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Analysis of Recovery Type A Posteriori Error Estimators
for Mildly Structured Grids

Jinchao Xu*and Zhimin Zhang!

Abstract. Some recovery type error estimators for linear finite element method are analyzed
under O(h!*?) (a > 0) regular grids. Superconvergence is established for recovered gradients by
three different methods when solving general non-self-adjoint second-order elliptic equations. As
a consequence, @ posteriori error estimators based on those recovery methods are asymptotically
exact.
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1. Introduction.

A posteriori error estimates have become standard in modern engineering and scientific
computation. There are two types of popular error estimators. One is the residual type, see,
e.g., [2, 4], and another is the recovery type, see, e.g., [20]. The most representative recovery
type error estimator is the Zienkiewicz-Zhu error estimator [21]. A decade has passed since
the first appearance of the Zienkiewicz-Zhu gradient patch recovery, which is based on a local
discrete least-squares fitting. The method is now widely used in engineering practice for its
robustness in a posteriori error estimates and its efficiency in computer implementation. It
is a common belief that the robustness of the ZZ recovery is rooted in its superconvergence
property under structured meshes. Superconvergence properties of the ZZ recovery are
proven by Zhang [16] for all popular elements under rectangular mesh, by Li-Zhang [11]
for linear element under strongly regular triangular meshes, and by Zhang-Victory [17] for
tensor product element under strongly regular quadrilateral meshes.

While there is a sizable literature on theoretical investments for residual type error esti-

mators (see, e.g., [1, 3, 10, 13] and reference therein), there have not been many theoretical
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results on recovery type error estimators. Nevertheless, the topic has recently attracted
more and more attention in the scientific community, see, e.g., 5, 6, 7, 9, 15, 19], also see
recent books [1, 3] for some general discussion and literature.

The recovery type error estimators perform astonishingly well even for unstructured
grids. The current paper intends to explain this phenomenon. We observe that for an
unstructured mesh, when adaptive is used, a mesh refinement will usually bring in some
kind of structure locally. It is then reasonable to assume that for the most part of the do-
main, every two adjacent triangles form an O(h'*®) approximate parallelogram. Under this
assumption, we are able to establish superconvergence property of the gradient recovery op-
erator for three popular methods, weighed averaging, local L2-projection, and the ZZ patch
recovery. Furthermore, by utilizing an integral identity for linear element on one triangular
element developed by Bank and Xu [5], we are able to generalize their superconvergence
result between the finite element solution and the linear interpolation from O(h?) regular
grid to O(h'T®) regular grid. Finally, we are able to prove global asymptotic exactness of
the three recovery error estimators.

The literature regarding finite element superconvergence theory can be found in the
following books [8, 10, 12, 14, 18].

2. Geometry Identities of A Triangle. In this section, we shall generalize the result
in [5] for o =1 to all @ > 0. We follow closely the argument there. We consider in Figure
1, a triangle 7 with vertices p}, = (z,yx), 1 < k < 3, oriented counterclockwise, and corre-
sponding nodal basis functions (barycentric coordinates) {¢x}3_;. Let {ex}}_; denote the
edges of element 7, {6;}3_, the angles, {ny}3_, the unit outward normal vectors, {tx}3_,
the unit tangent vectors with counterclockwise orientation, {Zk},?;=1 the edge lengths, and
{dk}%-_-l the perpendicular heights. Let  be the point of intersection for the perpendicular
bisectors of the three sides of 7. Let |si| denote the distance between p and side k. If 7
has no obtuse angles, then the s; will be nonnegative; otherwise., the distance to the side
opposite the obtuse angle will be negative.

Let D, be a symmetric 2 x 2 matrix with constant entries. We define

€k = —npy1 - Drmg_.

The important special case D, = I corresponds to —A, and in this case {; = cosb;.

Let qx = ¢r+10k—1 denote the quadratic bump function associated with edge ey and let
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Figure 1: Parameters associated with the triangle 7

Ve = du(l — ¢).
The following fundamental identity is proved in [5]:

/V( ). D,V —i Sae [ _p )59—2-9 +4|T|———82“ don
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- —— A+ _ 2.1
/ Z2sin26k k+1Vk St 0t 19k+ 16%t;,_10tpi1 | Otk (2.1)

T k=1

We say that two adjacent triangles (sharing a common edge) form an O(h!*®) (a > 0)
approximate parallelogram if the lengths of any two opposite edges differ only by O(h'*2).
Definition: The triangulation 7, = 71 ,U Ty, is said to satisfy Condition (o, o) if there
exists positive constants a and o such that: Every two adjacent triangles inside 77 5 form

an O(h!*%) parallelogram and

Q4 =0(h), Qop= |J
TET2,h

Remark. There are two important ingredients in an automatic mesh generation code:
one is called swap diagonal which changes directions of some diagonal edges in order to have
near parallel directions for adjacent element edges and to make as many nodes as possible to
have six triangles attached; another is called Lagrange smoothing which iteratively relocate
nodes to make each node near a mesh symmetry center (see condition (3.1) in Section 3).

Clearly, both swap diagonal and Lagrange smoothing intend to make every two adja-

cent triangles form an O(h!*?) parallelogram. Eventually, only small portion of elements



(including boundary elements) do not satisfy this condition and then belong to Qs p, which
has a small measure. Therefore, Condition (a,c) is a very reasonable condition in practice
and can be satisfied by most of meshes constructed from automatic mesh generation codes.
Lemma 2.1. Assume that 7 satisfy Condition (a,0). Let D, be a piecewise constant

matrix function defined on 7, whose elements D;; satisfy
[Drijl £1,  Drij — Drvij| S A®

for i = 1,2, 5 = 1,2. Here 7 and 7' are a pair of triangles sharing a common edge. Then

' 1
Z/ V(u =) DrVo| S A (Julsg + fubee)lvle, o= min(e 3,5). (2:2)
T€ETH

Proof: Applying (2.1),

Z /V U — uI) -D,Vup, =11 + Iy (2.3)
TETH
where
i { %u % ) vy
L = b1 —G) g H AT o 5
7627:1; e, 25in O 8t2 Otyony | Oty
73 { &y &y } Ovy,
L = - LI __ou
2 T;h - & 25in? fer1¥-1 73 p10tp_1 ko k41 G 10tri1 | Oty
I, is easily estimated by
|| < B?|uls alvnlie. (2.4)

To estimate I, we separate all interior edges into two different groups. £; is the set of edges
e such that the two adjacent triangles sharing e form an O(h!*?®) approximate parallelogram
and & is the set of the remaining interior edges. The set of all interior edges is given by
E =&+ &

For each e € £, we have two triangles, say 7 and 7/, that share e as a common edge.
Denote, with respect to 7,

&
2 sin 6,

(Z —ti1), Be= 2sm6 4,



and with respect to 7/,

(- £M

€ 2sinfy

2 £ !
(e ek’ 1) ﬂe 251n9 ,4|T |

Taking n and ¢ to correspond to 7, we can write
I =5+ s+ L,
where

Oy,
Z/q“{ at2 7+ (6 - ﬁe)atan} Bt

eEt;

Oy,
ha= 2, /qe {aeatZ 5"'atan} Bt

eCoN

for j = 1,2, and

It is easy to see that, if v, = 0 on 0%, then I13 = 0. Otherwise, we have the following

estimate:
| L] S W3/{ula,c060lvh]1.0- (2.5)

Setting z = t and z = n, we estimate

8 u 3vh

5= | S 1 b / Von. (2.6)

By definition, for e € &1, o} = a(1 + O(h%)) and B, = Bc(1 + O(h%)). Therefore
loe — | SH*S, Be ~ Bol S h*F.
Combining this with (2.6), we have
sl S B4lulagnss | [Vonl S B+ lulaolonls 2.7)

Now we turn to the estimate for Ij5. Since adjacent elements in Q55 do not form an

O(h'*+®) approximate parallelogram, we simply estimate
loe — | < foe| + |ab| S h?, 1B — Bil < 1Bel + 181 S 12
Similar to (2.7), this leads to

Lol $ hlulacon Y /lehI < hluloconlVonllo,y , h772.
T€TL "



Combining this with (2.5) and (2.7) leads to

L] S AP Julz,e00lvnl0. | (2.8)
Finally, applying (2.4) and (2.8) to (2.3), we obtain (2.2). O
3. Gradient Recovery Operators. We define N}, as the nodal set of a quasi-uniform

triangulation 7. Given z € N}, we consider an element patch w around z where we choose

as the origin of a local coordinates. Let (z;, y;) be the barycentric center of a triangle 7; C w,

7 =1,2,...,m. We require one of the following two geometric conditions be satisfied for
a>0:
ii (z5,9;5) = O(h1T®)(1,1) (3.1)
m £ 32 Ys 1) .
m
ZTJ z5,95) = O(h'**)(1,1). (3-2)

Here we use (z;,y;) to represent a vector in conditions (3.1) and (3.2).

Remark. Condition (o, o) implies both conditions (3.1) and (3.2) for z € Q; 4 N N,,.
Indeed, conditions (3.1) and (3.2) are trivially (with o = co) satisfied by uniform meshes
of the regular pattern, the union-jack pattern, and the criss-cross pattern, and allow an
O(h'*?) deviation from those meshes. For example, a strongly regular mesh is an O(h?)
deviation from a uniform mesh of the regular pattern. Note that the condition (3.1) depends
only on relative positions of the barycentric centers of the triangles and is independent of
the shapes, sizes, and numbers of those triangles.

A boundary node z usually leads to o = 0. However, if 2 is an interior node with o = 0,
then there are no restrictions and we have a completely unstructured mesh around z.

Let V}, be the space of piecewise linear functions on the triangulation 7, and let ur € V,,
be the linear interpolation of a given function u. We shall discuss a gradient recovery
operator GG, and prove a superconvergent property between Vu and Ghruy.

The value of Gpuj is first determined at a vertex, and then linearly interpolated over
the whole domain. There are three popular ways to generate Gruy at a vertex z.

a) Weighted averaging.

Ghur(z Z l—J— ur(z;,5)- (3.3)



b) Local L?-projection. We seek linear functions p; € Pi(w) (I = 1,2), such that

[ ta,9) = Brus (@) Pdody = _suin [la@) - oo y)Pasdy. (3.4

geP(w)

Then we define Gpur(z) = (p1(0,0),p2(0,0)).
c) Local discrete least-squares fitting proposed by Zienkiewicz-Zhu [21]. We seek linear
functions p; € Pi(w) (I = 1,2), such that

m m
> iz, y5) — Orur (s, 7)) = qg,lil(ft}) > la(@;,y5) = Our (s, )1, (3.5)
j=1 j=1
Then we define Grur(z) = (p1(0,0),p2(0,0)). Note that c) is a discrete version of b).
The existence and uniqueness of the minimizers in b) and ¢) can be found in [11, Lemma,

1]. Note that the characteristic equations for minimizers in b) and c) are

/[Pl(.’E, y) - 61u1(:v,y)]q(a:,y)dwdy = 0, Vq € Pl (UJ), l= 1) 2a (36)
mw
Z[pl(xjayj) - alul(wj1yj)]Q(mjayj) = 0) Vq € Pl(w)’ I = 1,2, (37)
i=1

respectively.

Remark. Given a finite element solution uy € Vj, we can always obtain Gpuy(z) at an
interior node 2z by the above three recovery methods. For a boundary node, there are many
practical issues ivolved. Here we simply assume that the recovery exists. The worst case is
to use the original finite element gradient. Since the measure of boundary elements set is

O(h) which can be included in €y ;, the boundary issue will not influence our analysis.

Theorem 38.1. Let w be an element patch around a node z € N, let u € W3 (w), and
let Gru(z) be produced by either the local L2-projection or weighted averaging under

condition (3.2), or.by the local discrete least-squares fitting under condition (3.1). Then’

|Ghur(2) = Vu(z)] S R0 a3, 00,0,



Proof: a) For the weighted averaging, we have

m

Z_Jlalul zj,Y;) — 6u(0,0)
m

= |
Z|—’ ur - u)(@5,1) Z '[azumg,yj ~ Byu(0,0)]

m m
where, by the Taylor expansion,
|R1(w)] S P?Juls,cou-

Since the barycentric center is the derivative superconvergent point for the linear interpo-

lation, then
100 (ur — u)(z5,y5)| S Pulscow, 3 =1,2,...,m

Recall the condition (3.2), and we derive
|7l
[V0u(0,0) - Y ﬁ(ﬂ?j,yj)l S B 2,000
—
Therefore,

m
> —jazuz 77,97) = 0(0, 0)| S K0 fullg . (3.8)

b) For the local L2-projection, we set ¢ = 1 in (3.6) to obtain

m m
> Irilpuzs,ui) =Y Irilowr(z, 5).
Jj=1

i=1

Therefore,

m m
ZI—JBM zj,y5) = pi(0,0) — ZUJ pi(z;,y;) = —Vpi(0,0) -

j=1
Using (see [11, Lemma 2])
[VDi(0,0)] 5 ll2ll3,00,05 (3.9)
and condition (3.2), we obtain,
m
|pl 0 0 Z ?jalul J;J,y])l S h'l+a“u”3 ,00,W* (310)



Combining (3.8) and (3.10), we have proved
1pe(0,0) — 8,u(0,0)] < ALyl o . (3.11)

¢) For the local discrete least-squares fitting, we set ¢ =1 in (3.7) to obtain

m m
> pulzi i) =D Our(z, ug).
=1 j=1

Therefore,

m
»i(0,0) - —Zé‘zuz zj,y;) = pi(0,0) — —Zpl ZjyYj) = "‘Vpl 0,0)- > (s,45)-
i=1 j=1 =

Using (3.9) and condition (3.1), we obtain
1 m
[P1(0,0) — — Z; Brur(w5,45)| S B lulls, 0 (3.12)
]=

Next,

1 m
p” Z our(z;,y;) — 0u(0,0)

= — Z O(ur — u)(z;,y;) + Z[alu z5,9;) — Ou(0,0)]

3 =1
m
= ——Zal Uy "’U:)(-T],yj) + Valu 0 0 Z mj,yj +R2 )
Jj=1 =

with |Rg(u)] < h%|ul3 co.- Therefore,
1 & ;
I~ > dur(zj y;) — 8u(0,0)] S AL Jyjj3 o0 . (3.13)

Combining (3.12) and (3.13), we obtain (3.11) for the current case. O

Theorem 3.2. The recovery operator G}, satisfies

Gro(z ZCJVU T, Y5), ch =1,

j=1 j=1

in all three cases unconditionally. Furthermore, ¢; > 0 for

9



a) the weighted averaging unconditionally;

b) the local L2-projection under the condition (3.2);

c) the local discrete least-squares fitting under the condition (3.1).

Proof: The assertion is obvious for the weighted averaging case.

Choose v = z + y, then the minimizer p; = 1 and p; = 1 in both cases b) and c).

Therefore,
Gpo(z ZCJ (z+y) = chll

Now we let p(z,y) = ao + a1z -+ agy. Then for the local dlscrete least-squares fitting, a;’s

mo 3% 25¥\ [ao 225 Ovun(z;, 95)
> T y :1;? Py :z;JyJ a1 | = | 225250z, 95) |, (3.14)
2o 2Ty ZJ ys /) \a2 > YiOun(zs,y5)

are given by

Note that

Y z2=0(h%), Y zy=0(?), Y yi=0(h

and under condition (3.1),

> oz =0(hT), > y;=0h!t).
J J

By scaling argument we see that
ay = O(ha_l), a9 = O(ha*l).

Therefore,

ay = —Zaluh m])y] Z-TJ GZZy]

= > Cjaluh 5, Y;)
J

with
1
¢j = ooy + O(hQa) > 0.

A similar argument shows that

__ITj| 2
cj = ] + O(h**) > 0

10



for the local L?-projection when condition (3.2) is satisfied. O

Under the given condition, the recovered gradient at a vertex z is a convex combination

of gradient values on the element patch surrounding 2.

4. Superconvergence of the Recovery Operators. We consider the non-self-adjoint
problem: find u € H*(R) such that

B(u;v) = /Q[(DVu—i-bu) - Vv +cuv‘].= f(v), vv € HY(Q). (4.1)

Here D is a 2 x 2 symmetric, positive definite matrix, and f(-) is a linear functional.
We assume that all the coefficient functions are smooth, and the bilinear form B (;, ) is
continuous and satisfies the inf-sup condition on H*(Q). These conditions insure that (4.1)
has a unique solution.

Let Vi, C HY(R) be the C° linear finite element space associated with the triangulation

Tr. The finite element solution uy, € V), satisfies
B(up,vp) = f(vn) Vup € Vp. (4.2)

To insure a unique solution for (4.2), we further assume the inf-sup condition of B be
satisfied on Vj,.
We define the piecewise constant matrix function D, in terms of the diffusion matrix D
as follows:
Dyij = lTil/T'Dij dz.
Note that D, is symmetric and positive definite.

Theorem 4.1. Let the solution of (4.1) satisfy u € H3(Q2) NW2(f), let uy, be the solution
of (4.2) and uy € Vj, be the linear interpolation of u. Assume that the triangulation 7

satisfies Condition (o, 0). Then

)-

0| Q

S
lun — urllie S B P (lulls,q + lul2m0), » = min(a, 2

Proof: We begin with the identity

B(u = us,vp) = Z V(u —uy) - DV, dz + Z V(u -u) (D —D;)Vupdz
76771 T 7-6771, T

+/(u—u1)(b-V'uh+cv)d:z;=I1+IQ+I3.
Q

11



The first term I; is estimated using Lemma 2.1. I, and I3 can be easily estimated by
|L2| + |I3] S P2 ulzalvlie.

Thus

|B(u = ur,vn)] S B (Juls + lul200,0) [onl10-
We complete the proof using the inf-sup condition in

Bup — uy, vy, B{u—uy,vp
||Uh - UI||1,Q ,S sup ——(—-—--l——) = sup ——(——1—-)
VRLEVL "’Uhnl,Q. vREVy "Iuh "119

SR (Jullsa + lulaeo,) . O

Theorem 4.2. Let the solution of (4.1) satisfy u € W2,(2), let us, be the solution of (4.2),
and let G}, be a recovery operator defined by one of the three: a) the weighted averaging,
b) the local L?-projection, and c) the local discrete least-squares fitting. Assume that the

triangulation 7}, satisfies Condition (o, o). Then
IV — Ghunllo,n S R |lullz,000-
Proof: We decompose
Vu — Gpup, = (Vu = (Vu)1) + ((Vu); = Grur) + Gplur — up), (4.3)

where (Vu); € Vi, X V), is the linear interpolation of Vu. By the standard approximation
theory, . '
IV = (Va)rlloa S RPluls.n. (4.4)

We observe that when we pick an element patch on 7y 4, both conditions (3.1) and (3.2)

are satisfied.- Therefore, using Theorem 3.1, we have

1/2
|(Vu)r = Grurllog,, < Sl > IGhur(z) — Vu(z)?
TEQ A 2ZENKNT
5 h1+min(1’a)HUHS,oo,Qlﬂl,hll/2 5 h1+min(1,a)”u”3,oo’nl (4.5)
On the other hand,
(V) = Grurllog,, S hllullseonlQ2n? < A7 |lulls 00 (4.6)

12



by Condition (o, ). Combining (4.5) with (4.6), we have
I(Vu)r = Ghurllog S AP u)l3 o0 . (4.7)

Similar as in (4.5), we have, by using the fact proved in Theorem 3.2, that Ghz}(z) is a

convex combination of Vv|,,s, ‘

1/2
1Gh(r = wlomns < | 301 ST (Galur —wn)(2) P
TETN,A ZENRNT
1/2
S Y FIV@r—w)l | =1V (ur - un)llo .
TETLA
S R ulls 00, » (4.8)

by Theorem 4.1. In addition,

| 1/2
|Grlur — un)llo,0,, < (Z I7l > |1Ghlur — un)(2))?

T€7_2'h zENhn‘T

1/2
< hllullseen | D I7]
TET2,n
S R uflg 0. (4.9)
Combining (4.8) and (4.9) yields
IGh(ur — un)lloe S B P|ullz.con. (4.10)

The conclusion follows by applying (4.4), (4.7), and (4.10) to the right hand side of (4.3).
O

5. Asymptotic Exactness of the Recovery Type Error Estimators. With prepara-
tion in the previous sections, it is now straightforward to prove the asymptotic exactness of
error estimators based on the recovery operator Gy,. The global error estimator is naturally
defined by

M = ||Grun — Vunljo,0. o (51)

13



Theorem 5.1. Assume the hypotheses of Theorem 4.2. Furthermore, assume that there

exists a constant c(u) > 0 such that
IV~ u)l > c(w)h. 5.2)

then

Th
— 1| < h”.
‘”V(U—Uh)no,n ~

Proof: By Theorem 4.2 and hypothesis (5.2), we have

< IGhun = Vulloa  A**flulls o0
TVl =-ullon T c(wh

Th 1’ < kP

IV —u)lon

We see that the error estimator (5.1) based on the gradient recovery operator is asymp-
totically exact under Condition (a, o). As we mentioned above, this condition is not a very
restrictive condition in practice. An automatic mesh generator usually produces some grids
which are mildly structured. In practice, a completely unstructured mesh is seldomly seen.
Our analysis explains in part the good performance of the ZZ error estimator based on the

local discrete least-squares fitting for general grids.
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