 ), when η varies along with the location of the spectrogram at tk and ξ1; (b):

same as (a) but around point (t̃k, η
min
1 ); (c): modulus of FSST3 for the interfering modes along with the corresponding ridges.

of the lower spectrogram ridge, we plot in Fig. 2 (c) and (d)
its approximations ω̂[2]

f,1 and ω̂
[2]
f,2, defined right after (30), at

time tk and t̃k. While close to the ridge these approximations
are correct, the hypothesis that V thf is small becomes rapidly
erroneous as one moves away from the lower spectrogram
ridge towards lower frequencies, and the proposed simple
approximations of ω̂[2]

f are no longer valid.

C. Behavior of Third Order Synchrosqueezing Transform in
the Vicinity of Spectogram Ridges

Let us now consider a point below and close to the lower
spectrogram ridge at time t̃k. Denote by (t, ψ′0(t)) the spec-
trogram ridge in the vicinity of that point. We first remark that

=
{
r
[3]
3 (t,ψ′0(t))

2π

}
≈ ψ

(3)
0 (t) which is such that ψ(3)

0 (t̃k) > 0

(see Fig. 1 (a), lower ridge). Then making a pure harmonic

approximation, we get that <
{
−V t

2h
f

V hf

}
≈ −σ

2

2π < 0 at

these points. From this, we deduce that ω̂[3]
f,1 is smaller than

ω̂
[2]
f at these points on the lower spectrogram ridge. As ω̂[2]

f

underestimates the IF of the mode (see Fig. 2 (b)), ω̂[3]
f,1

underestimates even more that IF. Now as ω̂
[3]
f,1 is a good

approximation of ω̂[3]
f in the vicinity of spectrogram ridges

(see Fig. 3 (b)), such is also the case when one uses ω̂[3]
f : the

reassigned value when using ω̂[3]
f are farther from ξ1 than the

one given by ω̂f or ω̂[2]
f . Similarly, at time tk, considering a

point below and close to the lower spectrogram ridge, since

ψ
(3)
0 (tk) < 0 and using the same pure harmonic approximation

as previously, ω̂[3]
f,1 is larger than ω̂[2]

f . As ω̂[2]
f overestimates the

IF of the mode at this point (see Fig. 2 (a)), this overestimation
will be even larger at this point with ω̂[3]

f,1. Remarking ω̂[3]
f,1 is

a good approximation of ω̂[3]
f (see Fig. 3 (a)), this is also the

case with ω̂[3]
f . The modulus of FSST3 for the signal of Fig.

1 (a) along with its ridges are finally displayed in Fig. 4 (c),
and we notice that, as expected, these are less accurate IF
estimates than FSST or FSST2 ridges.

V. ANALYSIS OF THIRD ORDER REASSIGNMENT VECTORS
ON NOISY LINEAR CHIRPS

In this section, our goal is to explain why LIF estimators
associated with third order reassignment vectors is worse than
that with N = 2 when applied to noisy linear chirps.

Let us consider that f(t) = A(t)e2iπφ(t) is a Gaussian
modulated linear chirp (i.e. log(A) is a polynomial of order
2 at most, and φ′′(t) = C). Adding some complex Gaussian
white noise n to f one obtains f̃ = f+n. We now analyze the
behavior of ω̂[3]

f̃ ,1
in the vicinity of the spectrogram ridge as-

sociated with the noisy linear chirp and denoted by (t, φ′n(t)),
the subscript meaning some noise is present. Assuming the
hypotheses of Proposition III.1 hold, and from (32) , we may
write:

ω̂
[3]

f̃ ,1
− ω̂[2]

f̃
≈ =

{
r
[3]
3

2π

}
<

−V
t2h
f̃

V h
f̃

 . (35)
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As from (29) we have that

<

{
−
V t

2h
f (t, φ′(t))

V hf (t, φ′(t))

}
= − 1

1 + (φ′′(t)σ2)2
σ2

2π
, (36)

<
{
−
V t

2h
f̃

V h
f̃

}
remains negative in the vicinity of (t, φ′n(t))

when the noise level is reasonable. Thus, recalling that

=
{
r
[3]
3 (t,φ′n(t))

2π

}
≈ φ

(3)
n (t), ω̂[3]

f̃ ,1
(t, φ′n(t)) − ω̂

[2]

f̃
(t, φ′n(t))

is positive when φ′n(t) is concave and negative otherwise.
Finally, we numerically notice that ω̂[3]

f̃ ,1
still behaves very

similarly to ω̂
[3]

f̃
in the vicinity of the spectrogram ridge

corresponding to the noisy linear chirp. So we can conclude
that if the ridge (t, φ′n(t)) is oscillating then the oscillations
will be more important on FSST3 ridge than on FSST2 ridge.
To confirm this, we consider a noisy linear chirp whose FSST3
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Fig. 4: (a): Modulus of FSST3 for a noisy linear chirp (SNR
equal -5 dB); (b): zoom in on FSST3 modulus, on which
FSST2 ridge (white plain line), FSST3 ridge (orange plain
line), and the true IF (dashed line) are superimposed

modulus is displayed in Fig. 4 (a), and a zoomed in version in
Fig. 4 (b), on which we superimpose the FSST2 ridge (white
plain line), the FSST3 ridge (orange plain line), and true IF
(dashed line), and we notice that, as expected, when the FSST2
ridge oscillates, the FFST3 ridge oscillates more, which makes
the latter a less accurate IF estimator than the former.

VI. IF ESTIMATION FROM RELEVANT POINTS ON THE
RIDGES OF SYNCHROSQUEEZING TRANSFORMS

In this section, we investigate how to estimate the IF of the
modes from relevant TF coefficients located on either FSST
or FSST2 ridges. To extract these relevant points we first
study the case of interfering pure harmonic modes and then
that of noisy linear chirps. Based on that study we propose a
novel algorithm for IF estimation from these relevant points.
More precisely, going back to the illustration of Fig. 1, it
transpires that in the case of two interfering pure harmonic
modes neither the spectrogram nor FSST2 ridges are good
estimates of the IF of the modes, while FSST ridges are
much more accurate estimators of the IF of the modes. On
the contrary, when the signal is made of modulated modes it
is reported in [19] that FSST2 ridges lead to much better IF
estimates than FSST ridges. So it is of interest to improve the
IF estimation from FSST2 ridges for interfering pure harmonic
modes in such a way that the proposed technique remains

competitive on modulated modes. Note finally that, as IF
estimation from FSST or FSST2 ridges is constrained by the
frequency resolution, an alternative is to use ω̂f (resp. ω̂[2]

f )
on FSST (resp. FSST2) ridges as IF estimators [19], [20].

A. Extraction of Relevant Points from TF Ridges of Interfering
Pure Harmonic Modes

To define relevant points on the TF ridges of interfering
pure harmonic modes, we shall first remark that when f is the
sum of two pure harmonic modes as in Section IV, at points
t̄k = 2k+1

4(ξ2−ξ1) , the spectrogram of f reads

|V hf (t̄k, η)|2 = σ2(A2e−2πσ
2(η−ξ1)2 + e−2πσ

2(η−ξ2)2)

= |V hf1(t̄k, η)|2 + |V hf2(t̄k, η)|2.
(37)

This means that, at these points, STFT does not see mode
interference, therefore the points on the spectrogram ridge at
these time instants should give the best estimates of the IFs
of the modes. However, to determine the time instants t̄k is
not possible because it explicitly uses ξ1 and ξ2 the unknown
frequencies.

At t̄k, FSST should also be sharp because ω̂f is only slightly
contaminated by mode interference, and this should result in
local maxima of the modulus of FSST along its ridges. We
are going to show that, as expected, the time instants when
these local maxima occur on the ridge are good estimates of
t̄k. Interestingly, these time instants t̄k are also critical for the
second order reassignment operator. Indeed, recalling that we
have:

V thf =
i

2π
∂ηV

h
f = −iσ3

[
A(η − ξ1)e−πσ

2(η−ξ1)2e2iπξ1t

+ (η − ξ2)e−πσ
2(η−ξ2)2e2iπξ2t

]
,

(38)

one obtains that, at t = t̄k:

|V thf (t̄k, η)|2 = |V thf1 (t̄k, η)|2 + |V thf2 (t̄k, η)|2. (39)

Then the numerator of (27) is made of expressions that clearly
separate the first mode from the second, and thus FSST2
should also be sharp at t̄k, resulting in significant modulus
maxima (SMM) of FSST2 along its ridges. To compute these
SMM we use the robust peak finder algorithm with default
parameters proposed in [30]. We are going to show that the
location of these SMM are actually good estimates of time
instant t̄k.

To do so, we plot in Fig. 5 (a), the modulus of FSST and
FSST2 along their upper ridges for the signal of Fig. 1, and
first notice that their SMM are very close in time. To check
that the time location of SMM are estimates of t̄k, we plot in
Fig. 5 (b) and (c), STFT, FSST and FSST2 lower and upper
ridges respectively, as well as the locations of SMM and also
(t̄k, ξ1) or (t̄k, ξ2) depending on the cases. We observe that
the SMM of FSST and FSST2 along their ridges are actually
at frequencies close to the IFs of the mode and at time instants
close to t̄k. We also remark that the FSST ridges are at the
expected IF location, while FSST2 ridges are closer to those
of the spectrogram (though higher (resp. lower) for the upper
(resp. lower) ridge as predicted by Proposition IV.3).
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Fig. 5: (a): moduli of FSST and FSST2 along their upper ridges corresponding to TF representation of Fig. 1 (b) and (c)
respectively (plain line corresponds to FSST ridge, dashed line to FSST2 ridge, circles and squares are located at SMM in
each case); (b): lower STFT (dashed dotted line), FSST (plain line) and FSST2 (dashed line) ridges computed on TFRs of Fig.
1 (a) to (c) respectively (the stars, circles and squares denote the locations of SMM of each TFR along the plotted ridges, and
the diamond symbols correspond to points (t̄k, ξ1)); (c): same as (b) but for the upper ridge; (d): same computation as in (a)
except the amplitude of the lower frequency mode is multiplied by 2; (e): same as (b) but for the signal used in (d); (f): same
as (c) but for the signal used in (d); (g): same as (a) except some complex Gaussian white noise is added to the signal(input
SNR 10 dB); (h): same as (b) but for the signal considered in (g); (i): same as (c) but for the signal considered in (g).

Now, on the second row of Fig. 5, we perform the same
computation except the amplitude of the lower mode is
multiplied by 2. In Fig. 5 (d), we display the moduli of
FSST and FSST2 along the ridges corresponding to the upper
mode. In such a case, since the amplitude of the lower mode
is multiplied by 2, the upper ridge is more impacted by
interference that in the previous case. Therefore, we need
to check that the SMM on these ridges are still located at
frequencies close to the true IF of the modes and at time
instants close to t̄k. In Fig. 5 (e) and (f), we plot STFT,
FSST and FSST2 lower and upper ridges respectively, and we
notice that as the amplitude of the lower mode is twice that
of the upper mode, the fluctuations of the frequencies on the
ridges, which are due to interference, are much less important
for the lower mode that for the upper one. Interestingly,
even if the FSST2 ridge corresponding to the upper mode is
oscillating a lot, the significant modulus maxima on that ridge
still correspond to TF points close to the IF of the mode in
frequency and to t̄k in time.

Finally, on the third row of Fig. 5 we perform the same
type of computation as on the first row except we consider
a noisy signal (Gaussian white noise, input SNR = 10 dB).

In such an instance, the SMM along FSST and FSST2 ridges
are still located at frequencies close to the IFs of the modes,
the time instant corresponding to SMM being close to t̄k in
most instances. Finally, we shall mention that once the ridges
are computed, to obtain an IF estimate independent of the
frequency resolution one commonly uses ω̂f (resp. ω̂[2]

f ) on
FSST (resp. FSST2) ridge. In this particular example this does
not lead to a significant difference in terms of IF estimation.

B. Salient Points Extraction from the TF Ridge of a Noisy
Linear Chirp

We here consider that some complex Gaussian white noise n
is added to a linear chirp f to obtain f̃ = f+n. An important
aspect is that the presence of noise creates some oscillations
of the modulus of FSST and FSST2 along their corresponding
ridges. As in the case of interfering pure harmonic modes,
we make the hypothesis that the frequency locations of SMM
along these ridges lead, on average, to a better IF estimate
of the mode than the ridges themselves. To check this, we
consider the linear chirp of Fig. 6 (a) and investigate IF
estimation either from the FSST ridge, from SMM on the
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Fig. 6: (a): Example of a linear chirp; (b): Computation of
Efreq defined in (40) using different estimates computed from
FSST or FSST2 ridges, at locations corresponding either to
SMM on the ridges or to the whole ridges. The results are
average over 40 realizations.

FSST ridge, from the FSST2 ridge or from SMM on the
FSST2 ridge. We also investigate IF estimation using either
ω̂f̃ on the FSST ridge, ω̂f̃ at SMM on the FSST ridge, ω̂[2]

f̃

on the FSST2 ridge or ω̂[2]

f̃
at SMM on the FSST2 ridge. To

measure the quality of estimation we compute the difference
between the true IF and the different estimations by means of:

Efreq = mean
t∈I
|φ′(t)− ϕ(t)|, (40)

in which ϕ is an estimation of φ′ and I is either the whole
time span or the time location of SMM.

The results depicted in Fig. 6 (b) show that better estimation
results are obtained by considering only the TF locations of
SMM on the ridge rather than the whole ridge, this being
true for both FSST and FSST2. Then, we obtain better IF
estimation by considering ω̂f (resp. ω̂[2]

f ) on the FSST (resp.
FSST2) ridge rather than the FSST (resp. FSST2) ridge.
Finally, to consider the values of the reassignment operators
at SMM results in even better IF estimates.

C. New IF Estimator from SMM on the Ridges of Reassigned
Transforms

In this section, we derive a new IF estimator from SMM
along FSST or FSST2 ridges. We denote by M the set of
SMM along either FSST ridges, and then consider the cubic
spline ŝ minimizing:

p
∑

(t,η)∈M

|ω̂f̃ (t, η)− s(t)|2 + (1− p)
∫
|s′′(u)|2du, (41)

where p is a trade-off parameter between the data term and the
smoothing term. Note that by definingM from FSST2 ridges
and by replacing ω̂f̃ by ω̂[2]

f̃
, one easily adapts the optimization

process (41) to FSST2 ridges.
To investigate the behavior of the proposed new IF estimator

we consider the three different signals depicted in Fig. 7 (a)
to (c). In each case, we add some complex Gaussian white
noise and make the input SNR vary. We then display on the
second row of Fig. 7, the IF estimation results measured in
terms of output SNR. We first notice that the IF estimators
corresponding to ω̂f̃ on FSST ridges or ω̂[2]

f̃
on FSST2 ridges

are worse than ŝ for the first two signals. For these signals, the
best estimates are obtained with ŝ provided some smoothing
is added, and we notice that the quality of estimation does
not much depend on p (the results are the same for p = 0.9
or p = 0.95, and to take a smaller p does not alter the
results). For interfering pure harmonic modes ŝ computed from
FSST lead to the best results while ŝ computed from FSST2
leads to a much better IF estimates than ω̂

[2]

f̃
computed on

FSST2 ridges, except if p = 1, for which we get very similar
results. For the second signal, the best estimates are obtained
with ŝ computed either from FSST or FSST2, provided some
smoothing is added (the results are again the same for p = 0.9
and p = 0.95, and to consider a smaller p does not alter the
results). When p = 1, the results are similar to those obtained
with the other tested estimators. When one considers the signal
of Fig. 7 (c), the situation is completely different. Indeed, the
number of SMM drastically falls when FSST ridges are used:
for such a signal, neither ω̂f̃ computed on FSST ridge nor ŝ
computed from FSST ridges are good IF estimates. On the
contrary, if one considers ŝ computed from FSST2 ridge, one
again obtains similar results to those obtained with ω̂

[2]

f̃
on

FSST2 ridge when p = 1, but to add some smoothing worsens
the estimation.

To conclude on these experiments, we shall put the emphasis
on the fact that ŝ provides with IF estimates of the same quality
as those provided by the state-of-the-art methods based on
FSST or FSST2, but uses only few values of ω̂f̃ or ω̂[2]

f̃
on

the respective ridges. To highlight this point, we compute in
Fig. 8 the average proportion of points on FSST or FSST2
ridges used to compute ŝ, for the three signals on the first
row of Fig. 7. We notice that this proportion increases as the
noise level decreases, but remains extremely low and that, for
the signal of Fig. 7 (c), FSST ridge contains much less SMM
than in the other cases, which explains why the IF estimate
provided by ŝ computed from FSST ridge is a lot worse in
that case.

D. Application to a Bat Echolocation Call

In this section we investigate the behavior of the proposed
new IF estimate ŝ on a bat echolocation call, whose STFT
modulus is represented in Fig. 9 (a). For such a signal, 4
main ridges are visible, and we compute ridge detection from
FSST modulus or from FSST2 modulus, assuming the number
of modes is 4. The results depicted in Fig. 9 (a) and (b), show
that, while ridge detection seems accurate when performed on
FSST2 modulus it fails with FSST modulus. Therefore, we
only carry out the computation of ŝ from FSST2 ridges, and
display the obtained IF estimators in Fig. 9 (c) (the smoothing
parameter p is set to 0.95 which is in accordance with the fact
the fact that the bat echolocation call leads to ridge portion that
are very similar to linear chirps). To better understand what is
going on, we also plot the TF points (t, ω̂

[2]

f̃
(t)) corresponding

to SMM on FSST2 ridges (diamond symbols in Fig. 9. (c)). We
notice that these SMM are located only on the most relevant
portions of FSST2 ridges, and thus ŝ is computed using only
a part of FSST2 ridges. The proposed technique thus enables
to extrapolate the ridges for the whole time span from SMM
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Fig. 7: (a): modulus of the STFT of two pure harmonic interfering modes; (b): modulus of the STFT of a linear chirp; (c):
modulus of the STFT of a signal with cosinusoidal phase; (d): output SNR associated with IF estimations ŝ with respect to
input SNR (either computed from FSST or FSST2), ω̂f on FSST ridge and ω̂[2]

f on FSST2 ridge for noisy versions of signal
(a); (e): same as (d) but for the signal displayed in (b); (f): same as (d) but for the signal displayed in (c). In (d), (e) and (f),
the results are average over 40 realizations
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Fig. 8: Proportion of points that are SMM on FSST or FSST2
ridges, signal 1 stands for the signal of Fig. 7 (a), signal 2 for
that of Fig. 7 (b) and signal 3 for that of Fig. 7 (c).

detected in regions with high energy. Nevertheless, we believe
that to look for ridges lasting for the whole time span may
not be meaningful in that particular example, since after time
t = 0.8 s the energy of the signal is extremely low. So, in
terms of perspectives, SMM on FSST2 ridges could also be
a good indicator of the disappearance of a mode, and this
direction of research will be investigated in future works.

VII. CONCLUSION

In this paper, we proposed to analyze the behavior of the
reassignment vectors used in synchrosqueezing transforms of
multicomponent signals. Our goal was first to better under-
stand the difference in behavior between these reassignment
operators depending on the order of the synchrosqueezing
transform. Then based on this analysis we considered two

specific cases, namely interfering pure harmonic modes and
noisy linear chirps. From our study, it transpired that the TF
coefficients are reassigned to different locations depending on
the order of the synchrosqueezing transform, and that when
the latter is based on a high order polynomial approximation
of the phase, interference and noise both create oscillations on
the ridges corresponding to modes which drastically reduces
the accuracy of IF estimation from these ridges. In a second
time, we showed that by considering significant modulus
maxima along the ridges of synchrosqueezing transforms, it
was possible to build new IF estimators using very few TF
points, whose behaviors was thoroughly analyzed both on
synthetic and real signals. Potential extensions of this work
will be to find a means to fully characterize the zeros of
the reassignment vector of any order, to use the relevant
points used in the definition of our new IF estimator to
determine relevant ridge portions in the TF plane, and finally
to investigate how the proposed approaches could be extended
to the context of crossing modes.

APPENDIX

A. Proof of Prosposition III.1

Referring to Proposition III.1 of [21], one can write that:

r
[3]
2 = r

[2]
2 − x3,2r

[3]
3 . (42)
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Fig. 9: (a): modulus of a bat echolocation call with FSST ridges superimposed; (b): same bat echolocation call as in (a)
except the FSST2 ridges are superimposed; (c): same bat echolocation call as in (a) with ŝ computed from FSST2 ridges
superimposed, the diamond symbols are ω̂[2]

f of the SMM selected on the FSSTs

in which xk,1 =
V t
k−1h
f

2iπV hf
and then xk,j =

∂ηxk,j−1

∂ηxk,j−1
meaning

that:

x3,2 =
∂ηx3,1
∂ηx2,1

=
∂η

V t
2h
f

V hf

∂η
V thf
V hf

=
V t

2h
f V thf − V t

3h
f V hf

(V thf )2 − V t2hf V hf

As we also have:

ω̃
[3]
f = ω̃f − r[3]2 x2,1 − r[3]3 x3,1

= ω̃
[2]
f + r

[3]
3 (x2,1x3,2 − x3,1)

and thus

ω̂
[3]
f = ω̂

[2]
f + <

{
r
[3]
3 (x2,1x3,2 − x3,1)

}
= ω̂

[2]
f + =

{
r
[3]
3

2π

(V t
2h
f )2 − V t3hf V thf

(V thf )2 − V t2hf V hf

}

= ω̂
[2]
f + =

{
r
[3]
3

2π

}
<

{
(V t

2h
f )2 − V t3hf V thf

(V thf )2 − V t2hf V hf

}

+<

{
r
[3]
3

2π

}
=

{
(V t

2h
f )2 − V t3hf V thf

(V thf )2 − V t2hf V hf

}

= ω̂
[2]
f + =

{
r
[3]
3

2π

}
<

{
(V t

2h
f )2 − V t3hf V thf

(V thf )2 − V t2hf V hf

}
.

(43)

Note that the last equality holds because log(A) is a second
order polynomial.

B. Proof of Proposition IV.1

In the context of Proposition IV.1, the zeros of ω̂f−η satisfy:

∂η|V hf (t, η)|2 = 0

⇔ A2(η − ξ1)e−2πσ
2(η−ξ1)2 + (η − ξ2)e−2πσ

2(η−ξ2)2 +

A(2η − ξ1 − ξ2)e−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t) = 0.

Then, among these zeros, those satisfying V hf V
t2h
f −(V thf )2 6=

0 are also zeros of ω̂[2]
f − η if they satisfy:

∂η|V thf (t, η)|2 =
1

4π2
∂η|∂ηV hf (t, η)|2

= σ6(2∂η|V hf (t, η)|2 −A24πσ2(η − ξ1)3e−2πσ
2(η−ξ1)2

−4πσ2(η − ξ2)3e−2πσ
2(η−ξ2)2 − 4Aπσ2(η − ξ1)(η − ξ2)

(2η − ξ1 − ξ2)e−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t)) = 0.

Then, from these two equations we get that the zeros of
ω̂f − η are zeros of ω̂[2]

f − η if and only if:

−A2(η − ξ1)3e−2πσ
2(η−ξ1)2 − (η − ξ2)3e−2πσ

2(η−ξ2)2

−A(η − ξ1)(η − ξ2)(2η − ξ1 − ξ2)e−πσ
2[(η−ξ1)2+(η−ξ2)2]

cos(2π(ξ2 − ξ1)t))

= (ξ2 − ξ1)[
−A2(η − ξ1)2e−2πσ

2(η−ξ1)2 + (η − ξ2)2e−2πσ
2(η−ξ2)2

]
= 0.

or equivalently:

A(η − ξ1)e−πσ
2(η−ξ1)2 = ±(η − ξ2)e−πσ

2(η−ξ2)2 .

C. Proof of Proposition IV.2

Assume A(η − ξ1)e−πσ
2(η−ξ1)2 = −(η − ξ2)e−πσ

2(η−ξ2)2 ,
then we may write:

∂η|V hf (t, η)|2 = 0⇔
(2η − ξ1 − ξ2)(η − ξ1)

(1− cos(2π(ξ2 − ξ1)t))e−2πσ2(η−ξ2)2 = 0

⇔ t = tk =
k

ξ2 − ξ1
,

(44)

since it can be easily shown that the η of interest are different
from ξ1 and ξ1+ξ2

2 . When A(η − ξ1)e−πσ
2(η−ξ1)2 = (η −

ξ2)e−πσ
2(η−ξ2)2 , we similarly obtain that the time instants t

corresponding to the studied zeros are the t̃k = k+1/2
ξ2−ξ1 , k ∈ Z.

D. Proof of Proposition IV.3

As one can easily show that ηmax
2 < ηmin

2 , and as
|V hf (tk, .)|2 attains a maximum at ηmax

2 its derivative is
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negative on [ηmax
2 , ηmin

2 ], which is, using (34), equivalent to:

−A(η − ξ1)e−πσ
2(η−ξ1)2 ≤ (η − ξ2)e−πσ

2(η−ξ2)2 . (45)

Similarly, remarking that |V hf (t̃k, .)|2 attains a maximum at
ηmin
2 , its derivative is positive on [ηmax

2 , ηmin
2 ], meaning that,

on that interval

−A(η − ξ1)e−πσ
2(η−ξ1)2 ≥ −(η − ξ2)e−πσ

2(η−ξ2)2 (46)

Putting (45) and (46) together, we get that on the interval
[ηmax

2 , ηmin
2 ]:

|A(η − ξ1)e−πσ
2(η−ξ1)2 | ≤ |(η − ξ2)e−πσ

2(η−ξ2)2 |. (47)

Then, we remark that on the upper spectrogram ridge, η
belongs to [ηmax

2 , ηmin
2 ]. Using arguments developed in the

proof of Proposition IV.1, one can write that at such (t, η),
i.e. such that ∂η|V hf (t, η)|2 = 0, one has:

ω̂
[2]
f (t, η)− η

=
|V hf (t, η)|2∂η|V thf (t, η)|2

|V hf (t, η)V t
2h
f (t, η)− (V thf (t, η))2|2

= 4πσ8
|V hf (t, η)|2(ξ2 − ξ1)

|V hf (t, η)V t
2h
f (t, η)− (V thf (t, η))2|2[

−A2(η − ξ1)2e−2πσ
2(η−ξ1)2 + (η − ξ2)2e−2πσ

2(η−ξ2)2
]
,

(48)

which has the sign of −A2(η − ξ1)2e−2πσ
2(η−ξ1)2 + (η −

ξ2)2e−2πσ
2(η−ξ2)2 . Using (47), we can thus deduce that the

reassignment vector on the upper spectrogram ridge is oriented
towards higher frequencies and is null at points (t̃k, η

min
2 ) and

(tk, η
max
2 ).

The same reasoning can be carried out for the lower
ridge, namely studying the reassignment vector on the interval
[ηmin

0 , ηmax
0 ], and enables us to show that the second order

reassignment vector on that ridge is oriented towards lower
frequencies.
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