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Abstract: In this work, the rectangular Kirchhoff plate on Winkler foundation problem was solved using the 

finite Fourier Sine transform method. The plate considered was assumed homogeneous and isotropic and simply 

supported at the four edges x = 0, x = a, y = 0 and y = b. Application of the double finite Fourier sine 

transformation to the governing fourth order partial differential equation simplified the boundary value problem 

to an algebraic equation in terms of the deflection in the transform space variables, m, n. The deflection 

obtained in the transform space variables was inverted to obtain the solution in the problem domain variables 

Particular cases of transverse distributed load namely point load at any point on the plate and uniform load on 

the entire plate were considered and solved. The solutions were found to be identical with the exact solutions in 

literature obtained using the Navier series method. 

Keywords: double finite Fourier sine transform method, Kirchhoff plate, Winkler foundations. 

 

I. Introduction 
A transversely loaded plate resting on an elastic foundation may be used to model the behaviour of 

reinforced concrete road pavement, an airport runway, or a mat (raft foundation) [1]. There also exist many 

other problems of considerable practical and engineering significance that are described with partial differential 

equations that are similar in form to the equations of plates on elastic foundations. For instance, the governing 

equation describing a shallow shell is analogous to the equation of a plate on an elastic foundation [2]. The 

principal difficulty of the plate on elastic foundation problem is in the mathematical idealization of the elastic 

foundation. Several mathematical descriptions of the elastic foundation are found in the literature [3, 4, 5, 6, 7, 

8, 9]. Some are Winkler [3] foundation, Pasternak foundation, Hetenyi foundation and Vlasov foundation. 

Winkler [3] foundation is based on the assumption that the foundation’s reaction q(x, y) at any point (x, y) on the 

plate is directly proportional to the deflection w(x, y) at the point, and the proportionality constant, k, called the 

foundation modulus or Winkler modulus is a constant for the entire foundation. Thus, mathematically [10] 

 ( , ) ( , )q x y kw x y   

 

Two parameter elastic foundation models 

Filanenko Borodich, Hetenyi [5] and Pasternak [4] gave the expressions for the foundation reaction q(x, y) in 

terms of two parameters as follows: 

 
2( , ) ( , ) ( , )q x y kw x y T w x y          (1) 

where k and T are the foundation model parameters; and 
2  is the Laplacian, 

for rectangular or circular foundations, and, 

 

2

2

( , )
( , ) ( , )

d w x y
q x y kw x y T

dx
          (2) 

For strip foundation 

(for Filanenko Borodich foundation) 

For Hekenyi [5] foundation, 

 
4( , ) ( , ) ( , )q x y kw x y D w x y          (3) 
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where 

3

212(1 )

p p

p

E h
D 

 
          (4) 

and k and D are the foundation model parameters. 

D = flexural rigidity of the elastic plate, Ep and p  are the Young’s modulus and Poisson’s ratio of the plate 

material, hp is the plate thickness. 

For Pasternak [4] foundation 

 
2( , ) ( , ) ( , )q x y kw x y G w x y          (5) 

where G = shear modulus of the shear layer, and k and D are the Pasternak foundation model parameters. 

Mathematically, the two parameter elastic foundation models are equivalent. The only difference is the 

definition of the elastic foundation parameter, and the two parameter elastic foundation models are expressed as 

 
2( , ) ( , ) ( , )sq x y kw x y k w x y          (6) 

in which k is the first elastic foundation parameter (Winkler modulus) and ks is the second elastic foundation 

parameter. 

Two principal theories are used to describe plate structures: classical thin plate theory, also called Kirchhoff’s 

plate theory and the shear deformable plate theory (Mindlin-Reissner’s plate theory) used for moderately thick 

plates [11]. In this study, the Kirchhoff plate theory is adopted for the plate and the Winkler model adopted for 

the elastic foundation. 

 

II. Research aim and objectives 
The aim of this research is to apply the finite Fourier sine transform method to obtain solutions to the simply 

supported Kirchhoff plate on Winkler foundation. The specific objectives are: 

(i) to transform the governing partial differential equation of equilibrium of Kirchhoff plate on Winkler 

foundation to an algebraic equation using the finite Fourier sine transformation. 

(ii) to solve the resulting algebraic equation to obtain solution for any distribution of transverse load on the 

Kirchhoff plate on Winkler foundation problem. 

(iii) to obtain solutions for particular types of transverse load – (a)  point load P0  applied at a known point (x0, 

y0) on the plate domain; (b) uniformly distributed load of intensity q0 over the entire plate domain. 

 

III. Methodology 
The finite Fourier sine transform method was introduced by Doetsch [12] as a technique for solving 

boundary value problems by integral transformation. Subsequently the method has been developed and 

generalised by other scholars and researchers such as Kneitz [13], Standhagen [14], Roettinger [15] and Brown 

[16]. The general philosophy of the integral transform methods, and in particular the finite Fourier sine 

transform method is that they simplify boundary value problems by eliminating partial derivatives with respect 

to one of the independent variables hence, the transformed equation has a reduced number of independent 

variables, and is easier to solve. Thus partial differential equations (PDEs) in terms of two independent variables 

are transformed to ordinary differential equations (ODEs) and ordinary differential equations are transformed to 

algebraic equations. 

 

Definitions 
The finite Fourier sine transform s(u(x)) of function u(x) of the independent variable, x, is defined as: 

 

0

( ( )) ( )sin

l

n

n x
s s u x u x dx

l


          (7) 

where n = 1, 2, 3, …    0 x l    

The finite Fourier sine transform of the derivatives are determined, using integration by parts, in terms of the 

finite Fourier sine transform of the unknown function u(x). The double finite Fourier sine transform of a 

function w(x, y) of two independent variable x and y defined over the rectangular domain 

0 ; 0x a y b     is given by 

 

0 0

( , ) ( , )sin sin

b a
m x n y

w m n w x y dxdy
a b

 
         (8) 

 m = 1, 2, 3, … n = 1, 2, 3, … 

where w(m, n) is the double finite Fourier sine transform of w(x, y). 
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The inverse transform of w(m, n) is  

 
4

( , ) ( , )sin sin
m n

m x n y
w x y w m n

ab a b

   
        (9) 

where m = 1, 2, 3, 4, …; n = 1, 2, 3, 4, … 

The double finite Fourier sine transforms of partial derivatives and mixed partial derivatives of any function of 

two or more independent variables are obtained in terms of the transform of the unknown function by the use of 

integration by parts. 

 

IV. Finite Fourier sine transform method for Rectangular Kirchhoff plate on Winkler foundation 

Consider a rectangular Kirchhoff plate a b  resting on a Winkler foundation as shown in Figure 1. 

 
Figure 1: Rectangular Kirchhoff plate on Winkler foundation 

 

The governing partial differential equation of equilibrium is given for homogeneous isotropic plates under static 

loads by: 

 
4 ( , ) ( , ) ( , )D w x y kw x y q x y          (10) 

for 0 , 0x a y b      

where 

 

3

212(1 )

Eh
D 

 
 is the plate flexural rigidity, 

4 4 4
4

4 2 2 4
2 ,

x x y y

  
   

   
 k = Winkler 

modulus of subgrade reaction or Winkler constant, w(x, y) is the deflection of the plate middle surface, q(x, y) is 

the external distributed load applied to the plate, x and y are the inplane Cartesian coordinate variables 

describing the plate domain, a and b are the length and width of the plate or the inplane dimensions of the plate 

domain. 

The governing equation can be expressed by 

 
4 ( , ) ( , )

( , )
kw x y q x y

w x y
D D

          (11) 

We seek to solve the problem for plates on Winkler foundations for the case of simply supported edges (at x = 0, 

x = a, y = 0, y = b). The geometric and force boundary conditions at the simply supported edges are at x = 0, x = 

a, 

  w(x, y) = 0 

 

2

2
( , ) 0

w
x y

x





        (12) 

At y = 0, y = b 

  w(x, y) = 0 

 

2

2
( , ) 0

w
x y

y





        (13) 

We apply the finite Fourier sine transform to both sides of Equation (11) to obtain 

 

2

4 ( , ) ( , ) sin sin

R

k m x n y
w x y w x y dxdy

D a b

  
  
 

   
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2

( , )
sin sin

R

q x y m x m y
dxdy

D a b

 
        (14) 

where R
2
 is given by: 

0 , 0x a y b     

2

0 0 0 0

( , )sin sin sin sin

a b a b
m x m y k m x m y

w x y dxdy w dxdy
a b D a b

   
       

  

0 0

sin sin

a b
q m x m y

dxdy
D a b

 
         (15) 

or 

4 4 4

4 2 2 4
0 0 0 0

2 sin sin sin sin

a b a b
m x n y k m x n y

w dxdy w dxdy
a b D a bx x y y

       
        

      

  

0 0

1
sin sin

a b
m x n y

q dxdy
D a b

 
         (16) 

4 2 2 4

0 0

2 sin sin

a b
m m n n m x n y

w dxdy
a a b b a b

             
                  

    

 

0 0 0 0

1
sin sin sin sin

a b a b
k m x n y m x n y

w dxdy q dxdy
D a b D a b

   
       (17) 

2
2 2

0 0 0 0

sin sin sin sin

a b a b
m n m x n y k m x n y

w dxdy w dxdy
a b a b D a b

         
          

      

  

0 0

1
sin sin

a b
m x n y

q dxdy
D a b

 
        (18) 

2
2 2

1
( , ) ( , ) ( , )

m n k
w m n w m n q m n

a b D D

     
           

    (19) 

where  

 

0 0

( , ) ( , )sin sin

a b
m x n y

w m n w x y dxdy
a b

 
         (20) 

 

0 0

( , ) ( , )sin sin

a b
m x n y

q m n q x y dxdy
a b

 
         (21) 

w(m, n) is the double finite Fourier sine transform of the deflection w(x, y) and q(m, n) is the double finite 

Fourier sine transform of the distributed load q(x, y). 

Thus 

 

2
2 2

( , )
( , )

m n k q m n
w m n

a b D D

                    

      (22) 

Solving for w(m, n), we obtain 
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2

2 2

( , )

( , )

q m n
Dw m n

m n k

a b D


     

          

       (23) 

 
2

2 2

( , )

( , )

q m n
Dw m n

m n k

a b D


                   

     (24) 

 
2

2 2

( , )
( , )

q m n
w m n

m n k
D

a b D


                   

     (25) 

By inversion, the deflection is obtained as: 

 
4

( , ) ( , )sin sin
m n

m x n y
w x y w m n

ab a b

   
        (26) 

1, 2,3,...,m     1, 2,3,...,n     

 
2

2 2

( , )sin sin
4

( , )
m n

m x n y
q m n

a bw x y
ab

m n k
D

a b D

 
 


                   

      (27) 

 

Bending Moment Distributions 
The bending moment distributions (Mxx and Myy) are obtained from the bending moment curvature relations i.e. 

 

2 2

2 2xx

w w
M D

x y

  
       

        (28) 

 

2 2

2 2yy

w w
M D

y x

  
       

        (29) 

By differentiation, and substitution of the derivatives, we obtain,  

 

2

2

2 2
2 2

( , )sin sin
4

m n

m m x n y
q m n

w a a b

abx
m n k

D
a b D

 

   
   

                    

      (30) 

 

2

2

2 2
2 2

( , )sin sin
4

m n

n m x n y
q m n

w b a b

aby
m n k

D
a b D

 

   
   

                    

      (31) 
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2
2 2

( , )sin sin
4

xx

m n

m n m x n y
q m n

a b a b
M D

ab
m n k

D
a b D

 

       
     

        
                   

    (32) 

 

2 2

2
2 2

( , )sin sin
4

xx

m n

m n m x n y
q m n

a b a bD
M

ab
m n k

D
a b D

 

       
     

     
                   

    (33) 
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2
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( , )sin sin
4

xx

m n

m n m x n y
q m n

a b a b
M

ab
m n k

a b D

 

       
     

     
     

          

    (34) 

 

2 2
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( , )sin sin
4
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n m m x n y
q m n

b a a bD
M

ab
m n k

D
a b D

 

       
     

     
                   

    (35) 
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( , )sin sin
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m n

n m m x n y
q m n
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M

ab
m n k

a b D

 

       
     

     
     

          

    (36) 

 

Finite Fourier Sine transform solutions for point load P0 at x0, y0 where  

0 00 , 0x a y b      

For point load, P0 applied at the point (x0, y0) on the plate domain, the finite Fourier transform representation of 

the load, q(m, n) is given by 

 

0 0

( , ) ( , )sin sin

a b
m x n y

q m n q x y dxdy
a b

 
     

 0 0 0

0 0

( , ) ( ) ( )sin sin

a b
m x n y

q m n P x x y y dxdy
a b

 
         (37) 

 
0 0

0( , ) sin sin
m x n y

q m n P
a b

 
        (38) 

Then 
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sin sin
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m x n y
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D

a b D

 


                   

      (39) 

By inversion, 
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     (40) 

 

0 0

0
2

2 2

sin sin sin sin
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Finite Fourier Sine transform solutions for uniformly distributed load q0 over the entire plate domain 
For uniformly distributed load of intensity, q0 over the entire plate domain, the finite Fourier sine transform 

representation of the load q(m, n) is given from Equation (21) by: 
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From the moment-displacement relations, the bending moments are given by: 
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V. Discussion of Results 
The finite Fourier sine transform method has been successfully applied to the solution of the fourth 

order partial differential equation governing the Kirchhoff plate on Winkler foundation problem when the four 

edges x = 0, x = a, y = 0, y = b are simply supported, and the plate domain carries transverse distributed load. 

The double finite Fourier sine transformation was applied to both sides of the governing partial differential 

equation (PDE) which become transformed to an algebraic equation in the transform space (m, n) variables 

given by Equation (22); where w(m, n) is the unknown deflection in terms of the transform variables (m, n). The 

solution for deflection in the finite Fourier sine transform variables was obtained as Equations (23), or (24) or 

(25). The solution for deflection is the plate domain space variables was obtained by inversion of Equations (23) 

or (24) or (25) and given as Equation (27); for the general problem of any distributed transverse load. Bending 

moment expressions were obtained by using the moment-displacement relations as Equations (34) and (35). The 

general results obtained were then used to obtain solutions for two particular cases of transverse load. For a 

point load P0 applied at the point (x0, y0) the deflections were obtained in terms of the transform space variables 

as Equation (39) and in terms of the plate domain space variables as Equation (41). Bending moment 

expressions were obtained for the point load case as Equations (44) and (45). For the case of uniformly 
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distributed load of intensity q0 over the entire plate domain, the deflection was obtained in terms of the 

transform space variables as Equation (48), and in terms of the plate domain variables as Equation (50). Bending 

moment expressions were obtained as Equations (51) and (52) for uniform transverse loads. The expressions 

obtained for both the deflection in the plate domain and the bending moments in the plate domain for the two 

particular cases of transverse load were identical with the expressions obtained using the Navier double Fourier 

series method for the Kirchhoff plate on Winkler foundation problem; as presented in Ugural [17]. 

The finite Fourier sine transform solutions obtained for deflection for the case of point load applied at 

the point (x0, y0) and for uniformly distributed load applied over the entire plate domain were the exact solutions 

for the Kirchhoff plate on Winkler foundation problem; being identical solutions with the Navier series solutions 

that yielded exact results. Similarly, bending moment expressions obtained were the exact bending moment 

distributions on the plate. 

 

VI. Conclusions 
The following conclusions can be made from this study: 

(i) the double finite Fourier sine transform method effectively transforms the Kirchhoff plate on Winkler 

foundation governing PDE to an algebraic equation in terms of the transform variables (m, n). 

(ii) the double Fourier sine transformation effectively transforms the boundary value problem to an algebraic 

problem. 

(iii) the double Fourier sine transform method gives exact solutions to the problem of homogeneous isotropic 

Kirchhoff plate on Winkler foundation for the case of: (a) general distribution of transverse loads, (b) point 

load applied at a point on the plate domain, and (c) uniformly distributed load over the entire plate region. 
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