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ANALYSIS OF RECURSIVE, STOCHASTIC ALGORITHMS T

Lennart Ljung
Department of Automatic Control
Lund Institute of Technology
5-220 07 Lund, Sweden

Abstract

Recursive algorithms, where random observations enter are studied in a fair-
1y general framework. An important feature is that the observations may de-
pend on previous "outputs" of the algorithm. The considered class of algo-
rithms contains, e g, stochastic approximation algorithms, recursive identi-
fication algorithms and algorithms for adaptive control of linear systems.

It is shown how a deterministic differential equation can be associated with
the algorithm. Problems like convergence with probability one, possible con-
vergence points and asymptotic behaviour of the algorithm can all be studied
in terms of this differential equation. Theorems stating the precise relation-
ships between the differential equation and the algorithm are given as well as
examples of applications of the results to problems in identification and adap-
tive control.

ta major part of this work has been supported by the Swedish Board for Tech-
nical Development under coniract No. 733546.



1. INTRODUCTION

Recursive algorithms, where stochastic cbservations enter are common in many
fields. In the control and estimation literature such algorithms are widely
discussed, e g in connection with adaptive control, (adaptive) filtering and
on-line identification. The convergence analysis of the algorithms is not sel-
dom difficult. As a rule, special techniques for analysis are used for each
type of application and often the convergence properties have to be studied
only by simulation.

In this paper a general approach to the analysis of the asymptotic behaviour
of recursive algorithms is described. In effect, the convergence analysis is
reduced to stability analysis of a deterministic, ordinary differential equa-
tion. This technique is believed to be a fairly general tool and to have a
wide applicability. Applications to various problems have been published in
(11, [21, [3], [4] and some theory was presented in [5].

The objective of the present paper is to give a comprehensive presentation of
formal results and useful techniques for the convergence analysis, as well as
to illustrate with several examples how the techniques can be applied.

In Section 2 a general recursive algorithm is described and discussed. A heu~
ristic treatment of the convergence problem is given in Section 3 and this
leads to the basic ideas of the present approach. Section 4 contains a dis-
cussion of the conditions which are imposed on the algorithm in order to prove
the formal results. These theorems are given in Sections 5 and 6. The theorems
suggest certain techniques for the convergence analysis, and these aspects are
treated in Section 7. Several examples of how the theorems may be used, some
of them reviewing previous applications are given in Section 8.

2. THE ALGORITHM
A general recursive algorithm can be written
x(t) = x(t-1) + y(Q(t3x(t-1) (1)) (1)

where x(-) is a sequence of n-dimensional colum vectors, which are the objects



of our interest. We shall refer to x(-) as "the estimates", and they could,

e g, be the current estimates of some unknown parameter vector. They could,
however, also be parameters that determine a feedback law of an adaptive con-
troller, ete, and we shall be precise about the character of x(-) only in the
examples below. The sequence y(:) is throughout the paper assumed to be a se-
quence of positive scalars. The m~dimensional vector ¢(t) is an observation
obtained at time t, and these are the objects that cause x(t-1) to be updated
to take new information into account. (The notion "observation" does not have
to be taken literally. The variable ¢ may very well be the result of certain
treatment of actual measurements.) The observations are in general funetions
of the previous estimates x(-) and of a sequence of random vectors e(-). This
means that the observation is a random variable, which may be affected by pre-
vious estimates. This is the case, e g, for adaptive systems, when the input
signal is determined on the basis of previous estimates. If the experiment de-
signer has some test signal at his disposal, this may be included in e(-).

The function Q(-3:,-) from RxRPxR™ into R® is a deterministic function with

some regularity conditions to be specified below. This function, together with
the choice of the scalar "gain" sequence y(+) determine entirely the algorithm.

We shall not work with completely general dependence of @(t) on x(:)3 some re-
sults for this case are given in [6], but the following structure for the ge-
neration of ¢(+) will be used:

o(t) = A(x(t-1))m(t—1) + B(x(t-1))e(t) (2)

Here A(-) and B() are m|m and m|r matrix functions.

Remark: It is perhaps more natural to think of an observation ®(t) as the (Lower-~
dimensional) output of a dynamical system like (2), ®(t) = C{x(t-1))p(t). How-
ever, this case is naturally subsumed in the present one, since ¢(t) may enter

in Q only as the combination @(t).

The assumption (2) seems to be appropriate for many applications. The same re-
sults as those below can be obtained also for non linear dynamics.

©(t) = gtso(t-1),x(t=1),e(t)) (3)

and the proofs for this case are given in [7].



Throughout this paper it is assumed that the estimates are desired to converge
to some "true" or "optimal" value(s). Since Q(t,x(t—1),w(t)) is a random vari-
able, with, in genéral, non zero variance, convergence can take place only if

the noise is rejected by paying less and less attention to the noisy observa-

tions, 1 e by letting

v(t) 0 a3 t > o (4)

In tracking problems, when a time-varying parameter is to be tracked using al-
gorithm (1), this condition is not feasible. Then y(t) usually tends to some
small, non zero value, the size of which depends on what is known about the
variability of the tracked parameters and about the noise characteristics. This
- case is not treated here, but it is reasonable to assume that analysis under
the condition (4) also will have some relevance for the case of tracking slowly

varying parameters.

Suppose we have a linear, stochastic, discrete time system, governed by a 1i-
near output feedback law, which at time t is determined by x(t-1). Then the be-
haviour of this overall system can be described by (2), with @(t) consisting of
lagged inputs and outputs. Therefore the algorithms (1), (2) can be understood
as archetypical for adaptive control of a linear system. Indeed this set-up is
useful for analysis of certain adaptive controllers, as will be examplified be-
low, but the basic algorithm (1), (2) coversalso several other cases of inte-

rest,

3. HEURISTIC ANALYSIS

The algorithm (1), (2) ds fairly complex to analyse, being a time-variant,
stochastic, non linear difference equation. Notice also that the correction

x(t) - x(t-1) depends in general via @©(t) implicitly on all old x(s). There-
fore, while (1) certainly is recursive from the user's point of view, it is

not so for analysis purposes.

In this section we shall illustrate heuristically how a differential equation
can be associated with (1), and how it seems reasonable that asymptotic proper-
ties of (1) may be studied in terms of this differential equation. The formal
analysis and results follow in the next two sections.



Consider
x(t) = x(t=1) + y(£)Q (x(t=1) (1)) (5)

where for simplicity we let Q be time independent. As remarked before, @(t)
depends on all previous estimates:

t t
p(t) = Zl' n A(x(i—1))]B(x(j-‘l)]e(j) (6)

=1 |i=3+1

Now, if (2) is exponentially stable, then the first terms in (6) will be ve-
ry small and, for some M,

t t
olt) s § { I A(x(i—‘l))}B[x(j—ﬂ)e(j)
jet-Mli=j#+1

Moreover, it follows from (5) and (4) that the difference x(t) - x(t-1) be-
comes smaller as t increases. Therefore, for sufficiently large t, we have
x(k) mx(t)y t 2 k 3 t-2M, Hence

k :
o) m  § [AKE)TIBx(E))e(d) ~
jK-M

k - -
Y ‘21[A(x(t))]k IB(x(t))e(3) A @lksx(t)) (7
j:

for t 2 k 3 t-M. Furthermore,

Q (x(k=1) y9(k)) w Q[x(t),&-:(k;x(’t))} = £(x(1)) + wik) | (8)
where

£(x) = E Q(x,9(k3x))

and hence w(k) is a random variable with zero mean.

Using (8), we can approximatively evaluate



t+s
x(t+s) = x(ty + ] y0Q (x(k=1),0(k))
k=t+1 -
t+s t+s
x(t) + £} ] v+ T yOOwk) s
k=t+1 k=t+1
t+s
ox(t) + Fx(t)) T vy (9)
t+9

where the last step should follow since the last term is a zero mean random
variable which is dominated by the second term. Expression (9) suggests that
the sequence of estimates more or less follows the difference equation

xp(r+AT) = xD(T) + ATf[xD(T)} ' (10

t+s
where AT corresponds to ) y(k). It is useful to interpret (10) as a way of

solving the differentia equation (At small),

L P = £6P(0) (11)

where the (fictitious) time t relates to the original time t in (5) by

t
T T 7 oy(k) (12)
k=1

We therefore have some reason to believe that the sequence of estimates x(-)
asymptotically should follow the trajectories x2(+) of (11).

(We could also have related (9) to the difference equation

L) = 320t + v (Lee-1)) ' (13)
but the differential equation is easier to handle since it is time—invariant.)
It now seems reasonable that asymptotic properties of (1), (2) may be studied
in terms of the differential equation (11). This heuristic discussion is per-
haps not very convincing, but along a similar path, though with far more tech-

nical labour, formal results tc this effect can be proven. These are given be-
low.



4. ASSUMPTIONS ON THE ALGORITHM

In order to prove the formal results, certain regularity conditions on the
functions Q, A and B and on the driving "noise" term'e, have to be introduced.
Some of these are fairly technical, but it is believed that none is very re-
strictive. Several sets of assumptions are possible, and we shall give a few.
In particular, there is a possibility to treat the sequence e(.) either in a

stochastic or in a deterministic framework.

We shall start by giving a formal definition of ¢ used in the previous section.
Let

Dy = {x | A(x) has all eigenvalues strictly inside the unit circle}

Then for each x € Dg, there exists a » = A(x), such that

lA(x)k < CAG0%s GO < 1 (1)

Take x € Dy and define the random variables @(t,x) and v{t,x) by

@lt,x) = ARIP(t=1,%) + B(Re(t); ©(0,%) = 0 (15)

AIv(E-1,%) + |BGO| |e(t)|; v(0,%) = 0 (16)

v{t,x)

Let Dp be an open, connected subset of Dg. The regularity conditions will be
assumed to be valid in Dp. MNow, the first set of assumptions is the following:

A1 e(+) is a sequence of independent random variables.(not necessarily sta-

tionary or with zero means).
A2 [e(t)] < C with probability one (w.p.1) all t.

A.3  The function Q(t,x,9) is continuously differentiable w.r.t x and ¢ for
X € Dp. The derivatives are, for fixed x and ¢, bounded in t.

A.4  The matrix functions A(.) and B(-) are Lipschitz continuous in D+
A.5  1im E Q(t;x,®(t,%)) exists for x € Dr and is denoted by £(x). The expec-
130

tation is over e(:).

A.6

]
8

y(t)

a1 §



A7 ] y(£)P < = for some p.
1

A.8 ¥(+) is a decreasing sequence.

A8 lim sup[1/v(t) = 1/v(t-1] < w

+ -

These conditions will be referred to as "assumptions A". A.1 introduces the
stochastic structure into the set-up. While A.2 certainly is most reasonable
for all practical purposes, it is somewhat unattractive from a theoretical
point of view, since it excludes e g the common gaussian models for noise.
Below (assumptions B) are given conditions which allow more general noise.
Conditions A.3 and A.4 are reasonable regularity properties, and A.5 is the
basic assumption that makes it possible to associate (1), (2) with a differen-
tial equation. Condition A.6 makes it possible for the algorithm (1) to move
the estimate to the desired limit, regardless of the initial value, and it is
thus obvicusly necessary. A.7 gives a condition on how fast y(t) must tend to
zero. This is considerably less restrictive than the usually given condition

T ¥2(t) < A7)
1

Conditions A.8 and A.9 are motivated by technical arguments in the proofs,
but they have so far not appeared to be restrictive. For example, it is easy
to see that the sequence y(t) = C t * satisfies A.6 ~ A.9 for 0 < a < 1.

If we would lile to alleviate A.2, further regularity conditions on ( are re-
quired. This gives us ocur second set of assumptions. [B(i,p) denotes a p-
neighbourhood of x, i e B(X,p) = {¥| |x-x| < o}.)

B.1 e(-) is a sequence of independent random varisbles (not necessarily sta-
tionary or with zero means).

A

B.2 EIe(t}IP exists and is bounded in t for each p > 1.

B.3 The function Q(t,x,p) is Lipschitz continuous in x and @ |Q(t2x1,m?) -
- Q(t,xz,@z}l < K1(x,@,psv){]xﬁ—x2| + i¢1ﬂ@2}} for x; € B(x,p) for some
p = p(x) > 0 where x € Dps P; € Blw,vi, v = 0.

B.4 |K1(X,w1,p,vj) - K1(x,$2,p,v2)! < Kz(x,@ﬁp,v,w){i@q—wzf + !v1hv2|} for
0, € B(p,w) and v, € B(v,w)



B.5 A(.) and B(.) are Lipschitz continuous in Dg-

B.6 1lim E Q(t,x,¢(t,x)) exists for x € D, and is denoted by f(x). The ex-
£ o0

pectation is over e(-).

B.7 For x € Dp, the random variables Q(t,x,0(t,%) ), Kd[x,&(t,x),p(x),v(t,x)],
and K2Ex,&(t,x),p(x),v(t,x),v(t,x)) have bounded p-moments for all p > 1.
Here ¢f-,x) and v(-,x) are the random variables defined by (15) and (16).

=]

B.8 ; y(t) = o

B.9 ; v(£)® < « for some D.

B.10 y(*) is a decreasing sequence.

B.11 lim sup[1/y(t) = 1/y(t=-1)] < =
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Conditions B.4, B.3 and B.7 admittedly look somewhat complex, but they are as

a rule easy to check in a given situation, especially since Q(t,x,9) is a simple
function of x and ¢ in most applications. The conditions B.3 and B.4 essentially
require that Q(t,x,9) is twice continucusly differentiable and B.7 implies that

Q and its derivatives must not increase too rapidly with ¢ and v.

In these two cases the algorithm (1), (2) is treated directly in a stochastic
framework, due to assumption A.71 = B.1. In certain cases it may not be suitable
to treat e(+) in (2) as a sequence of random variables. Naturally the algorithm
(1), (2) still makes sense, even if e(+) is a given, deterministic sequence.
Convergence of (1) will then depend, among other things, on the properties of
this sequence e(+). In such a case we may work with the following assumptions.
Let K, be defined as in B.3 and let ¢(*,x) and v(-,X) be given by (15), (16).
Introduce the quantities z(:,x), k(-,x) and kv(-,E) by

z(t,Xx) = 2(t-1,%) + y(t)[Q(t,i,@(t,i)) - z(t—1,§)]
z(0,x) = 0 (18a)
K(t,%) = k(t=1,%) + Y(t)[}«, (X0t ,3) 50 (30) ,v(t,x)) = k(t~1 ,;?)]

k(0,x) = 0 (18b)



kv<t,§<> = X, (t=1 ,X) + Y(t)[x~1 (_ic,act,?c),pc;.) vt X)) vit,x) - k,,(t=1 ,.—2)]
k,(0,%) = 0 (18¢)

Notice that for the common choice y(t) = 1/t, (18a) implies that

‘—f.

z(t,x) = % k§1 Q(k;;c,a)(k,;c)] ete

The assumptiocns then are:

C.1  The function Q(t,x,9) is Lipschitz continuous in x and : |Q(t,Xﬂ,qﬁ) -
- Q(t,x2,m2)| < K1(x,m,p,v){|x1wx2| + [m1-¢?|} for x; € B(x.p) for some
p = p(x) > 0 where x € Dps @; € Blyp,v), v 2 0.

C.2 The matrix functions A(-) and B(-) are Lipschitz continuous in Dg-

C.3 z(t,x) as defined by (18a) converges for all x € Dg- Denote the limit by
£(x).

C.4  k(t,x) and kv(t,i), defined by (18be) are bounded in t for all x € Dy«

C.5 ] y(t) =«
1

When these assumptions are used, no stochastic framework has to be introduced.
The statements about the behaviour of x(+) to be given below are true as long
as e(+) is such that C.3 and C.4 hold. If a stochastic framework is imposed and
C.3, C.4 hold with probability one, then the statements abocut x(*) will be true
w.p.1. This is, essentially, the approach taken in [5] and [8], which alsc con~
tain a detailed study of algorithms like (18) (esp. [8], Ch.4). There several
different sets of conditions implying convergence of (18) are given. In fact,
conditions B imply that C.3 and C.4 hold w.p.1. It may in this context be re-
marked that there is actually a trade-off between condition A.7 = B.9 and con-
ditions B.2 and B.7: The largest p for which B.2 and B.7 need to hold is twice
the p for which A.7 holds. Therefore, if v(-) is subject to (17), then only the
fourth moments of e, Q and K; have to be bounded. This is discussed further in

[5] and [8], and we shall not pursue it here.



10.

5. MAIN THEOREMS.

The function £(-) defined in A.5, B.6 or C.3 is the basic object of interest.
As the heuristic discussion in Section 3 indicated the differential equation

Loy = £ (6P (19

will be relevant for the asymptotic behaviour of the algorithm (1), (2). The
exact relationships between (19) and (1), (2) are given in three theorems. The

first one concerns convergence of (1).

Theorem 1. Consider the algorithm (1), (2) subject to assumptions A, B or C.

lett D ba a compact subset of Dy such that the trajectories of (19) that start in
D remadn in there for 0. Assume that

1) there is a random variable C such that

x(t} € D and |@(t)| < C infinitely often (i.0.) w.p.1 (20)
2) the differential equation (19) has an invariant set D, with domain of

attraction D, o B. (21)
Then x(t) - D, ¥.p.1 as t + «. | - a

Remarks. By (20) Is meant that there exists w.p.1 & subsequence t, , possibly
depending on the realization @, such that x(t,) € D and Im<t ) < Clw), k = 1,
Zy++. This cordition, which we may call the "boupJedness condition", is further
discussed in Section 6.

An invariant set of & differential equation is a set such that the trajectories
remain in there for -= < 1 < », The domain of attraction of an inveriant set D
consists of those poirts from which the trajectories converge into D as t tendﬁ
to infinity. It is cbviously an open set. See ¢ g [9]. An 1nteresL1ng special
case 1s when the invariant set D, is just a stationary point of (19) say x*,
with £f(x*) = 0. Then the theorem proves convergence of x{(t) to x*. By x(t) - De
is meant that inf [x(t) - x| » 0.

X€Dn
Our second theorem concerns the set of possible convergence points. It can be
used to prove failure of convergence by showing that the "desired" or "true"
parameter value does not belong to this set.



11.
Theorem 2. Consider algorithm (1), (2) subject to assumptions A or B. Suppose
that x* € Dp has the property that
P(x(t) » B(x*,p)) >0 for all p > O 22y *
Further suppose that

Q (t,x*,(t,x*)) has a covariance matrix bounded from below by a (23)
strictly positive definite matrix,

and that
E Q(t,x,@(t,x)) is continuously differentiable w.r.t x in a neigh-

bourhood of x* and the derivatives converge uniformly in this neigh-
bourhood as t tends to infinity.

Then

f(x*) = 0 (2u)

and

H(y*) = é% fi(x) has all eigenvalues in the IHP(Re z ¢ 0). (25)
x=x* (=}

The matrix H{x*) defines, of course, the linear differential equation obtained
from (19) by linearization around x*. Therefore this theorem essentially states
thet the algorithm can converge only to stable stationary points of the diffe-

renitial equation (19).

If fix) = - = V(x), which might be the case if the algorithm is based on cri-

dx
terion-minimization, then V(x) can be chosen as a Lyapunov function for the
differential equation (19). Since é%»v(x(r)] = - 'f(x(r)) 2, we see that the

stationaxy points of (19), together with the point {»}, form an invariant set
with global domain of attraction. Moreover, if the stationary points are iso-
lated, it follows from Theorem 2 that only stable ones, i e'local minima, are

possible convergence points. It also follows from Theorem 1 that the estimates

T PB(A) = The probability of the event A.
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cannot oscillate between different minima. Collecting all this we obtain a co~
rollary to Theorems 1 and 2.

Corollary. Suppose that Dy = r? , that f(x) = - é% V(%) and that V(x) has
isolated stationary points. Assume that |@(t)| < C i.o. w.p.1. Then w.p.1.,
x(t) tends either to a local minimum of v(x) (i.e. V"(x) positive semidefinite)

or to infinity as t tends to infinity.

Finally, our third theorem relates the trajectories of the differential equa-
tion (19) to the paths of the algorithm (1), (2). The result is formulated as
follows. Let x(t), t = tpse++s be generated by (1), (2). The values can be
plotted with the sample numbers t as the abscissa. It is also possible to in-
troduce as before a fictitious time 1 by

t
Ty = 7 y(k) (28)
k=1

Suppose that the estimates x(t) are plotted against this time «x:

Xa

—e

LF{

0 ke

Fig. 1a.

Let xD(T,TtO,X(tO)) be the solution of (19) with initial value x(to) at time
Tge Plot also this solution in the same diagram:

Fig. 1b - To illustrate Theorem Y.
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Let T be a set of integers. The probability that all points x(t), t € I, si-
multaneously are within a certain distance e from the trajectory is estimated
in the following theorem.

Theorem 3. Consider algorithm (1), (2) under assumptions A or B. Assume that
f(x) is continuously differentiable and that E 0ft;x,0(t,x)) (= f(x)) does not
depend on t. (We may here disregard a possible transient in g(t,x) and assume
that @(+,x) has reached stationarity.) Assume for some ty that x(tg) € Dy < Dy
and |@(ty)| < X,, where Dy is compact. Assume that the solution XD(T,Tto;X(tO))
to (19) is exponentially stable, and let I be a set of integers, such that
inflTi-le =8y > Owhere i « j and 1,j € I. Then for any r > 1 there exist con-
stants K and €y that depend on r, Dg» Ky and &4, but not on tyo x(to) or w(to)
such that for ¢ < £go :

N
D K o\
P{sup |x(t) - x (rost, ox(t )| > e} € 4= y(3) all r > 1 (27)
+€T t? 'to, 0 ) I €4r j=zt0
tato

where N = sup i} i € I, which may be «.

Remark. In the proof of Theorem 3 it is assumed that the exponential stability
of the solution xD[r,rtO;x(tO)) is ensured by a quadratic Lyapunov function for
the (linear and time-varying) variational equation around this solution, cf, e g
f10].

Although the proof of Theorem 3 provides an estimate of K from given constants,
we do not intend to use (27) to obtain numericai bounds for the probability.

The point of the theorem is that a connection between the differential equation
(19) and the algorithm (1), (2) is established. In particular, we notice that,
due to A.7 there is an r such that the RHS of (27) becomes arbitrarily small
when t, increases, and e, Dy and K are fixed. This means that the estimates
stay close to the corresponding trajectory with higher and higher probability
as t, increases. Another way of interpreting (27) is that the gain sequence y(«)
can be scaled so that x(+) stays arbitrarily close to xD(-), with an arbitrary
high degree of prabability.

The proofs of Theorems 1, 2 and 3 are long and technical and the space here does
not permit to include them. Full proofs are given in [7]. An outline of the proof
of Theorem 2 was given also in [1]. The idea of the proofs of Theorems 1 and 3
follows the discussion in Section 3. However, a considerable amount of technica-
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lities are required to justify rigorously the "approximatively equal'-signs.

6. THE BOUNDEDNESS CONDITION

In this section we shall discuss condition (20). The reason why it is required
is twofold. Firstly, cbviously x(t) must be inside Dg (with @(t) not too large
to prevent an immediate jump) for the differential equation to be valid at all,
and also inside D, to get "caught" by a trajectory converging to D o+ Secondly,
and perhaps less obviously, even if Dp =Dy = R it may happen that x{t) tends
to infinity. The reason for divergence is that if Q(t,x,9) increases rapidly
with |x| it may happen that the correction y(t)Q (t,x(t=-1),0(t)) always is too
large even though y(t) tends to zero. Another reason is that the variance of
the "noise" Q(t,x,9) - f(x) may increase so fast with |x| that a "pandom walk"
effect becomes predominat‘ing close to infinity.

From a practical point of view, the question of boundedness of the estimates
may seem uninteresting, since no implementation of (1) will allow that x(t)
tends to infinity. It will be kept bounded either by deliberate ireasures or
due to e g overflow in the computer. Now the measures to keep x(t) in a bound-
ed area may not be completely arbitrary to obtain convergence.

A feature that can be used when DR = DA = Rn, is to introduce a saturation in
Q(+3+57) so that |Q(t;x,0)| < K. This is further discussed in [7].

Another possibility of preventing x(t) from tending to infinity is to project
x(t) into a bounded area if |x(t)]| is too large or if x(t) does not belong to
a desired area, say Dg. In fact, if A(x) is a known function of x, it is com-
mon, and often even necessary to test if x(t) € Dy and project it into Dy other-

wise. We then have an algorithm of the following type:

x() = [xte-1) + veQex(e=1,000) | o (28)
[ AxCE=1))o(t-1) + B(x(t-1))e(t) if x(t-1) € D,
o(t) = 4 | - (29)
Adn a given compact subset of R if x(t-1) ¢ D,

a value

where, for D, > D2
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fif fe Dy

1 o, = |
Some value in D2 if £ ¢ D1

It should be clear that D> D2 cannot be chosen arbitrarily. loosely speaking,
the trajectories of (19) that start in D, must not leave the area Dy. Otherwise
there may be an undesired cluster point on the boundary of D,. This may be for-
malized as follows.

Theorem 4. Consider the algorithm (28), (29) subject to assumptions A, B or C.

Let Dy = Dy be an open bounded set containing the compact set Dy« let § = DD,
(D.] "minus" D2). Assume that Dy @ Dy, with D, defined as in Theorem 1. Suppose

that there exists a twice differentiable function U(x) 3 0, defined in a neigh-
bourhood of T with properties

sup U'(x)f(x) < 0 (30)
el
U(x) 3 C1 for x ¢ D,

(31)
Ulx) < 02 < C’I for x € D2

Then Theorem 1 holds without assumption (20).

The proof of Theorem 4 is given in [7].

Assumption (30) clearly makes U(-) a Lyapunov function in D, while (31) forma-
lizes the intuitive notion of trajectories from D, never leaving D;. We may re-

mark that (30), (31) hold, e g if the trajectories of (i9) do not intersect
the boundary of D, "outwards" and D, is sufficiently close to D,

7. HOW TO USE THE THEOREMS
The intuitive content of the theorems of Section 5 is that the algorithm (1), (2)

x(t)

x(t=1) + v(£)Q(t,x(t=-1) ,ip(t)) . (32a)

©(t) = A(x(t=1))o(t-1) + B(x(t-1))elt) (32b)

can be studied and analysed in terms of the differential equation
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£ = £(:P0) (33)

where

£(x) = lim E Q(t,x,p(t,x)) (34)
Tt

The precise statements about the relations between (32) and (33) of Theorems
1 - 3 may be summarized in a somewhat looser language as follows.

a) x(t) can converge only to stable stationary points of (33).

b) If x(+) belongs to the domain of attraction of a stable stationary point
x* of (33) i.o. w.p.1, then x(t) converges W.p.1 to x* as t tends to in-

finity,

c) The trajectories of (33) are "the asymptotic paths" of the estimates
x(*), generated by (32).

These statements are fairly attractive intuitively, and they suggest certain
unified techniques to analyse recursive algorithms. We shall illustrate this
below, but let us here point out some aspects.

By the result a) the possible convergence points of (32) may be determined and
studied. That a possible convergence point must be a zero of (34) is fairly
obvious and it may be derived without reference to any differential equation.
However, the observation that among these stationary points only stable ones
are candidates for being limit points of (32) is a most important complement
and it is probably less cbvious without the present -interpretation in terms of
the differential equation. Perhaps the main use of result a) is +o prove fail-
ure of convergence. It may be remarked that usually an algorithm is constructed
so that the desired limit indeed is a stationary point. Consequently the pos-
sible lack of convergence is then due to the unstable character of the statio-
nary point, so it is the complement (25) that is the key result for proving di-

vergence.

Result b) is the result by which convergence can be proved. In many cases it

is not easy to find a proper Lyapunov function to prove global stability of (33),
and sometimes the right hand side of (33) is quite complex. For certain algo-
rithms, though, in particular those arisihg from criteria-minimization, it is
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possible to do this analytically, and some examples will be given below.

While analytic treatment of (33) may be difficult, it is always possible to
solve it numerically when the dimension of x is not too large. In that way
insight can be gained into the glcbal stability properties of the differen-
tial equation, the stationary points and their character. In view of result

c) the trajectories thus obtained are also relevant for the asymptotic beha-
viour of the algorithm. Therefore, numerical solution of (33) is a valuable
complement to simulation of (32). Due to the time scaling (26) in the diffe-
rential equation, this reveals more rapidly the asymptotic properties and the
stationary points of the algorithm. Since the estimates change more and more
slowly, due to (4), it is not seldom difficult to decide from simulations on-
ly whether the estimates have settled around a limit value or are just conver-
ging slowly. In addition, it might be difficult to tell from a simulation if a
certain effect is an inherent feature of the algorithm or just depends on ran-
dom influence. Numerical solution of (33) may resolve such questions.

In the next section we shall apply the method to a few examples and illustrate
how the techniques of the items above may be used.

8. EXAMPLES

Example 1.~ Stochastic approximation algorithms.

Consider the problem of solving

E(DQ(X,(D) =0 (35)
for x. Here "E‘p" denotes the expectation with respect to @, while the vector
X is considered as a fixed parameter. Quantities Q(x,tp(t)), t=1,2, ..., are
available for any x, where the distribution of the random vector ©(-) does not

depend on x. Robbins-Monro [11] proved that under certain assumptions the scheme
("the Robbins-Monro scheme')

x(1) = x(t=1) + y(£)Q(x(t-1) yo(t)) (36)
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gives a sequence of estimates that converges to the (a) solution of €¢35) in
the mean square sense. Convergence w.p.1 of (36) has then been studied in se-
veral papers, e.g. [12] - [14], and the theorems of these studies do not dif-
fer very much conceptually from Theorem 1. The functions used in the conver-—
gence theorems of e g [12] or [13] can be interpreted as Lyapunov functions
for the differential equation (33) and condition (20) of Theorem 1 is ensured
by further conditions on this function, rather than by the more practically
oriented theorem 4, see e g [12], condition A, or {13}, condition B, p. 184,
It can also be remarked that the condition

E(x-x*)1Q(x,0) < 0 (37)

frequently used in Tsypkin's work, see e g [15]1, [16], clearly can be under—
stood as a stability condition for (33) with V(x) = ||x--x*||2 as the Lyapunov

function. Tsypkin's condition

T P 2
E(x=x*)"QUx,@) (x-x*) < C1 + |[[x[| ) (28)
is then a variant of the "boundedness condition".

The convergence results thus obtained are, however, essentially restricted to
the case ¢(-) being independent random variables (A(:) = 0) and y(+) satisfying
(17) which is quite restrictive for control and estimation application. These
conditions are inherently tied to the use of martingale theory in the proofs and
cannot easily be dispensed with. Our Theorem 1 when applied to (36) is thus more
general in that ¢(+) may be dependent (generated as white noise through a linear
filter) and y(*) has only to satisfy A.7. This is satisfied e g for y(t) = C ¢ ¢
0 <a <1, while (17) admits only 1/2 < ¢ ¢ 1. Notice that slowly decreasing
gain sequences may be of interest in practice to achieve fast convergence of the
sequence of estimates. We must, however, admit that we in return require more
regularity of Q and of e(+). On the other hand, non-smoothness of the involved
functions is seldom a problem in applications, and we believe that our version

of the convergence theorem is more widely applicable.

In addition, Theorems 2 and 3 are important results for convergence analysis,
and we are not aware of similar previous results for the Robbins-Monro scheme.

In many applicatiorsit is of interest to minimize a function EwJ(x,w) = P(x)
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with respect to x. If the derivative of J with respect to x can be calculated,
the stationary points of P(x) can be found as sclutions of

Em[ﬁi‘ J(x,w)] = 0

This is a problem that can be solved using the Robbins-Monro scheme and then

the corollary of Theorems 1 and 2 is quite useful.

If the derivative of J cannot be calculated it seems natural to replace it with
some difference approximation. This was suggested by Kiefer and Wolfowitz [17]
and their procedure has also been used for various control and estimation Prob-
lems. Kushner has in several recent papers discussed interesting variants of
this procedure, see e g [18], [19]. Our theorems are not directly applicasble to
the Kiefer-Wolfowitz scheme as they stand, since condition A.3 (or B.3) is not
valid. The reason is that the function Q in this case increases to infinity with
t. For the case of additive noise to the function to be minimized, however, it
can readily be shown that Theorems 1 - 4 hold anyway. Details are given in {53
and [7].

Stochastic approximation algorithms have been applied to a broad variety of
problems in control theory, see e g Tsypkin [15], [16], Fu [20], and Saridis

et al [21]. The approach is known as "learning systems", and in this framework
estimation and identification problems, adaptive control, supervised and unsuper-
vised pattern recognition etc can be treated.

An approach that is related to stochastic approximation is suggested by Aizerman
et al [13]. Their "Potential Function Method" can be applied to various problems
in machine learning.

Therefore the Robbins-Monro scheme appears in various disguises in many control
and estimation algorithms, and . consequently the described techniques can

be applied to these. A particular example is given below, o

Example 2 - An autématic classifier. -

A classifier receives scalar valued signals @(t) which may belong to either of
two a priori unknown classes A and B. The classifier must find a classification
rule, 1 e a number e(t) such that @(t) is classified as A if @(t) ¢ (t) and B



Otherwise. The number c(t) can € g be determined as follows:

ett) = () + xBee) )2

where
A A . . NPT
A {x (t=1) + ) [e(t) - ¥ (t=1)) if @(t) is classified as A
X(t) =
xA(t~1) otherwise (39)

XB(t) is defined analogously. Clearly, xA(t) is the mean value of the outcomes
classified as A. This scheme is discussed by Tsypkin [22 ] and Braverman [23].

Let ¥(t) have the distribution shown in Fig. 2 consisting of two triangular
distributions. The probability of outcomes in the left triangle is A. We assume
that &(+) is a sequence of independent random variables. Clearly, it is desir-—
able that the classification rule, the number c(t), should converge to some value
between -1 and +1. Introduce

x (t)

xA(t)J

x(t) = [B

Then (39) can be written

X(t) = x(t=1) + y(t)Q (x(t-1),0(1)) (40)
where
( ¢ A B0
Qx,9) =

’ QB(XA:XB:’(\O)
and
A A B tﬂ-'xAif<P<-;-(xA+xB)“a B
QX x",0) = 4 1 A B and Q” analogously

0 if@>-2~(x'+x)+6

where the values for -%— (xA+xB) -8 g g % (xA+xB) + § are such that QA is a
continuously differentiable function of ¢ and x. Here & is some small positive
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number.

Clearly, the algorithm (40) together with the observation equation
@(t) = e(t) (413

is a simple case of (32). Since ©(*) = e(*) is bounded we may use assumptions

A. Obviously A.1 to A.5 are satisfied, and let us assume that v(+J is such that
A.6 - A.9 hold. (Here A.3 holds in virtue of our somewhat artificial modifica-
tion of QA; but this example will illustrate that a heuristic use of the present
convergence results will reveal important features of the algorithm. )

E¢Q(x,w) = £(x) is readily computed as follows. Fop a given x the corresponding
classification point is c(x) = (xA+xB)/2. fA(x) is then the mean value of the
distribution left of the point o(x), minus xA. fB(x) is found correspondingly.
The algebraic expression for f(x) as a function of x and a is lengthy and is
omitted.

We first note that by construction, the estimates are confined to the area D:
3> xB 2 iﬁ > =3. Therefore condition (20) of Theorem 1 is trivially satisfied.
Analytical treatment of the differential equation % = f(x) is not easy, but its
trajectories can easily be determined by numerical solution and they are shown
in Fig. 3 for two choices of A. Fop the case A = 0.5, (Fig. 3a) there is con-
vincing evidence that the point x* = (~2,2) is a stable stationary point with
global domain of attraction. Therefore, for ) = 0.5 it follows from Theorem
that x(t) » x* w.p.1 as t + », which glves a correct classification rule o* = 0.
The case A = 0.99 (Fig. 3b) corresponds to a common situation where errors that
occur rather seldom (1%), "outliers", shall be deteéted. In this case there are
two stable stationary points of the differential equation, x* = (-2,2) and x** =
= (=2.3, ~1.4). There is obviously a non zero probability that x(t) belongs to
the domain of attraction of x** i.o. Therefore Theorem 1 shows that for A = 0.99,
and for any starting value »(0) there is a non zero probability (that depends on
x(0)) that x(t) + x** a5 t + «, This gives an asymptotic classification rule

e** = ~1.8, that classifies 39% of the "correct values" as outliers. For thig
case simulations of the classifier are shown in Fig. 4. In fact, the simulation
leading to the undesired value c** appeared only after several (257) attempts
and from simulations only it might have been tempting to conclude general con-

vergence to c¥,
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In this example it is cumbersome to find a suitable Lyapunov function for

the stability problem. However, as seen in Fig. 3 numerical solution of the
ODE yields sufficient insight into the stability properties. Such detailed
information can naturally be obtained only if the dimensionality of the prob-

lem is small.

/\ = i
% —
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1 ] L] L
3 =2 6 + 2 3

Fig. 2 - Probability density function
of the random variable to be

classified by the automatic

classifier.
b *
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; ] ——)
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Fig. 4 - Simulations of the classi- Fig. 3 - Trajectories for the ODE
fier (40) for the case that is associated with the
A = 0.99. self-learning classifier (40,

a) x = 0.5 b) x = 0.99
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Example 3 - Equation error identification methods.

A common way of modelling dynamic systems is as a vector difference equation
(VDE),

y(t) + Agy(t=1) + ... + A y(t-n) = Bjult-1) + ... + B uft-n) (32)

where y(t) and u(t) are colum vectors and A; and B, are matrices of appro-

priate dimensiong. Introduce

- T :
8 = (A1 cee An 51 Pe Bn) (43)
T iy y
w(t) = (=y(t=1" ... =y(t-n)" u(t-1) ... ult~n) )
Then (42) can be written
_ AT
y(t) = 8 p(t) (4y)

We may remark that (44) also covers several other interesting estimation prob-
lems, not necessarily related to system identification.

Usually the true system cannot be described exactly in the form (44). Suppose
that it can be described as

y(t) = egw(t) + v(t) (u5)
where v(:) is a disturbance that can be modelled as
V() = D(g ey (£) (46)

Here D(quj) is a matrix with rational functions of the backward shift opera-
tor th as entries and e,(+) is a stationary sequence of independent random
vectors with finite moments. It is assumed that the denominator polynomials

in D(z) (z replacing Q™) have all roots outside the unit circle, i e D(q™ 1)
is an exponentially stable filter.

Even if an exact description of the system is impossible, a & can be deter-
mined that gives a model (uy) which describes the recorded data as well as



possible. Often 8 is determined by minimizing a criterion based on the equa-

tion error
vty - atycey |I? (47)

Several algorithms based on the idea of somehow minimizing (47) have been sug~
gested in the literature, see e g [24] and also [25] for a comprehensive treat-
ment. The probably best known method of this type is the least squares algo-
rithms, see e g [24]. Then the sum

N i
Do llyee) - ety || (48)
t=1

is minimized w.r.t 8 to obtain the estimate 8(N) based on measurement up to
time N. An important and well known feature of this method is that the sequence
of estimates can be obtained recursively as

T
8t) = 8(t-1) + YK [y(t) - 8¢t-1)Tyee) ] (49a)
K(t) = R‘"%t)w(t)/{q + () (W R eypee) - ’s)] (49b)
RCE) = ROE=1) + () [p(0)ue)T - Ree-1)] (49c)

- » B
(usually (49¢? is written in terms of R (t), which makes it of "Riccati type"}.
For the minimization of (u48) v(t) has to be taken as 1/t. Other sequences ()
correspond to criteria where old measurements are discounted, which often is

relevant in practice.
Let ug assume that the input to the process is determined as

u(t) = Pl ey (t) + H{gT300t-1))yct) ' (50
where F(qu‘i} and H(q—ﬂi »8) are matrices with rational functions of the backward
shift operator q-1 as entries. Let e,(*) be a stationary sequence of random
vectors with finite moments, that are mutually independent and also independent:
of e,(+). Moreover, H(q—?e) is a causal operator that allows cutput feedback
terms in the input. This feedback law may depend on the current parameter esti-
mate as is further discussed in Example 5.
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It is clear that the rational filters in (46) and (50) can be represented in

& state space form,

z2,(t+1) = Az () + B e, (t+1); v(t) = (I 0 ... Nz (1) (81
z,(t41) = A (B(t))z (£) + 2 + B 8y (t+1) + By (t+1)

u(t) = (T 0 ... 0)z (1) (52)

where z_( *) and zu(‘) are the corresponding state vectors of appropriate di-

mensions. We may now form the "observation vector',
T il T ToT (53
olt) = fy(t)™, ity z,(t)7, 7, (1)7] (53)

which obeys

: . 3 {e1(“t)
@e(t) = A {8(t-1))p(t~1) + B
(ﬁ‘i‘ / @Lazc.t) (54)

where the matrix Atp(') is formed from (45), (43), (51), (52) in an obvious man-~
ner. Its eigenvalues are the poles of the filters D(q"1), }“(q-13 and of the
closed loop system which is obtained for (42) with a constant feedback (50)
using 8{t-1). There are also a number of eigenvalues in the origin, arising
from the shifting of the vector ¢(t). Notice that A (8) depends on 8 only since

the feedback filter ‘?{(q 38) does. Let us ta.ke

x(t) = (80t) 01T Ret))T (55)
Then eq {48) takes the form

xCt) = x(t-1) + v(0Q(t3x(t-1)50(t)) - (56)

with an obvious definition of Q(tix,0) from (49). Therefore the algorithm (49)
together with (54) is of the general form (32). Let us check if assumptions B
of Zection ! are satisfied. Conditions B.1 and B.2 are satisfied due to our
assumptions. By straightforward calculations it is readily shown that B.3 is
satisfied in the open area Dg = {x|R > 0}, (cf (55)) e g with

: D
Kilxyy0,vd = (18] + p)(1 + lo| + V)Z/(‘1 - p|R 1!)‘ (57>
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for p= olx) < 1/|R"1[. Then B.4 will be satisfied with
KQ060s05v,) = (J8] + )] + 20 + v)/(1 = BTy (58)

Condition B.5 is satisfied if the matrix H(q~1;8) is Lipschitz continuous in 8.

For condition B.6 we define

e1(t)

o(t,%) = A O)B(t-1,%) + B [SE = (87 cor® ﬁ)T]

ez(t)

Since ei(') are stationary, ®(t,x) wiil approach stationarity exponentially,
for all X, such that & makes the closed loop gystem stable. Therefore the 1i-
mits

- - - - T - T
£8) = Lim E §(,0[5(t,50 - 853(t,%] (59a)
6(8) = lim E 3(,509¢t, 0" (59b)
Tt

are well defined where y{t,%) and ¥(t,x) are the corresponding parts of 5(t,§),

and
o R 12(6)
lim E Q &;X,@(tsX)) = = -
torao col (G(8) - R)) (60)

s0 B.6 is sgatisfied. Moreover, from (57) and (58) it follows that B.7 holds,
since all moments of‘@(t,x) and v(t,x) exist. Conditions B.8 - B.11 about the
sequence v(*Y are assumed to be satisfied.

The conclusion therefore is that the differential equation

o0 = " (nef(n) (61a)
L R(0 = 6B} - R(x) (61b)

can be associated with the algorithm (49). In the remaining part of this
example, we shall assume that +the feedback matwdix ¥ does not depend on A
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(i e there is no adaptive feedback), that the matrix F(z) has full rank a e

z and that ei(-) are full rank processes. (Adaptive feedback is further dig-
SuSSfd in Example 5;) TEis means that the matrix Aw(-) does not depend on 8,
o(t,x) = o(t), and y(t,x) = y(t), so the values in (59) are directly defined
in terms of input-output covariances. In particular, the matrix G is indepen—
dent of 8 ; G(g) = G.

Introduce

r = E o(tvit)’ . (62)
and we have, using.(45)5

£(8) =G+(8, - 8) + r (63)

Hence, (61) can be rewritten as

d

—-
ar

6(t)

1

R (68,46 ') - 6] (64a)

d \

a7 R(1) = G - R(7) (64b)
With

B(r) = 6(r) - (8467 'p)

ana

o AT
V(8,R) = 8RB

we have

L V(B0 ,R(0) = - 28%6F 36 - R(0)F = - o (6 + RCT)) B0 (85)

50 that V is a Lyapunov function for equation (64) or (61) that assures that

the stationary point

8 = 6.+ G p (66)
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has a domain of attraction equal to Dp. Therefore condition (21) of Theorem 1
is satisfied with DA = DR' To check condition (20) we note first that +he as=-
sumption on full rank and finite‘moments of ei(') implies that CI » G » §T for
some § > 0, C < «», Therefore also g-I < R(t) < 2CI and |o(t) | < 2C i.0. w.p.1.
Ve also note that (49a) can for large 6(t-1) be written

8(t) m (I -~ R (t)y(f)gb(t) Je(t-1

which shows that 8(t) can, W.p.1, not tend to infinity. Hence x(t) belon ngs to
1 m 1

a compact subset of'DR i.0. w.p.1 and condition (20) is satisfied. Theore

now implies that
8(t) » 8% w.p.1 as t » w

In particular, we see that the least squares estimate is congistent only if
r = 0, which essentially is the same as requiring that v(-} is a sequence of
uncorrelated random variables, and that the current u(t) is uncorrelated with

future v(s), s 3 t.
Uther variants of equaticn error methods are treated ana 1logously.

These facts are, of course, well-known, [24], [25], at least for the case
y{t) = 1/t, but one reason for this example is that the analysis extends into

less trivial problems. 5

These three examples have all been for the case where A(-) in (32b) actually
does not depend on x. The convergence part in this case can, at least under fur-
ther assumptions, notseldom be treated by more conventional statistical methods
When A(+) does depend on x, conventional approaches become much more difficult,
and in fact, also in the proof’ of Theorem 1, a major burden is to keep control
over the coupled stability questions in (32a) and (32b). We shall now conclude

with two examples where the inclusion of x-dependent A-matrices is necessary.

Example 4 - Recursive identification algorithms.

The only disadvantage of the least squares algorithm (4¢) is that it in general
glves biased estimates, and several recursive algorithms have been suggested to
overcome this problem, see & g [24], [26] - [28]. Most of them have the common

feature that the disturbance v(+) in (45) is further modelled. We shall in this

example assume that the system (42) is single input-single output. In *he recur-



sive generalized least squares algordithm, [291, v(*) is modelled as an AR pro-
cess. In the "extended least squares method",. [30], [31], see also (11, v(-) is

modelled as an MA process
v(t) = C(q#’)e(t) = elt) + cpe(t=1) + ... + ene(t-'-n} (67)

where e(*) is a sequence of independent random variables. The same is true for

the "recursive maximum likelihood method”, ¢f [1] and [28]. The point is that

when the c-parameters of (67) are ineluded in the b-vector, the "residusl
e(t-1) should . enter in the W t)~vector. But since they are not measurahle,
they are replaced by the estimated re siduals,

e(t) = y(t) - 8-y ()
where
‘\L‘E.(t) z («-y(‘i;‘-’T) cee =y(ten) ult=1) ... ult-n) elt-1) ... a(.t_‘m}l

Clearly. here the generation of e(t) and hence of WE{ t) depends on 8(t~1), *xevno
fore in eq (54), i e the generation of the observation vector @(t) of Example 3
(with o (t) replacing v(t) in ( o*)] the matrdix A will always depend on B(t-1}3 évr_-:-n
if tl’mze is no adaptive feedback present (H(q" 1,9) in (50) independent of a).

The extended least squares method, e g, can be formail 1y described by (43) with

gt replacing Y(t) and the di fferential equation (61) ig still relevant for
cﬂ’)aiy‘:l‘,' of this method, see [1], Notice, however, that since A(*) in (54) de-
pends on 8 the variables P(t;%) and y(t,%) in (59) indeed depend on & and hence
80 does G. Therefore (63) does not hold and the convergence procf of Example 3
cannot be applied. In fact, using Theorem 2, it can be shown that there exist
systems for which the algorithm does not converge, [11].

In {28) a comprehensive study of same recursive identification methods is made,
partly based on Theorems 1, 2 and 3. In particular, it can be shown that for
recursive maximm likelihood method, the expected value of the log likelihood
function can be chosen as Lyapunov function for the associ ated differentizl
equation. The con vergence properties are therefore according to the corollary

ag good as those for off-14 e maximum likelihood identi ification, of also [11.

For the case (67) the stabili ty region Dq for ‘AID( ) is given by



Dg = {8]C(z) = 0 = |z] > 1}

Since this region is known to the user, it is useful, and often necess to
& P ary

project 8(t) into Dy using e g the projection algorithm (28), (29). )

Exanple 5 ~ Self-tuning repulators

As remarked in Section ? the structure (32) can be understood as typical for
adaptive control of linear systems. We shall in this example discuss an appli-
cation to the self-tuning regulator, described in [321; see also [2] and {uJ.
This regulator is based on least squares identifica ation, (49),and the output
feedback law is determined from the curvent parameter estimates. Usually the
feedback law is chosen to be a minimum variance regulator, [321, but here it
couid be a general linear regulator as in (50), where perhaps in most cases F

15 Zero.

In this case the matrix A (8) in (54) does depend on 6 since the feedback term
does. However, the point now iz that, in contrast to conventional analysis of
the least squares algorithm, most of what was sald in Example 3 still holde.
Up to equation (81) +he development was quite general. This differential equa~
tion is valid also in the case of adaptive feedback, although G and v now are
functions of 6. If v(+) is sequence of independent random variables, then
7= U and (84) and (65) hold. ((65) does not hold if » « 0 depends on 6.) We
therefore still find that the points defined by

b, = {8]566) = o]

form an invariant set with global domain of attraction. Clearly 8. € ch and

3
MMﬂmrDﬁcmmahsmmEpmﬂmc%gmﬁ'mr&edowﬁrf feedback law and mo-
del order. There is a furthep complication before Theorem 1 can he applied. In
this case the a:r"omaI)-‘Q is unknown, i e +he area of such & that inserted in A Con-
tant feedback law (50) make the closed loop system stable L& (8) in (54) has
all eigenvalues inside the unit ClFFle) Therefore we cannot guarantee stabili-

ty by pre) aotnng # into D as in Example 4. Hernce condition (20) of Theorem 1

has tc be verified by othen considerations, e g, by showing that the over-all
system has a cevtain stability property as in [33]. But when this i howry

Thecrem 1 proves convergence of 8(t) into D, w.p. 1. let us vepeat that this

holds for the case of arbitrary feedback law, but under the assumption that

v(-} is white noise. Tor gensral noise v(¢) the convergence analysis s mopre
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cumbersome, but it can be performed in certain special cases, 2], 41, We pe-
fer also to these papers for more details how Theorems 1, 2 and 3 can be used
in the analysis of self-tuning regulators. Numerical solution cf the agsocia-
ted differential equation has turned ocut to be a valuable tool here, and it has

<

bean used in {34] as well as in the references above,

9. CONCLUSIONS

Recursive algorithms like (1) have been analysed in various contexts, However,
we would like to stress again that when @ in (1) is generated as in (2), the

analysis becomes drastically more difficult. The reason is that (1) no longer

I3

1s yecursive in x for analysis purposes: the whole history of x(<) enters in

£ £y
L and {7

each step of (1), Moreover, the coupled stability probiems between

are intricate. But the structure (i), (2) is nonetheless common in estimation

.

and control problems; a ‘typical example is adaptive control of linear stochag-
tic systemg. The analysis of this case is also k xnown to be usually very diffi-
cult,

With the present a roach we are able to give a general treatment of (1), (23
2 3

under assumptions that do not appear to be restrictive. The examples indicate

that the theorems may be applied to rather diverse problems, and perhaps the
Techn \1 also may serve as a basis for a unified approach to the anglysie of

adaptive controllers. Tn addition, an extension is obtained for the cenvention-
al convergence results in the smpw case where A(+) in (2} is independent of x,

=

We may remark that the analysis is restricted to the asymptotic behaviour, con-

gence, possible eonver’genc‘er points etc of the a Lgordthm. Two related algo-

rithms which are associated wi th the same dt.iﬁffez‘»en tial equation may differ no-

Tlcebly in transient behaviour and convergence prate.

{

o

1t the desarihed theory, we would like to stress the intuitive content of +he

theorams and the methodology of analysis as outlined n Section

doubt important to appreciate the exact formulations of the theorems and to know
the exact conditions under which they are valid. But it is perhaps equally re-

warding to use the properly defined differential equation as a general instru-

B

ment for analysis in a more heurdstic fashion. This may be excunplifierji ;

rem 3, which has a fairly technical formilation and is probab) y more valuable as

a "moral supnort" fop studying the trajectories of the differaent

than in its literal content:.
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