
Analysis of Redundancy and Application Balance in the
SPEC CPU2006 Benchmark Suite
 Aashish Phansalkar Ajay Joshi Lizy K. John

ECE Department
The University of Texas at Austin

 {aashish, ajoshi, ljohn@ece.utexas.edu}

 Abstract
The recently released SPEC CPU2006 benchmark suite

is expected to be used by computer designers and computer

architecture researchers for pre-silicon early design analysis.

Partial use of benchmark suites by researchers, due to simulation

time constraints, compiler difficulties, or library or system call

issues is likely to happen; but a random subset can lead to

misleading results. This paper analyzes the SPEC CPU2006

benchmarks using performance counter based experimentation

from several state of the art systems, and uses statistical

techniques such as principal component analysis and clustering

to draw inferences on the similarity of the benchmarks and the

redundancy in the suite and arrive at meaningful subsets.

 The SPEC CPU2006 benchmark suite contains several

programs from areas such as artificial intelligence and includes

none from the electronic design automation (EDA) application

area. Hence there is a concern on the application balance in the

suite. An analysis from the perspective of fundamental program

characteristics shows that the included programs offer

characteristics broader than the EDA programs' space. A subset

of 6 integer programs and 8 floating point programs can yield

most of the information from the entire suite.

1. Introduction
SPEC, since its formation in 1988, has served a long

way in developing and distributing technically credible real-world
application-based benchmarks for computer vendors, computer
architects, researchers, and consumers. The SPEC CPU
benchmark suite, which was first released in 1989 as a collection
of ten compute-intensive benchmark programs, is now in its fifth
generation and has grown to 29 programs. In order to keep pace
with the technological advancements, compiler improvements,
and emerging workloads, in each generation of SPEC CPU
benchmark suites, new programs are added, programs susceptible
to unfair compiler optimizations are retired, program run times are
increased, and memory access intensity of programs is increased
[4][11][24]. The SPEC CPU2006 benchmark suite comprises of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ISCA’07, June 9-13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006...$5.00

12 integer and 17 floating point compute-intensive programs for
measuring the performance of a processor, memory subsystem,
and compiler.

A poorly chosen set of benchmark programs may not
accurately depict the true performance of a processor design. On
one hand, selecting too few benchmarks may not cover the entire
spectrum of applications that may be executed on a computer
system; while on the other hand, selecting too many similar
programs will increase evaluation time without providing
additional information. Therefore, in order to reduce the
benchmarking effort, a benchmark suite should have programs
that are representative of a wide range of application areas without
having many programs with similar characteristics.
Understanding similarity between programs can help in selecting
benchmark programs that are distinct, but are still representative
of the target workload space.

The microprocessor report from October 2006 presents an
article [18] which analyzes the SPEC CPU2006 benchmark suite,
and raises a question,

“Is SPEC CPU2006 well-balanced?”

There are several programs from certain application areas - for
example, in the integer suite, there are 3 programs (458.sjeng,

445.gobmk, 473.astar) from the Artificial Intelligence

area, and in the floating point suite, there are 4 Fluid Dynamics
programs (410.bwaves, 434.zeusmp, 437.leslie3d,

470.lbm), but no benchmarks from Electronic Design

Automation (EDA) application area. The previous generation
SPEC CPU suites contained EDA applications, 175.vpr and
300.twolf (CPU00), espresso and eqntott

(CPU89 and 92). Is losing these applications that are

representative of EDA workloads, a weakness of CPU2006? Or,
do some other programs included in the suite have characteristics
similar to the EDA programs? When multiple programs from one
area are included, is there sufficient uniqueness to warrant their
inclusion? In this paper, we analyze these issues based on
(dis)similarity between fundamental performance characteristics
of benchmarks.

The article in microprocessor report [18] also discusses
redundancy in benchmark suites. It states –

“In truth, rather than too few programs, the several

SPEC CPU suites have tended to contain too many

programs: that is, they invariably comprehend

redundant programs that add little or nothing to the

mixture of operations represented and whose

inclusion or exclusion makes little or no difference to

the overall score achieved.”

 How true is this about SPEC CPU2006? How much redundancy
is there in the CPU2006 suite? Analysis of (dis)similarity between
programs can also help in addressing this question. Also, partial

use of benchmark suite is common for simulation based studies.
Citron [2] [3] conducted a survey on benchmark subsets used by
computer architecture researchers in top computer architecture
conferences and showed that partial use of subsets can lead to
incorrect and misleading inferences. The information about
similarity between programs can be used to identify a
representative subset of programs and their input sets, as opposed
to a random selection of a partial suite.

In this paper we apply multivariate statistical analysis
techniques such as Principal Components Analysis (PCA) and
cluster analysis to (i) study the balance of the CPU2006
benchmark suite, (ii) identify similarity/dissimilarity between
CPU2006 programs, (iii) identify similarity between multiple
input sets and find representative ones, and (iv) propose subsets of
CPU2006 programs that are representative of the whole set. The
characterization of programs in this paper is based on run-time
program profile information and measurements from five different
state-of-the-art machines that represent the most popular
architectures.
 The remainder of this paper is organized as follows. Section 2
gives an overview of the SPEC CPU2006 benchmark suite and its
instruction stream characteristics. Section 3 describes the
methodology used to measure redundancy between programs and
proposes a representative subset of programs and inputs sets.
Section 4 studies the application balance in the SPEC CPU2006
suite and compares them to programs from SPEC CPU2000.
Section 5 surveys previous research work related to our study.
Finally in Section 6 we conclude with a summary of the key
results from this study.

2. OVERVIEW OF SPEC CPU2006

The SPEC CPU2006 suite, like its predecessors is divided

into two parts: the integer component (CINT2006 benchmarks)
and the floating point component (CFP2006 benchmarks). The
integer group consists of 12 programs, written in C and C++, and
the floating point group consists of 17 programs written in C,
C++, and FORTRAN languages. In this section, we provide an
overview of the runtime characteristics of SPEC CPU2006 integer
and floating-point benchmarks in terms of their instruction mix
and instruction locality. These runtime characteristics are
measured on a Pentium D processor (2.1 GHz, 16KB L1 data and
instruction caches, and 2x2MB (4MB) L2 cache) system running
SUSE Linux 10.1 and were compiled using Intel

C/C++, and FORTRAN compiler V9.1. The performance

counter measurements were carried out using the PAPI [5] tool
set.

2.1 Instruction Mix
Table 1, shows the dynamic instruction count and the

instruction mix of the programs. The dynamic instruction count of
24 out of the 29 benchmarks is of the order of a few trillion
instructions, as compared to a maximum of few hundred billion
instructions per program in the CPU2000 suite – further
exacerbating the problem of simulation time.

There are several interesting observations from the
instruction mix of the programs. For integer programs, the
percentage of branches in the dynamic instruction stream is close
to the typical 20%. However, two programs, 456.hmmer and

464.h264ref only have 7% branches. In 483.xalancbmk,

one of three C++ programs in the integer suite has 25% branches.
In comparison, the other two C++ programs, 471.omnetapp and

473.astar, are more typical with 20% and 15% branch

instructions respectively. Among the floating-point programs,
447.deall, 450.soplex and 453.povray have

approximately 15% branches where as most of the other floating-
point programs have less than 5% branch instructions. There are a
few floating-point programs, 410.bwaves, 470.lbm,

436.cactusADM, which have less than 1% branches. The

large average dynamic basic block size in these programs suggests
a high degree of parallelism that can be exploited by out-of-order
microarchitectures.

Table 1: Dynamic Instruction Count and Instruction Mix of SPEC
CPU2006 Integer and Floating-Point Benchmarks.

Name - Language

Inst. Count

(Billion) Branches Loads Stores

CINT 2006

400.perlbench –C 2,378 20.96% 27.99% 16.45%

401.bzip2 – C 2,472 15.97% 36.93% 12.98%

403.gcc – C 1,064 21.96% 26.52% 16.01%

429.mcf –C 327 21.17% 37.99% 10.55%

445.gobmk –C 1,603 19.51% 29.72% 15.25%

456.hmmer –C 3,363 7.08% 47.36% 17.68%

458.sjeng –C 2,383 21.38% 27.60% 14.61%

462.libquantum-C 3,555 14.80% 33.57% 10.72%

464.h264ref- C 3,731 7.24% 41.76% 13.14%

471.omnetpp- C++ 687 20.33% 34.71% 20.18%

473.astar- C++ 1,200 15.57% 40.34% 13.75%

483.xalancbmk- C++ 1,184 25.84% 33.96% 10.31%

CFP 2006

410.bwaves – Fortran 1,178 0.68% 56.14% 8.08%

416.gamess – Fortran 5,189 7.45% 45.87% 12.98%

433.milc – C 937 1.51% 40.15% 11.79%

434.zeusmp–C,Fortran 1,566 4.05% 36.22% 11.98%

435.gromacs-C, Fortran 1,958 3.14% 37.35% 17.31%

436.cactusADM-C, Fortran 1,376 0.22% 52.62% 13.49%

437.leslie3d – Fortran 1,213 3.06% 52.30% 9.83%

444.namd – C++ 2,483 4.28% 35.43% 8.83%

447.dealII – C++ 2,323 15.99% 42.57% 13.41%

450.soplex – C++ 703 16.07% 39.05% 7.74%

453.povray – C++ 940 13.23% 35.44% 16.11%

454.calculix –C, Fortran 3,041 4.11% 40.14% 9.95%

459.GemsFDTD – Fortran 1,420 2.40% 54.16% 9.67%

465.tonto – Fortran 2,932 4.79% 44.76% 12.84%

470.lbm – C 1,500 0.79% 38.16% 11.53%

481.wrf - C, Fortran 1,684 5.19% 49.70% 9.42%

482.sphinx3 – C 2,472 9.95% 35.07% 5.58%

2.2 Instruction Locality Based on Subroutine

Profiling
In order to understand the code locality in the CPU2006

programs, we perform subroutine profiling using the PIN dynamic
instrumentation tool [17]. PIN can identify hot subroutines based
on subroutine call frequency. It can also count the number of
dynamic/static instructions in the subroutines. Figure 1 shows the
locality characteristics for at least one input set of integer and

floating point benchmarks. Appendix I shows a table with the
summary of data measured for this experiment. The cumulative
percentage of dynamic instructions executed by a program is
shown on Y-axis and the cumulative count of static instructions is
shown on the X-axis with a log scale. The first point in the line
plot for each benchmark represents the hottest subroutine - X-
coordinate shows the number of static instructions in the routine
and Y-axis the percentage of dynamic instructions that it
represents. The second, third, fourth and fifth points respectively
represent the top five, ten, fifteen and twenty hot subroutines.
Many programs initially show a steep upward climb as the static
instruction count increases, which suggests very good instruction
locality.

0 1 2 3 4 5

x 10
6

0

10

20

30

40

50

60

70

80

90

100

Static Instruction Count (Cumulative)

P
e

rc
e

n
ta

g
e

 o
f

D
y

n
a

m
ic

 I
n

s
tr

u
c

ti
o

n
s

 (
C

u
m

u
la

ti
v

e
)

400.perlbench-1

401.bzip2-1

403.gcc-3

403.gcc-9

429.mcf

445.gobmk

456.hmmer-2

458.sjeng

462.libquantum

464.h264ref-3

471.omnetpp

473.astar-2

483.xalancbmk

(a) CINT2006 Benchmarks

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

10

20

30

40

50

60

70

80

90

100

Static Instruction Count (Cumulative)

P
e

rc
e

n
ta

g
e

 o
f

D
y

n
a

m
ic

 I
n

s
tr

u
c

ti
o

n
s

 (
C

u
m

u
la

ti
v

e
)

470.lbm

410.bw aves

444.namd.stdout

437.leslie3d

436.cactusADM

433.milc

434.zeusmp

435.gromacs

482.sphinx3

454.calculix

459.GemsFDTD

450.soplex-2

450.soplex-1

453.povray

447.dealII

465.tonto

416.gamess-3

416.gamess-1

416.gamess-2

 (b) CFP2006 Benchmarks

Figure 1. Instruction locality based on code reuse in the top 20 hot
subroutines for SPEC CPU2006 benchmarks.

 As shown in Figure 1 the top twenty subroutines cover

80% or more of the dynamic instructions in almost all
benchmarks. The integer benchmark 456.hmmer shows a very

high reuse of code in the hottest subroutine. More than 95% of the
instructions come from the hottest subroutine which has 11,080
static instructions. Similarly the floating point benchmarks
436.CactusADM and 470.lbm show a very high code–reuse

and hence good instruction locality. On the other hand, the 20 hot
subroutines in 471.omnetpp, 483.xalancbmk and

403.gcc account for a very low percentage of dynamic

instructions, suggesting a relatively poor instruction locality. The
trend observed in the previous generation SPEC CPU benchmark
suites [19] continues with gcc exhibiting the poorest instruction

locality among all the benchmark programs. In SPEC CPU2006,
403.gcc-9 has the poorest instruction locality with 5 million

static instructions only accounting for approximately 45% of the
dynamic instructions. As such, we can conclude that similar to
the programs in the previous generation SPEC CPU benchmark
suites, most of the SPEC CPU2006 benchmarks exhibit good
instruction locality, but there are some notable exceptions with
very large instruction footprints and relatively poor instruction
locality.
 Apart from the instruction locality, there are other
microarchitectural attributes which can be measured during
execution of the benchmark programs. Table 2 shows the range
of some important characteristics measured using performance
monitoring counters on a Pentium D system described earlier in
this section, illustrating the diversity of the benchmarks in the
CPU2006 suite. Many characteristics are seen to vary orders of
magnitude between the minimum and maximum.

Table 2: Range of important performance characteristics of SPEC
CPU2006 benchmarks

Metric Min Max

I-cache miss ratio ~ 0 1.7%

L1 D-cache miss ratio 6.3% 33%

L2 cache misses per
instruction (per L2 access)

~0

 (0.01%)

2.4%

(49%)

DTLB miss ratio 0.2% 8.4%

3. REDUNDANCY IN SPEC CPU2006 SUITE

Although the SPEC CPU2006 benchmark suite comprises of

programs from different application domains, it is possible that
they exhibit similar program characteristics. In this section we
outline the methodology to measure the (dis)similarity in
fundamental program characteristics of benchmarks. We then
apply this technique to measure the redundancy of programs in
the SPEC CPU2006 benchmark suite, and propose a subset of
representative programs and input sets that can be used if the time
required to simulate the entire benchmark suite is prohibitive.

3.1 Methodology
 We measured fundamental program characteristics related

to their instruction locality, data locality, branch predictability,
and instruction mix, using hardware performance counters.
These characteristics are microarchitecture-dependent and the
results could be biased by the idiosyncrasies of a particular
machine. Therefore, in order to eliminate this bias we measured
the program characteristics on five different state-of-the-art
machines with four different Instruction Set Architectures (ISAs)
and compilers (IBM Power, Sun UltraSPARC, Itanium, and x86).
Table 3 shows the list of performance counter based
characteristics that were measured for each program on five

different machines. We performed a correlation analysis between
every performance counter characteristic and Cycles-Per-
Instruction (CPI), and only selected characteristics that showed a
good correlation to performance. This process eliminates the
performance counters that exhibit a large variation but have little
or no impact on performance. Note that the important metrics that
affect performance for the integer and floating-point programs are
different. In addition to these characteristics, the variability in
microarchitectures, ISAs, and compilers across the five machines
helps in capturing the differences between the benchmarks. The
hardware performance counter data used in this study was
measured by various members of the SPEC CPU subcommittee
members on their state-of-the-art machines. Also, the
methodology outlined in this section was used by the SPEC CPU
subcommittee as one of the factors in evaluating the candidates
for the SPEC CPU2006 benchmark suite [12]. The confidentiality
requirements prevent us from disclosing the details of the
machines on which this data was measured nor the performance
counter data from individual machines.

Since the measurements are carried out on five different
machines, each performance counter characteristic-machine pair is
treated as a variable. If we have n machines and we measure m

characteristics for each machine, we have n x m variables for each
program. There is a pitfall of directly using these raw variables to
measure similarity between programs. It is possible that some of
these variables are correlated and measure the same inherent
benchmark property. Therefore, using a large number of
correlated variables will unduly overemphasize the importance of
a particular benchmark property. In order to remove the
correlation between these variables, this dataset is pre-processed
using Principal Components Analysis (PCA) [7]. Clustering
Analysis (CA) is then used to group programs with similar
program characteristics. We now describe the two statistical
analysis techniques – Principal Component Analysis and Cluster
Analysis.

Table 3. Program Characteristics used for measuring similarity
between Integer and Floating-Point programs.

Integer benchmarks Floating-Point

benchmarks

Integer operations per
instruction

Floating point operations per
instruction

L1 instruction cache misses per
instruction

Memory references per
instruction

Number of branches per
instruction

L2 data cache misses per
instruction

Number of mispredicted
branches per instruction

L2 data cache misses per L2
accesses

L2 data cache misses per
instruction

Data TLB misses per
instruction

Instruction TLB misses per
instruction

L1 data cache misses per
instruction

3.1.1 Removing Correlation using PCA
 Considering the six characteristics measured on each of

the five different machines, we have thirty characteristics per
program. It is humanly impossible to simultaneously look at all

the data and draw meaningful conclusions from them. Hence
PCA is used to analyze the data. In order to isolate the effect of
varying ranges of each parameter, the data is first normalized to a
unit normal distribution, i.e. a normal distribution with mean
equal to zero and standard deviation equal to 1, for each variable.
PCA helps to reduce the dimensionality of a data set while
retaining most of the original information. PCA computes new
variables, so-called principal components, which are linear
combinations of the original variables, such that all the principal
components are uncorrelated. PCA transforms p variables X1,
X2,...., Xp into p principal components (PC) Z1,Z2,…,Zp such that:

∑
=

=

p

j jiji XaZ
0

 This transformation has the property Var [Z1] ≥ Var [Z2]

≥…≥ Var [Zp] which means that Z1 contains the most information
and Zp the least. Given this property of decreasing variance of the
PCs, we can remove the components with the lower values of
variance from the analysis. This reduces the dimensionality of the
data set while controlling the amount of information that is lost.
We use a standard technique (Kaiser Criterion) to choose PCs
where only the top few PCs which have eigenvalues greater than
or equal to one are retained. In order to capture the entire
information from p original variables, p PCs may be required, but
if there are several correlated variables, a small number of PCs
can capture most of the information from the original variables.

3.1.2 Measuring Similarity using Cluster Analysis
 Clustering is a statistical technique that can be used to

group programs with similar features. There are two commonly
used clustering techniques – K-means clustering and hierarchical
clustering. The K-means clustering algorithm divides a set of N
programs into K groups, where K is a value specified by the user.
Therefore, in order to evaluate different grouping possibilities one
needs to cluster programs for different values of K and then select
the best fit. On the other hand, as the name suggests, hierarchical
clustering is useful in simultaneously looking at multiple
clustering possibilities and the user can select the desired number
of clusters using a dendrogram. Therefore, in this paper we use
hierarchical clustering algorithm. Hierarchical clustering is a
bottom up approach and starts with a matrix of distance between
N cases or benchmarks. The distance is the Euclidean distance
between the program characteristics. The algorithm used for
hierarchical clustering is as follows:
1. Assign each program to its own cluster, such that if we have N

programs we have N clusters.
2. Find the closest (most similar) pair of clusters and merge them

into a single cluster, so that we have one less cluster.
3. Compute distances (similarity) between the new cluster and

the old cluster.
4. Repeat steps 2 and 3 until all items are grouped into a single

cluster of size N.
 This hierarchical clustering process can be represented
as a tree or dendrogram, where each step in the clustering process
is illustrated by a joint in the tree (e.g.: Figure 2). The numbered
scale on the horizontal axis corresponds to the linkage distance
between programs.
 We now apply this methodology to find a representative
subset of programs from the SPEC CPU2006 benchmark suite.

3.2 Subsetting SPEC CPU2006 Benchmarks
To keep pace with advancements in technology and the

increase in size of on-chip caches, the data footprint and run time
of SPEC CPU benchmark programs has been significantly
increased. However for architectural studies that use cycle-
accurate simulators, it is virtually impossible to simulate all
programs and input sets in a reasonable amount of time. If the
same amount of information can be obtained from a smaller
subset of representative programs, it would certainly help
architects and researchers to cut down the simulation time without
compromising on the inferences drawn from their studies.

This section demonstrates the result of applying PCA and
cluster analysis for selecting a subset of benchmark programs
when an architect or researcher is constrained by time and wants
to select a reduced subset of programs from the suite. Figure 2
shows a dendrogram for CINT2006 benchmarks obtained after
applying PCA and Hierarchical Clustering on the performance
counter data from Table 3. The Euclidean distance between the
benchmarks is used as a measure of dissimilarity and single-
linkage distance is computed to create a dendrogram. Seven
Principal Components (PCs) with eigen values greater than one
are chosen and they retain 94% of the variance. In the
dendrogram in Figure 2 the horizontal axis shows the linkage
distance indicating the dissimilarity between the benchmarks. The
ordering on the Y-axis does not have particular significance,
except that benchmarks are positioned close to each other when
the distance is smaller. Benchmarks that are outliers have larger
linkage distances with the rest of the clusters formed in a
hierarchical way. One can use this dendrogram to select a
representative subset of programs. For example, if a researcher
wants to reduce his simulation budget to just six benchmarks, then
drawing a vertical line at linkage distance of 4, as shown in Figure

2, will give a subset of six benchmarks (k=6). Drawing a line at a
point close to 4.5 yields a subset of four benchmarks (k=4). Table

4 shows the resulting subsets of the CINT2006 suite. In clusters
where there are more than two programs, the representative of
cluster i.e. the benchmark closest to the center of the cluster is
chosen as a representative. As we traverse from left to right on the
dendrogram the number of benchmarks in the subset keep
decreasing. This helps the user to select appropriate benchmarks
when simulation time is a constraint.

Figure 2. Dendrogram showing similarity between CINT2006
Programs.

Figure 3. Dendrogram showing similarity between CFP2006
Programs.

Figure 3 shows the dendrogram for floating point
benchmarks in CPU2006. Five PCs are chosen using the Kaiser
criterion which retains 85% of the variance. The two vertical
arrows show the points at which the subsets of size 6 and 8 are
formed. The resulting clusters are shown in Table 5. The distance
of each of the benchmarks in the cluster to the cluster center has
to be recalculated and a representative can be chosen. In Figure 3
there are two main clusters which split at extreme right because
the branch characteristics of the benchmarks, 447.dealII,

450. soplex and, 453.povray exhibit a comparatively

higher branch misprediction rate. In the next section we evaluate
the representativeness of these subsets.

One should note that clustering and subsetting gives
importance to unique features and differences. It helps to
eliminate redundancy and duplicated efforts in experimentation.
However, one should not mistake the mix of program types in a
subset as the mix of program types in real-world workloads.

Table 4. Representative subset of SPEC CINT2006 programs.

Subset of

Four

Programs

400.perlbench,
462.libquantum,473.astar,483.xalancbmk

Subset of

Six

Programs

400.perlbench, 471.omnetpp, 429.mcf,
462.libquantum, 473.astar,
483.xalancbmk

Table 5. Representative subset of SPEC CFP2006 programs.

Subset of Six

Programs

437.leslie3d, 454.calculix,
436.cactusADM, 447.dealII, 470.lbm,
453.povray

Subset of

Eight

Programs

437.leslie3d, 454.calculix,
459.GemsFDTD,436.cactusADM,
447.dealII, 450.soplex, 470.lbm,
453.povray

3.3 Evaluating Representativeness of Subsets
We evaluate the usefulness of the subsets, proposed in the

previous section, to estimate the speedup of the entire suite on

eight different commercial systems. The SPEC web page1 presents
performance results of SPEC CPU2006 benchmarks on
commercial computer systems. We used these results to evaluate
the efficacy of the subset of programs proposed in the previous
section. We obtained the execution times for all benchmarks on 8
different platforms and their execution times on a reference
machine. We then compared the weighted average (geometric
mean) speedup from the subset against the average (geometric
mean) speedup from the entire component (CINT or CFP) of the
suite. When calculating the average speedup from the subset,
each benchmark of the subset was assigned a weight proportional
to the number of benchmarks in its cluster.

0

2

4

6

8

10

12

14

16

18

20

A
M

D
 T

y
a
n

T
h
u
n
d
e
r

K
8
E

A
p
p
le

 iM
a
c

2
.0

G
H

z
 I
n
te

l

C
o
re

 D
u
o

F
u
jit

s
u
 S

C

C
E

L
S

IU
S

 M
4
4
0

In
te

l D
G

9
6
5
W

H

m
o
th

e
rb

o
a
rd

S
u
n
 B

la
d
e
 2

0
0
0

B
u
ll

S
A

S

N
o
v
a
S

c
a
le

 B
2
6
0

(I
n
te

l X
e
o
n

E
5
3
2
0
,1

.8
6
G

H
z
)

D
e
ll

P
re

c
is

io
n

6
9
0
 (

In
te

l X
e
o
n

5
1
6
0
,
3
.0

0
 G

H
z
)

H
P

 I
n
te

g
ri
ty

B
L
8
6
0
c
 (

1
.6

G
H

z

D
u
a
l-
C

o
re

 I
n
te

l

It
a
n
iu

m
 2

)

S
p

e
e

d
u

p

Using all benchmarks Based on the subset of 6 Based on the subset of 4

Figure 4. Validation of CINT2006 subset using performance
scores of eight systems from the SPEC CPU website.

0

2

4

6

8

10

12

14

16

18

20

H
P

 I
n

te
g

ri
ty

 r
x

6
6

0
0

(I
ta

n
iu

m
 2

)

F
u

jit
s

u
 S

C
 C

E
L

S
IU

S
V

8
3

0

A
p

p
le

 2
.0

G
H

z
 I

n
te

l
C

o
re

 D
u

o

D
e

ll
P

re
c

is
io

n
 3

8
0

W
o

rk
s

ta
ti

o
n

S
u

n
 F

ir
e

 X
2

1
0

0

B
u

ll
S

A
S

 N
o

v
a

S
c

a
le

B
2

8
0

 (
In

te
l

X
e

o
n

5
1

5
0

,2
.6

6
G

H
z

)

IB
M

 B
la

d
e

C
e

n
te

r
L

S
4

1
 (

A
M

D
 O

p
te

ro
n

8
2

2
0

)

In
te

l
D

G
9

6
5

W
H

m
o

th
e

rb
o

a
rd

(3
.6

G
H

z
P

e
n

ti
u

m
 D

)

Using all benchmarks Based on the subset of 8 Based on the subset of 6

Figure 5. Validation of CFP2006 subset using performance
scores of eight systems from the SPEC CPU website.

Figure 4 shows the comparison for CINT2006 benchmarks

using the subset of 4 and 6 benchmarks shown in Table 4. For
CINT component the subset of 4 programs shows an average error
of 5.8% and a maximum error of 10.1%. The subset of 6
benchmarks shows an average error of 3.8% and a maximum error

1 http://www.spec.org/cpu2006/results/cpu2006.html

of 8%. This shows that even a subset of 4 benchmarks out of 12
CINT benchmarks has a very good predictive power in estimating
the speedup shown by the entire suite.

Figure 5 shows the validation of CFP2006 benchmarks using
the subsets from Table 5. The maximum error in the floating point
subset of 6 is higher than that in the integer benchmark subset.
For a subset of 6 the average error is 10.8% with the maximum
error of 19%. Hence we look at a subset of 8 benchmarks which
shows the average error of 7% and the maximum error is 12%.
From these results, we observe that 6 out of 12 integer
benchmarks and 8 out of 17 floating point benchmarks form a
good representative subset. It is interesting to observe that a third
or half of the benchmarks in a suite can contain most of the
information in the entire suite.

3.4 Selecting representative input sets
Many benchmarks in the CPU2006 have multiple input sets.

For example, 403.gcc benchmark has nine input sets. A

reportable SPEC result for each benchmark is supposed to
comprise of all its input sets. However, for simulation based
studies, researchers typically select one input set. Instead of
selecting an input set in an ad hoc manner, clustering analysis can
also be used to select a representative input set. The program
characteristics shown in Table 3 were measured for all the
different benchmarks and input sets. PCA and clustering analysis
was performed on this data to find similarity between input sets of
each benchmark.

Figure 6 shows the dendrogram for input sets and the
benchmarks for the integer component. The Kaiser criterion
results in choosing seven PCs covering 89% of variance for this
analysis. Some benchmarks have only one input set and are hence
represented only by their name. In some benchmarks, all input
sets appear clustered together, where as in many cases, some input
sets are very different from the other input sets of the same
benchmark. As an example, the behavior of 403.gcc-9 is

significantly different from its sibling input sets.

Figure 6. Dendrogram showing similarity between program-
input set for each benchmark in the SPEC CPU2006 suite.

In this analysis, a benchmark’s input set closest to the whole

(aggregated) benchmark run is selected as the representative input
set. In CINT2006, the benchmarks that have multiple input sets
are 400.perlbench, 401.bzip2, 403.gcc,

445.gobmk, 456.hmmer, 464.h264ref and

473.astar. Similarly, we also perform the analysis for input

sets of CFP2006 programs. Figure 7 shows the dendrogram
showing similarity between inputs sets of programs from
CFP2006. Six PCs covering 88% of variance are chosen. In this
category there are only two benchmarks with multiple input sets -
416.gamess and 450.soplex. For each of these

benchmarks we list the most representative input set in Table 6.
This information will be useful in selecting the most
representative input set for each program.

Figure 7. Dendrogram showing similarity between program-
input set for each program from CFP2006.

Table 6. List of representative input sets for SPEC CPU2006
programs.

CINT2006 benchmarks 464.h264avc - input set 2

400.perlbench - input set 1 473.astar - input set 2

401.bzip2 - input set 4

403.gcc - input set 1 CFP2006 benchmarks

445.gobmk - input set 5 416.gamess - input set 3

456.hmmer - input set 2 450.soplex - input set 1

3.5 Subsets based on branch and memory

access characteristics
Often, researchers focus on optimizing the design to take

advantage of certain program characteristcs. In this section, we
separately analyze the similarity of programs based on data access
performance characteristics and branch prediction characteristics.

Figure 8. CINT and CFP programs in the PC workload space
using branch predictor characteristics.

This similarity information can be used when conducting data
cache and branch prediction studies. In this section we analyze all
programs in the suite without classifying them into CINT and
CFP groups.

Figures 8 shows the scatter plot based on the first 2 PCs of
the branch characteristics, covering approximately 92% of the
variance. The CFP benchmarks are clustered together but the
CINT programs clearly show diversity. A few CINT workloads
overlap with the cluster of CFP workloads on the right side of the
plot. These CINT benchmarks (464.h264ref,

456.hmmer) have fewer branches like the other floating

programs around them. Majority of the floating point programs
have very little diversity in their branch characteristics. The
benchmarks with high value of PC1, e.g. majority of CFP
benchmarks and 464.h264ref and 456.hmmer show easy

to predict branches. On the other hand CINT benchmarks are
more spread out in the space and show significantly diverse
behavior. The data used for this analysis was measured from three
different systems.

The data accesses characteristics were also measured on three
different systems and after applying PCA, 4 PCs were retained
which account for 84% of the variance. Figure 9 shows a scatter
plot based on the first 4 PCs. For the purpose of clarity only
certain benchmarks are labeled in the scatter plots. The
benchmarks that have a more negative value of PC1 e.g.

429.mcf, 471.omnettp, 462.libquantum exhibit a

poor data access behavior and hence result in higher data cache
miss-rates. The CFP benchmarks that are located at the top show
very high percentage of memory accesses and hence should also
be considered when selecting benchmarks for cache studies. In
summary, when selecting benchmarks for a certain study the user
should look at the workload space of those characteristics and
select benchmarks to ensure that the entire workload is covered.
Only selecting outliers will exercise worst case or best case
behavior and can lead to misleading conclusions.

 (a) PC1 Vs. PC2

 (b) PC3 Vs. PC4

Figure 9. CINT and CFP programs plotted in the PC space using
memory access characteristics (PC1 Vs. PC2).

4. BALANCE IN THE SPEC CPU2006 SUITE

4.1 Case study on EDA Applications
The concern in the October 2006 microprocessor report

article [18] on CPU2006, whether the suite is balanced, stems
from the fact that certain application areas have multiple
representative programs (see Table 7), whereas certain areas are
not represented in the suite. For example, in the integer suite,
there are 3 programs (458.sjeng, 445.gobmk,

473.astar) from the artificial intelligence area, and in the

floating point suite there are 4 programs
(410.bwaves,434.zeusmp, leslie3d, lbm) from the

fluid dynamics area. In this section we provide a case study on the
characteristics of the Electronic Design Automation (EDA)
applications. The CPU2006 suite contains none, where as the
earlier SPEC CPU suites contained more than one EDA
applications (vpr, twolf, espresso, eqntott). Is losing the
applications from the EDA area a weakness of CPU2006? Are
other programs from other application areas similar to EDA
applications that their absence is not an issue? We perform a
similarity analysis to understand this. Program characteristics are

measured for all the SPEC CPU2000 integer programs and
projected in the workload space after performing PCA on the
characteristics of CINT2006 benchmarks. Figure 10 shows the
projections of the workload space. From these figures it is evident
that the EDA tool benchmarks in CPU2000 lie close to 473.astar

and 401.bzip2 from CPU2006 benchmarks. Since the EDA
programs are well within the envelope of the workload space
covered by the new suite, the elimination of EDA programs may
not be a major concern.

(a) PC1 Vs. PC2

(b) PC3 Vs. PC4.

Figure 10. Scatterplot showing position of EDA applications in
the workload space.

4.2 Differences between benchmarks from the

same application area
Any two benchmarks that belong to the same

application area can show different behavior on certain
architecture. Are the programs from SPEC CPU2006 suite, which
belong to the same application area really different? The similarity
analysis described in Section 3 can answer this question. Let us
consider one application area from Table 7 at a time and refer to
Figures 2 and 3 to answer the question. In case of artificial
intelligence area, 458.sjeng and 473.astar show very

similar behavior and can be found quite close to each other in the
workload space, while 445.gobmk is much further away from its

siblings. The equation solver applications do not lie close to each
other and hence justify their presence in the suite. 410.bwaves

and 437.leslied, are relatively close to each other than the

other two programs in their application area. Both the programs in
molecular dynamics are different and relatively close to each other
with the linkage distance of less than 2 between them.
465.tonto and 416.gamess also have a linkage distance of

less than 2. On the contrary, the 4 programs from the Engineering
and Operational Research domain are significantly different from
each other. In Table 7 two programs that belong to the same
application area and show similar program characteristics are
highlighted in bold.

Table 7. Classification of programs based on application areas.

Application area Benchmarks

Artificial Intelligence
458.sjeng,

445.gobmk,473.astar

Equation solver
436.cactusADM,
459.GemsFDTD

Fluid Dynamics
410.bwaves,434.zeusmp,

437.leslie3D, 470.lbm

Molecular Dynamics 435.gromacs, 444.namd

Quantum Chemistry 465.tonto, 416.gamess

Engineering and
Operational Research

454.calculix,447.dealII,
450.soplex, 453.povray

4.3 Comparing CPU2006 benchmarks with

CPU2000
 SPEC CPU subcommittee took efforts to include

challenging applications to stay relevant in the light of fast and
powerful emerging machines. Looking back after the selection,
how did these changes affect the overall characteristics of
programs in CPU2000? Are the programs fundamentally different
from the ones in SPEC CPU2000?

 From Figure 10 it is evident that the CINT2006
benchmarks are spread farther in the workload space as compared
to CINT2000 benchmarks and cover a wider area in the workload
space. In the PC1 Vs PC2 scatter plot (Figure 9(a)), many of the
CPU 2000 programs are located close to the (0,0), whereas, the
new programs such as 483.xalancbmk and 456.hmmer

provide coverage for very far away spots in the workload space. In
the PC3-PC4 scatter plot (Figure 10(a)), one can easily notice the
diversity added by the programs 445.gobmk, 483.xalancbmk,

462.libquantum and 458.sjeng. They extend the envelope of the
benchmark space significantly. It is also interesting to note that
the benchmarks from CPU2000 suite that were retained e.g. mcf,

bzip2, perl, gcc show similar behavior as their predecessors. This
might mean that only the dynamic instruction count and data
footprint of these benchmarks changed but the control flow almost
remained the same. The increased data footprint will exercise the
big caches in recent processors. Due to space constraints we could
not show the scatter plots for the CFP2006 benchmarks but we
see that the floating benchmarks in CPU2006 are even more
diverse compared to the ones in CPU2000. Overall, one can
observe increased diversity in the new suite.

4.4 Sensitivity of programs to performance

characteristics
 In this section, we present a classification of programs

based on their sensitivity to branch predictors and data cache
across five machines that were used to do the analysis in Section
3. In order to measure the sensitivity of a program to branch
predictor and L1 D-cache configuration, for every machine we
ranked programs based on these characteristics. The difference in
ranks of a program across all machines is then computed. The
resulting number is indicative of sensitivity of that program for a
given characteristic.

Table 8. Sensitivity of Programs to Branch Misprediction Rate
and L1 D-cache Miss-rate across five different platforms.

Branch Prediction

High 456.hmmer-1, 456.hmmer, 456.hmmer-2

Medium

471.omnetpp, 429.mcf, 473.astar-1, 473.astar,

464.h264ref-1, 473.astar-2, 400.perlbench-1,

401.bzip2-4, 462.libquantum,, 401.bzip2-3, 401.bzip2-2,
400.perlbench, 401.bzip2, 445.gobmk-3, 401.bzip2-1, 464.h264ref,
401.bzip2-5,, 403.gcc-8, 458.sjeng,401.bzip2-6, 403.gcc-4

Low

464.h264ref-3, 445.gobmk, 445.gobmk-1, 445.gobmk-4,
445.gobmk-2, 445.gobmk-5, 400.perlbench-2, 464.h264ref-2,
403.gcc-7, 403.gcc-6, 400.perlbench-3, 483.xalancbmk, 403.gcc-2,
403.gcc-5, 403.gcc-1, 403.gcc, 403.gcc-9, 403.gcc-3

L1 D-cache

High
462.libquantum, 464.h264ref-2, 464.h264ref-3, 464.h264ref,
456.hmmer-1

Medium
456.hmmer, 456.hmmer-2, 400.perlbench-2, 400.perlbench-3,
445.gobmk-3, 403.gcc-7

Low

400.perlbench, 403.gcc-8, 483.xalancbmk, 473.astar-2, 403.gcc,
400.perlbench-1, 473.astar, 464.h264ref-1, 445.gobmk, 473.astar-
1, 445.gobmk-4, 471.omnetpp, 429.mcf, 403.gcc-9, 403.gcc-3,
445.gobmk-2, 401.bzip2-3, 401.bzip2-5, 445.gobmk-1, 403.gcc-6,
403.gcc-5, 401.bzip2-2, 401.bzip2-6, 403.gcc-2, 403.gcc-1,
401.bzip2-1, 401.bzip2, 403.gcc-4, 401.bzip2-4, 445.gobmk-5,
458.sjeng

 Table 8 shows the classification of programs based on

their sensitivity to branch predictor and L1 D-cache configuration
It is organized as follows. For each characteristic (branch
misprediction rate and L2 data cache miss-rate) the workloads
(program-input pairs) are categorized into one of the low, medium
and high ranges. The most striking observation from this is that
462.libquantum, 456.hmmer, and 464.h264ref show the most
variation in D-cache misses across the five machines.
456.hmmer shows a lot of variation for branches where as
458.sjeng, 473.astar and 445.gobmk show higher
misprediction rates. As observed by Vandierendonck et.al. [23] in
CPU2000, we also observed that 409.gcc from CPU2006 ranks
relatively low in variation across the five machines used in the
experiment. The explanation is that every machine is equally
good or equally bad for gcc, eliminating the sensitivity to
platforms.

5. RELATED WORK
In [8] and [9] Eeckhout et.al measured a mixture of

microarchitecture dependent and microarchitecture independent
metrics and presented similarity information of programs.
Vandierendonck and Bosschere [23] analyzed the SPEC
CPU2000 benchmark suite peak results on 340 different machines
representing eight architectures, and used PCA to identify the

redundancy in the benchmark suite. They found that a small
number of CPU 2000 programs have nearly the same predictive
power as the entire suite in ranking machines. Giladi and Ahituv
[10] also had a similar approach towards finding a subset of
programs. They found that the ten programs of SPEC89 suite
could be reduced to six without affecting the SPEC rating.
Phansalkar et.al. [20] and Joshi et.al. [15] characterized
benchmarks using microarchitecture independent metrics to find a
representative subset and study the difference between the
previous generations of SPEC CPU benchmarks. The metrics are
independent of microarchitecture but compiler and ISA
dependent. However, since CPU2006 benchmarks have very long
runtime (23 out of 29 benchmarks have more than one trillion
instructions), significantly higher time would be required to
measure these characteristics. The approach used in this paper
tries to achieve the component of microarchitecture independence
by characterizing benchmarks on a wide range of systems with
different ISAs, compilers and microarchitectures. Yi et.al [27]
compare all the different subsetting approaches and show that use
of statistical techniques for subsetting can lead to improved
accuracy. Citron [2][3] presented subsets based on use by the
computer architecture research community and showed that partial
use of suites can lead to misleading results.

6. CONCLUSIONS
 There are concerns about program redundancy programs

in the SPEC CPU2006 benchmark suite and that benchmarks
from some certain commonly used application areas are missing.
Using performance counter data from five different state of the art
machines, and statistical analysis techniques such as PCA and
clustering, we analyze the similarity and balance of the recently
released SPEC CPU2006 suite. Dendrograms illustrating the
similarity between benchmarks and scatter plots showing the
workload space are presented for overall selection of metrics, as
well separately for branch and data access metrics.

 We show that 6 out of the 12 integer programs and 8 of
the 17 FP programs can capture most of the information from the
FP benchmarks. It is observed that not all programs in the same
application area are similar. Some of them are more similar to the
programs in another application area. When analyzed from the
perspective of program characteristics, an unrepresented area such
as electronic design automation (EDA) may not be a major
weakness of the suite. We also identify one input set as a
representative input set for programs that have multiple input sets.
Not all input sets of a benchmark result in similar behavior. Some
input sets make a program appear more similar to another
benchmark rather than its own sibling.

It is less than a year since SPEC CPU2006 has been released.
If Citron’s observation regarding use of benchmarks [2][3] holds,
it will be a quite some time before the research community can
succeed in compiling and simulating the entire benchmarks. Even
if the intentional misuse may not happen, partial use of the suite
will be inevitable due to difficulties with compilation, system call
issues, libraries etc. The information presented in this paper
should help researchers in selecting a representative set of
benchmarks, if subsetting is unavoidable. It should also help in
understanding and interpreting simulation results.

7. DISCLAIMER
All the observations and analysis done in this paper on SPEC

CPU2006 benchmarks are the authors’ opinions and should not be

used as official or unofficial guidelines from SPEC in selecting
benchmarks for any purpose. This paper only provides guidelines
for researchers and academic users to choose a subset of
benchmarks should the need be.

8. ACKNOWLEDGEMENTS
The authors express their gratitude to the following SPEC

member companies (IBM, Sun Microsystems, Intel, AMD,
Apple, HP, SGI) for providing performance counter data from
their systems. We enjoyed the opportunity to interact with the
SPEC CPU Subcommittee and provide clustering analysis during
selection of CPU2006 programs [12]. The researchers are
supported in part by National Science Foundation under grant
number 0429806. Ajay Joshi is supported by an IBM fellowship.

9. REFERENCES

[1] M. Alt "Performance Modeling Using Compilers" White
paper Intel Corp. http://cache-
www.intel.com/cd/00/00/22/64/226491_226491.pdf

[2] D. Citron, "MisSPECulation: partial and misleading use of
spec CPU2000 in computer architecture conferences",
Proceedings of the 30th Annual International Symposium
on Computer Architecture, pp. 52-59, June 9-11, 2003.

[3] D. Citron, J. Hennessy, D. Patterson, G. Sohi, "The Use and
Abuse of SPEC: An ISCA Panel," IEEE Micro, vol. 23,
no. 4, pp. 73-77, Jul/Aug, 2003.

[4] K. Dixit: Overview of the SPEC Benchmarks. "The
Benchmark Handbook", Chapter 9, 1993

[5] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra,
“Using PAPI for hardware performance monitoring on
Linux Systems” Conference on Linux Clusters: The HPC
Revolution, Linux Clusters Institute, June 2001

[6] J. Dujmovic and I. Dujmovic, “Evolution and Evaluation of
SPEC benchmarks”, ACM SIGMETRICS Performance
Evaluation Review, vol. 26, no. 3, pp. 2-9, 1998.

[7] G. Dunteman, Principal Components Analysis, Sage
Publications, 1989

[8] L. Eeckhout, H. Vandierendonck, and K. De Bosschere,
“Designing computer architecture research workloads”,
IEEE Computer, 36(2), pp. 65-71, Feb 2003.

[9] L. Eeckhout, H. Vandierendonck, and K. De Bosschere,
“Quantifying the impact of input data sets on program
behavior and its applications”, Journal of Instruction Level
Parallelism, vol 5, pp. 1-33, 2003.

[10] R. Giladi and N. Ahituv, “SPEC as a Performance
Evaluation Measure”, IEEE Computer, Vol. 28, No. 8, Aug
1995, Pages 33-42

[11] J. Henning, “SPEC CPU2000: Measuring CPU Performance
in the New Millenium”, IEEE Computer, July 2000.

[12] J. Henning. Performance Counters and Development of
SPEC CPU2006. Computer Architecture News. March
2007

[13] L. John, P. Vasudevan and J. Sabarinathan, “Workload
Characterization: Motivation, Goals and Methodology”, In
Workload Characterization: Methodology and Case Studies,

Edited by L. John and A. M. G. Maynard, IEEE Computer
Society, pp. 3-14, November 1998

[14] L. John, V. Reddy, P. Hulina, and L. Coraor, “Program
Balance and its impact on High Performance RISC
Architecture”, Proc. of the International Symposium on

High Perf Comp Arch, pp.370-379, Jan 1995.

[15] A. Joshi, A. Phansalkar, L. Eeckhout, L.K. John “Measuring
Benchmark Characteristics Using Inherent Program
Characteristics”, IEEE Transactions on Computers,
Jun2006, Vol 55 No. 6 pp 769-782

[16] T. Lafage and A. Seznec, “Choosing Representative Slices of
Program Execution for Microarchitecture Simulations: A
Preliminary Application to the Data Stream”, Workshop on
Workload Characterization (WWC-2000), Sept 2000.

[17] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. J. Reddi, K. Hazelwood,
“PIN:Building Customized Program Analysis Tools with
Dynamic Instrumentation”, Proceedings of 2005 ACM
SIPLAN Conference on Programming Language Design
and Implementation, pp 190-200, 2005

[18] H. McGhan, SPEC CPU2006 Benchmark Suite,
Microprocessor Report, October 10, 2006.

[19] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John,
“Measuring Program Similarity: Experiments with SPEC
CPU Benchmark Suites”. IEEE International Symposium
on Performance Analysis of Systems and Software. March
2005, pp 10-20

[20] A. Phansalkar, Joshi, A. L. Eeckhout, and L.K. John “Four
Generations of SPEC CPU Benchmarks: What has changed
and what has not?”, Technical Report TR-041026-1,

Laboratory of Computer Architecture, The University of

Texas at Austin. 2004.

[21] J. Reilly. Presentation at IEEE International Symposium on
Workload Characterization, Oct 2006
http://www.iiswc.org/iiswc2006/IISWC2006S2.1.pdf

[22] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically Characterizing Large Scale Program
Behavior”, Proc. of International Conference on
Architecture Support for Programming Languages and
Operating Systems, pp. 45-57, 2002.

[23] H. Vandierendonck, K. Bosschere, “Many Benchmarks
Stress the Same Bottlenecks”, Proc. of the Workshop on

Computer Architecture Evaluation using Commerical

Workloads (CAECW-7), pp. 57-71, 2004.

[24] R. Weicker, “An Overview of Common Benchmarks”, IEEE
Computer, pp. 65-75, Dec 1990.

[25] T. Wenisch, R. Wunderlich, B. Falsafi, and J. Hoe,
“Applying SMARTS to SPEC CPU2000”, CALCM
Technical Report 2003-1, Carnegie Mellon University, June
2003.

[26] J. Yi and D. Lilja, "Simulation of Computer Architectures:
Simulators, Benchmarks, Methodologies, and
Recommendations," IEEE Transactions on Computers, Vol.
55, No. 3, Mar. 2006, pp. 268-280

[27] J. Yi, R. Sendag, L. Eeckhout, A. Joshi, D. Lilja, and L. K.
John, "Evaluating Benchmark Subsetting Approaches"
International Symposium on Workload Characterization,
October 2006, pp 93-104

[28] J.Yi, D. Lilja, and D.Hawkins, "A Statistically Rigorous
Approach for Improving Simulation Methodology", Proc. of
Intl Conf on High Performance Computer Architecture, Feb
2003, pp 281-291.

APPENDIX I – Subroutine Profile Summary of CPU2006

The columns show the information for the hottest subroutine, the cumulative data for the top 5,10 and 20 hot subroutine. Each of these
columns has two sub-columns which show the cumulative percentage of dynamic instructions executed in the respective number of hot
routines and the cumulative static count e.g. 22.3% of the dynamic instructions executed are from the hottest subroutine which has 140998
static instructions. Also, the top five hot subroutines account for 41.06% of dynamic instructions which have a total of 466157 static
instructions. This data is generated using PIN [17].

 Cumulative Hottest Subroutine 5 Hot Subroutines 10 Hot Subroutines 20 Hot Subroutines

Benchmark
name- input

Percentage
Dynamic

Static
count

Percentage
Dynamic

Static
count

Percentage
Dynamic

Static
count

Percentage
Dynamic Static count

CPU2006 integer benchmarks

400.perlbench-1 22.30% 140998 41.06% 466157 57.80% 1061283 78.17% 2048489

400.perlbench-2 50.86% 140998 77.58% 722121 82.93% 1396866 88.30% 2673489

400.perlbench-3 67.40% 140998 81.63% 710437 88.43% 1362876 93.70% 2488840

401.bzip2-1 37.42% 3126 90.49% 30930 99.93% 61906 99.99% 107435

401.bzip2-2 34.44% 9357 92.90% 28335 99.98% 61906 100.00% 107435

401.bzip2-3 55.02% 1850 97.34% 29654 99.99% 61906 100.00% 107435

401.bzip2-4 28.53% 9357 91.04% 30930 99.95% 72391 100.00% 207009

401.bzip2-5 51.18% 2022 94.55% 30930 99.98% 72391 100.00% 109398

401.bzip2-6 32.70% 3126 86.96% 30930 99.94% 61906 99.99% 107435

403.gcc-1 16.53% 72483 37.98% 2208290 50.06% 4156689 61.62% 8414654

403.gcc-2 11.61% 72483 25.12% 2323225 35.92% 4131522 49.64% 8041641

403.gcc-3 20.70% 146129 47.27% 1597844 59.24% 3167999 71.23% 6350050

403.gcc-4 20.48% 146129 47.13% 2020198 57.38% 4147096 67.73% 8054140

403.gcc-5 19.21% 146129 49.83% 2124041 59.36% 3929883 69.89% 7651110

403.gcc-6 19.00% 146129 49.01% 2124041 59.79% 3929883 69.93% 7476905

403.gcc-7 16.46% 72483 55.79% 1800707 70.44% 4732572 80.34% 8696609

403.gcc-8 22.37% 72483 54.89% 1473886 64.54% 4272881 74.14% 7894874

403.gcc-9 4.40% 669312 17.42% 1871256 28.45% 4042557 43.22% 7913678

429.mcf 32.31% 2573 86.26% 8137 98.89% 16550 99.97% 375239

445.gobmk-1 8.62% 33206 31.96% 123655 48.10% 262154 67.84% 596812

445.gobmk-2 7.61% 13119 31.45% 123655 47.37% 244954 67.62% 548199

445.gobmk-3 19.04% 32657 40.65% 166002 56.67% 270024 71.23% 494076

445.gobmk-4 7.75% 13119 30.50% 123655 46.86% 224322 66.98% 508799

445.gobmk-5 9.08% 13119 33.48% 150245 50.70% 263013 71.11% 366012

456.hmmer-1 99.10% 11080 99.76% 143630 99.91% 385550 99.96% 993103

456.hmmer-2 96.79% 11080 99.76% 220363 99.99% 458965 100.00% 711948

458.sjeng 20.64% 9213 48.76% 48588 72.63% 97943 92.13% 183112

462.libquantum 65.18% 901 98.38% 12897 100.00% 39182 100.00% 89909

464.h264ref-1 41.21% 63541 75.28% 360800 90.46% 733452 96.06% 1281878

464.h264ref-2 35.20% 63541 65.66% 263448 81.81% 632195 91.08% 1103854

464.h264ref-3 36.20% 63541 71.16% 263448 83.30% 638070 92.28% 1162685

471.omnetpp 24.32% 108195 40.91% 527643 51.53% 903746 64.49% 1849742

473.astar-1 37.86% 5674 81.20% 37331 96.89% 62175 99.47% 283443

473.astar-2 39.82% 5674 90.61% 30981 99.51% 60403 99.92% 205548

483.xalancbmk 25.98% 503940 55.57% 1539078 69.42% 3896705 79.24% 9194199

CPU2006 floating point benchmarks

410.bwaves 81.72% 955 98.81% 20906 100.00% 206818 100.00% 787062

416.gamess-1 22.30% 1276458 58.80% 3871636 72.88% 7159808 90.66% 14870258

416.gamess-2 40.51% 1276458 85.24% 3865963 94.33% 6848202 98.75% 16678502

416.gamess-3 39.95% 736310 81.60% 4791284 92.23% 8652681 96.80% 15778333

433.milc 17.97% 18724 63.62% 94474 85.66% 190396 97.53% 373321

434.zeusmp 42.67% 24198 80.11% 146870 95.44% 305321 99.75% 537772

435.gromacs 69.95% 28484 84.43% 380679 91.35% 951762 95.95% 1991123

436.cactusADM 98.37% 12299 99.97% 341943 99.99% 865076 100.00% 1931210

437.leslie3d 18.98% 12137 82.03% 43027 99.99% 61553 100.00% 538388

444.namd.stdout 13.76% 7980 59.01% 38959 91.26% 119030 99.99% 623266

447.dealII 18.02% 458978 52.22% 1760935 73.59% 3316274 87.13% 5874499

450.soplex-1 16.02% 88472 44.91% 337648 68.42% 796146 86.16% 1246274

450.soplex-2 42.03% 79680 79.58% 256105 93.06% 559113 97.45% 961334

453.povray 12.63% 185839 48.62% 446779 70.44% 1238650 90.32% 2239198

454.calculix 64.78% 42790 93.73% 964957 95.47% 2111871 97.14% 4292472

459.GemsFDTD 27.49% 58016 96.34% 295624 99.31% 617617 99.92% 1329282

465.tonto 12.48% 554306 42.13% 2856539 59.42% 6679198 76.04% 12522232

470.lbm 99.32% 919 100.00% 8940 100.00% 187934 100.00% 696825

482.sphinx3 40.50% 34299 90.11% 98106 97.13% 174224 99.06% 418795

