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[1] Confidence intervals based on classical regression theories augmented to include
prior information and credible intervals based on Bayesian theories are conceptually
different ways to quantify parametric and predictive uncertainties. Because both
confidence and credible intervals are used in environmental modeling, we seek to
understand their differences and similarities. This is of interest in part because
calculating confidence intervals typically requires tens to thousands of model runs,
while Bayesian credible intervals typically require tens of thousands to millions of model
runs. Given multi-Gaussian distributed observation errors, our theoretical analysis shows
that, for linear or linearized-nonlinear models, confidence and credible intervals are always
numerically identical when consistent prior information is used. For nonlinear models,
nonlinear confidence and credible intervals can be numerically identical if parameter
confidence regions defined using the approximate likelihood method and parameter
credible regions estimated using Markov chain Monte Carlo realizations are numerically
identical and predictions are a smooth, monotonic function of the parameters. Both occur if
intrinsic model nonlinearity is small. While the conditions of Gaussian errors and small
intrinsic model nonlinearity are violated by many environmental models, heuristic tests
using analytical and numerical models suggest that linear and nonlinear confidence
intervals can be useful approximations of uncertainty even under significantly nonideal
conditions. In the context of epistemic model error for a complex synthetic nonlinear
groundwater problem, the linear and nonlinear confidence and credible intervals for
individual models performed similarly enough to indicate that the computationally frugal
confidence intervals can be useful in many circumstances. Experiences with these
groundwater models are expected to be broadly applicable to many environmental models.
We suggest that for environmental problems with lengthy execution times that make credible
intervals inconvenient or prohibitive, confidence intervals can provide important insight.
During model development when frequent calculation of uncertainty intervals is important to
understanding the consequences of various model construction alternatives and data
collection strategies, strategic use of both confidence and credible intervals can be critical.
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1. Introduction

[2] Environmental modeling is often used to predict
effects of future anthropogenic and/or natural occurrences.
Predictions are always uncertain. Epistemic and aleatory
prediction uncertainty is caused by data errors and scarcity,
parameter uncertainty, model structure uncertainty, and sce-
nario uncertainty [Morgan and Henrion, 1990; Neuman and
Wierenga, 2003; Meyer et al., 2007; Renard et al., 2011;
Clark et al., 2011]. Here we mostly explore the propagation
of parameter uncertainty into measures of prediction

uncertainty using two common measures: individual confi-
dence intervals based on classical regression theories
(Draper and Smith [1998] and Hill and Tiedeman [2007]
show how prior information can be included in regression
theories) and individual credible intervals (also known as
probability intervals) based on Bayesian theories [Box and
Tiao, 1992; Casella and Berger, 2002]. On the other hand,
alternative models are also constructed in this study to allow
consideration of these measures of parameter uncertainty in
the context of model structure uncertainty.
[3] Confidence intervals are of interest because they gen-

erally can be calculated using tens to thousands of model runs
versus the tens of thousands to millions of model runs needed
to calculate credible intervals. While computational cost
for evaluating Bayesian credible intervals can be reduced by
using surrogate modeling such as response surface surrogates
and low-fidelity physically based surrogates [Razavi et al.,
2012], surrogate modeling generally requires thousands of
model runs to establish the response surface surrogate and the
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surrogate model. Considering the utility of frequently cal-
culating uncertainty measures to evaluate the consequences
of various model construction alternatives and data collection
strategies [Tiedeman et al., 2003, 2004; Dausman et al.,
2010; Neuman et al., 2012; Lu et al., 2012], less computa-
tionally demanding methods are appealing.
[4] While both confidence and credible intervals have

been used in environmental modeling [Schoups and Vrugt,
2010; Krzysztofowicz, 2010; Aster et al., 2012], it is not
possible to provide a literature review and examples from
such a large field. Here, we focus on groundwater modeling
for the literature review below and for the complex synthetic
test case considered. Since groundwater modeling and many
other fields of environmental modeling share similar model-
ing protocols and mathematical and statistical methods for
uncertainty quantification and interpretation, guidelines for
using confidence and credible intervals drawn from the the-
oretical analyses and test cases considered in this work are
expected to be generally applicable to other fields of envi-
ronmental modeling.
[5] Among the pioneering groundwater works, Cooley

[1977, 1979, 1983], Yeh and Yoon [1981], Carrera and
Neuman [1986], and Yeh [1986] used linear confidence inter-
vals based on observations and prior information; Cooley and
Vecchia [1987] developed a method for estimating nonlinear
confidence intervals; Kitanidis [1986] presented a Bayesian
framework of quantifying parameter and predictive uncer-
tainty. More recent development and applications of the inter-
vals can be found in Sciortino et al. [2002], Tiedeman et al.
[2003, 2004], Cooley [2004], Montanari and Brath [2004],
Samanta et al. [2007], Hill and Tiedeman [2007], Gallagher
and Doherty [2007], Montanari and Grossi [2008], Dausman
et al. [2010], Li and Tsai [2009], Wang et al. [2009], Parker
et al. [2010], Schoups and Vrugt [2010], and Fu et al. [2011],
among others. The study of confidence and credible intervals
in the context of multimodel analysis has been considered by
Neuman [2003], Ye et al. [2004], Poeter and Anderson [2005],
Poeter and Hill [2007], Neuman et al. [2012], Lu et al. [2012],
and L. Foglia et al. (Analysis of model discrimination techni-
ques, the case of the Maggia Valley, Southern Switzerland,
submitted toWater Resources Research, 2012), among others.
[6] A related field is sensitivity analysis, which is com-

monly used to diagnose contributions to uncertainty measures
[e.g., Saltelli et al., 2008]. In sensitivity analysis, comparisons
of linear methods related to the linear confidence intervals in
this work and global methods with Monte Carlo sampling
more similar to the nonlinear Bayesian methods have sug-
gested both utility and lack of utility of the linear methods.
Foglia et al. [2007] suggest a high level of utility; Tang et al.
[2007] suggest little utility. Of note is that the linear measure
used by Tang et al. [2007] (labeled CS) has dimensions of
the reciprocal of the parameter values, with the predictable
result that parameters with small values (such as LZPK) are
rated as “most important.” This contradicts their results from
global methods. Multiplying by the parameter values to obtain
dimensionless linear measures results in LZPK being rated
as “less important” which is consistent with their results from
global methods.
[7] Confidence and credible intervals are conceptually dif-

ferent and understanding their fundamental differences and
similarities can aid appropriate use. In this study, we con-
sider linear confidence and credible intervals for linear and
linearized-nonlinear models, and nonlinear confidence and

credible intervals for nonlinear models. These intervals are
defined in section 2. For nonlinear models, nonlinear confi-
dence and credible intervals account for model nonlinearity
and are thus expected to be more accurate than linear inter-
vals calculated from linearized-nonlinear models. Table 1
summarizes previous studies that compare confidence and
credible intervals. The previous studies report linear confi-
dence intervals and nonlinear credible intervals that differ by
between 2% and 82%, while nonlinear confidence and cred-
ible intervals differ by between�24% and 7%. The previous
studies mainly focused on comparing calculated confidence
and credible intervals without a thorough discussion of
underlying theories, and the large differences have not been
fully understood in the environmental modeling community.
In this work we seek a deeper understanding, and begin by
considering the work of Jaynes [1976], Box and Tiao [1992]
and Bates and Watts [1988].
[8] Jaynes [1976] presents a spirited discussion on esti-

mation of confidence and credible intervals of distribution
parameters (e.g., mean of truncated exponential distribution
in his Example 5). A similar but more systematic discus-
sion is found in Box and Tiao [1992]. The authors conclude
that, given sufficient statistics, what we call confidence and
credible intervals are “identical” [Jaynes, 1976, p. 199] or
“numerically identical” [Box and Tiao, 1992, p. 86]. Suf-
ficient statistics are completely specified by a defined set of
statistics that can be calculated from the data. For example,
random variable X follows a Gaussian distribution with
unknown mean q and variance s2; then the sample mean and
sample variance are sufficient statistics for q and s2, respec-
tively. In this case, the confidence and credible intervals for
the two parameters q and s2 are identical [Box and Tiao,
1992, p. 61]. Box and Tiao [1992, p. 113] extend the dis-
cussion to linear models with multivariate Gaussian obser-
vation errors, concluding that what are herein called the
parameter credible regions are “numerically identical” to the
parameter confidence regions used in linear regression
[Box and Tiao, 1992, p. 118]. As a result, confidence and
credible intervals on predictions are numerically identical.
This conclusion can also be found in Bates and Watts [1988,
p. 7]. Bates and Watts [1988] further extend the analysis of
parameter confidence and credible regions to nonlinear
models with multivariate Gaussian observation errors. They
conclude that, when intrinsic model nonlinearity is small, the
two regions are mathematically similar and so are confidence
and credible intervals on parameters and predictions (confi-
dence and credible regions, their relation to confidence and
credible intervals, and intrinsic model nonlinearity are dis-
cussed in section 2.6).
[9] Issues not considered in the references cited include the

extent to which the two kinds of intervals differ from each
other when intrinsic model nonlinearity is moderate and
large, as is common in models of environmental systems, and
resulting relative utility of the confidence intervals in these
nonideal circumstances. In addition, informative prior in the
Bayesian methods and inclusion of consistent prior infor-
mation in regression is not considered. Prior information is of
considerable utility in environmental models. This paper
seeks to provide some insight into these two issues.
[10] This paper first compares confidence and credible

intervals theoretically, establishing the foundations devel-
oped by Box and Tiao [1992] and Bates and Watts [1988]
and extending the theory for linear models to include to
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include informative prior for credible intervals and prior
information for confidence intervals. In particular, we prove
the equivalence when the prior information used for confi-
dence intervals is consistent with the informative prior used
for credible intervals; consistency is limited to the informa-
tive prior being multi-Gaussian. For nonlinear models, we
pursue a largely heuristic approach. We use simple analytical
test cases to explore the conditions under which parameter
confidence and credible regions and associated prediction
confidence and credible intervals are numerically equivalent
or nearly equivalent. We further explore computational
difficulties that cause differences between the two kinds of
intervals in practice. Finally, we use a complex synthetic test
case to compare the differences between confidence and
credible intervals in the context of differences between
alternative models of a single system. The general guidelines
drawn for the nonlinear models in this study are expected to
be useful to practical environmental modeling.

2. Theoretical Consideration of the Uncertainty
Intervals

[11] In this section, conceptual differences between con-
fidence and credible intervals are discussed in section 2.1.
In section 2.2, we discuss the situation when linear confi-
dence and credible intervals for linear models are numeri-
cally identical. In section 2.3, we show that for linear
models with multi-Gaussian observation errors, the two
kinds of intervals are numerically identical without priors

(noninformative priors for credible intervals and no priors
for confidence intervals), and in section 2.4 with consistent
priors (informative priors for credible intervals are consistent
with priors defined for confidence intervals). As shown in
section 2.5, the same conclusions also apply to linearized-
nonlinear models. The relations between confidence and
credible intervals are significantly more complicated for non-
linear models. They depend on relations between parameter
confidence and credible regions defined in section 2.6. Results
identify the consequences of local minima on confidence
intervals and inadequate exploration of parameter space for
credible intervals.

2.1. Conceptual Differences Between Confidence
and Credible Intervals

[12] For a variable X, both confidence and credible inter-
vals can be defined symbolically as

Prob l ≤ X ≤ uð Þ ¼ 1� a; ð1Þ

where l and u are the lower and upper interval limits, a is
significance level, and 1 � a is confidence level. However,
the definition is interpreted in different ways when estimat-
ing confidence intervals and credible intervals, rendering the
two kinds of intervals conceptually different.
[13] Take the intervals for model predictions as an

example. From the frequentist point of view, a true value of
the prediction exists and a confidence interval with a confi-
dence level of, for example, 95% (a = 5%), is an interval

Table 1. List of Selected Recent Studies Comparing Confidence and Credible Intervalsa

Reference and Quantity for Which
the Intervals are Constructed Model

Linear
Confidence

Interval (LCo)

Nonlinear
Confidence

Interval (NCo)

Nonlinear
Credible

Interval (NCr)b

Increase in
Width Relative
to NCr (%)c

Vrugt and Bouten [2002],
Soil hydraulic parameters

Near linear X N/A X Similar
Nonlinear XX N/A X L:82%

Gallagher and Doherty [2007],
Watershed
Parameters Nonlinear XXX X XX L:2%; N:�24%
Predictions Nonlinear XXX X XX L:71%; N:�7%

Finsterle and Pruess [1995],
Two-phase flow Parameters

Nonlinear X XX N/A –

Christensen and Cooley [1999],
Groundwater Parameters

Nonlinear Not consistently larger
or smaller

N/A –

Predictions Nonlinear Not consistently larger
or smaller

N/A –

Liu et al. [2010],d

DNAPL Parameters
Nonlinear e N/A e –

This study, Predictions Linear simple X X X Same
Very nonlinear simple I XXX XX X L:70%; N:13%

Mildly nonlinear simple II X X X Same
Nonlinear complexf XXg XXX X L: 0.1 to 33%

N: 0.2 to 69%
See Figure 5 Xh XX XXX L: �18 to �11%

N: �15 to �6%

aThe relative size of the intervals is represented by the number of Xs, with more Xs indicating larger intervals. N/A: interval types not considered. For all,
consistent prior is used for the confidence and credible intervals. Except as noted, there is noninformative prior for credible intervals, and no prior for
confidence intervals.

bCalculated using Markov-Chain Monte Carlo.
cL: 100 � (LCo-NCr)/NCr; N: 100 � (NCo-NCr)/NCr. Negative values mean the LCo or NCo interval is smaller than the NCr. –, results are presented

graphically, so values not determined.
dLiu et al. [2010] calculated linear credible intervals using the maximum a posteriori (MAP) approach. The listing under linear confidence intervals is

consistent with results of this work that show the equivalence of linear credible and confidence intervals. Same informative prior is used for linear and
nonlinear credible interval.

eResults of the comparison between LCo and NCr were not consistently larger or smaller for different parameters.
fThe prior is informative and prior information is included for confidence intervals.
gApplies for most simulated circumstances.
hFor drawdown predicted by model INT.

LU ET AL.: REGRESSION CONFIDENCE AND BAYESIAN CREDIBLE INTERVALS W09521W09521

3 of 20



that is expected to include the true value “95% of the time”
in repeated sampling of observations and prior information
used in regression [Jaynes, 1976, p. 200; Box and Tiao, 1992,
p. 86; McClave and Sincich, 2000, p. 282]. In other words,
the interval, not the true value of the unknown prediction,
is random. The interval varies with samples used to calculate
the interval. If N sets of observations are sampled based on
their error distribution and, for each set, the confidence
interval of a prediction is evaluated, 95% of the N intervals
are expected to contain the true value of the prediction.
This concept was used in Hill [1989] and Cooley [1997] to
test methods of estimating nonlinear confidence intervals.
[14] From the Bayesian point of view, the prediction is a

random variable and a 95% credible interval is expected to
include 95% of the probability distribution function (PDF)
of the prediction [Box and Tiao, 1992, p. 86; Casella and
Berger, 2002]. The posterior distribution summarizes the
state of knowledge about the unknown prediction based on
available data and prior information. The credible interval is
determined via

Z u

l

p g bð Þð jyÞdg bð Þ ¼ 1� a; ð2Þ

where b and g(b) are model parameters and predictions,
respectively, and p(g(b)|y) is the posterior distribution of
g(b) conditioned on data y. In this study, the credible inter-
val limits l and u are determined using the easily computed
equal-tailed method as [Casella and Berger, 2002]

p g bð Þ ≤ lð jyÞ ¼ p g bð Þ ≥ uð jyÞ ¼ a=2: ð3Þ

Other methods of estimating the credible intervals (e.g.,
highest posterior density (HPD) interval) are also available
[Box and Tiao, 1992; Chen and Shao, 1999; Casella and
Berger, 2002]. The HPD method is not used in this work
partly because it tends to produce the smallest interval and
partly simply for the convenience of reporting one set of
results.
[15] In this study, we focus our discussion on relations

between confidence and credible intervals within the frame-
work of Gaussian distributed observation errors, which is
the basis of using Gaussian likelihood functions below. The
Gaussian distribution is commonly used in environmental
problems and is also used in statistical books such as Draper
and Smith [1998], Box and Tiao [1992], and Hill and
Tiedeman [2007]. Box and Tiao [1992, p. 151] note that
approximately Gaussian distributed observations are expec-
ted when the central limit theorem applies. This requires that
the contributions to observation error be many independent
sources, “none of which are dominant.” Considering that in
environmental models there are clearly many sources of error
(including different sources of measurement, epistemic, and
aleatory errors) and that a major goal of model development
is to resolve dominant errors, the assumption of Gaussian
observation errors is expected to have wide applicability.

2.2. When Linear Confidence and Credible Intervals
for Linear Models are Numerically Identical

[16] For linear models, classical regression confidence
intervals of fixed but unknown true model parameters b are

estimated based on the distributions p b̂
� �

of parameter esti-

mates b̂, which are functions of the observations y. Bayesian

credible intervals of randommodel parametersb are evaluated
based on the distributions p(b|y) of parameters b, which are
calculated according to the Bayes’ theorem,

p bð jyÞ ¼
p yjbð Þp bð Þ

p yð Þ
¼
l bð jyÞp bð Þ

p yð Þ
: ð4Þ

If p(b|y) is equivalent to p b̂
� �

, the credible and confidence

intervals of b and the intervals of linear model predictions
g(b) are numerically equivalent. Jaynes [1976] and Box
and Tiao [1992] established this equivalence using the
concept of sufficient statistics without prior information
(noninformative prior in (4) and no prior used for the confi-
dence interval).
[17] According to Box and Tiao [1992, p. 62], for a vector

of observations y whose distribution depends on the param-
eter vector b, the set of statistics T is said to be jointly
sufficient for b if the likelihood function l(b|y) can be
expressed in the form

l bð jyÞ ∝ lT bð jTÞ ∝ p Tð jbÞ; ð5Þ

whereT is a set of statistics calculated from y that fully define
the likelihood function and the second relation of equation (5)
uses the basic relation between likelihood and probability. If
y is multivariate Gaussian distributed with mean simulated by
a linear model with model parameters b and known variance,
the corresponding Gaussian likelihood function l(b|y) can be

fully defined by the set of sufficient statistics T ¼ b̂ so that

l bð jyÞ∝ p b̂
� �

�bÞ [Box and Tiao, 1992, p. 115]. If non-

informative prior is used in (4), p(b|y) ∝ l(b|y) and thus

p bð jyÞ∝ p b̂
� �

�bÞ [Box and Tiao, 1992, p. 115]. This is the

basis of the conclusion of Jaynes [1976, p. 199] that, “if the
confidence interval is based on a sufficient statistic, … it
turns out to be so nearly equal to the Bayesian interval that it
is difficult to produce any appreciable difference in the
numerical results; in an astonishing number of cases, they are
identical. … Similarly, the shortest confidence interval for
the mean of a normal distribution, whether the variance is
known or unknown, …turn out to be identical with the
shortest Bayesian intervals at the same level (based on a
uniform prior density for location parameters and the Jeffreys
prior ds/s for scale parameters).”
[18] Building on the theoretical foundation of Jaynes

[1976] and Box and Tiao [1992], we next prove that linear
confidence and credible intervals are numerically identical
for the Gaussian likelihood function used widely in regres-
sion and Bayesian analysis in environmental modeling. We
consider two cases, without and with informative prior
information. To our knowledge, the derivation of the equiv-
alence using informative prior information is new. Confi-
dence intervals with prior information and credible intervals
with informative prior were discussed by Hill [2010].
Doherty and Hunt [2010] and Fienen et al. [2010] suggested
equivalence in limited circumstances. The proof of equiva-
lence presented in this work is more theoretically rigorous
and shows the equivalence to be more general than the pre-
vious works. As a corollary, we point out that linear confi-
dence and credible intervals are also numerically identical
when calculated for linearized-nonlinear models.
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2.3. Equivalence of Regression and Bayesian
Distributions and Intervals for Gaussian Linear Models

[19] In classical regression, a linear model without prior
information on parameters is

y ¼ Xbþ ɛ ð6Þ

with

ɛ � Nn 0;Cɛð Þ; ð7Þ

where transformations can be applied to achieve the Gauss-
ian distribution of (7). The covariance matrix C

ɛ
is often

related as C
ɛ
= s2w�1 to weighting w (used in regression)

and a scalar s2 (generally unknown but can be estimated).

When s2 is known, the distribution of estimates b̂ of the
unknown true parameters b is multivariate Gaussian, i.e.,
[Draper and Smith, 1998, p. 94; Seber and Lee, 2003, p. 47],

b̂ � Np b; XTC�1
ɛ
X

� ��1
� �

∝ exp �
1

2
b̂ � b
� �T

XTC�1
ɛ
X b̂ � b
� �

� �

:

ð8Þ

Ideally X in (8) is the same as in (6), but in reality alternative
models may have different X (more discussion see Appendix
C of Hill and Tiedeman [2007]).
[20] For a linear prediction function g(b) with g(b) = Zb,

it has

g b̂
� �

� N g bð Þ;ZT XTC�1
ɛ
X

� ��1
Z

� �

∝ exp

�

�
1

2
g b̂
� �

� g bð Þ
� �T

ZT XTC�1
ɛ
X

� ��1
ZÞ

� ��1

� g b̂
� �

� g bð Þ
� �

�

: ð9Þ

Correspondingly, the (1 � a) � 100% confidence interval
for g(b) is given as

g b̂
� �

� z1�a=2 ZT XTC�1
ɛ
X

� ��1
Z

h i1=2
; ð10Þ

where z1-a/2 is a z statistic of standard normal distribution
with significance level a. When s2 is unknown and esti-

mated using s2 ¼ y� Xb̂
� �T

w y� Xb̂
� �

= n� pð Þ , the

(1 � a) � 100% confidence interval of g(b) is

g b̂
� �

� t1�a=2;n�p s2ZT XTwX
� ��1

Z
h i1=2

; ð11Þ

where t1-a/2, n-p is a t statistic with significance level a and
freedom n-p, where n is the number of observations and p is
the number of parameters.
[21] In the Bayesian analysis, according to (4), with the

same model defined in (6) and (7), considering Jeffreys’
noninformative prior defined in Box and Tiao [1992,
pp. 41–54], it is derived in Appendix A in the auxiliary
material1 that, when s2 is known, the posterior distribution
of b is multivariate Gaussian, i.e.,

b � Np b̂; XTC�1
ɛ
X

� ��1
� �

∝ exp �
1

2
b� b̂
� �T

XTC�1
ɛ
X b� b̂
� �

� �

;

ð12Þ

where b̂ is the maximum likelihood estimate (also the least
squares estimate) of b. Correspondingly, the posterior dis-
tribution of a linear prediction g(b) (i.e., g(b) = Zb) is
multivariate Gaussian,

g bð Þ � Np g b̂
� �

;ZT XTC�1
ɛ
X

� ��1
Z

� �

∝ exp

�

�
1

2
g bð Þ � g b̂

� �� �T
ZT XTC�1

ɛ
X

� ��1
Z

� ��1

� g bð Þ � g b̂
� �� �

�

: ð13Þ

[22] Comparing equations (12) and (13) with equations (8)

and (9), respectively, shows that the distributions of b̂ and

g b̂
� �

are equivalent to those of b and g(b). Therefore, the

(1� a)� 100% credible interval of g(b) is equivalent to (10)
if s2 is known, and (11) if s2 is unknown. In other words, for
linear models without prior information and Gaussian dis-
tributed observation errors, the linear confidence and credible
intervals are numerically identical.

2.4. Equivalence When Including Informative Prior in
Bayesian Equations and Prior Information in Regression
for Gaussian Linear Models

[23] The equivalence between confidence and credible
intervals can also be obtained with consideration of prior
information, when it is available, in Bayesian and regression
analysis. Regression comes from a frequentist background,
and the idea of adding prior information can sometimes seem
strange. For example, Stark and Tenorio [2011] and Kitanidis
[2010] suggest that only Bayesian methods include prior,
while, for example, Schweppe [1973], Cooley [1983],Hill and
Tiedeman [2007], and Poeter et al. [2005] have used prior
within the context of regression methods for decades. The
Maximum a Posteriori (MAP) method [Carrera and Neuman,
1986; Oliver et al., 2008; Liu et al., 2010] is essentially
equivalent to the regression-with-prior method used in this
work, but was developed from the Bayesian perspective.
[24] In the Bayesian analysis, for the model defined in (6)

and (7), when prior parameter distributions are informative,
a conventional form is the conjugate prior that is multivariate
Gaussian with mean bp and covariance matrix Cp [Kitanidis,
1986, 1997]. For this prior, it is derived in Appendix B of the
auxiliary material that the (1 � a) � 100% credible interval
for linear model prediction, g(b) = Zb, is

g b′p

� �

� z1�a=2 ZT XTC�1
ɛ
Xþ C�1

p

� ��1

Z

� �1=2

; ð14Þ

where bp′ = (XT
C
ɛ

�1
X + Cp

�1)�1(XT
C
ɛ

�1
y + Cp

�1
bp) is mean

of the Bayesian posterior distribution.
[25] In regression analysis, the prior information is defined

as knowledge about model parameters estimated by the
regression procedure [Schweppe, 1973, p. 104;Cooley, 1983;
Hill and Tiedeman, 2007, p. 288], as might be derived from
measurements or expert knowledge of transmissivity or
hydraulic conductivity, recharge or discharge, specified
boundary flows and heads. This knowledge is commonly
included in the regression to complement the observations y
of state variables. This is accomplished by treating the prior
information as the measurement vector yb of the estimated
model parameters with error vector ɛb and by appending yb

1Auxiliary materials are available in the HTML. doi:10.1029/
2011WR011289.
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to observation vector y and ɛb to the observation error vector
ɛ in equation (6). For example, when the prior information
has the form yb = b + ɛb with the errors defined as
ɛb � Nnpri(0,Cb), it is derived in Appendix B of the auxiliary
material that the (1 � a) � 100% confidence interval for
linear model prediction, g(b) = Zb, is equivalent to (14)
when the prior information yb is equal to the mean of
Bayesian prior distribution bp and the covariance of errors of
the prior information Cb is equal to the covariance of the
prior distribution Cp. For a Gaussian distribution, this yields
consistent priors in the two methods, even though concep-
tually the prior information in regression and Bayesian
analysis are different. In classical regression context, the
parameters b are taken as fixed and unknown and the ran-
domness of the prior estimates in yb is from the error ɛb; in
Bayesian analysis, b is conceptualized as being random
[Kitanidis, 2010, among others]. For linear models with
consistent priors, the linear confidence and credible intervals
are numerically identical.

2.5. Equivalence of Linear Confidence and Credible
Intervals for Linearized-Nonlinear Models

[26] In classical regression, the linear confidence interval is
also available for a nonlinear model,

y ¼ f bð Þ þ ɛ; ð15Þ

with ɛ defined in equation (7) when prior information is not
available. To estimate a linear confidence interval, the non-
linear function f(b) of model parameters b (a general vector of
model parameters) is approximated by its first-order Taylor

series expansion in the neighborhood of b̂ , the generalized

least squares estimator of b. That is, f bð Þ ≈ f b̂
� �

þ

Xb̂ b� b̂
� �

, where Xb̂ ¼ ∂f =∂b½ �b¼b̂ is the sensitivity matrix

[Seber and Wild, 2003, p. 23–24]. If the nonlinear prediction
function g(b) is also approximated to the first-order with the
prediction sensitivity vector Zb̂ ¼ ∂g=∂b½ �b¼b̂ [Seber and

Wild, 2003, p. 192], then for s2 known, the (1 � a) �
100% linear confidence interval of g(b) is similar to (10) but
with X replaced by Xb̂ and Z replaced by Zb̂ . For s2

unknown, the (1 � a) � 100% linear confidence interval
of g(b) is similar to (11) but with X replaced by Xb̂ and Z
replaced by Zb̂ .
[27] In the Bayesian analysis, the linear credible interval for

the nonlinear model is evaluated after the nonlinear model is
linearized. As shown in Appendix C of the auxiliary material,
the derived linear credible intervals are numerically identical to
the linear confidence intervals for nonlinear models. Though
for a linearized model confidence and credible intervals may be
numerically identical, if the linearization method is not ade-
quate for approximating confidence and credible intervals for
the parameters and predictions of a nonlinear model, they
will both be equivalently wrong. Linearization tends to become
progressively less adequate as the model becomes more non-
linear. More discussion on how model nonlinearity affects the
above approximations is discussed by Hill and Tiedeman
[2007, p. 393–398].

2.6. Relations Between Nonlinear Confidence
and Credible Intervals for Nonlinear Models

[28] The relations between nonlinear confidence and credi-
ble intervals of nonlinear models are complicated. In classical

regression, the confidence intervals of model parameters and
predictions are not estimated based on the distributions of
their estimates (e.g., equations (8) and (9)) as for linear models,
because analytical expressions of the distributions are in gen-
eral not available. Instead, the nonlinear confidence inter-
vals are evaluated using parameter confidence regions as
described below. To facilitate the discussion, we also use pos-
terior parameter credible regions (defined below) to evaluate
credible intervals. The step of determining posterior parameter
credible regions is rare because credible intervals are generally
calculated directly from posterior distributions of model para-
meters and predictions. However, a parameter credible region
can be determined and is used here to relate prediction confi-
dence and credible intervals.
[29] The nonlinear confidence and credible intervals can

be numerically identical if (1) the interval limits are equiv-
alent to the maximum and minimum values of prediction
function g(b) on the boundary of the parameter confidence
and credible regions and (2) the two parameter regions are
equivalent [Vecchia and Cooley, 1987; Cooley 1993a,
1993b, 1999]. The discussions below for the two conditions
involve definitions of exact confidence and credible regions
and approximate regions defined by the likelihood method.
Based on Vecchia and Cooley [1987], the exact (1�a) �
100% confidence region for b is a region in p dimensional
Euclidean space, say, Ra, that depends on y, where y
includes observations and possible prior information, and for
which p(b∈ Ra) = 1 � a holds exactly in regression theory.
The exact (1 � a) � 100% posterior credible region is
bounded by a contour of the posterior density function
within which the posterior probability of model parameters
is (1 � a) � 100% exactly [Bates and Watts, 1988, p. 220].
However, estimating the exact region is computationally
difficult, and the approximate likelihood method is com-
monly used.
[30] The likelihood confidence region is defined as the set

of parameter values whose corresponding objective function
values, S(b), satisfy [Christensen and Cooley, 1999; Cooley,
2004; Hill and Tiedeman, 2007, p. 178]

S bð Þ ≤ S b̂
� � 1

n� p
t2a=2;n�p þ 1

� �

: ð16Þ

The confidence region defined in (16) is for calculating
individual confidence intervals. Scheffé-type simultaneous
confidence intervals are calculated based on the region with
S(b) satisfying

S bð Þ ≤ S b̂
� � p

n� p
Fa=2;p;n�p þ 1

� �

; ð17Þ

which is equivalent to (16) if p = 1. The test cases in this work
use individual confidence intervals calculated using (16).
The parameter region defined in (16) contains the true model
parameters b with approximate probability of (1 � a) �
100% for errors defined in (7) when prior information is not
available and s2 is unknown. When intrinsic model nonlin-
earity is small, it contains the true model parameters with
exact (1� a)� 100% probability [Donaldson and Schnabel,
1987; Bates and Watts, 1988, p. 201].
[31] The likelihood credible region is also bounded by the

contours of (16) and (17) as follows. When intrinsic model
nonlinearity is small, consider independent Jeffrey’s
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noninformative priors for parameters b and s, i.e., p(b)∝ C
and p(s) ∝ 1/s (or p(b, s) ∝ 1/s). For errors defined in (7),
the resulting likelihood function for parameters b and s is

l b; sð jyÞ ¼ p yjb;sð Þ

¼
1

2ps2ð Þn=2
jwj1=2 exp �

1

2s2
y� f bð Þð ÞTw y� f bð Þð Þ

� �

ð18Þ

where S(b) = (y � f(b))Tw(y � f(b))is the objective func-
tion, same as S(b) used in regression. Correspondingly, the
joint posterior distribution of parameters b and s is

p b;sð jyÞ ∝ p yjb;sð Þs�1

∝ s� nþ1ð Þ exp �
1

2s2
S bð Þ

	 


: ð19Þ

Integrating out parameter s leads to the posterior distribution
of model parameters b [Bates and Watts, 1988, p. 220],

p bð jyÞ ¼

Z

∞

0

p b; sð jyÞds ∝ S bð Þ½ ��n=2; ð20Þ

and a credible region is bounded by a contour of the posterior
density function or equivalently by a contour of the objective
function S(b). Bates and Watts [1988, p. 220] proved that the
approximate (1 � a) � 100% individual posterior credible
region is bounded by the S(b) contour defined in (16).
[32] Thus, when observation errors are multivariate

Gaussian distributed and the intrinsic model nonlinearity
is very small, without prior information, the confidence and
credible regions are equivalent and so are the nonlinear
confidence and credible intervals of predictions evaluated
on the regions. When consistent prior information is used
for regression and Bayesian analysis in the way described in
section 2.4, it is straightforward to develop the equivalence
between the parameter confidence and credible regions. As a
result, the confidence and credible intervals are numerically
identical.
[33] Regions defined by the above approximate likelihood

methods and the calculated confidence and credible intervals
are accurate given the following assumptions:
[34] 1. The model accurately represents the system;
[35] 2. Model prediction g(b) is monotonic enough that

any local extreme of g(b) within the closed parameter
regions lies between the maximum and minimum values of
g(b) that occur along the boundary of the regions [Cooley,
1993a];
[36] 3. There is a single minimum in the objective

function;
[37] 4. The residuals (defined as the difference between

observed and simulated values) are multivariate Gaussian
distributed to obtain a valid critical value, and
[38] 5. Model intrinsic nonlinearity is small [Vecchia and

Cooley, 1987; Christensen and Cooley, 1999; Cooley, 2004].
[39] The assumptions can be evaluated using existing

techniques such as those described in Hill and Tiedeman
[2007] and shown below. The model intrinsic nonlinearity of
assumption 5, when combined with parameter effects nonlin-
earity, results in total model nonlinearity [Christensen and
Cooley, 1999]. Parameter effects nonlinearity is what can be

removed after transforming model parameters in suitable
ways, while intrinsic model nonlinearity results from model
structure and cannot be removed by any parameter transfor-
mations. Cooley [2004] and Christensen and Cooley [2005]
developed methods of measuring model total nonlinearity
based on Beale [1960], Linssen [1975], and Bates and Watts
[1980]. More discussion of model nonlinearity measures can
be found in Hill and Tiedeman [2007, p. 142–145]. The resi-
duals mentioned in assumption 4 are expected to have a vari-
ance-covariance matrix equal to (I-X(XTwX)�1 XTw), so are
not expected to be independent even when the elements of ɛ
are independent. [Cook and Weisberg, 1982, p. 11; Cooley
and Naff, 1990; Hill and Tiedeman, 2007, p. 111–113; Aster
et al., 2012; Finsterle and Zhang, 2011]. This also applies
when equations (6) and (7) are augmented to include prior
information.
[40] With recently developed Markov chain Monte Carlo

(MCMC) techniques, the nonlinear credible intervals can be
evaluated directly without relying on the concept of param-
eter credible region. The reason is that posterior parameter
distributions can be directly simulated and that the credible
intervals of predictions can be evaluated by first sorting the
prediction samples from the smallest to the largest and
then identifying, for example, the 2.5% and 97.5% thresholds
to form 95% individual credible intervals of the predictions.
However, the estimated credible interval based on the MCMC
results may be inaccurate if the MCMC sampling does
not correctly simulate the posterior distribution, as discussed
below. Therefore, when comparing the nonlinear confidence
intervals determined from a confidence region and credible
intervals from MCMC methods, the assumptions of calculat-
ing accurate confidence intervals need to be examined and
the MCMC sampling process needs to be checked. This is
further demonstrated in two numerical examples presented in
section 3.
[41] Two MCMC codes are used in this study. One is

MICA developed by Doherty [2003]. MICA uses the
Metropolis-Hastings algorithm revised by introducing a
simple adaptive algorithm of the covariance matrix of the
proposal distribution to obtain a reasonable acceptance rate
[Haario et al., 2001]. When the acceptance rate is high,
all elements of the covariance matrix are simultaneously
increased by a user-defined multiplier; and when the accep-
tance rate is low, all elements are simultaneously decreased.
While MICA works well for estimating unimodal posterior
parameter distributions, for problems with multimodal
parameter distributions, it cannot sample the distribution
efficiently with a single proposal distribution, because it does
not have algorithms for chain jumps among multiple modes.
As pointed out by Gallagher and Doherty [2007] and also
found in this study, for problems with multiple minima the
probability density functions obtained from MICA are not
accurate in that the resulting density functions do not have
multiple modes corresponding to the minima. To solve this
problem, DREAM of Vrugt et al. [2008, 2009] is used. For
the results presented here, the algorithm was implemented
in FORTRAN and parallelized. DREAM automatically
tunes the scale and orientation of the proposal distribution in
the sampling process by using multiple different chains
simultaneously for global exploration. It uses the current
location of the chains to generate candidate points, allowing
the jumps between modes of parameter distributions, and
thus efficiently accommodates complex and multimodal
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parameter posterior distributions. The test cases below
illustrate the consequences of this difference between MICA
and DREAM.

3. Simple Test Cases

[42] Three simple test cases with one linear and two non-
linear analytic functions are designed to demonstrate the
theoretical findings above and to help better understand the
similarities and differences between confidence and credible
intervals. These test cases are not derived from environ-
mental problems, but are easily designed to produce linearity
or desired kinds of relevant nonlinearities. In the next section,
a complicated groundwater problem is explored.

3.1. Linear Test Function

[43] The linear test function is

y ¼ axþ mþ ɛ; ð21Þ

where the true values are a = 2 and m = 3. Twenty samples of
y are first generated with x = {1, 2,…, 20}, and subsequently
corrupted using one realization of white noise ɛ, with mean
zero and constant variance s2 = 1. Linear confidence and
credible intervals, calculated for y at x = 30 with unknown and
known s2, and noninformative and informative priors, are
listed in Table 2, where the linear credible intervals are esti-
mated from 500,000 MCMC parameter samples. Except for
negligible numerical discrepancy, the table confirms that the
linear confidence and credible intervals are numerically iden-
tical for this linear problem in all three situations. Figures 1a–1c
show probability density functions (PDFs) of the two para-
meters and prediction based on the classical regression theory
(equations (8) and (9)) and Bayesian theory (equations (12)
and (13)). This simple numerical test case demonstrates the
theoretical analysis in section 2.3 that confidence and credi-
ble intervals for linear models are numerically identical. The
conclusions would also be expected to apply to linearized-
nonlinear models.

3.2. Very Nonlinear Test Function I

[44] The nonlinear test function is

y ¼ x=aþ sin amxð Þ þ ɛ ð22Þ

where a = 2, m = 0.1. Twenty samples of y are first gener-
ated with x = {1, 2, …, 20}, and subsequently corrupted
using one realization of white noise ɛ, with mean zero and
constant variance s2 = 1. This nonlinear function is designed
to be nonlinear and to have local minima. For this nonlinear
function, linear and nonlinear confidence intervals with no
prior information and credible intervals with noninformative
priors are calculated for y at x = 30 with known s2. Table 3
shows that the linear confidence and credible intervals are
numerically the same but differ from the nonlinear intervals.
Compared to the previous studies listed in Table 1, our
results are similar to those of the nonlinear test case of Vrugt
and Bouten [2002] in that the linear confidence intervals are
larger than the nonlinear credible intervals. Our results differ
from those of Gallagher and Doherty [2007] in that the
nonlinear credible interval is smaller than the nonlinear
confidence interval. Although sufficient numbers of MCMC
simulations were performed, the nonlinear credible intervals
of MICA and DREAM differ (Table 3).
[45] To understand better the linear intervals for nonlinear

models, Figures 1d–1f were constructed to show the linear
confidence and credible intervals. Similar to Figures 1a–1c,
Figures 1d–1f plot the PDFs of parameters and prediction
based on classical regression theory and Bayesian theory for
the linearized model obtained from 500,000 MCMC sam-
ples. Again, the figures show that the classical regression (red
curve) and Bayesian (blue curve) distributions are equivalent
and the linear confidence (red bar) and credible (blue bar)
intervals are coincident. This numerically confirms the the-
oretical analysis in section 2.5 for linear intervals calculated
for a nonlinear problem.
[46] Figures 1d–1f also show nonlinear credible intervals.

The figures show that PDFs of the linearized model (blue
curves) are significantly different from those of the nonlinear
model (green curves) obtained from 500,000 MCMC sam-
ples. While the PDFs of model parameters are Gaussian for
the linearized model and almost Gaussian for the nonlinear
model, the PDF of the model prediction for the nonlinear
model (Figure 1f) is narrower and taller. This may be attrib-
uted to model nonlinearity: total and intrinsic nonlinearities
of this model are 0.54 and 0.20, respectively, so that for both
this model is rated as nonlinear on the four-tiered scale as
shown in footnote of Table 6.
[47] Of the intervals considered, the MCMC credible

intervals should provide the most accurate assessment of
uncertainty. Model nonlinearity is accounted for to some
degree by nonlinear confidence intervals, and Table 3 shows
that for this problem the nonlinear confidence intervals are
closer to the nonlinear credible intervals than are the linear
intervals. The nonlinear confidence intervals are not included
in Figure 1, because the underlying theory does not include
definition of a PDF. Here, the nonlinear confidence intervals
are evaluated on the confidence region. The plotted 95%
parameter confidence region is defined using (16) and shown
as the black ellipse with objective function value of 18.3 in
Figure 2a. Figure 2a also shows prediction contours, and the
intersection of two red prediction contours with the black
ellipse define the limits (the two red dots) of the nonlinear
confidence interval on the prediction with values shown in
Table 3. For this nonlinear function defined in (22), the pre-
diction is not monotonic with respect to the parameter values.
While, for some orientations of the objective function con-
tours, the shape of the prediction contours could cause the

Table 2. Predictions and 95% Linear Confidence and Credible

Intervals for Linear Simple Test Functiona

Prediction Lower Limit Upper Limit

Noninformative Prior
Unknown s2, equation (11)
Linear confidence interval 63.76 62.26 65.26
Linear credible interval (MCMC) 63.76 62.27 65.27
Known s2, equation (10)
Linear confidence interval 63.76 62.37 65.16
Linear credible interval (MCMC) 63.76 62.37 65.19

Informative Priorb

Linear confidence interval 63.73 62.73 64.74
Linear credible interval (MCMC) 63.73 62.72 64.75

aTrue value of the prediction is 63. MCMC results are obtained with
MICA [Doherty, 2003] using 1,000,000 model runs. Linear confidence
intervals require 10 model runs).

bInformative Prior with Cb ¼ Cp ¼
0:01 0

0 0:01

	 


, equation (14).
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calculation of nonlinear confidence intervals to produce
nonunique results, Figure 2a clearly shows that the intersec-
tion of the objective function contour (the black ellipse) and
the relevant prediction contours (the two red lines) produce
unique maximum and minimum predictions (the two red
dots). This analysis is consistent with the good performance
of UCODE_2005 [Poeter et al., 2005] in finding the non-
linear confidence interval for this problem.

[48] To better illustrate the relation between the confidence
and credible intervals, the 500,000 MCMC parameter sam-
ples obtained from MICA are plotted in Figure 2a. MICA
results in Figure 2a use a multivariate Gaussian proposal
distribution with the covariance matrix calculated for the
optimal parameters. The plotting procedure is consistent with
how the credible interval is calculated, as follows. First, the
MCMC parameter samples are ordered using the prediction

Figure 1. Probability density functions (PDFs) of parameters (a and m) and prediction (y) based on
regression and Bayesian theories for the (a–c) linear and (d–f) very nonlinear simple test functions.
Figures 1d–1f show results for linearized and nonlinear models. In each plot, the bars correspond to the
95% interval limits. The limits of the linear confidence (red) and credible (blue) intervals overlap for
the linear model (Figures 1a–1c) and the linearized model (Figures 1d–1f). The PDFs and intervals are
centered on estimated values.

Table 3. Predictions and 95% Linear and Nonlinear Confidence and Credible Intervals for Very Nonlinear Simple Test Function Ia

Type of Interval Prediction Lower Limit Upper Limit Interval Width Change in Width Relative to NCrDr(%)

Linear confidence 14.83 10.61 19.05 8.44 65% larger
Linear credible 14.83 10.61 19.05 8.44 65% larger
Nonlinear confidence 14.83 12.80 18.42 5.62 10% larger
Nonlinear credible (MICA) 14.82 13.12 18.09 4.97 3% smaller
Nonlinear credible (DREAM) (NCrDr) 14.84 13.04 18.15 5.11 –

aTotal and intrinsic model nonlinearities are 0.54 and 0.20, respectively, indicating this is a very nonlinear model. True value of the prediction is 17.2.
Intervals are for known s2. Results with unknown s2 would be similar except that all intervals would be larger.
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values they produced, starting with the parameter set that
produces the smallest value of the prediction and progressing
to the parameter set that produced the largest value of the
prediction. The green dots at the bottom right corner corre-
spond to the parameter sets that produce the smallest 2.5% of
the predictions, and those at the top left corner to the
parameter sets that produce the largest 2.5% of the predic-
tions. The yellow dots correspond to the parameter sets that
produce the middle 95% of the predictions. The nonlinear
credible interval limits equal the predictions that fall exactly
at the 2.5% levels. They are identified in Figure 2a by blue
dots and the values are listed in Table 3. The two blue lines
are contours for the prediction values represented by the two
blue dots (i.e., the nonlinear credible interval limits).
[49] Figure 2a shows that the nonlinear confidence interval

is larger than the credible interval (the distance between the
two red lines is larger than that between the two blue lines),
but numerically they should be identical if all the assump-
tions are satisfied to calculate the confidence interval and
the posterior distribution is correctly sampled by MCMC
in the calculation of the credible interval. To better under-
stand the discrepancy, Figure 2b was constructed similarly to
Figure 2a but using results from DREAM. Figure 2b indi-
cates that there are two local minima (black stars) of the
objective function in addition to the one detected by nonlin-
ear regression and MICA (black plus) and the parameter
values corresponding to the minima differ from each other
substantially, as shown in Table 4. The nonlinear confidence
intervals defined by (16) are evaluated on the objective func-
tion contours centered on a minimum. For the three different
minima, the objective function contours defined by (16) are
different and so are the nonlinear confidence intervals, as
shown in Table 4.
[50] Most likely, local minima affect estimation of con-

fidence and credible intervals centered at the global mini-
mum more as the values of the local minima approach the
value of the global minimum. In Figure 2b the objective
function contours defined by (16) centered at the local
minima are larger than that of 18.3 centered at the global
minimum, and the effect on calculated confidence intervals
centered at the global minimum is modest (10% larger as
shown in Table 3 and 4). MICA only samples the region
surrounding the global objective function minimum (black
plus in Figure 2a). DREAM successfully identifies the mul-
timodal target parameter posterior distribution as shown in
Figure 2b. Figure 2b indicates that, because of the local
minima, the percent of samples covered by the 95% param-
eter confidence region as shown in Figure 2a is actually less
than 95%. In other words, because (16) uses the statistics
corresponding to a 95% confidence level to define the con-
fidence region, the calculated nonlinear confidence interval
on the prediction is larger than what it should be. It appears
that this would be typical in the presence of multimodal
posterior PDFs for confidence intervals constructed using the
global minimum. Table 3 indicates that the more accurate
nonlinear credible interval from DREAM is a little smaller
than the nonlinear confidence interval but larger than the
incorrect nonlinear credible interval from MICA produced
using a single proposal distribution.

3.3. Mildly Nonlinear Test Function II

[51] Nonlinear test function I gives different nonlinear
confidence and credible intervals because of unsatisfied

Figure 2. The 95% individual nonlinear confidence and
credible intervals for (a and b) nonlinear test function I (dots
in Figure 1a are samples from MICA; dots in Figure 1b are
from DREAM) and (c) test function II (dots are from
DREAM and similar to those from MICA). The black ellip-
ses for an objective function value of 18.3 in (a) and (b) and
of 34.5 in (c) are 95% confidence regions defined in
equation (16). MCMC samples are plotted as dots: the upper
2.5% and lower 2.5% of predictions are green; the middle
95% of predictions are yellow.
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assumptions for the calculation of the confidence interval:
there are important multiple minima in the objective function
and the intrinsic model nonlinearity is high. Here, we used
another nonlinear test function to evaluate whether the cal-
culated nonlinear confidence and credible intervals are
closer if the assumptions are satisfied to a greater degree:
there are no competing local minima and the intrinsic non-
linearity is smaller. This nonlinear test function, adopted
from Draper and Smith [1998, p. 475], is

y ¼ aþ 0:49� að Þe�m x�8ð Þ þ ɛ ð23Þ

where a = 0.4, m = 0.1. Forty samples of y are first generated
with x = {8, 9, …, 47}, and subsequently corrupted using
one realization of white noise ɛ, with mean zero and constant
variance s2 = 0.01. For this nonlinear function, nonlinear
confidence intervals and credible intervals are calculated for
y at x = 50.
[52] As expected, the nonlinear confidence and credible

intervals are almost the same (Table 5). Figure 2c explores
their relations by plotting the confidence interval calculated
based on equation (16) and the credible interval determined
from DREAM parameter samples based on the equal-tailed
method. The coincidence of the red and blue curves con-
firms the similarity between nonlinear confidence and cred-
ible intervals. The reason is that the parameter confidence
region is identical to its credible region. As shown in
Figure 2c, the 95% individual confidence region is delin-
eated by the black objective function contour with value of
34.5 calculated using equation (16). This contour corre-
sponds to the 95% individual parameter credible region
because the probability of each individual parameter within
or on the boundary of the region is 95%. This conclusion is
drawn in the following procedure for the two parameters a
and m. Based on the 95% individual confidence region (the
black ellipse), the minimum and maximum values of
parameter a are located and represented by the two vertical
dotted dash blue lines; the parameter samples between the
two lines is 95.02% of all the MCMC samples. Following
the same procedure, the minimum and maximum values of
parameter m are represented by the two horizontal dotted
dash red lines and 95.01% of all the MCMC samples are
enclosed by the two lines. We can conclude that the 95%
confidence and credible regions are numerically identical.
Based on the 95% individual parameter confidence region
(the black contour in Figure 2c), the 95% individual pre-
diction confidence interval can be evaluated. According to
the discussion in section 2.6, these confidence interval limits
are the minimum and maximum prediction values on the

confidence region, which is equivalent to the credible
region. This equivalence means that these two predictions
define both 95% individual confidence and credible inter-
vals. The credible intervals produced in this manner include
about 95.02% of all the MCMC samples, which again veri-
fies the equivalence of the 95% confidence and credible
intervals. This suggests that for this mildly nonlinear prob-
lem with small intrinsic nonlinearity, the 95% parameter
credible region is identical to its 95% confidence region and
the 95% credible interval of prediction evaluated on the
credible region is identical to its 95% confidence interval
evaluated on the confidence region.
[53] The correspondence of the regions and intervals

between classical regression and Bayesian analysis is not an
accident for the following reasons. (1) The problem is well
conditioned: the ratio of the largest and smallest singular
values of (XTw1/2) is about 6.4, which corresponds to the
composite scaled sensitivities values being substantial and
similar in value and parameter correlation being small [Hill,
2010]. In Figure 2c, this is clear because the contour is not
elongated parallel to either axis or at an angle to the axes. (2)
There is one minimum. (3) The single mode parameter
posterior probability distribution can be easily sampled by
MCMC techniques and MICA and DREAM produce similar
results. (4) The prediction function is monotonic and the
maximum and minimum values are on the boundary of the
region. (5) The intrinsic model nonlinearity is very small,
0.002, suggesting that the approximate likelihood region is
almost correct. Consequently, in this case, equation (16) can
be used to calculate an accurate individual nonlinear confi-
dence interval and MCMC samples can accurately represent
the posterior distribution of parameters and an accurate
individual nonlinear credible interval.

4. Complex Test Case of Synthetic Groundwater
Models

[54] The complex test case of synthetic groundwater
models is more directly relevant to environmental problems
than the simple test cases and is designed to extend our

Table 4. Optimal Parameter Values, Minimum Objective Function Values, and Corresponding Prediction Uncertainty Intervals for Very

Nonlinear Simple Test Function Ia

Type of
minima

Parameter Value
Objective
Function Prediction Lower Limit Upper Limit Interval Width

Change in Width Relative
a m to NCrDr (%)c

Local 1 1.86 0.00046 23.1 16.16 13.89b 18.40b 4.51b 12% smaller
Local 2 1.83 0.305 24.9 15.50 14.07b 17.55b 3.48b 32% smaller
Global 1.94 0.096 14.7 14.83 12.80b 18.42b 5.62b 10% larger
Globala 1.94 0.098 14.7 14.84 13.04c 18.15c 5.11c –

aThe first two rows correspond to two local minima marked as asterisks in Figure 2b; the third row corresponds to global minimum marked as “plus” in
Figure 2a; the last row corresponds to the global minimum marked as “plus” in Figure 2b.

bNonlinear confidence intervals.
cNonlinear credible interval (DREAM) (NCrDr).

Table 5. Predictions and 95% Nonlinear Confidence and Credible

Intervals for Mildly Nonlinear Simple Test Function IIa

Type of Interval Prediction Lower Limit Upper Limit

Nonlinear confidence 0.406 0.3998 0.4109
Nonlinear credible 0.406 0.3997 0.4109

aIntrinsic model nonlinearity is 0.002. True value of the prediction is
0.401.
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understanding of the confidence and credible intervals to
more practical issues in the context of model uncertainty.
We consider several alternative models with different levels
of model error, and evaluate the measures of uncertainty in
the context of true prediction values and the assumptions
required to obtain accurate confidence and credible intervals.

4.1. Model Description, Sensitivity Analysis, and
Calibration

[55] This test case includes simulations using a synthetic
true model and three alternative calibrated models developed
based on data from the true model; all the models are steady
state. The true model is described in Hill et al. [1998], where
it was used to study nonlinear regression methods. The
three-dimensional modeling domain is an undeveloped
alluvial valley with top water table boundary (subject to
areal recharge) and impermeable bottom and lateral bound-
aries. As shown in Figure 3a, the system has a clay confining

unit, a lake (Blue Lake), and a river (Straight River). In the
true and all calibrated modes, the river is modeled as a head-
dependent boundary. All models use the true distribution of
the confining layer shown in Figure 3a because Hill et al.
[1998] showed that results were insensitive to reasonable
variations. Each model layer is characterized by heteroge-
neous horizontal hydraulic conductivity with values ranging
from 6 to 150 m/d in the true model (Figure 3b) and 27 to
317 m/d in the calibrated models (Figures 3c and 3d). No
vertical variation in aquifer hydraulic conductivity is con-
sidered in any model.
[56] Development scenario A of Hill et al. [1998] con-

sidered in this study includes pumpage at wells P1 and P3
(locations shown in Figure 3c). Model predictions of interest
are drawdown of the water table at well P3 and percent
decrease of streamflow at the gauge site G2 (Figure 3a).
[57] The three alternative models represent three dif-

ferent ways of parameterizing the heterogeneous horizontal

Figure 3. (a) Modeling domain with the confining unit, blue Lake, and Straight River, (b) the true hor-
izontal hydraulic conductivity field (K field) with values from 6 to 150 m/d, and (c–d) the calibrated K
fields for the three-zone model (3Z) with K2 up to 317 m/d and the interpolation model (INT) with highest
value 180 m/d. (Figure 3c) Configuration of the three zones of K field for 3Z. (Figure 3d) Dots are nodes
of linear triangular basis functions constructed to interpolate K field for INT. The hydraulic conductivities
are changed in the regression at the sixteen numbered inner dots and at the three squares labeled A, B and
C; the hydraulic conductivities of the other seven squares without labels are set. In Figure 3c dots represent
27 wells where hydraulic heads are observed at the top and bottom of the system. Black dots (same as
those in Figure 3d) also have hydraulic conductivity measurements and yellow dots only have heads
observations; pumping is taken at wells P1 and P3 (blue dots), and drawdown is predicted at well P3.
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hydraulic conductivity. The first model (HO) is the simplest,
treating the domain as homogeneous. The second model
(3Z) has three zones shown in Figure 3c, which produced
the best overall model calibration among many other zone
configurations considered by Hill et al. [1998]. In the third
model (INT), the field of horizontal hydraulic conductivity
is parameterized by interpolation using linear triangular
basis functions constructed on the points in Figure 3d.
Model HO is developed in this study; models 3Z and INT
are modified from those of Hill et al. [1998].
[58] The alternative models differ from the true model in

several ways. The most important difference is that, instead
of modeling the lake as a head-dependent boundary as in the
true model and Hill et al. [1998], the volume of the lake is
simulated as high hydraulic conductivity cells to avoid the
modeler intervention described by Hill et al. [1998]. The
true model has five layers; the calibrated models all have
three as follows. In the north, the bottom of layer 1 coincides
with the bottom of the lake; in the south, the bottom of layer
1 is deep enough to ensure that no cell goes dry during the
simulation. The bottom of layer 2 coincides with the top of
the confining unit which is simulated as vertical leakance
between model layers 2 and 3.
[59] The defined parameters common to all the models are

net lake recharge (LAKERCH), areal recharge rate (RCH),
leakance of the confining unit (KV), and vertical anisotropy
(VANI). The calibrated parameters specific to the individual
models are hydraulic conductivities and the use of one (for
models HO and 3Z) or three (for model INT) parameters for
the conductance of the riverbed.
[60] Calibration data include 54 observations of hydraulic

head from 27 wells (two heads from each well in layers 1
and 3, Figure 3c) and one observation of lake stage. Obser-
vations of streamflow gain (groundwater discharge to the
stream) are also used in the calibration. To investigate the
effects of more streamflow data on prediction accuracy and
uncertainty, two steamflow gain data sets are used: two
observations from gauges G1 and G2 (Case I) or eighteen
observations from each cell of the river (Case II). In Case I,
the observation of G2 and the difference between G1 and G2
are used in the calibration. The level of detail provided by
Case II is generally not realistic in practice but here the value
of such data is evaluated. Prior information on LAKERCH is
used in all three models. For model INT, prior information
also includes sixteen measurements of hydraulic conductiv-
ity from the wells shown in Figure 3d.
[61] Errors added to the observed heads and the lake stage

are based on typical values for the data type; the weights
used in model calibration are calculated solely based on the
added measurement errors and do not account for model
error. The observations of hydraulic head and lake stage
have white noise with variance of 0.01 m2, the inverse of
which is the weights. For measurements of net lake recharge
and hydraulic conductivity used as prior information, coef-
ficients of variation of 50% and 20%, respectively, are used
to define the added white noise and the weights. No mea-
surement errors are added to the created steamflow data
observations. Realistic coefficients of variation are used to
determine the weighting: 10% and 20% in cases I and II,
respectively. A larger value is used in Case II because it is
expected that such detailed flows are likely to be measured
with larger percent errors. Because no errors are added, any
discrepancies are due only to model error.

[62] Estimated parameters are selected based on the
composite scaled sensitivity (CSS) and parameter correlation
coefficient (PCC) obtained from a sensitivity study [Hill and
Tiedeman, 2007, p. 50–54]. CSS values identify parameters
that possibly can be reasonably estimated using the calibra-
tion data. Sensitive parameters that are highly correlated
with one or more other parameters, as indicated using PCC,
possibly cannot be estimated uniquely with the available
data. If present, selected highly correlated parameters gen-
erally need to be removed from the set of estimated para-
meters. Take the 3Z model as an example: Figures D1a and
D1c in Appendix D of the auxiliary material show that
parameter RCH has the highest CSS values and VANI and
KV have the smallest. This is also true for the HO and INT
models. In this work, using heads alone would result in all
parameters except VANI to be completely correlated (abso-
lute value of PCC equal to 1.00) so that the parameters
would be interdependent and nonunique. This is because all
hydraulic conductivities and boundary flows would have
been estimated with no flow specified or observed. Adding
the measured streamflow gains and losses provide sufficient
information that all the parameters can be uniquely esti-
mated: the largest absolute value of PCC was 0.93, which is
too much smaller than 1.00 to cause nonunique parameter
estimates.
[63] Model calibration is conducted using the modified

Gauss-Newton method in UCODE_2005 to minimize the
following objective function

S bð Þ ¼
X

NH

i¼1

whi yhi � ŷhi bð Þ
� �2

þ
X

NQ

j¼1

wqj yqj � ŷqj bð Þ
� �2

þ
X

NPR

k¼1

wpk ypk � ŷpk bð Þ
� �2

ð24Þ

where b is a vector of NP parameters; NH and NQ equal the
number of hydraulic-head and streamflow observations,
respectively; NPR is the number of prior information values;
yhi and ŷhi bð Þ represent the observed and simulated hydraulic

head, respectively; whi
represents the weight for the head

observation; yqj and ŷqj bð Þ represent the observed and sim-

ulated streamflow, respectively; wqj
represents the weight for

the steamflow; ypk and ŷpk bð Þ represent the prior parameter

value and corresponding estimate of the parameter in the
regression, respectively; and wpk

represents the weight for
the prior estimate.

4.2. Simulating the Confidence and Credible Intervals

[64] The MCMC simulation of credible intervals is con-
ducted using DREAM. The prior distributions of parameters
used in the Bayesian analysis are consistent with the prior
information used in the classical regression. For parameters
without prior information in the regression, uniform prior
distributions with large bounds are used in MCMC to create
noninformative priors; for parameters with prior information
in the regression, Gaussian prior distributions are applied in
MCMC with the mean and variance set to equal ypk and wpk

�1

of (24). Details of the parameter prior distribution can be
found in Appendix E of the auxiliary material.
[65] Ten chains are used in the MCMC simulation, each

of which generated 20,000 samples after the chains con-
verge. The convergence is monitored by the factor R, as
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defined and suggested by Gelman et al. [1995]. The largest
R for the first 2000 iterations (total 20,000 parameter sam-
ples of 10 chains) is 1.05, which suggests convergence to
the posterior probability distribution because it is below the
critical value 1.2). Model predictions are calculated using
the 200,000 samples, and for each prediction the 95%
equal-tailed credible interval is estimated subsequently.
[66] Linear measures of parameter uncertainty required

2 � NP + 1 forward model runs without pumping, where
NP = 6, 8, or 26 for models HO, 3Z, and INT, respectively.
The same number of prediction model runs with pumping is
required to propagate the parameter uncertainty into predic-
tion uncertainly (i.e., based on equation (11)). Thus, to cal-
culate linear confidence intervals on predictions, 26, 34, and
106 model runs are needed for the HO, 3Z, and INT models,
respectively.

[67] Nonlinear confidence intervals on predictions required
an optimization process for each interval limit. In this work,
the two nonlinear intervals for each of the HO, 3Z, and INT
models required about 303, 412, and 1594 model runs,
respectively.
[68] Nonlinear credible intervals require about 420,000

model runs without and with pumping for each model. Any
number of predictions can be simulated with the MCMC
results, so that if many predictions are considered MCMC
can become competitive with nonlinear confidence intervals
[Shi et al., 2012]. However, the number of predictions is
rarely that large.

4.3. Linear and Nonlinear Confidence and Credible
Intervals

[69] The 95% linear and nonlinear confidence and credible
intervals calculated for two predictions and either two or
eighteen streamflow gain observations are shown in Figure 4.
We have already shown and demonstrated (Table 1 and
Figures 1a–1c) that linear confidence and credible intervals
are numerically identical (as discussed in sections 2.3 and
2.4), so only linear confidence intervals are plotted.
[70] Figure 4 shows that, for models 3Z and INT, the three

intervals for both predictions in both cases are very close to
each other relative to the distance from the prediction to the
true value. For HO, the credible intervals are smaller than
both the linear and nonlinear confidence intervals, especially
for predicted drawdown (Figure 5). The reasons are multiple.
First, HO is the least accurate model. Second, the intrinsic
nonlinearity of HO is the largest as shown in Table 6 and
Figure 5. Third, the prediction function of drawdown is not
monotonic with respect to parameters LAKERCH and RCH,
though the insensitivity of these parameters to drawdown and
the slight nonmonotonicity suggest the last effect may be
small.
[71] The results presented in this work cannot be used to

test the significance level of the intervals because only a few
samples are considered. However, true values located far
outside the intervals can be used to suggest that the intervals
are too small. The intervals for HO in Figures 4a, 4b, and 4d
exclude the true values by enough that the accuracy of the
prediction significance level is drawn into question. For
model 3Z, the true value of drawdown is excluded from both
the confidence and credible intervals after including the
more detailed observations, suggesting that model 3Z may
not produce reliable measures of prediction uncertainty.
These examples are consistent with the idea that simple
models tend to underestimate prediction uncertainty.
[72] Using the more detailed observations of streamflow

gain reduces interval width of predictions for all models due
to reduced parameter uncertainty. In model 3Z, for example,
the 95% linear confidence interval for parameter K2 is
reduced from 134–741 m/d to 136–557 m/d by adding the
more detailed observations. Using the more detailed obser-
vations of streamflow gain also improves predictions accu-
racy slightly, as evidenced by the simulated values in
Figures 4c and 4d being slightly closer to the true values
than those in Figures 4a and 4b.

4.4. Evaluation

[73] In this section, the reasons that the true values
are excluded from the confidence and credible intervals
of models HO and 3Z are investigated by examining

Figure 4. Linear and nonlinear confidence intervals and
nonlinear credible intervals (≤106, ≤1594, and 420,000
model runs, respectively) for two predictions: (a and c)
streamflow change at gauge site G2 and (b and d) drawdown
of the water table at well P3. Here 2 or 18 observations of
streamflow gain are used. The horizontal lines represent true
values of the predictions. The nonlinear credible intervals
are calculated using DREAM.
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assumptions required for deriving accurate intervals. Deri-
vation of accurate linear and nonlinear confidence intervals
assumes that true errors are Gaussian with zero mean and
that model errors are either insignificant relative to mea-
surement errors (i.e., the models are nearly error-free repre-
sentations of the system) or the model errors are zero-mean
and random (i.e., the models have no distinct biases), and en
masse produce a Gaussian contribution to errors. The
Gaussian assumptions are needed to construct confidence
intervals (though not for the regression to optimize param-
eter values) but in theory are not needed for credible inter-
vals because non-Gaussian likelihood functions and prior
distributions are allowed in Bayesian analysis. For consistent
comparison, this work uses a Gaussian likelihood function
and, when applicable, a Gaussian prior distribution. Thus,
this work does not investigate situations in which non-
Gaussian errors are accounted for by credible intervals, but
only considers the ability of credible intervals to correctly
account for model nonlinearity, including resulting local
minima. Using the Gaussian structure for non-Gaussian
errors may lead to less accurate model simulations [Sun
et al., 2009] and overestimation of predictive uncertainty
[Schoups and Vrugt, 2010]. The assumptions about Gauss-
ian distributed errors and the size and characteristics of
model errors are examined for both the confidence and
credible intervals.
[74] However, the focus on Gaussian residual distribu-

tions is expected to be of wide interest because they are
apparently often applicable and commonly used [Renard
et al., 2011]. For non-Gaussian residuals, as models of a
given system evolve, bias in residuals may diminish and
residual structures may become Gaussian after certain
transforms (e.g., the Box-Cox transformation). In this sense,
the Gaussian assumption of residuals may become increas-
ingly realistic. On the other hand, our complex example
suggests that model errors are similarly debilitating for both
confidence and credible intervals, and dominate over the
differences between confidence and credible intervals.
Therefore, faith that somehow credible intervals are more
reliable in the face of model error seems somewhat ques-
tionable based on the results shown here.
[75] To investigate whether true errors are Gaussian or

equivalently weighted true errors are standard normal, the
weighted-residuals are evaluated. Weighted-residuals tend to
be correlated even when true errors are independent, but

Figure 5. Relative increase in width of linear and nonlin-
ear confidence intervals to nonlinear credible intervals for
streamflow change and drawdown with (a–b) 2 and (c–d)
18 observations of streamflow gain. The measures of intrin-
sic nonlinearity from Table 6 are inserted in the shaded
boxes for easy comparison.

Table 6. Total Nonlinearity, Intrinsic Nonlinearity, Correlation Coefficient and Regression Statistics and Their Critical Values, in

Parentheses, of the Three Alternative Groundwater Models

Statistic

Case I: 2 Streamflow Gains Case II: 18 Streamflow Gains

HO 3Z INT HO 3Z INT

Total nonlinearitya 2.44 0.81 13.85 2.79 0.91 2.27
Intrinsic nonlinearitya 0.54 0.04 0.18 0.57 0.07 0.11
RN
2 b 0.989 (0.96) 0.986 (0.96) 0.989 (0.97) 0.987 (0.97) 0.988 (0.97) 0.982 (0.97)

s c 1.49 (1.25–1.84) 1.27 (1.06–1.57) 1.05 (0.88–1.30) 1.33 (1.14–1.60) 1.17 (1.0–1.4) 0.95 (0.81–1.14)

aCalculated using equation (7.15) and (7.16) of Hill and Tiedeman [2007] by UCODE_2005. Critical values for both measures: >1.0 highly nonlinear;
0.09–1.0 nonlinear; 0.01–0.09 moderately nonlinear; <0.01 effectively linear.

bCalculated using equation (6.18) of Hill and Tiedeman [2007] by UCODE_2005. RN
2 normality test for weighted-residuals evaluated for the

observations and the prior information. Critical values are in parentheses. Larger RN
2 values indicate normally distributed weighted-residuals.

cConfidence intervals for s are shown in parentheses and are calculated using equation (6.2) of Hill and Tiedeman [2007] by UCODE_2005. Confidence
intervals that are entirely above 1.0 indicate model fit that is significantly worse than would be consistent with the weighting. If the weighting is error-based,
as in this study, such large values of s indicate important model error and possibly model bias.
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normality of the weighted-residuals suggests normality of
the true errors. Also, it is the normality of the weighted-
residuals that is important for (16) used to calculate nonlin-
ear confidence intervals. The statistical variable, RN

2 is the
correlation coefficient between the weighted-residuals
(ordered from smallest to largest) and the normal order sta-
tistics [Brockwell and Davis, 1987, p. 304; Hill and
Tiedeman, 2007, p. 110], and can be used to test if the
weighted-residuals are normally distributed and also satisfy
the more demanding condition of independence. RN

2 provides
a more powerful test than the common Kolmogorov-
Smirnov statistic. Values of RN

2 close to 1.0 indicate that the
weighted-residuals are independent and normally distrib-
uted. Its values and corresponding critical values at signifi-
cance level of 0.05 are listed in Table 6 for the three models.
Because the RN

2 values are all larger than the critical values, it
is concluded that the assumption of error normality is satis-
fied for all models in the synthetic groundwater test case.
[76] To investigate whether model errors are significant

relative to measurement errors, Hill and Tiedeman [2007,
p. 303], Aster et al. [2012], and others suggest using

the standard error of regression, s ¼ S b̂
� �

= NH þ NQþð
�

NPR� NPÞ�1=2 , where S b̂
� �

is from minimizing equation

(24). If the model fit is consistent with assigned weighting
then the calculated standard error of regression s is close to 1.0.
Larger values of s indicate either additional errors, commonly
epistemic and aleatory errors, not accounted for in the
weighting or that the weights do not correctly reflect the
intended errors [Hill and Tiedeman, 2007]. In this synthetic
study the measurement error is known and incorporated
properly in the weights for all observations except flows, but
no model error is included. For flows, the lack of added error
and use of coefficients of variation of 10% and 20%mean that
even values of 1.0 suggest some model error. Thus, s values
larger than 1.0 indicate model errors. The s values and their
corresponding 95% confidence intervals listed in Table 6
suggest significant model errors for models HO and 3Z. The
model errors of HO and 3Z mainly result from oversimplified
conceptualizations of the horizontal hydraulic conductivity
(Figure 3).
[77] Other investigations of model error consider plots

of weighted-residuals and optimized parameter values.
Figures D1b and D1d in Appendix D of the auxiliary material
plot weighted-residuals against weighted simulated values
from model 3Z for the case of using two and eighteen
observations of streamflow gain for calibration, respectively.
While the calibration results are acceptable, the weighted-
residuals of model 3Z are not fully random in that they are
mostly positive for weighted simulated values between 26
and 32. This may indicate systematic model error in model
3Z. Though results for HO and INT are not shown, model
HO has worse overall fit than 3Z and model INT has the best
fit with weighted-residuals randomly distributed. Both
models HO and 3Z suffer from biased parameter estimates.
For example, for model 3Z the estimated value of K2 equals
317 m/d, more than two times the largest hydraulic conduc-
tivity of the true model (Figure 3); the estimated values of
riverbed conductance for models HO and 3Z, which equal
312.94 and 303.29, respectively, are far from the true value
of 244 m2/d per meter of stream, however this is not clear
evidence of model bias because streambed conductances
depend on grid size [Mehl and Hill, 2010]. In this synthetic

problem, we know that the bias is mainly caused by over-
simplification of horizontal hydraulic conductivity. No such
problems occur for the INT model, for which the hydraulic
conductivity parameterization is most closely coordinated
with the pattern of the true field (Figures 3b and 3d).
[78] The groundwater examples suggest that both intrinsic

model nonlinearity and model error affect the differences
between nonlinear confidence and credible intervals, but
their relation is not simple. Table 6 and Figure 5 show that
the largest differences between the confidence and credible
intervals occur for model HO, which has the largest intrinsic
model nonlinearity and worst model fit. However, results for
models 3Z and INT do not support this relation clearly. For
example, the smaller standard error of regression s in
Table 6, the distribution of weighted-residuals, and more
reasonable parameter values indicate that INT has less model
error than 3Z, but some of the confidence intervals are closer
to the credible intervals for 3Z than for INT (Figure 5d). This
is probably because the intrinsic model nonlinearity of INT
(0.18 and 0.11 for case I and II) is larger than that of 3Z
(0.04 and 0.07) (Figure 5). For both, difficulties associated
with model error remain.

5. Discussion

[79] This work is focused on understanding differences
and similarities between the confidence and credible inter-
vals from theoretical and heuristic perspectives. We limit our
discussions and conclusions to the problems that the obser-
vation errors are multivariate Gaussian distributed, which is
commonly useful in environmental modeling. In this study,
linear and nonlinear confidence and credible intervals are
considered for both linear and nonlinear models; results are
summarized and compared to other published work in
Table 1.
[80] For linear confidence and credible intervals of linear

models, analytical expressions were used to show that, when
no prior information is used in the regression and the non-
informative prior parameter distribution is used in the
Bayesian calculation, the two kinds of intervals are numer-
ically identical. If prior information used in the regression is
consistent with the prior distribution used in the Bayesian
calculation, the confidence intervals are equivalent to the
credible intervals; otherwise, the two kinds of intervals
differ.
[81] For linear confidence and credible intervals of

linearized-nonlinear models, we show that the two kinds of
intervals are again numerically identical. However, both
confidence and credible intervals are approximate, and their
accuracy depends on model nonlinearity and model error.
[82] For nonlinear confidence and credible intervals of

nonlinear models, analytical expressions are not available
and heuristic investigations were pursued. Confidence
intervals were calculated using the approximate likelihood
methods of Christensen and Cooley [1999] and Cooley
[2004], while credible intervals were calculated using the
MCMC techniques of Gallagher and Doherty [2007] and
Vrugt et al. [2008, 2009].
[83] Three numerical experiments are conducted to

explore the differences between linear and nonlinear confi-
dence and credible intervals for nonlinear models. The
experiments with simple nonlinear functions indicate that
the intervals are similar for consistent priors, as long as the
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assumptions used to calculate the confidence intervals are
satisfied and the credible intervals are correctly simulated
by MCMC techniques. Therefore, in practice, the expec-
ted advantage produced by calculating computationally
demanding nonlinear credible intervals can be evaluated by
considering the underlying assumptions. In the very non-
linear test function I, the nonlinear credible interval is
smaller than the linear and nonlinear confidence intervals
because the intrinsic model nonlinearity is large and multiple
minima exist in the objective function. But in the mildly
nonlinear test function II, when all the assumptions are sat-
isfied, the confidence and credible parameters regions are
numerically coincident, and correspondingly the nonlinear
confidence and credible intervals of predictions are numeri-
cally identical. Even in the very nonlinear test case I, the
linear and nonlinear confidence intervals constructed using
the global minima were close enough to the credible inter-
vals to suggest potential utility given the small number of
model runs required by the confidence intervals (10 and 232
for the linear and nonlinear confidence intervals, respec-
tively; 1,000,000 for the credible intervals).
[84] The numerical experiment of groundwater modeling

introduces the complication of model error and resulting
prediction bias on the performance of confidence and cred-
ible intervals. The confidence and credible intervals are
generally closer to each other when model error is small and
the intrinsic model nonlinearity is not very large, despite
some exception for the 3Z and INT models (Figure 5). For
model HO, which has greater model error and nonlinearity,
the difference between confidence and credible intervals is
the largest. However, the more important result is that for
model HO all of the intervals perform similarly and not very
well in that they excluded the true value by a wide margin.
While more experience is needed to determine common
performance, this example and theoretical considerations
suggest poor performance of all intervals is likely when
model bias dominates. This suggests that it may be useful to
calculate the less computationally demanding confidence
intervals early in model development, and calculate the
computationally demanding credible intervals as the model
becomes a better representation of the system. An advantage
of this approach is that it allows more routine calculation of
uncertainty intervals and associated measures of, for exam-
ple, the importance of observations and parameters to pre-
dictions [Tonkin et al., 2007; Dausman et al., 2010]. This
results in greater understanding of simulated dynamics and
increased model transparency.
[85] We suggest that model nonlinearity can be measured

using the intrinsic model nonlinearity statistic [Bates and
Watts, 1980; Cooley, 2004]. A difficulty with this statistic
is that it considers only the nonlinearity of observations with
respect to the parameters, a difficulty discussed by Hill and
Tiedeman [2007, p. 189–193] and Cooley [2004]. In this
work, the predictions considered are similar to the observa-
tions used and intrinsic model nonlinearity is expected to
provide information about the linearity of the predictions as
well. When predictions differ substantially from observa-
tions due to differences between calibration and prediction
conditions or because different quantities are considered, it
may not be as useful a measure of nonlinearity.
[86] The results of very nonlinear simple test case I sug-

gests that the match between nonlinear confidence and
credible intervals is affected strongly by the existence of

local minima. Of concern are how common local minima are
in practice, what types of models are likely to have local
minima, and how local minima can be detected, as also
noted, for example, by Kavetski et al. [2006] in the context
of surface hydrologic modeling. When models include many
kinds of observations and are characterized by few para-
meters or many parameters with substantial prior informa-
tion or regularization, parameter sensitivities are likely to be
larger, absolute values of parameter correlation coefficients
are likely to be further from 1.00, the inverse problem is
more likely to be well posed, and local minima are likely to
be less common. Thus, decisions made regarding model data
and construction are critical to how similar confidence and
credible intervals are likely to be in a given problem.
Kavetski and Clark [2010] also discuss the importance of
model numerical methods to the presence of local minima.

6. Conclusions

[87] The results presented in this work suggest that for
linear models, confidence and credible intervals are mathe-
matically and numerically identical when either (1) param-
eter prior information is absent for the confidence intervals
and noninformative for the credible intervals or (2) any prior
information defined for the confidence intervals is consistent
with informative prior defined for the credible intervals.
Because prior information for the confidence intervals is
defined using only means, variances, and covariances, con-
sistency means that the prior information in the credible
intervals needs to be Gaussian.
[88] For nonlinear models, confidence and credible

intervals can be numerically identical when all the assump-
tions are satisfied in the calculation of confidence intervals
and credible intervals are calculated precisely. In practice,
problem complexity leads to difficulties for both types of
intervals. This work shows how competing local minima
degrade the accuracy of confidence intervals. MCMC
methods used to calculate credible intervals can suffer from
numerical imprecision caused by inadequate sampling of the
parameter space; long execution times and large parameter
dimensions of many practical models can make it difficult or
impossible to conduct enough model runs for sufficiently
sampling. The accuracies of both confidence and credible
intervals suffer from model errors. In practice nonlinear
confidence intervals often differ from nonlinear credible
intervals and the differences do not in themselves indicate
which uncertainty interval should be more trusted. It is often
assumed that the difficulties cited here for confidence inter-
vals are more debilitating than those cited for credible
intervals. This work suggests that the situation is likely to be
more nuanced, and that both confidence and credible inter-
vals can be important to uncertainty evaluation of environ-
mental models.
[89] The computational expense of credible intervals (for

the complex problem considered in this work, about 500,000
model runs versus about 100 and 1500 model runs for linear
and nonlinear confidence intervals, respectively) is likely to
influence the choice of the uncertainty analysis method used.
Whether one uses confidence intervals or credible intervals,
the results of this work indicate that the difference between
alternative models can be more critical than the differences
between confidence and credible intervals in many practical
circumstances.

LU ET AL.: REGRESSION CONFIDENCE AND BAYESIAN CREDIBLE INTERVALS W09521W09521

17 of 20



[90] Suggestions for users include the following.
(1) Report all uncertainty intervals with an evaluation of
model error. Model error can be evaluated using the sum
of squared weighted-residuals when the weighting is based
on observation error (including epistemic error), as well as
plots of weighted-residuals and evaluation of estimated
parameter values. For nonlinear models, linear intervals and
nonlinear confidence intervals need to be reported with an
evaluation of model nonlinearity. (2) Nonlinear confidence
intervals can be estimated accurately using the approximate
likelihood method, if the assumptions are approximately
satisfied. The intervals should be reported with an examina-
tion of the assumptions. (3) Nonlinear credible intervals
calculated from MCMC techniques can be estimated accu-
rately if the parameter space is adequately explored. MCMC
techniques face their own challenges for high-dimension
problems with multimodal distributions because it is difficult
to adequately search high-dimensional parameter spaces. (4)
It appears likely that less computationally demanding confi-
dence intervals are adequate early in model development
when model error is likely to adversely affect all types of
intervals. This provides more opportunity to take advantage
of the rich set of related methods for identifying observations
and parameters important to predictions. Use of the compu-
tationally demanding credible intervals can be reserved for
when the model becomes a better representation of the
system.
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