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Abstract - This paper provides innovative analysis of rectangular plates having various aspect ratios and boundary conditions based on 

a true understanding of the two-way action. Nine plates with different boundary conditions, each having 11 aspect ratios were uniquely 

analysed using SAP2000 software. The finite element analysis results were validated against mathematical solutions showed a 

satisfactory agreement. The hydrostatic point phenomenon was established as the reference point for identifying plates with actual two-

way action and as the growth reference for other cases, allowing for the use growth models for both the hydrostatic and deviatoric moment 

tensors. The innovative selection of the extreme positive point moment facilitates the introduction of material nonlinearity into the design. 

The plate shorter dimension was used for moment normalization in both directions to preserve the directional influence of the dimensions 

and to isolate the hydrostatic phenomenon. It was found that for any boundary conditions, through starting at a hydrostatic phenomenon 

occurrence and via fixing a dimension and extending the perpendicular dimension, the extreme point Mohr circle develops from the 

hydrostatic point phenomenon as a growth in the hydrostatic component and a more radical growth in the deviatoric component. The 

largest principal moment develops a higher magnitude as the aspect ratio increases. The presence of non-identical boundary conditions 

in the plate on two perpendicular directions results in a deviation of the two-way action. 
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1. Introduction 
The meditative investigations into the out-of-plane loaded elements such as beams and plates followed different streams 

in approaching the broad range of problems, and thus, establishing different perceptions, formulations and practices [1-3]. It 

was in observing the natural behaviour of a cantilever beam [4], when Galileo commenced the contributions toward 

understanding the flexural responses [1]. Yet, it was in the eighteenth century when the solid mathematical formulations 

started to emerge with Euler [5-7] and Bernoulli [8], through tackling the flexural response of the out-of-plane loaded 

elements [9-11]. Such formulations and understanding of the flexural nature reached a climax with Germain and Lagrange 

[12, 13], Poisson and Kirchhoff [14-16] in both the Cartesian and polar coordinates [17]. Later, in eliminating that coordinates 

interference in understanding the laws of nature, Einstein [18] introduced the concept of general covariance based on tensor 

notations and formulations [19]. In order to describe the flexural behaviour of the out-of-plane loaded elements, this study 

introduces coordinates-independent (coordinates-free) tensor-based differential equations. The moment and curvature 

tensors were resolved into hydrostatic and deviatoric tensors; four-dimensional boundary value problem (4D-BVP) system 

visualization [20]. The behaviour of these tensors; i.e. the mean (hydrostatic) and deviatoric moment’s tensors, were 
investigated for various boundary conditions at the extreme-positive section in the mid-span of rectangular plates having 

aspect ratios in the range of 0.5-1.0. Linear computational analysis using SAP2000 software package [21] was implemented. 

This investigation draws an insight onto the growth behaviour of continuum tensors (mean and deviatoric), and uncover the 

limits of such response growth. 

 

2. Model Synthesis 
The linear material properties in this modelling problem were chosen to be of an arbitrary linear-elastic plate having a 

modulus of elasticity of 25 GPa and Poisson’s ratio of 0.18. These parameters will directly affect the flexural and hydrostatic 

rigidities. Nevertheless, such material parameters have no effect on the moment response in linear-elastic plates. The models 

to be implemented in this linear-elastic investigation were selected to be shell element with thin section definition. In 
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SAP2000 software, shell elements are types of area objects used to model plates and shells in planar and 3-dimensional 

structural modelling. The modelling herein assumes homogeneous material properties. The planer shell element as 

implemented in the SAP2000 model has 4-node element formulation with linear interpolation rules combines both plates 

and membranes bending behaviour. Shell stiffness is implemented through a numerical 4-point integration formulation, 

whereas, stresses, internal moments, and forces are evaluated through Gauss integration of (2-by-2) points and 

extrapolated to the element joints. The difference in the approximations using different elements at a common node 

serves in the estimation of analysis approximate error. The difference could be in elements stresses, moments or internal 

forces. The analysis relies on splitting the boundary conditions into two major conditions of restraints; either clamped 

(C) or simply supported (S), based on which the following permutations for the support conditions can be identified: 

 

 
(1) 

 

This number represents the probability set of alternative cases, and due to the repetitive meaning of some of these boundaries 

and symmetry of this matrix, the permutations reduce to ten, as follows: 

 

 

 

(2) 

 

This can be interpreted with respect to two parameters, each of which represents the directional moment or rotation stiffness; 

denoted as FLR and FSR, symbolizing the fixation on long and short edges ratios, respectively: 

 

 

 

(3) 

 

This set of boundary conditions forms nine cases of continuity (Fig. 1) with their respective applicability to flat slab system. 

 

 
Fig. 1: Various cases of boundary conditions used in the rectangular plates analysis. 

 

3. Model Mathematical Validation 
Following the linear-elastic model synthesis, a validation step was necessary to assure response estimation accuracy. 

For this purpose, Case 1 was selected and compared with the analytical solutions of the biharmonic equations as per 

Navier [22-24] with the double Fourier trigonometric series, and Levy [25, 26] with the Single hyperbolic series. In the 

case of Navier, the solution for the moment of a simply supported homogeneous isotropic plate is given, where m and n 

are series indices, p stands for the magnitude of the applied uniformly distributed load, and ν symbolizes Poisson’s ratio. 
In estimating the moment using Eqs. 4-7, the first 100 terms were considered for the accuracy assurance. The 

Poisson’s ratio and applied uniformly distributed load were 0.18 and 0.001. Values obtained through these equations are 

listed in Table 1 and compared to values obtained by the finite element model using SAP2000 after normalization with 
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the applied pressure (p) and the short span length (a). Equations estimations were carried-out using Wolfram Mathematica 

Computer Algebra System (CAS). Examining the results of the finite element analysis in comparison with the mathematical 

solutions shows a satisfactory agreement, and therefore the model was adopted.  

 

 

 

(4) 

 

 

(5) 

 

Based on Levy [25-26] solution, the expressions of bending moments for a simply supported plate is given as: 

 

 

 

 

 

 

(6) 

 

 

 

 

 

(7) 

 

Table 1: Linear elastic model validation for a rectangular simply-supported plate against the analytical solutions of Navier and Levy. 

 𝑆ℎ𝑜𝑟𝑡(𝑎)𝐿𝑜𝑛𝑔(𝑏)  
Normalized Positive Moment 

FEM Navier Levy %Error 

1.00 
Ca 0.044 0.043 0.043 2.3 

Cb 0.044 0.043 0.043 2.3 

0.95 
Ca 0.048 0.048 0.048 0 

Cb 0.044 0.044 0.044 0 

0.90 
Ca 0.051 0.052 0.052 1.9 

Cb 0.044 0.044 0.044 0 

0.85 
Ca 0.059 0.057 0.057 3.5 

Cb 0.044 0.044 0.044 0 

0.80 
Ca 0.062 0.062 0.062 0 

Cb 0.044 0.044 0.044 0 

0.75 
Ca 0.069 0.068 0.068 1.5 

Cb 0.043 0.043 0.043 0 

0.70 
Ca 0.075 0.074 0.074 1.4 

Cb 0.042 0.042 0.042 0 
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𝑆ℎ𝑜𝑟𝑡(𝑎)𝐿𝑜𝑛𝑔(𝑏)  
Normalized Positive Moment 

FEM Navier Levy %Error 

0.65 
Ca 0.080 0.080 0.080 0 

Cb 0.040 0.041 0.041 2.4 

0.60 
Ca 0.086 0.086 0.086 0 

Cb 0.039 0.039 0.039 0 

0.55 
Ca 0.093 0.093 0.093 0 

Cb 0.038 0.037 0.037 2.7 

0.50 
Ca 0.100 0.100 0.100 0 

Cb 0.037 0.035 0.035 5.7 

 

Simulation using a mesh of thin plate elements of size 1/20 of least plate dimension was conducted. Fig. 2 shows 

the mesh on the plate with the dimensions’ notation. In this model, the option "Plate-thin” element was adopted with an 
assigned thickness of 50 mm for all aspect ratios. After validation, a mesh sensitivity analysis was conducted. Firstly, a 

convergence study on deflection was conducted through varying mesh density (Fig. 3). Then a convergence study on 

the bending moments was conducted as depicted in Fig. 3 for mesh densities of 1/20 and 1/4. A mesh size of a/20 was 

found to achieve the optimum results and therefore it was adopted herein. 

 

 
Fig. 2: The linear-elastic model using SAP2000 software. 

 

 
Fig. 3: 4-nodes quadrilateral shell-element responses mesh sensitivity in linear-elastic modeling. 

 

4. Results 
Based on the aforementioned-linear-elastic finite element model, a thorough investigation into various cases of 

boundary conditions and geometrical aspect ratios was conducted. Neglecting the effects of the time dimension and 

linearizing the material dimension, the resulting boundary value problem occurs in the 4D-BVP space. The seventh 

lemma (hypothesis) of the hydrostatic theory states that “in plates bending, for every boundary condition there exist an 
aspect ratio that renders the maximum response a hydrostatic point-moment-tensor, having zero radius; i.e. a zero 

deviatoric moment tensor. At such point, the principal moment's curves intersect in the 4D-BVP system”. After 
conducting the FEA as per Table 1 for the case of all-sides simply supported, a normalization process took place in order 

to provide a loading-independent coefficient that can serve along with the superposition principle in plate analysis under 
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any loading conditions and any plate dimensions. Based on that, the moment in the short and long directions can be found 

from Equation 9 and 10, respectively: 

 

 
(8) 

 

was adopted for the moment normalization in both directions. This was intended to preserve the directional influence of 

the dimensions and to isolate the hydrostatic phenomenon. Tables 2-5 list the results of the FEA of linear-elastic plates for 

various boundary conditions’ cases. The results summarize the normalized moment coefficients for 11 plate thicknesses with 

a mesh density equal to the shorter span divided by 20, which was found to be the optimum for plates analysis in linear-

elastic problem. The values in Tables 2 - 5 agree to some extent with those proposed by ACI-318 Code [27] for companion 

cases. 

 
Table 2: Normalized negative and positive moment coefficients: FEA results of linear elastic plates for Cases 2 and 3. 

 

Aspect Ratio 𝑆ℎ𝑜𝑟𝑡(𝑎)𝐿𝑜𝑛𝑔(𝑏)  

Case 2: All Sides Clamped Case 3: Short Sides Clamped 

Negative Moment Positive Moment Negative Moment Positive Moment 

Ca Cb Ca Cb Ca Cb Ca Cb 

1.00 0.051 0.051 0.021 0.021 0.000 0.070 0.021 0.032 

0.95 0.055 0.053 0.023 0.021 0.000 0.074 0.024 0.033 

0.90 0.058 0.054 0.025 0.021 0.000 0.079 0.028 0.035 

0.85 0.064 0.055 0.028 0.020 0.000 0.087 0.034 0.037 

0.80 0.066 0.056 0.030 0.020 0.000 0.090 0.038 0.038 

0.75 0.033 0.056 0.033 0.018 0.000 0.097 0.045 0.039 

0.70 0.074 0.057 0.035 0.017 0.000 0.102 0.051 0.040 

0.65 0.077 0.057 0.037 0.016 0.000 0.107 0.058 0.040 

0.60 0.079 0.057 0.038 0.015 0.000 0.110 0.065 0.040 

0.55 0.081 0.057 0.040 0.015 0.000 0.115 0.074 0.040 

0.50 0.083 0.057 0.041 0.015 0.000 0.119 0.084 0.038 

 

Table 3: Normalized negative and positive moment coefficients: FEA results of linear elastic plates for Cases 4 and 5. 

 

Aspect Ratio 𝑆ℎ𝑜𝑟𝑡(𝑎)𝐿𝑜𝑛𝑔(𝑏)  

Case 4: Two Adjacent Sides Clamped Case 5: Long Sides Clamped 

Negative Moment Positive Moment Negative Moment Positive Moment 

Ca Cb Ca Cb Ca Cb Ca Cb 

1.00 0.069 0.069 0.030 0.030 0.070 0.000 0.032 0.021 

0.95 0.074 0.071 0.033 0.030 0.072 0.000 0.033 0.020 

0.90 0.078 0.073 0.035 0.030 0.074 0.000 0.034 0.020 

0.85 0.086 0.075 0.041 0.030 0.077 0.000 0.036 0.019 

0.80 0.090 0.077 0.043 0.029 0.078 0.000 0.037 0.018 

0.75 0.096 0.078 0.048 0.028 0.080 0.000 0.039 0.018 

0.70 0.102 0.079 0.051 0.027 0.081 0.000 0.040 0.018 

0.65 0.106 0.080 0.055 0.026 0.083 0.000 0.040 0.017 

0.60 0.110 0.080 0.057 0.025 0.083 0.000 0.041 0.017 

0.55 0.114 0.081 0.060 0.025 0.084 0.000 0.042 0.017 

0.50 0.118 0.081 0.064 0.024 0.084 0.000 0.042 0.017 
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Table 4: Normalized negative and positive moment coefficients: FEA results of linear elastic plates for Cases 6 and 7. 

 

Aspect Ratio 𝑆ℎ𝑜𝑟𝑡(𝑎)𝐿𝑜𝑛𝑔(𝑏)  

Case 6: One Long Side Clamped Case 7: One Short Side Clamped 

Negative Moment Positive Moment Negative Moment Positive Moment 

Ca Cb Ca Cb Ca Cb Ca Cb 

1.00 0.083 0.000 0.039 0.031 0.000 0.083 0.031 0.039 

0.95 0.088 0.000 0.041 0.030 0.000 0.088 0.035 0.040 

0.90 0.091 0.000 0.044 0.030 0.000 0.092 0.038 0.040 

0.85 0.098 0.000 0.048 0.033 0.000 0.098 0.046 0.042 

0.80 0.100 0.000 0.050 0.028 0.000 0.101 0.050 0.042 

0.75 0.105 0.000 0.053 0.027 0.000 0.106 0.057 0.042 

0.70 0.109 0.000 0.056 0.025 0.000 0.110 0.063 0.042 

0.65 0.113 0.000 0.059 0.025 0.000 0.113 0.070 0.042 

0.60 0.115 0.000 0.061 0.025 0.000 0.116 0.075 0.041 

0.55 0.118 0.000 0.064 0.024 0.000 0.119 0.084 0.039 

0.50 0.121 0.000 0.066 0.024 0.000 0.121 0.093 0.038 

 

Table 5: Normalized negative and positive moment coefficients: FEA results of linear elastic plates for Cases 8 and 9. 

 

Aspect Ratio 𝑆ℎ𝑜𝑟𝑡(𝑎)𝐿𝑜𝑛𝑔(𝑏)  

Case 6: One Long Side Clamped Case 7: One Short Side Clamped 

Negative Moment Positive Moment Negative Moment Positive Moment 

Ca Cb Ca Cb Ca Cb Ca Cb 

1.00 0.055 0.061 0.022 0.027 0.061 0.055 0.027 0.022 

0.95 0.059 0.064 0.025 0.027 0.064 0.055 0.028 0.022 

0.90 0.064 0.066 0.028 0.028 0.068 0.056 0.030 0.021 

0.85 0.073 0.070 0.033 0.028 0.071 0.057 0.033 0.020 

0.80 0.077 0.073 0.035 0.028 0.073 0.057 0.034 0.019 

0.75 0.085 0.075 0.040 0.028 0.076 0.057 0.036 0.018 

0.70 0.091 0.077 0.045 0.027 0.079 0.057 0.038 0.018 

0.65 0.097 0.078 0.049 0.026 0.080 0.057 0.039 0.018 

0.60 0.103 0.079 0.052 0.025 0.081 0.057 0.040 0.018 

0.55 0.108 0.080 0.057 0.023 0.083 0.057 0.041 0.017 

0.50 0.115 0.081 0.061 0.022 0.083 0.057 0.042 0.017 

 

5. Hydrostatic Parameters Estimation and Behaviour 
Based on the FEA, it was possible to obtain the hydrostatic moment parameters or the continuum moment tensor 

components. The following relations exist between the principal moments resulting in the hydrostatic parameters: 

 

  (9) 

 

Applying the equations to the nine-cases results in a graphical illustration of the concept behind the seventh lemma 

of the hydrostatic theory (Figs. 4 and 5). Firstly, the principal extreme mid-span moments are introduced graphically 

based on the results obtained from the FEA (Tables 1 - 5). Selection of the extreme positive point moment serves the 

purpose of facilitating the introduction of material nonlinearity. This is more appropriate than the common practice in 

the factorized analysis of both negative and positive moments based on percentile ratios [28, 29]. 

The conceptual depiction of the growth behavior of the hydrostatic parameters in the plate is introduced as the plate 

geometrical aspect diverges toward the state of the pure beam behavior. This growth would always initiate from the 

hydrostatic point phenomenon, at which the radius of the Mohr circle is a point with a zero radius, or at which a pure 
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Gaussian spherical curvature occurs with the absence of any twisting deviatoric curvature. This point can be established as 

the reference point for such growth models and for the establishment of the two-way behavior. This in fact dissipates the 

misunderstanding of the two-way pure behavior that describes it with the square geometry. Fig. 4. shows the principal 

moments and Mohr circle growth at the extreme positive section. Fig. 5. shows the hydrostatic and deviatoric moment 

components growth curves for aspect ratios of 0.5-1.0. Curves for all other cases can be found in [20]. 

For example, for Case 1 “All-Sides Simply Supported Plate”, Fig. 4 shows that the two-way action occurs precisely as 

the geometrical aspect ratio of a/b=1. Following which and through fixing a and extending b, the extreme point Mohr circle 

develops from the hydrostatic point phenomenon in terms of both a growth in the hydrostatic component and a more radical 

growth in the deviatoric component. The largest principal moment (Ma) develops a higher magnitude as the aspect ratio 

increases. This is true until such moment value would converge though approaching the infinite aspect ratio (the reciprocal 

of zero) to the pure simply supported beam response. At such point the maximum principal moment coefficient reaches a 

value of 1/8 based on mechanics’ formulations [30]. In contrast, the minimum principal moment approaches zero at the 

infinite aspect ratio. Concurrently, this behaviour is accompanied on one hand with the increase in the hydrostatic moment 

component from the hydrostatic phenomenon least curvature state to the high curvature state of the pure beam behaviour at 

the infinity. On the other hand, the deviatoric component growth increases radically from zero to approach the hydrostatic 

component at the infinity aspect ratio for a pure beam behaviour. These conditions can be represented using mathematical 

expressions. If the ratio (a/b) represents the ratio of short to long dimensions; for the case of all-sides simply supported plate, 

the mathematical functions of the hydrostatic and deviatoric components of the moment state can be summarized with the 

following expressions defining its range and domain: 

 

 

 

(10) 

 

 

(11) 

 

If the ratio (a/b) represents the longer to shorter ratio, a symmetry in the response is encountered due to identical boundary 

conditions. Similar formulation and set of equations are developed in details for all cases [20]. 

 

6. Conclusion 
A true understanding of the two-way plate action was achieved; in which the hydrostatic point phenomenon was 

established as the reference point for identifying plates with actual two-way action. The innovative selection of the extreme 

positive point moment serves the purpose of facilitating the introduction of material nonlinearity into the design. This is more 

appropriate than the common practice in the factorized analysis of both negative and positive moments based on percentile 

ratios. The use of the shorter dimension for the moment normalization in both directions preserves the directional influence 

and isolates clearly the hydrostatic phenomenon. On the basis of extreme point with the hydrostatic phenomenon occurrence 

at a plate, it was identified that such occurrence can be established as the growth reference for other cases. Thus, the plate 

response based on geometrical and boundaries differences, can be modeled with growth models for both the hydrostatic and 

deviatoric moment tensors. For any boundary conditions, through starting at a hydrostatic phenomenon occurrence and via 

fixing dimension (a) and extending the perpendicular dimension (b), the extreme point Mohr circle develops from the 

hydrostatic point phenomenon in terms of both a growth in the hydrostatic component and a more radical growth in the 

deviatoric component. The largest principal moment (Ma) develops a higher magnitude as the aspect ratio increases. For 

identical boundary conditions in both directions, a symmetry in the response is encountered. The presence of non-identical 

boundary conditions in the plate on two perpendicular directions would result in a deviation of the two-way action.  
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Fig. 4: Principal moments and Mohr circle growth behavior at the extreme positive section. 

 

 
Fig. 5: The hydrostatic and deviatoric moment components growth curves for 0.5-1 aspect ratios. 
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