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          Abstract 
The recently released SPEC CPU2006 benchmark suite 

is expected to be used by computer designers and computer 

architecture researchers for pre-silicon early design analysis. 

Partial use of benchmark suites by researchers, due to simulation 

time constraints, compiler difficulties, or library or system call 

issues is likely to happen; but a random subset can lead to 

misleading results. This paper analyzes the SPEC CPU2006 

benchmarks using performance counter based experimentation 

from several state of the art systems, and uses statistical 

techniques such as principal component analysis and clustering 

to  draw inferences on the similarity of the benchmarks and the 

redundancy in the suite and arrive at meaningful subsets. 

  The SPEC CPU2006 benchmark suite contains several 

programs from areas such as artificial intelligence and includes 

none from the electronic design automation (EDA) application 

area. Hence there is a concern on the application balance in the 

suite. An analysis from the perspective of fundamental program 

characteristics shows that the included programs offer 

characteristics broader than the EDA programs' space. A subset 

of 6 integer programs and 8 floating point programs can yield 

most of the information from the entire suite. 

1. Introduction 
SPEC, since its formation in 1988, has served a long 

way in developing and distributing technically credible real-world 
application-based benchmarks for computer vendors, computer 
architects, researchers, and consumers.  The SPEC CPU 
benchmark suite, which was first released in 1989 as a collection 
of ten compute-intensive benchmark programs, is now in its fifth 
generation and has grown to 29 programs.  In order to keep pace 
with the technological advancements, compiler improvements, 
and emerging workloads, in each generation of SPEC CPU 
benchmark suites, new programs are added, programs susceptible 
to unfair compiler optimizations are retired, program run times are 
increased, and memory access intensity of programs is increased 
[4][11][24].  The SPEC CPU2006 benchmark suite comprises of 
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12 integer and 17 floating point compute-intensive programs for 
measuring the performance of a processor, memory subsystem, 
and compiler.   

A poorly chosen set of benchmark programs may not 
accurately depict the true performance of a processor design.  On 
one hand, selecting too few benchmarks may not cover the entire 
spectrum of applications that may be executed on a computer 
system; while on the other hand, selecting too many similar 
programs will increase evaluation time without providing 
additional information.  Therefore, in order to reduce the 
benchmarking effort, a benchmark suite should have programs 
that are representative of a wide range of application areas without 
having many programs with similar characteristics.  
Understanding similarity between programs can help in selecting 
benchmark programs that are distinct, but are still representative 
of the target workload space. 

The microprocessor report from October 2006 presents an 
article [18] which analyzes the SPEC CPU2006 benchmark suite, 
and raises a question,  

“Is SPEC CPU2006 well-balanced?” 

There are several programs from certain application areas - for 
example, in the integer suite, there are 3 programs (458.sjeng, 

445.gobmk, 473.astar) from the Artificial Intelligence 

area, and in the floating point suite, there are 4 Fluid Dynamics 
programs (410.bwaves, 434.zeusmp, 437.leslie3d, 

470.lbm), but no benchmarks from Electronic Design 

Automation (EDA) application area. The previous generation 
SPEC CPU suites contained EDA applications, 175.vpr and 
300.twolf (CPU00), espresso and eqntott 

(CPU89 and 92). Is losing these applications that are 

representative of EDA workloads, a weakness of CPU2006? Or, 
do some other programs included in the suite have characteristics 
similar to the EDA programs? When multiple programs from one 
area are included, is there sufficient uniqueness to warrant their 
inclusion? In this paper, we analyze these issues based on 
(dis)similarity between fundamental performance characteristics 
of benchmarks. 

The article in microprocessor report [18] also discusses 
redundancy in benchmark suites. It states – 

“In truth, rather than too few programs, the several 

SPEC CPU suites have tended to contain too many 

programs: that is, they invariably comprehend 

redundant programs that add little or nothing to the 

mixture of operations represented and whose 

inclusion or exclusion makes little or no difference to 

the overall score achieved.” 

 How true is this about SPEC CPU2006? How much redundancy 
is there in the CPU2006 suite? Analysis of (dis)similarity between 
programs can also help in addressing this question.  Also, partial 



use of benchmark suite is common for simulation based studies. 
Citron [2] [3] conducted a survey on benchmark subsets used by 
computer architecture researchers in top computer architecture 
conferences and showed that partial use of subsets can lead to 
incorrect and misleading inferences. The information about 
similarity between programs can be used to identify a 
representative subset of programs and their input sets, as opposed 
to a random selection of a partial suite. 

In this paper we apply multivariate statistical analysis 
techniques such as Principal Components Analysis (PCA) and 
cluster analysis to (i) study the balance of the CPU2006 
benchmark suite, (ii) identify similarity/dissimilarity between 
CPU2006 programs, (iii) identify similarity between multiple 
input sets and find representative ones, and (iv) propose subsets of 
CPU2006 programs that are representative of the whole set. The 
characterization of programs in this paper is based on run-time 
program profile information and measurements from five different 
state-of-the-art machines that represent the most popular 
architectures. 
      The remainder of this paper is organized as follows.  Section 2 
gives an overview of the SPEC CPU2006 benchmark suite and its 
instruction stream characteristics.  Section 3 describes the 
methodology used to measure redundancy between programs and 
proposes a representative subset of programs and inputs sets. 
Section 4 studies the application balance in the SPEC CPU2006 
suite and compares them to programs from SPEC CPU2000. 
Section 5 surveys previous research work related to our study.  
Finally in Section 6 we conclude with a summary of the key 
results from this study.  

2. OVERVIEW OF SPEC CPU2006  
 
The SPEC CPU2006 suite, like its predecessors is divided 

into two parts: the integer component (CINT2006 benchmarks) 
and the floating point component (CFP2006 benchmarks). The 
integer group consists of 12 programs, written in C and C++, and 
the floating point group consists of 17 programs written in C, 
C++, and FORTRAN languages.   In this section, we provide an 
overview of the runtime characteristics of SPEC CPU2006 integer 
and floating-point benchmarks in terms of their instruction mix 
and instruction locality. These runtime characteristics are 
measured on a Pentium D processor (2.1 GHz, 16KB L1 data and 
instruction caches, and 2x2MB (4MB) L2 cache) system running 
SUSE Linux 10.1 and were compiled using Intel 

C/C++, and FORTRAN compiler V9.1. The performance 

counter measurements were carried out using the PAPI [5] tool 
set. 

2.1 Instruction Mix 
Table 1, shows the dynamic instruction count and the 

instruction mix of the programs. The dynamic instruction count of 
24 out of the 29 benchmarks is of the order of a few trillion 
instructions, as compared to a maximum of few hundred billion 
instructions per program in the CPU2000 suite – further 
exacerbating the problem of simulation time.    

There are several interesting observations from the 
instruction mix of the programs.  For integer programs, the 
percentage of branches in the dynamic instruction stream is close 
to the typical 20%.  However, two programs, 456.hmmer and 

464.h264ref only have 7% branches. In 483.xalancbmk, 

one of three C++ programs in the integer suite has 25% branches.  
In comparison, the other two C++ programs, 471.omnetapp and 

473.astar, are more typical with 20% and 15% branch 

instructions respectively. Among the floating-point programs, 
447.deall, 450.soplex and 453.povray have 

approximately 15% branches where as most of the other floating-
point programs have less than 5% branch instructions. There are a 
few floating-point programs, 410.bwaves, 470.lbm, 

436.cactusADM, which have less than 1% branches. The 

large average dynamic basic block size in these programs suggests 
a high degree of parallelism that can be exploited by out-of-order 
microarchitectures.  

 
 
Table 1: Dynamic Instruction Count and Instruction Mix of SPEC 
CPU2006 Integer and Floating-Point Benchmarks. 

 

Name - Language 

Inst. Count 

(Billion) Branches Loads Stores 

CINT 2006 

400.perlbench –C 2,378 20.96% 27.99% 16.45% 

401.bzip2 – C 2,472 15.97% 36.93% 12.98% 

403.gcc – C 1,064 21.96% 26.52% 16.01% 

429.mcf –C 327 21.17% 37.99% 10.55% 

445.gobmk –C 1,603 19.51% 29.72% 15.25% 

456.hmmer –C 3,363 7.08% 47.36% 17.68% 

458.sjeng –C 2,383 21.38% 27.60% 14.61% 

462.libquantum-C 3,555 14.80% 33.57% 10.72% 

464.h264ref- C 3,731 7.24% 41.76% 13.14% 

471.omnetpp- C++ 687 20.33% 34.71% 20.18% 

473.astar- C++ 1,200 15.57% 40.34% 13.75% 

483.xalancbmk- C++ 1,184 25.84% 33.96% 10.31% 

CFP 2006 

410.bwaves – Fortran 1,178 0.68% 56.14% 8.08% 

416.gamess – Fortran 5,189 7.45% 45.87% 12.98% 

433.milc – C 937 1.51% 40.15% 11.79% 

434.zeusmp–C,Fortran 1,566 4.05% 36.22% 11.98% 

435.gromacs-C, Fortran 1,958 3.14% 37.35% 17.31% 

436.cactusADM-C, Fortran 1,376 0.22% 52.62% 13.49% 

437.leslie3d – Fortran 1,213 3.06% 52.30% 9.83% 

444.namd – C++ 2,483 4.28% 35.43% 8.83% 

447.dealII – C++ 2,323 15.99% 42.57% 13.41% 

450.soplex – C++ 703 16.07% 39.05% 7.74% 

453.povray – C++ 940 13.23% 35.44% 16.11% 

454.calculix –C, Fortran 3,041 4.11% 40.14% 9.95% 

459.GemsFDTD – Fortran 1,420 2.40% 54.16% 9.67% 

465.tonto – Fortran 2,932 4.79% 44.76% 12.84% 

470.lbm – C 1,500 0.79% 38.16% 11.53% 

481.wrf - C, Fortran 1,684 5.19% 49.70% 9.42% 

482.sphinx3 – C 2,472 9.95% 35.07% 5.58% 

 

2.2 Instruction Locality Based on Subroutine 

Profiling 
In order to understand the code locality in the CPU2006 

programs, we perform subroutine profiling using the PIN dynamic 
instrumentation tool [17]. PIN can identify hot subroutines based 
on subroutine call frequency. It can also count the number of 
dynamic/static instructions in the subroutines. Figure 1 shows the 
locality characteristics for at least one input set of integer and 



floating point benchmarks. Appendix I shows a table with the 
summary of data measured for this experiment. The cumulative 
percentage of dynamic instructions executed by a program is 
shown on Y-axis and the cumulative count of static instructions is 
shown on the X-axis with a log scale.  The first point in the line 
plot for each benchmark represents the hottest subroutine - X-
coordinate shows the number of static instructions in the routine 
and Y-axis the percentage of dynamic instructions that it 
represents. The second, third, fourth and fifth points respectively 
represent the top five, ten, fifteen and twenty hot subroutines. 
Many programs initially show a steep upward climb as the static 
instruction count increases, which suggests very good instruction 
locality.   
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(a) CINT2006 Benchmarks 
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   (b) CFP2006 Benchmarks 

 
Figure 1. Instruction locality based on code reuse in the top 20 hot 
subroutines for SPEC CPU2006 benchmarks. 

 
 As shown in Figure 1 the top twenty subroutines cover 

80% or more of the dynamic instructions in almost all 
benchmarks.  The integer benchmark 456.hmmer shows a very 

high reuse of code in the hottest subroutine. More than 95% of the 
instructions come from the hottest subroutine which has 11,080 
static instructions. Similarly the floating point benchmarks 
436.CactusADM and 470.lbm show a very high code–reuse 

and hence good instruction locality. On the other hand, the 20 hot 
subroutines in 471.omnetpp, 483.xalancbmk and 

403.gcc account for a very low percentage of dynamic 

instructions, suggesting a relatively poor instruction locality.  The 
trend observed in the previous generation SPEC CPU benchmark 
suites [19] continues with gcc exhibiting the poorest instruction 

locality among all the benchmark programs. In SPEC CPU2006, 
403.gcc-9 has the poorest instruction locality with 5 million 

static instructions only accounting for approximately 45% of the 
dynamic instructions.  As such, we can conclude that similar to 
the programs in the previous generation SPEC CPU benchmark 
suites, most of the SPEC CPU2006 benchmarks exhibit good 
instruction locality, but there are some notable exceptions with 
very large instruction footprints and relatively poor instruction 
locality.  
 Apart from the instruction locality, there are other 
microarchitectural attributes which can be measured during 
execution of the benchmark programs. Table 2 shows the range 
of some important characteristics measured using performance 
monitoring counters on a Pentium D system described earlier in 
this section, illustrating the diversity of the benchmarks in the 
CPU2006 suite. Many characteristics are seen to vary orders of 
magnitude between the minimum and maximum. 
 
Table 2: Range of important performance characteristics of SPEC 
CPU2006 benchmarks 

 
Metric Min Max 

I-cache miss ratio ~ 0 1.7% 

L1 D-cache miss ratio 6.3% 33% 

L2 cache misses per 
instruction (per L2 access) 

~0 

 (0.01%) 

2.4%  

(49%) 

DTLB miss ratio 0.2% 8.4% 

 
 

3. REDUNDANCY IN SPEC CPU2006 SUITE 
 
Although the SPEC CPU2006 benchmark suite comprises of 

programs from different application domains, it is possible that 
they exhibit similar program characteristics. In this section we 
outline the methodology to measure the (dis)similarity in 
fundamental program characteristics of benchmarks.  We then 
apply this technique to measure the redundancy of programs in 
the SPEC CPU2006 benchmark suite, and propose a subset of 
representative programs and input sets that can be used if the time 
required to simulate the entire benchmark suite is prohibitive. 

3.1 Methodology 
  We measured fundamental program characteristics related 

to their instruction locality, data locality, branch predictability, 
and instruction mix, using hardware performance counters.   
These characteristics are microarchitecture-dependent and the 
results could be biased by the idiosyncrasies of a particular 
machine.  Therefore, in order to eliminate this bias we measured 
the program characteristics on five different state-of-the-art 
machines with four different Instruction Set Architectures (ISAs) 
and compilers (IBM Power, Sun UltraSPARC, Itanium, and x86).   
Table 3 shows the list of performance counter based 
characteristics that were measured for each program on five 



different machines. We performed a correlation analysis between 
every performance counter characteristic and Cycles-Per-
Instruction (CPI), and only selected characteristics that showed a 
good correlation to performance.  This process eliminates the 
performance counters that exhibit a large variation but have little 
or no impact on performance.  Note that the important metrics that 
affect performance for the integer and floating-point programs are 
different.  In addition to these characteristics, the variability in 
microarchitectures, ISAs, and compilers across the five machines 
helps in capturing the differences between the benchmarks.  The 
hardware performance counter data used in this study was 
measured by various members of the SPEC CPU subcommittee 
members on their state-of-the-art machines.  Also, the 
methodology outlined in this section was used by the SPEC CPU 
subcommittee as one of the factors in evaluating the candidates 
for the SPEC CPU2006 benchmark suite [12]. The confidentiality 
requirements prevent us from disclosing the details of the 
machines on which this data was measured nor the performance 
counter data from individual machines. 

Since the measurements are carried out on five different 
machines, each performance counter characteristic-machine pair is 
treated as a variable. If we have n machines and we measure m 

characteristics for each machine, we have n x m variables for each 
program. There is a pitfall of directly using these raw variables to 
measure similarity between programs. It is possible that some of 
these variables are correlated and measure the same inherent 
benchmark property.  Therefore, using a large number of 
correlated variables will unduly overemphasize the importance of 
a particular benchmark property. In order to remove the 
correlation between these variables, this dataset is pre-processed 
using Principal Components Analysis (PCA) [7].  Clustering 
Analysis (CA) is then used to group programs with similar 
program characteristics.  We now describe the two statistical 
analysis techniques – Principal Component Analysis and Cluster 
Analysis.     

  
Table 3.  Program Characteristics used for measuring similarity 
between Integer and Floating-Point programs. 

 

Integer benchmarks Floating-Point 

benchmarks 

Integer operations per 
instruction 

Floating point operations per 
instruction 

L1 instruction cache misses per 
instruction 

Memory references per 
instruction 

Number of branches per 
instruction 

L2 data cache misses per 
instruction 

Number of mispredicted 
branches per instruction 

L2 data cache misses per L2 
accesses 

L2 data cache misses per 
instruction 

Data TLB misses per 
instruction 

Instruction TLB misses per 
instruction 

L1 data cache misses per 
instruction 

 

3.1.1 Removing Correlation using PCA 
 Considering the six characteristics measured on each of 

the five different machines, we have thirty characteristics per 
program. It is humanly impossible to simultaneously look at all 

the data and draw meaningful conclusions from them.  Hence 
PCA is used to analyze the data. In order to isolate the effect of 
varying ranges of each parameter, the data is first normalized to a 
unit normal distribution, i.e. a normal distribution with mean 
equal to zero and standard deviation equal to 1, for each variable. 
PCA helps to reduce the dimensionality of a data set while 
retaining most of the original information. PCA computes new 
variables, so-called principal components, which are linear 
combinations of the original variables, such that all the principal 
components are uncorrelated. PCA transforms p variables X1, 
X2,...., Xp into p principal components (PC) Z1,Z2,…,Zp  such that:  

∑
=

=

p

j jiji XaZ
0

 

 
 This transformation has the property Var [Z1] ≥ Var [Z2] 

≥…≥ Var [Zp] which means that Z1 contains the most information 
and Zp the least.  Given this property of decreasing variance of the 
PCs, we can remove the components with the lower values of 
variance from the analysis.  This reduces the dimensionality of the 
data set while controlling the amount of information that is lost. 
We use a standard technique (Kaiser Criterion) to choose PCs 
where only the top few PCs which have eigenvalues greater than 
or equal to one are retained.  In order to capture the entire 
information from p original variables, p PCs may be required, but 
if there are several correlated variables, a small number of PCs 
can capture most of the information from the original variables.    

3.1.2 Measuring Similarity using Cluster Analysis 
 Clustering is a statistical technique that can be used to 

group programs with similar features.  There are two commonly 
used clustering techniques – K-means clustering and hierarchical 
clustering.  The K-means clustering algorithm divides a set of N 
programs into K groups, where K is a value specified by the user.  
Therefore, in order to evaluate different grouping possibilities one 
needs to cluster programs for different values of K and then select 
the best fit.  On the other hand, as the name suggests, hierarchical 
clustering is useful in simultaneously looking at multiple 
clustering possibilities and the user can select the desired number 
of clusters using a dendrogram.  Therefore, in this paper we use 
hierarchical clustering algorithm.  Hierarchical clustering is a 
bottom up approach and starts with a matrix of distance between 
N cases or benchmarks.  The distance is the Euclidean distance 
between the program characteristics.  The algorithm used for 
hierarchical clustering is as follows: 
1. Assign each program to its own cluster, such that if we have N 

programs we have N clusters. 
2. Find the closest (most similar) pair of clusters and merge them 

into a single cluster, so that we have one less cluster. 
3. Compute distances (similarity) between the new cluster and 

the old cluster.  
4. Repeat steps 2 and 3 until all items are grouped into a single 

cluster of size N.  
 This hierarchical clustering process can be represented 
as a tree or dendrogram, where each step in the clustering process 
is illustrated by a joint in the tree (e.g.: Figure 2).  The numbered 
scale on the horizontal axis corresponds to the linkage distance 
between programs.  
 We now apply this methodology to find a representative 
subset of programs from the SPEC CPU2006 benchmark suite.  

 



3.2 Subsetting SPEC CPU2006 Benchmarks 
To keep pace with advancements in technology and the 

increase in size of on-chip caches, the data footprint and run time 
of SPEC CPU benchmark programs has been significantly 
increased. However for architectural studies that use cycle-
accurate simulators, it is virtually impossible to simulate all 
programs and input sets in a reasonable amount of time. If the 
same amount of information can be obtained from a smaller 
subset of representative programs, it would certainly help 
architects and researchers to cut down the simulation time without 
compromising on the inferences drawn from their studies. 

This section demonstrates the result of applying PCA and 
cluster analysis for selecting a subset of benchmark programs 
when an architect or researcher is constrained by time and wants 
to select a reduced subset of programs from the suite. Figure 2 
shows a dendrogram for CINT2006 benchmarks obtained after 
applying PCA and Hierarchical Clustering on the performance 
counter data from Table 3.  The Euclidean distance between the 
benchmarks is used as a measure of dissimilarity and single-
linkage distance is computed to create a dendrogram. Seven 
Principal Components (PCs) with eigen values greater than one 
are chosen and they retain 94% of the variance.  In the 
dendrogram in Figure 2 the horizontal axis shows the linkage 
distance indicating the dissimilarity between the benchmarks. The 
ordering on the Y-axis does not have particular significance, 
except that benchmarks are positioned close to each other when 
the distance is smaller. Benchmarks that are outliers have larger 
linkage distances with the rest of the clusters formed in a 
hierarchical way. One can use this dendrogram to select a 
representative subset of programs.  For example, if a researcher 
wants to reduce his simulation budget to just six benchmarks, then 
drawing a vertical line at linkage distance of 4, as shown in Figure 

2, will give a subset of six benchmarks (k=6). Drawing a line at a 
point close to 4.5 yields a subset of four benchmarks (k=4). Table 

4 shows the resulting subsets of the CINT2006 suite. In clusters 
where there are more than two programs, the representative of 
cluster i.e. the benchmark closest to the center of the cluster is 
chosen as a representative. As we traverse from left to right on the 
dendrogram the number of benchmarks in the subset keep 
decreasing. This helps the user to select appropriate benchmarks 
when simulation time is a constraint.  

 

 
 
Figure 2.  Dendrogram showing similarity between CINT2006 
Programs. 

 

 
Figure 3. Dendrogram showing similarity between CFP2006 
Programs.  

 

Figure 3 shows the dendrogram for floating point 
benchmarks in CPU2006. Five PCs are chosen using the Kaiser 
criterion which retains 85% of the variance. The two vertical 
arrows show the points at which the subsets of size 6 and 8 are 
formed. The resulting clusters are shown in Table 5. The distance 
of each of the benchmarks in the cluster to the cluster center has 
to be recalculated and a representative can be chosen. In Figure 3 
there are two main clusters which split at extreme right because 
the branch characteristics of the benchmarks, 447.dealII, 

450. soplex and, 453.povray exhibit a comparatively 

higher branch misprediction rate.  In the next section we evaluate 
the representativeness of these subsets. 

One should note that clustering and subsetting gives 
importance to unique features and differences. It helps to 
eliminate redundancy and duplicated efforts in experimentation. 
However, one should not mistake the mix of program types in a 
subset as the mix of program types in real-world workloads.  

 

 

Table 4. Representative subset of SPEC CINT2006 programs. 
 

Subset of 

Four 

Programs 

400.perlbench, 
462.libquantum,473.astar,483.xalancbmk 

Subset of 

Six 

Programs 

400.perlbench, 471.omnetpp, 429.mcf, 
462.libquantum, 473.astar, 
483.xalancbmk 

 

Table 5. Representative subset of SPEC CFP2006 programs. 
 

Subset of Six 

Programs 

437.leslie3d, 454.calculix, 
436.cactusADM, 447.dealII, 470.lbm, 
453.povray 

Subset of 

Eight 

Programs 

437.leslie3d, 454.calculix, 
459.GemsFDTD,436.cactusADM, 
447.dealII, 450.soplex, 470.lbm, 
453.povray 

 

3.3 Evaluating Representativeness of Subsets 
We evaluate the usefulness of the subsets, proposed in the 

previous section, to estimate the speedup of the entire suite on 



eight different commercial systems. The SPEC web page1 presents 
performance results of SPEC CPU2006 benchmarks on 
commercial computer systems.  We used these results to evaluate 
the efficacy of the subset of programs proposed in the previous 
section.  We obtained the execution times for all benchmarks on 8 
different platforms and their execution times on a reference 
machine. We then compared the weighted average (geometric 
mean) speedup from the subset against the average (geometric 
mean) speedup from the entire component (CINT or CFP) of the 
suite.  When calculating the average speedup from the subset, 
each benchmark of the subset was assigned a weight proportional 
to the number of benchmarks in its cluster.   
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Figure 4. Validation of CINT2006 subset using performance 
scores of eight systems from the SPEC CPU website. 
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Figure 5. Validation of CFP2006 subset using performance 
scores of eight systems from the SPEC CPU website.  

 
Figure 4 shows the comparison for CINT2006 benchmarks 

using the subset of 4 and 6 benchmarks shown in Table 4. For 
CINT component the subset of 4 programs shows an average error 
of 5.8% and a maximum error of 10.1%. The subset of 6 
benchmarks shows an average error of 3.8% and a maximum error 

                                                                 
1 http://www.spec.org/cpu2006/results/cpu2006.html 

of 8%. This shows that even a subset of 4 benchmarks out of 12 
CINT benchmarks has a very good predictive power in estimating 
the speedup shown by the entire suite.  

Figure 5 shows the validation of CFP2006 benchmarks using 
the subsets from Table 5. The maximum error in the floating point 
subset of 6 is higher than that in the integer benchmark subset. 
For a subset of 6 the average error is 10.8% with the maximum 
error of 19%. Hence we look at a subset of 8 benchmarks which 
shows the average error of 7% and the maximum error is 12%. 
From these results, we observe that 6 out of 12 integer 
benchmarks and 8 out of 17 floating point benchmarks form a 
good representative subset. It is interesting to observe that a third 
or half of the benchmarks in a suite can contain most of the 
information in the entire suite. 

 

3.4 Selecting representative input sets 
Many benchmarks in the CPU2006 have multiple input sets.  

For example, 403.gcc benchmark has nine input sets. A 

reportable SPEC result for each benchmark is supposed to 
comprise of all its input sets. However, for simulation based 
studies, researchers typically select one input set.  Instead of 
selecting an input set in an ad hoc manner, clustering analysis can 
also be used to select a representative input set.  The program 
characteristics shown in Table 3 were measured for all the 
different benchmarks and input sets.  PCA and clustering analysis 
was performed on this data to find similarity between input sets of 
each benchmark.   

Figure 6 shows the dendrogram for input sets and the 
benchmarks for the integer component. The Kaiser criterion 
results in choosing seven PCs covering 89% of variance for this 
analysis. Some benchmarks have only one input set and are hence 
represented only by their name. In some benchmarks, all input 
sets appear clustered together, where as in many cases, some input 
sets are very different from the other input sets of the same 
benchmark. As an example, the behavior of 403.gcc-9 is 

significantly different from its sibling input sets.  

    

 
 

Figure 6.  Dendrogram showing similarity between program-
input set for each benchmark in the SPEC CPU2006 suite.  



 
In this analysis, a benchmark’s input set closest to the whole 

(aggregated) benchmark run is selected as the representative input 
set.   In CINT2006, the benchmarks that have multiple input sets 
are 400.perlbench, 401.bzip2, 403.gcc, 

445.gobmk, 456.hmmer, 464.h264ref and 

473.astar.  Similarly, we also perform the analysis for input 

sets of CFP2006 programs. Figure 7 shows the dendrogram 
showing similarity between inputs sets of programs from 
CFP2006. Six PCs covering 88% of variance are chosen. In this 
category there are only two benchmarks with multiple input sets - 
416.gamess and 450.soplex.  For each of these 

benchmarks we list the most representative input set in Table 6.  
This information will be useful in selecting the most 
representative input set for each program. 

 

 
Figure 7.  Dendrogram showing similarity between program-
input set for each program from CFP2006. 
 

Table 6. List of representative input sets for SPEC CPU2006 
programs.  

 
CINT2006 benchmarks 464.h264avc   -  input set 2 

400.perlbench -  input set 1 473.astar      -  input set 2 

401.bzip2       -   input set 4  

403.gcc          -   input set 1 CFP2006 benchmarks 

445.gobmk     -  input set 5 416.gamess  -  input set 3 

456.hmmer     -  input set 2 450.soplex    -  input set 1 

 

3.5 Subsets based on branch and memory 

access characteristics 
Often, researchers focus on optimizing the design to take 

advantage of certain program characteristcs. In this section, we 
separately analyze the similarity of programs based on data access 
performance characteristics and branch prediction characteristics. 

 
 

Figure 8. CINT and CFP programs in the PC workload space 
using branch predictor characteristics. 
 
This similarity information can be used when conducting data 
cache and branch prediction studies. In this section we analyze all 
programs in the suite without classifying them into CINT and 
CFP groups. 

Figures 8 shows the scatter plot based on the first 2 PCs of 
the branch characteristics, covering approximately 92% of the 
variance. The CFP benchmarks are clustered together but the 
CINT programs clearly show diversity. A few CINT workloads 
overlap with the cluster of CFP workloads on the right side of the 
plot. These CINT benchmarks (464.h264ref, 

456.hmmer) have fewer branches like the other floating 

programs around them. Majority of the floating point programs 
have very little diversity in their branch characteristics. The 
benchmarks with high value of PC1, e.g. majority of CFP 
benchmarks and 464.h264ref and 456.hmmer show easy 

to predict branches. On the other hand CINT benchmarks are 
more spread out in the space and show significantly diverse 
behavior. The data used for this analysis was measured from three 
different systems.   

The data accesses characteristics were also measured on three 
different systems and after applying PCA, 4 PCs were retained 
which account for 84% of the variance. Figure 9 shows a scatter 
plot based on the first 4 PCs. For the purpose of clarity only 
certain benchmarks are labeled in the scatter plots. The 
benchmarks that have a more negative value of PC1 e.g. 

429.mcf, 471.omnettp, 462.libquantum exhibit a 

poor data access behavior and hence result in higher data cache 
miss-rates. The CFP benchmarks that are located at the top show 
very high percentage of memory accesses and hence should also 
be considered when selecting benchmarks for cache studies. In 
summary, when selecting benchmarks for a certain study the user 
should look at the workload space of those characteristics and 
select benchmarks to ensure that the entire workload is covered. 
Only selecting outliers will exercise worst case or best case 
behavior and can lead to misleading conclusions. 

 
 



   
  
                                     (a) PC1 Vs. PC2 
 

   
  (b) PC3 Vs. PC4 
 
Figure 9. CINT and CFP programs plotted in the PC space using 
memory access characteristics (PC1 Vs. PC2). 
 

 

4. BALANCE IN THE SPEC CPU2006 SUITE 

4.1 Case study on EDA Applications 
The concern in the October 2006 microprocessor report 

article [18] on CPU2006, whether the suite is balanced, stems 
from the fact that certain application areas have multiple 
representative programs (see Table 7), whereas certain areas are 
not represented in the suite. For example, in the integer suite, 
there are 3 programs (458.sjeng, 445.gobmk, 

473.astar) from the artificial intelligence area, and in the 

floating point suite there are 4 programs 
(410.bwaves,434.zeusmp, leslie3d, lbm) from the 

fluid dynamics area. In this section we provide a case study on the 
characteristics of the Electronic Design Automation (EDA) 
applications. The CPU2006 suite contains none, where as the 
earlier SPEC CPU suites contained more than one EDA 
applications (vpr, twolf, espresso, eqntott). Is losing the 
applications from the EDA area a weakness of CPU2006? Are 
other programs from other application areas similar to EDA 
applications that their absence is not an issue? We perform a 
similarity analysis to understand this.  Program characteristics are 

measured for all the SPEC CPU2000 integer programs and 
projected in the workload space after performing PCA on the 
characteristics of CINT2006 benchmarks. Figure 10 shows the 
projections of the workload space. From these figures it is evident 
that the EDA tool benchmarks in CPU2000 lie close to 473.astar 

and 401.bzip2 from CPU2006 benchmarks. Since the EDA 
programs are well within the envelope of the workload space 
covered by the new suite, the elimination of EDA programs may 
not be a major concern.   

 

 
 

(a) PC1 Vs. PC2 
 

 
(b) PC3 Vs. PC4. 
 

Figure 10. Scatterplot showing position of EDA applications in 
the workload space. 
 

4.2 Differences between benchmarks from the 

same application area 
Any two benchmarks that belong to the same 

application area can show different behavior on certain 
architecture. Are the programs from SPEC CPU2006 suite, which 
belong to the same application area really different? The similarity 
analysis described in Section 3 can answer this question. Let us 
consider one application area from Table 7 at a time and refer to 
Figures 2 and 3 to answer the question. In case of artificial 
intelligence area, 458.sjeng and 473.astar show very 



similar behavior and can be found quite close to each other in the 
workload space, while 445.gobmk is much further away from its 

siblings. The equation solver applications do not lie close to each 
other and hence justify their presence in the suite. 410.bwaves 

and 437.leslied, are relatively close to each other than the 

other two programs in their application area. Both the programs in 
molecular dynamics are different and relatively close to each other 
with the linkage distance of less than 2 between them. 
465.tonto and 416.gamess also have a linkage distance of 

less than 2. On the contrary, the 4 programs from the Engineering 
and Operational Research domain are significantly different from 
each other. In Table 7 two programs that belong to the same 
application area and show similar program characteristics are 
highlighted in bold.   
 

Table 7. Classification of programs based on application areas. 
 

Application area Benchmarks 

Artificial Intelligence 
458.sjeng, 

445.gobmk,473.astar 

Equation solver 
436.cactusADM, 
459.GemsFDTD 

Fluid Dynamics 
410.bwaves,434.zeusmp, 

437.leslie3D, 470.lbm 

Molecular Dynamics 435.gromacs, 444.namd 

Quantum Chemistry 465.tonto, 416.gamess 

Engineering and 
Operational Research 

454.calculix,447.dealII, 
450.soplex, 453.povray 

 

4.3 Comparing CPU2006 benchmarks with 

CPU2000  
 SPEC CPU subcommittee took efforts to include 

challenging applications to stay relevant in the light of fast and 
powerful emerging machines. Looking back after the selection, 
how did these changes affect the overall characteristics of 
programs in CPU2000? Are the programs fundamentally different 
from the ones in SPEC CPU2000? 

 From Figure 10 it is evident that the CINT2006 
benchmarks are spread farther in the workload space as compared 
to CINT2000 benchmarks and cover a wider area in the workload 
space. In the PC1 Vs PC2 scatter plot (Figure 9(a)), many of the 
CPU 2000 programs are located close to the (0,0), whereas, the 
new programs such as  483.xalancbmk and 456.hmmer 

provide coverage for very far away spots in the workload space. In 
the PC3-PC4 scatter plot (Figure 10(a)), one can easily notice the 
diversity added by the programs 445.gobmk, 483.xalancbmk, 

462.libquantum and 458.sjeng. They extend the envelope of the 
benchmark space significantly. It is also interesting to note that 
the benchmarks from CPU2000 suite that were retained e.g. mcf, 

bzip2, perl, gcc show similar behavior as their predecessors. This 
might mean that only the dynamic instruction count and data 
footprint of these benchmarks changed but the control flow almost 
remained the same. The increased data footprint will exercise the 
big caches in recent processors. Due to space constraints we could 
not show the scatter plots for the CFP2006 benchmarks but we 
see that the floating benchmarks in CPU2006 are even more 
diverse compared to the ones in CPU2000. Overall, one can 
observe increased diversity in the new suite.  

4.4 Sensitivity of programs to performance 

characteristics 
 In this section, we present a classification of programs 

based on their sensitivity to branch predictors and data cache 
across five machines that were used to do the analysis in Section 
3. In order to measure the sensitivity of a program to branch 
predictor and L1 D-cache configuration, for every machine we 
ranked programs based on these characteristics. The difference in 
ranks of a program across all machines is then computed. The 
resulting number is indicative of sensitivity of that program for a 
given characteristic.  

 

Table 8.  Sensitivity of Programs to Branch Misprediction Rate 
and L1 D-cache Miss-rate across five different platforms. 
 

Branch Prediction  

High 456.hmmer-1, 456.hmmer, 456.hmmer-2  

Medium 

471.omnetpp, 429.mcf, 473.astar-1, 473.astar,  

464.h264ref-1, 473.astar-2, 400.perlbench-1,  

401.bzip2-4, 462.libquantum,, 401.bzip2-3, 401.bzip2-2, 
400.perlbench, 401.bzip2, 445.gobmk-3, 401.bzip2-1, 464.h264ref, 
401.bzip2-5,, 403.gcc-8, 458.sjeng,401.bzip2-6, 403.gcc-4  

Low 

464.h264ref-3, 445.gobmk, 445.gobmk-1, 445.gobmk-4, 
445.gobmk-2, 445.gobmk-5, 400.perlbench-2, 464.h264ref-2, 
403.gcc-7, 403.gcc-6, 400.perlbench-3, 483.xalancbmk, 403.gcc-2, 
403.gcc-5, 403.gcc-1, 403.gcc, 403.gcc-9, 403.gcc-3  

L1 D-cache  

High 
462.libquantum, 464.h264ref-2, 464.h264ref-3, 464.h264ref, 
456.hmmer-1  

Medium 
456.hmmer, 456.hmmer-2, 400.perlbench-2, 400.perlbench-3, 
445.gobmk-3, 403.gcc-7  

Low 

400.perlbench, 403.gcc-8, 483.xalancbmk, 473.astar-2, 403.gcc, 
400.perlbench-1, 473.astar, 464.h264ref-1, 445.gobmk, 473.astar-
1, 445.gobmk-4, 471.omnetpp, 429.mcf, 403.gcc-9, 403.gcc-3, 
445.gobmk-2, 401.bzip2-3, 401.bzip2-5, 445.gobmk-1, 403.gcc-6, 
403.gcc-5, 401.bzip2-2, 401.bzip2-6, 403.gcc-2, 403.gcc-1, 
401.bzip2-1, 401.bzip2, 403.gcc-4, 401.bzip2-4, 445.gobmk-5, 
458.sjeng  

 
  
 Table 8 shows the classification of programs based on 

their sensitivity to branch predictor and L1 D-cache configuration 
It is organized as follows. For each characteristic (branch 
misprediction rate and L2 data cache miss-rate) the workloads 
(program-input pairs) are categorized into one of the low, medium 
and high ranges.  The most striking observation from this is that 
462.libquantum, 456.hmmer, and 464.h264ref show the most 
variation in D-cache misses across the five machines. 
456.hmmer shows a lot of variation for branches where as 
458.sjeng, 473.astar and 445.gobmk show higher 
misprediction rates. As observed by Vandierendonck et.al. [23] in 
CPU2000, we also observed that 409.gcc from CPU2006 ranks 
relatively low in variation across the five machines used in the 
experiment.  The explanation is that every machine is equally 
good or equally bad for gcc, eliminating the sensitivity to 
platforms.  

5. RELATED WORK 
In [8] and [9] Eeckhout et.al measured a mixture of 

microarchitecture dependent and microarchitecture independent 
metrics and presented similarity information of programs. 
Vandierendonck and Bosschere [23] analyzed the SPEC 
CPU2000 benchmark suite peak results on 340 different machines 
representing eight architectures, and used PCA to identify the 



redundancy in the benchmark suite. They found that a small 
number of CPU 2000 programs have nearly the same predictive 
power as the entire suite in ranking machines. Giladi and Ahituv 
[10] also had a similar approach towards finding a subset of 
programs. They found that the ten programs of SPEC89 suite 
could be reduced to six without affecting the SPEC rating.  
Phansalkar et.al. [20] and Joshi et.al. [15] characterized 
benchmarks using microarchitecture independent metrics to find a 
representative subset and study the difference between the 
previous generations of SPEC CPU benchmarks. The metrics are 
independent of microarchitecture but compiler and ISA 
dependent. However, since CPU2006 benchmarks have very long 
runtime (23 out of 29 benchmarks have more than one trillion 
instructions), significantly higher time would be required to 
measure these characteristics. The approach used in this paper 
tries to achieve the component of microarchitecture independence 
by characterizing benchmarks on a wide range of systems with 
different ISAs, compilers and microarchitectures. Yi et.al [27] 
compare all the different subsetting approaches and show that use 
of statistical techniques for subsetting can lead to improved 
accuracy. Citron [2][3] presented subsets based on use by the 
computer architecture research community and showed that partial 
use of suites can lead to misleading results.  

  

6. CONCLUSIONS 
 There are concerns about program redundancy programs 

in the SPEC CPU2006 benchmark suite and that benchmarks 
from some certain commonly used application areas are missing. 
Using performance counter data from five different state of the art 
machines, and statistical analysis techniques such as PCA and 
clustering, we analyze the similarity and balance of the recently 
released SPEC CPU2006 suite. Dendrograms illustrating the 
similarity between benchmarks and scatter plots showing the 
workload space are presented for overall selection of metrics, as 
well separately for branch and data access metrics.  

 We show that 6 out of the 12 integer programs and 8 of 
the 17 FP programs can capture most of the information from the 
FP benchmarks. It is observed that not all programs in the same 
application area are similar. Some of them are more similar to the 
programs in another application area. When analyzed from the 
perspective of program characteristics, an unrepresented area such 
as electronic design automation (EDA) may not be a major 
weakness of the suite. We also identify one input set as a 
representative input set for programs that have multiple input sets. 
Not all input sets of a benchmark result in similar behavior. Some 
input sets make a program appear more similar to another 
benchmark rather than its own sibling. 

It is less than a year since SPEC CPU2006 has been released. 
If Citron’s observation regarding use of benchmarks [2][3] holds, 
it will be a quite some time before the research community can 
succeed in compiling and simulating the entire benchmarks. Even 
if the intentional misuse may not happen, partial use of the suite 
will be inevitable due to difficulties with compilation, system call 
issues, libraries etc. The information presented in this paper 
should help researchers in selecting a representative set of 
benchmarks, if subsetting is unavoidable. It should also help in 
understanding and interpreting simulation results. 

7. DISCLAIMER 
All the observations and analysis done in this paper on SPEC 

CPU2006 benchmarks are the authors’ opinions and should not be 

used as official or unofficial guidelines from SPEC in selecting 
benchmarks for any purpose. This paper only provides guidelines 
for researchers and academic users to choose a subset of 
benchmarks should the need be.  
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APPENDIX I – Subroutine Profile Summary of CPU2006 

The columns show the information for the hottest subroutine, the cumulative data for the top 5,10 and 20 hot subroutine. Each of these 
columns has two sub-columns which show the cumulative percentage of dynamic instructions executed in the respective number of hot 
routines and the cumulative static count e.g. 22.3% of the dynamic instructions executed are from the hottest subroutine which has 140998 
static instructions. Also, the top five hot subroutines account for 41.06% of dynamic instructions which have a total of 466157 static 
instructions.  This data is generated using PIN [17]. 

 Cumulative Hottest Subroutine 5 Hot Subroutines 10 Hot Subroutines 20 Hot Subroutines 

Benchmark 
name- input 

Percentage 
Dynamic 

Static 
count 

Percentage 
Dynamic 

Static 
count 

Percentage 
Dynamic 

Static 
count 

Percentage 
Dynamic Static count 

CPU2006 integer benchmarks 

400.perlbench-1 22.30% 140998 41.06% 466157 57.80% 1061283 78.17% 2048489 

400.perlbench-2 50.86% 140998 77.58% 722121 82.93% 1396866 88.30% 2673489 

400.perlbench-3 67.40% 140998 81.63% 710437 88.43% 1362876 93.70% 2488840 

401.bzip2-1 37.42% 3126 90.49% 30930 99.93% 61906 99.99% 107435 

401.bzip2-2 34.44% 9357 92.90% 28335 99.98% 61906 100.00% 107435 

401.bzip2-3 55.02% 1850 97.34% 29654 99.99% 61906 100.00% 107435 

401.bzip2-4 28.53% 9357 91.04% 30930 99.95% 72391 100.00% 207009 

401.bzip2-5 51.18% 2022 94.55% 30930 99.98% 72391 100.00% 109398 

401.bzip2-6 32.70% 3126 86.96% 30930 99.94% 61906 99.99% 107435 

403.gcc-1 16.53% 72483 37.98% 2208290 50.06% 4156689 61.62% 8414654 



403.gcc-2 11.61% 72483 25.12% 2323225 35.92% 4131522 49.64% 8041641 

403.gcc-3 20.70% 146129 47.27% 1597844 59.24% 3167999 71.23% 6350050 

403.gcc-4 20.48% 146129 47.13% 2020198 57.38% 4147096 67.73% 8054140 

403.gcc-5 19.21% 146129 49.83% 2124041 59.36% 3929883 69.89% 7651110 

403.gcc-6 19.00% 146129 49.01% 2124041 59.79% 3929883 69.93% 7476905 

403.gcc-7 16.46% 72483 55.79% 1800707 70.44% 4732572 80.34% 8696609 

403.gcc-8 22.37% 72483 54.89% 1473886 64.54% 4272881 74.14% 7894874 

403.gcc-9 4.40% 669312 17.42% 1871256 28.45% 4042557 43.22% 7913678 

429.mcf 32.31% 2573 86.26% 8137 98.89% 16550 99.97% 375239 

445.gobmk-1 8.62% 33206 31.96% 123655 48.10% 262154 67.84% 596812 

445.gobmk-2 7.61% 13119 31.45% 123655 47.37% 244954 67.62% 548199 

445.gobmk-3 19.04% 32657 40.65% 166002 56.67% 270024 71.23% 494076 

445.gobmk-4 7.75% 13119 30.50% 123655 46.86% 224322 66.98% 508799 

445.gobmk-5 9.08% 13119 33.48% 150245 50.70% 263013 71.11% 366012 

456.hmmer-1 99.10% 11080 99.76% 143630 99.91% 385550 99.96% 993103 

456.hmmer-2 96.79% 11080 99.76% 220363 99.99% 458965 100.00% 711948 

458.sjeng 20.64% 9213 48.76% 48588 72.63% 97943 92.13% 183112 

462.libquantum 65.18% 901 98.38% 12897 100.00% 39182 100.00% 89909 

464.h264ref-1 41.21% 63541 75.28% 360800 90.46% 733452 96.06% 1281878 

464.h264ref-2 35.20% 63541 65.66% 263448 81.81% 632195 91.08% 1103854 

464.h264ref-3 36.20% 63541 71.16% 263448 83.30% 638070 92.28% 1162685 

471.omnetpp 24.32% 108195 40.91% 527643 51.53% 903746 64.49% 1849742 

473.astar-1 37.86% 5674 81.20% 37331 96.89% 62175 99.47% 283443 

473.astar-2 39.82% 5674 90.61% 30981 99.51% 60403 99.92% 205548 

483.xalancbmk 25.98% 503940 55.57% 1539078 69.42% 3896705 79.24% 9194199 

CPU2006 floating point benchmarks 

410.bwaves 81.72% 955 98.81% 20906 100.00% 206818 100.00% 787062 

416.gamess-1 22.30% 1276458 58.80% 3871636 72.88% 7159808 90.66% 14870258 

416.gamess-2 40.51% 1276458 85.24% 3865963 94.33% 6848202 98.75% 16678502 

416.gamess-3 39.95% 736310 81.60% 4791284 92.23% 8652681 96.80% 15778333 

433.milc 17.97% 18724 63.62% 94474 85.66% 190396 97.53% 373321 

434.zeusmp 42.67% 24198 80.11% 146870 95.44% 305321 99.75% 537772 

435.gromacs 69.95% 28484 84.43% 380679 91.35% 951762 95.95% 1991123 

436.cactusADM 98.37% 12299 99.97% 341943 99.99% 865076 100.00% 1931210 

437.leslie3d 18.98% 12137 82.03% 43027 99.99% 61553 100.00% 538388 

444.namd.stdout 13.76% 7980 59.01% 38959 91.26% 119030 99.99% 623266 

447.dealII 18.02% 458978 52.22% 1760935 73.59% 3316274 87.13% 5874499 

450.soplex-1 16.02% 88472 44.91% 337648 68.42% 796146 86.16% 1246274 

450.soplex-2 42.03% 79680 79.58% 256105 93.06% 559113 97.45% 961334 

453.povray 12.63% 185839 48.62% 446779 70.44% 1238650 90.32% 2239198 

454.calculix 64.78% 42790 93.73% 964957 95.47% 2111871 97.14% 4292472 

459.GemsFDTD 27.49% 58016 96.34% 295624 99.31% 617617 99.92% 1329282 

465.tonto 12.48% 554306 42.13% 2856539 59.42% 6679198 76.04% 12522232 

470.lbm 99.32% 919 100.00% 8940 100.00% 187934 100.00% 696825 

482.sphinx3 40.50% 34299 90.11% 98106 97.13% 174224 99.06% 418795 

 


