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Pessimistic control algorithms for replicated data permit only one partition to perform update
operations at any time so as to ensure mutual exclusion of the replicated data object.
Existing availability modelling and analyses of pessimistic control algorithms for replicated data
management are constrained to either site-failure-only or link-failure-only models, but not both,
because of the large state space which needs to be considered. Moreover, the assumption of having
an independent repairman for each link and each site has been made to reduce the complexity of
analysis. In this paper, we remove these restrictions with the help of stochastic Petri nets. In addition
to including both site and link failures/repairs events in our analysis, we investigate the effect of
repair dependency which occurs when many sites and links may have to share the same repairman
due to repair constraints. Four repairman models are examined in the paper: (a) independent
repairman with one repairman assigned to each link and each node; (b) dependent repairman with
FIFO servicing discipline; (c) dependent repairman with linear-order servicing discipline; and (d)
dependent repairman with best-"rst servicing discipline. Using dynamic voting as a case study, we
compare and contrast the resulting availabilities due to the use of these four different repairman
models and give a physical interpretation of the differences. We show that ignoring concurrent
site and link failures/repairs events or repair dependency can very unrealistically overestimate the

availability of replicated data.
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1. INTRODUCTION

Pessimistic control algorithms for replicated data permit
only one partition to perform update operations at any given
time so as to ensure mutual exclusion of the replicated
data object. Over the past few years, various pessimistic
algorithms based on voting (e.g. [1, 2]) and quorum
consensus (e.g. [3, 4, 5, 6]) have been proposed in the
literature and many recent works discuss how to distribute
replicated data to improve the performance of the system
[7, 8]. These past works mainly emphasized the algorithmic
aspects and correctness proofs of their approaches with
little or inadequate availability modelling and analyses. To
date, the availability analysis of these pessimistic algorithms
is constrained to either site or link models, but not both,
possibly because of the large state space that needs to be
considered. Moreover, an independent repairman associated
with each link or site has always been assumed to reduce
the complexity of analysis. Ironically, although pessimistic
algorithms were designed to deal with network partitioning
problems, these past works were content with availability
analyses based on site-failure-only system models (e.g. [9]).
The only exception is the work by Jajodia and Mutchler [2]
who have considered the site and link models separately, but
not altogether in one model.
This paper removes these inadequate modelling restric-

tions with the help of stochastic Petri nets. In particular,

we examine the effect of repair dependency where all sites

and/or links may share the same repairman due to repair re-
source constraints. Using dynamic voting as a case study, we
compare and contrast the resulting availabilities under dif-
ferent repairman models. Our objective is to provide a more
informative, realistic estimation of the availability metric in
the presence of both site/link failures and repair dependen-
cies. Although we have chosen to test the modelling tech-
niques developed in the paper with dynamic voting, it will
become clear later that these techniques can be generally ap-
plicable to other pessimistic algorithms. We pick dynamic
voting as a case study simply because analytical results un-
der site- or link-failures/repairs only models (but not both
together) are available in [2], against which we can validate
our Petri net models at the boundary conditions. We extend
our previous work [10] in this paper by investigating various
strategies for repairing failed sites and links and analysing
the effect of repair dependency on data availability.

The rest of the paper is organized as follows. Section
2 gives an overview of dynamic voting; states the assump-
tions and notation used; and develops a stochastic Petri net
(SPN) model for dynamic voting that considers both site and
link failures/repairs for the case when each site or link has
its own independent repairman. Section 3 considers three
dependent repairman models in which all sites/links share
the same repairman: (a) First In First Out (FIFO), (b) linear-
order and (c) best-"rst. In the linear-order repairman model,
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we always repair failed sites or links in a prespeci"ed or-
der, whereas in the best-"rst repairman model, we intelli-
gently select a failed site or link whose repair will result in
the largest improvement in availability. Section 4 compares
the availabilities obtained under various repairman models
for a 5-site ring topology and provides a physical interpre-
tation. Section 5 summarizes the paper and outlines some
future research areas.

2. SYSTEMMODEL AND ASSUMPTIONS

We illustrate the key modelling techniques developed in this
paper by an example pessimistic control algorithm called
dynamic voting developed by Jajodia and Mutchler [2].
A detailed description of dynamic voting can be found in
[11, 12, 2]. Here, we only give a background overview of
the algorithm.

2.1. Background

It is instructive to view voting as a form of quorum
consensus which must satisfy the quorum intersection
property, i.e. let R and W be the cardinalities of any two
read and write quorums on the same data item, respectively,
then R+W as well as 2W must be greater than the total
number of copies to ensure mutual exclusion. Taking this
view, dynamic voting is different from static voting in that
its quorum set can be dynamically adjusted in reaction to
system state changes, as opposed to a "xed quorum set as in
the static voting scheme. The principle concept of dynamic
voting is that instead of using a static quorum set based
on the original set of copies, it uses the current up to date
copies at any time for deriving its dynamic quorum set. This
way, the system can dynamically adjust its quorum set in
response to state changes and it results in an increase in
availability when compared with static voting because of a
higher probability of "nding a quorum to serve an operation.
Suppose that a data item (e.g. a "le) f is replicated

to n copies, stored at sites S1, S2, . . . , Sn . The essence of
dynamic voting is that it must keep track of the number of
up to date copies involved in the last update, and also which
copies are up to date. To achieve this, consider a version of
the dynamic voting algorithm where each copy is associated
with three variables, V N , SC and DS, such that V N stores
the version number of the local copy and can serve as an
indicator to tell whether the local copy is current; SC records
the number of current copies that participated in the last
update of f ; and DS stores the ID of the highest linearly
ordered site among all sites that presently store current
copies. A copy bearing the highest version number is called
a current copy. Let (V Ni , SCi , DSi ) be the set associated
with the copy stored in site Si . Initially, all copies are current
and V Ni = 0, SCi = n, DSi = n for all Si s, where DSi is
initialized to n because Sn is the highest linearly ordered site
among all initially. When receiving an update operation, a
site C (called the coordinator) requests all sites that have
a copy of f to send their values of (V Ni , SCi , DSi ). Let
P denote the set consisting of the coordinator C and all

subordinates that responded to the request; each site in set
P locks its copy of the data item f during the process. Site
C then inspects the largest version number, V Np, found in
set P . Let I denote the subset consisting of only those sites
containing a copy with version number V Np. Let SC p and
DSp be the values stored in SCi and DSi of any site in set
I, respectively. If one of the following two conditions is
true, then site C is in the major partition: (a) the cardinality
of I is larger than one half of SC p; (b) the cardinality of I
is exactly equal to one half of SC p and set I contains site
DSp. If neither condition is true, site C aborts the update,
sends ABORT messages to subordinates and releases the
lock on its local copy. The update operation can retry at a
later time. Otherwise, site C is in the major partition. It
thus commits the update locally, sends COMMIT messages
to subordinates along with the new update and new value
of (V N , SC , DS) and releases the lock on its local copy.
The new value of (V N , SC , DS) is set to (V Np + 1, the
cardinality of set P , the ID of the highest linearly ordered
site found in P). A termination protocol can be used to
terminate correctly the execution of the update process if it
is interrupted by failures. A possible terminal protocol can
be found in [2] and is not described here. To simplify our
presentation, this paper only considers update operations,
although the SPN models developed in the paper can easily
be applied to handle read operations.

2.2. Assumptions and availability metric

We "rst state the system assumptions. We assume that there
are n sites connected by a topology to be speci"ed. Each
site is assigned a single vote and a unique site ID, numbered
1, 2, . . . , n where n is the total number of sites in the system.
We use the subscript i to refer to the site ID of site i . All
sites in the system are linearly ordered in descending order
of their site IDs. That is, site n is the highest linearly ordered
site. We assume independent failure modes for sites and
links, with λs and λl being the failure rates of sites and
links, respectively. A repairman repairs a failed site with
rate µs and a failed link with rate µl . For the case when
many failed sites and links shared the same repairman, the
repairman can only "x one failed entity at a time. All
times between these events are assumed to be exponentially
distributed. Other than the independent repairman model in
which each site or link has its own designated repairman, we
consider three dependent repairman models in this paper: (a)
a shared repairman with FIFO servicing discipline, i.e. all
sites and links share the same repairman who repairs failed
sites or links in a FIFO order; (b) a shared repairman with a
"xed servicing discipline, i.e. the shared repairman repairs
failed sites or links in accordance with a "xed linear order;
(c) a shared repairman with a best-"rst servicing discipline,
i.e. all sites and links share the same repairman who will
pick a failed site or link whose repair afterward will result
in the largest availability improvement to the system. We
assume frequent updates, i.e. there is an update between
two consecutive failure or repair events. This assumption
is justi"ed for any data item that is being used frequently
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enough to justify data replication.
As for the availability evaluation of dynamic algorithms,

we consider both the system and site availability metrics.
The site availability is de"ned as the probability that an
update arriving at an arbitrary site will succeed [2, 6],
while the traditional system availability metric is de"ned
as the probability that a major partition exists. The site
availability metric normally has a smaller value than the
system availability metric because for an arriving operation
to succeed at a site not only must a major partition exist but
also the site must be a member of the major partition and be
in the state of `up'.

2.3. Stochastic Petri net for the independent repairman
model

2.3.1. Site subnet
Figure 1 shows an SPN subset that describes the behaviour
of a particular site (site i) upon an update action. Site i may
or may not be in the major partition when the update occurs.
A site can be in one of four states, namely, `up and current',
`up and out-of-date', `down and current' or `down and out-
of-date'. We use four places, upcci , upoci , downcci , and
downoci , to represent these four states. Since a site can only
be in exactly one of these four states, we allow only one of
these four places to contain a non-zero number of tokens,
thus identifying the state of site i .
Initially, site i is in the state of up and current.

However, instead of putting only one token into place
upcci we deliberately put i tokens initially into place upcci .
Therefore, the number of tokens used in the subnet for site 1
will be one, and will be two for site 2, and so on. The reason
for using i tokens speci"cally for site i is to easily identify
the ID of site i . This is a useful modelling technique to
keep track of the site ID of the distinguished site after a state
change, i.e. the site ID of the distinguished site after a state
change can easily be remembered by copying the number
of tokens used in the subnet for the resulting distinguished
site to a place holder called ds in the system subnet (to be
described later in the next subsection). As the state of site
i changes in response to update actions, the i tokens in the
subnet will be moved in one unit from one place to another
among the four places. For example, suppose that site i
initially is in the state of up and current, i.e. #(upcci ) = i ,
#(upoci ) = 0, #(downcci ) = 0 and #(downoci ) = 0. Now
suppose an update operation occurs and site i is found not
in the major partition (due to network partitioning), then i
tokens will #ow from place upcci to place upoci , resulting
in #(upcci ) = 0, #(upoci ) = i , #(downcci ) = 0 and
#(downoci ) = 0, which means that its new state becomes up
and out of date since it did not participate in the last update.
Note that in Figure 1 we use the tuple (transition-name,

priority-level, enabling function) to label a transition. For
example, the transition from place upcci to upoci is labelled
by (t5i , 3, ḡi ) in which t5i is the name of the transition, 3
is the priority of transition t5i relative to other transitions in
the net, and ḡi () is the associated enabling function which
returns TRUE if site i is found not in the major partition.

In our SPN, a transition is enabled when (a) each of the
transition's input places contains a number of tokens greater
than or equal to the multiplicity of the associated input
arc; and (b) the associated enabling function (if speci"ed)
returns TRUE. If multiple transitions are enabled at the
same time, the transition with the highest priority level will
"re "rst. Also, when a transition is "red, one or more
tokens, depending on the multiplicity of the associated input
arc, will be removed from the input place, and one or
more tokens, depending on the multiplicity of the associated
output arc, will be added to each output place. In Figure
1, only one transition can be enabled at a time and all
transitions are of the same priority level. We use the label
`#i' to indicate that the multiplicity of some arcs in Figure
1 is i instead of the default value of 1. As an example of
these rules, consider the case when place readyi contains
one token, place upcci contains i tokens, and the enabling
function ḡi () returns TRUE. In this case transition t5i will
be enabled and, after it is "red, the token in place readyi

and the i tokens in place upcci will be removed and i tokens
will be added to the output place upoci , signifying that site
i is now in the state of up and out of date.
Figure 1 is part of a larger net to be explained later. Below,

we explain in detail how we construct it.

1. When an update operation arrives and a major partition
exists, a token will be put into place readyi by the
`system subnet' (to be described later) so that site i
can start a local status update. There are six immediate
transitions competing to "re at site i at this moment.
However, only one out of the six transitions can "re,
which will consume the token in place readyi . These
six transitions are t0i , t1i , t2i , t3i , t4i and t5i , all of
which have the same priority level (i.e. 3).

2. Transition t0i will "re if site i is in a state in which it is
down and current. In this case, i tokens will #ow from
place downcci to place downoci . This means that if
an update occurs and site i is in the state of down and
current, then the new state of site i will be down and
out of date since site i is down and will not be able to
participate in the update.

3. Transition t1i will "re if site i is in the state of down
and out of date. In this case, site i remains in the state
of down and out of date.

4. Transition t2i will "re if site i is in the state of up
and out of date, as well as in the major partition. In
this case, i tokens will #ow from place upoci to upcci

and the new state of site i will become up and current,
since site i will participate in the update. Transition
t2i is associated with an enabling function gi () which
returns TRUE if site i is in the major partition at the
moment. See Table 4 later for the meaning of gi () and
its counterpart ḡi ().

5. Transition t3i will "re if site i is in the state of up and
current, as well as in the major partition. In this case,
site i will remain in the state of up and current. The
enabling function gi () is associated with transition t3i .

6. Transition t4i will "re if site i is in the state of up and
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FIGURE 1. Local status update actions by site i .

out of date, as well as not in the major partition (say,
due to network partitioning). In this case, site i will
remain in the state of up and out of date since site i
will not be able to participate in the update. Transition
t4i is associated with an enabling function ḡi () which
returns TRUE if site i is not in the major partition at the
moment.

7. Transition t5i will "re if site i is in the state of up and
current, as well as not in the major partition. In this
case, the new state of site i becomes up and out of date
since it will not be able to participate in the update. The
enabling function ḡi () is associated with transition t5i .

Note that all transitions in Figure 1 are immediate
transitions, thus modelling that the state change at a site
in response to an update event consumes little time, as
opposed to an exponentially distributed time for a site and
link failure/repair, or for an update arrival.

2.3.2. System subnet
Figure 2 shows an SPN subnet that describes the system
behaviour as it responds to the arrival of an update operation.
At the bottom of Figure 2, each of the boxes labelled site i is
the SPN subset shown in Figure 1. There are several priority
levels shown in Figure 2. The two transitions, t f and t f bar ,
at the top of Figure 2 are given the highest priority levels
(i.e. 5 and 4). When an update event arrives, a token will be
put in place update event (by `state-affecting subnets' to
be described later) to initiate an update action. Transition
t f is evaluated prior to transition t f bar since it has the
highest priority. If a major partition exists at the moment, the
enabling function f () associated with t f shall return TRUE

and t f will subsequently "re, resulting in the removal of the
token from place update event and the placement of one
token each into places sc, ds and readyi for all is. If a
major partition does not exist at the moment, t f bar will "re
instead, thus removing the token in place update event .

The next highest priority level (i.e. 3) is assigned to each
of the boxes which are evaluated as described previously in
the subsection `site subnet'. After all the sites have been
evaluated and each site's status has been updated, transitions
tds and tsc which have lower priority levels (i.e. 2 and 1)
will subsequently execute. Here, transition tsc is used to
update the site cardinality. The input arc multiplicity from
place sc to transition tsc is set to #(sc), meaning that all
the tokens originally stored in place sc will be removed. On
the other hand, the output arc multiplicity from transition
tsc to place sc is de"ned by a multiplicity function which
returns the number of sites with mark(upcc) > 0 in the
major partition (see Table 2 later). This way, whenever an
update changes the status of the system, the site cardinality
can be properly updated and the new value can be simply
stored as the number of tokens in place sc. In a similar
way, transition tds is used to update the distinguished site.
The input arc multiplicity from place ds to transition tds is
#(ds) while the output arc multiplicity from transition tds
to place ds is determined by a multiplicity function which
returns the maximum #(upcc) value among all the sites in
the major partition at the moment (also see Table 2). This
way, the site ID of the new distinguished site after the update
will be stored as the number of tokens in place ds. Recall
that we used i tokens to identify the ID of site i (Figure
1). Therefore, by merely looking at the maximum #(upcc)
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FIGURE 2. Global status-update actions triggered by an update operation.

value among all the sites in the major partition, we can easily
determine the site ID of the new distinguished site.

2.3.3. Site failure/repair subnets
Figure 3 shows two subsets for describing the effect of site
i's failure and repair on the system state, for the independent
repairman model. At the top, state transitions are between
the following two states: `up and current' and `down and
current', while at the bottom, state transitions are between
`up and out of date' and `down and out-of-date'. Again,
since site i can only be in one state at a time, only one
transition out of these two subnets is possible at a time. For
the failure events, if site i is in the state of `up and current'
and subsequently fails, then its new state will be `down and
current'. Similarly, if site i is in the state of `up and out
of date' and subsequently fails, then its new state will be
`down and out of date'. These are modelled by associating
transitions tcc fi and toc fi each with a rate of λs , meaning
that the "ring time of these transitions is exponentially
distributed with rate λs . For the repair events, if site i is in
the state of `down and current' and is subsequently repaired,
then its new state will be `up and current'. Similarly, if site i
is in the state of `down and out of date' and is subsequently
repaired, then its new state will be `up and out of date'.
These are similarly modelled by associating transitions tccri

and tocri each with a site repair rate of µs . The multiplicity
of all the arcs in Figure 3 for site i is i .
Under the `frequent updates' assumption, an update will

always arrive at the system after a failure/repair and will

always be processed before the occurrence of the next
failure/repair. Since processing an update by the system has
the effect of updating the system state, this means that the
system will update its status upon every failure or repair
event, not after two or more failure/repair events. We
describe this status update behaviour upon every failure or
repair event by also putting a token into place update event
when site i fails or is repaired. The system thus behaves as
if an update operation were received after a failure or repair
event. The system subnet described earlier will respond to
this update event and properly update the states of all sites,
including site i , after the failure or repair event of site i . This
also ensures that the system state is updated before another
failure or repair event occurs.

2.3.4. Link failure/repair subnets
Figure 4 shows a subset for describing a link's failure and
repair, for the independent repairman model. Here we use
the subscript i j to refer to the (bidirectional) link between
sites i and j . For the ring topology, for example, there will
be n such subnets, one for each link. For example, for a "ve-
site ring topology as in our case study, there will be links
12, 23, 34, 45 and 51. A token in place uplinki j means that
the link between sites i and j is in the state of `up', while a
token in place dwlinki j means that the link between sites i
and j is in the state of `down'. Failures and repairs of links
occur independently with failure and repair rates of λl and
µl , respectively. Similar to the subnet for site failure/repair,
we note that in order to model frequent updates, we also put
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TABLE 1. Meanings of places.

Place Meaning

upcci Copyi is up and current
downcci Copyi is down and current
upoci Copyi is up and out of date
downoci Copyi is down and out of date
uplinki j Linki j is up
dwlinki j Linki j is down
update event An update is initiated
sc ready An SC is initiated
sc #(sc) indicates the SC
ds ready A DS change is initiated
ds #(ds) indicates the ID of the DS
readyi A local update at site i is in process

TABLE 2. Arc multiplicity functions.

Arc Multiplicity

sc→ tsc #(sc)
tsc→ sc # of sites in the major partition

with mark(upcc) > 0
ds → tds #(ds)
tds → ds Max #(upcc) among all sites

in the major partition

a token into place update event when a link is failed or
repaired.
Combining Figures 1, 2, 3 and 4 together, we obtain a

composite SPN for the independent repairman model. In the
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TABLE 3. Rates of timed transitions.

Timed transition Rate value

tcc fi λs

tccri µs

toc fi λs

tocri µs

tlink fi j λl

tlinkri j µl

TABLE 4. Enabling functions.

Tr. Enabling function

t f f ()
{IF ∃ a partitionM with sum equal to
# of sites inM with mark(upcc) > 0;
AND IF (sum > #(sc)/2) OR
(sum = #(sc)/2 AND
mark(upcc#(ds)) AND site #(ds) ∈M)

THEN RETURN 1;
ELSE RETURN 0}

t2i gi ()

{Look at mark(uplink jk) ∀ j∀k to
determine site i's partition;

IF site i's in the major partitionM
THEN RETURN 1;
ELSE RETURN 0}

t3i gi ()

t4i ḡi (){1− gi ()}
t5i ḡi ()

composite SPN, a common place among all the subnets is
labelled with double circles. Tables 1�4 help annotate this
composite SPN.

3. SPNS FOR DEPENDENT REPAIRMANMODELS

In this section, we consider the case in which many sites and
links may have to share the same repairman due to repair
resource limitations. To illustrate the modelling techniques
used in addressing this issue, we focus on the case where all
sites and links share a repairman. Three repairman models
are considered: (1) FIFO: failed sites and links are repaired
in a "rst in "rst out order; (2) linear-order: failed sites
and links are repaired in a prespeci"ed linear order; and
(3) best-"rst: among all failed sites and links, we choose
the one whose repair will yield the largest improvement
in availability relative to the current state. Apparently,
among the three repair models, best-"rst may incur the
highest overhead in deciding who to repair next; in return,
it can provide the best achievable availability under a single
repairman constraint. In this paper, we ignore the overhead
issue and focus on availability modelling.
To model the FIFO repairman model, we note that by

queueing theory [13] the performance characteristics (e.g.
queueing delay) of a client under the FIFO service discipline
for a single server whose service time is exponentially

TABLE 5. Rates of timed transitions for FIFO repair.

Timed Tr. Rate value

tcc fi λs

tccri
µs∑

j,k,k 6= j

#(downcc j + downoc j + dwlink jk)

toc fi λs

tocri
µs∑

j,k,k 6= j

#(downcc j + downoc j + dwlink jk)

tlink fi j λl

tlinkri j
µl∑

j,k,k 6= j

#(downcc j + downoc j + dwlink jk)

distributed would be the same as that under the processor
sharing (PS) discipline where the processing power of the
server is divided equally among all clients in the queue.
Therefore, without having to introduce any extra places
in the SPN to keep track of the queueing order of failed
sites and links in a state, we simply make use of the SPN
for the independent repairman model described earlier and
modify the repair rates to account for repair dependencies.
A similar approach has been adopted in [14]. Speci"cally,
Table 5 replaces Table 3 with each repair rate now becoming
a function of the total number of failed sites and links that
depends on the current state of the system. For example, if a
particular state has two failed sites and one failed link, then
instead of using repair rates of µs , µs and µl , respectively,
for these three failed entities based on the independent
repairman model, we now use repair rates of µs/3, µs/3 and
µl/3, respectively, to model the fact that the same repairman
is being shared among these three failed entities. In general,
if a particular state has M failed sites and links, then the
respective repair rates of these failed entities in that state are
`de#ated' by a factor of M to account for the effect of repair
resource sharing.
As for the linear-order repairman model, there is a

prespeci"ed order among failed entities. Determining
which order to use is a search problem itself and requires
availability studies in its own right. Since a linear order
already exists in dynamic voting for the purpose of selecting
the distinguished site (DS), a natural way is to follow that
order for repair as well. The intuition is that it is more
likely that a higher linearly ordered site will become a
distinguished site in the event that the number of sites within
the major partition is an even number. Therefore, giving
a higher repair priority to a higher linearly ordered site
increases the chance of "nding the majority partition. An
example is a state in which there are only two sites D and
E left in the major partition with E being the distinguished
site. Suppose sites D and E subsequently fail. Then,
repairing D would not result in a major partition being
found while repairing E would. It is less clear whether
site repairs should take precedence over link repairs or vice
versa. However, for the site availability metric considered
here, given the fact that a single site can still provide services
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TABLE 6. Enabling functions for linear-order repair.

Transition Enabling function

tccri , tocri h1si te(i)
{IF site i failed and the repair rank of
site i is higher than those of other
failed sites or links in the linear order
THEN RETURN TRUE;
ELSE RETURN FALSE}

tlinkri j h1link(i, j)
{IF link i j failed and the repair rank of
link i j is higher than those of other
failed sites or links in the linear order
THEN RETURN TRUE;
ELSE RETURN FALSE}

if it is the distinguished site regardless of the network status,
it seems intuitive to give site repairs a higher priority than
link repairs. For the same reason, links that connect higher
linearly ordered sites should be given a higher priority than
links that connect lower linearly ordered sites.
We model the linear-order repairman model by directly

modifying the SPN for the independent repairman model.
We create a new enabling function associated with the
transition of each site or link repair event. All such enabling
functions shall execute the same code, with each enabling
function knowing the ID of the site or link it is designated to.
Only one enabling function at any state shall return TRUE
based on the prespeci"ed linear order and all others shall
return FALSE. For example, suppose that the linear order
is (sites 5,4,3,2,1; links 54,51,43,32,21) for a "ve-site ring
topology and sites 4, 2 and link 51 are down in a particular
state. In this case, the enabling functions associated with
sites 4, 2 and link 51 will return the boolean values of
TRUE, FALSE and FALSE, respectively, meaning that site
4 will be repaired next over site 2 and link 51. Note that in
this state all other enabling functions are not activated since
the input places of the corresponding transitions would be
empty. This technique prevents concurrent "ring of multiple
repair transitions. Consequently, in any state at most one
repair event can occur with the correct repair rate based on
the speci"ed repair order. Table 6 shows a description of the
set of additional enabling functions needed for the linear-
order repairman model.
While the linear-order repairman model applies a "xed

repair order which is not changed at the run time, the best-
"rst repairman model changes the repair order on-the-#y,
with the preference always given to the site or link which
can most improve the site availability of the system after its
repair with respect to the current state. To do so, the best-"rst
repairman model executes the following repair strategies.

1. If there exists a distinct failed site or link whose repair
would lead to the existence of a major partition in which
the number of current copies is the largest among all
possible repair choices in that state, then the distinct
failed site or link will be selected to be repaired next.

2. If there exist more than one failed site or link whose
repair would lead to the existence of a major partition
in which the number of current copies is the largest
among all possible repair choices in that state, then a
tie-breaker rule will be applied to select one distinct
member of the group to be repaired next. We consider
the following tie-breaker rules in this paper, with the
reasons explicitly given.

(a) If the group contains both failed sites and failed
links as repair candidates, then the preference
is given to the failed sites if µs/λs ≥ µl/λl ;
otherwise, the preference is given to the failed
links. Then, the tie-breaker rule (described next)
for just either failed sites or links applies. The
reason behind this rule is that preference is given
to the failed entity which can be repaired fastest,
which means fastest recovery given the same
availability improvement outcome.

(b) If the group contains just failed sites, then
preference is given to the highest linearly ordered
site in the group. The reason behind this rule
is that a higher linearly ordered site is more
likely to become a distinguished site and thus
repairing a higher linearly ordered site has the
effect of moving more available sites toward the
current distinguished site. This creates a higher
probability of uniting more sites in the major
partition in the future. Intuitively, we like to repair
sites or links closer to the current distinguished
site so that the system will be in a better position
to unite more sites at a later time. To see
this, consider a particular state of a "ve-site ring
system1 in which the major partition contains only
the distinguished site, say site 4, while all other
sites (sites 1, 2, 3 and 5) and links (links 12, 23,
34, 45 and 51) have failed. This is a scenario
in which repairing any of the failed sites or links
yields the same availability improvement, i.e. no
improvement afterward therefore the preference
is given to repairing sites over repairing links.
Then, repairing site 5 will put the system in a
better position to unite sites 4 and 5 (after a future
repair of link 45), while repairing a lower linearly
ordered site, say site 2, has no such bene"t. One
may argue that another scenario would give a
totally different result but the point is that site 4
has a higher probability than site 2 to become the
distinguished site.

(c) If the group contains just failed links, then the
preference is given to the link that connects the
highest linearly ordered sites among all links in
the group. The reason follows that for the tie-
breaker rule for sites except that we now like
to repair links around the current distinguished
site. Consider the same scenario mentioned above

1A "ve-site ring consists of sites 1, 2, 3, 4 and 5 and links 12, 23, 34, 45
and 51.
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TABLE 7. Enabling functions for best-"rst repair.

Transition Enabling function

tccri , tocri h1si te(i)
{IF site i failed and the hypothetical
site availability after repairing site i
is higher than those of other failed
sites or links in the system
THEN RETURN TRUE;
ELSE RETURN FALSE}

tlinkri j h1link(i, j)
{IF link i j failed and the hypothetical
site availability after repairing link i j
is higher than those of other failed
sites or links in the system
THEN RETURN TRUE;
ELSE RETURN FALSE}

except that µs/λs ≥ µl/λl is false, so that
repairing links takes precedence over repairing
sites. In this case, repairing link 45 would be
able to unite sites 4 and 5 after a future repair
of site 5, while repairing any other link, say link
12, will not result in a major partition containing
more than one site after any subsequent repair.
Again, since a higher linearly ordered site has a
higher probability of becoming the distinguished
site, repairing a link connecting higher linearly
ordered sites has the effect of putting the system
in a better position to unite more sites after some
future selective repairs.

For the analysis of the best-"rst repairman model, we
also modify the SPN for the independent repairman model.
Similar to the linear-order repairman model, we again
associate an enabling function with the repair transition of
each site or link; let all enabling functions execute the same
code, with each enabling function knowing the ID of the site
or link it is designated to; and let only one enabling function
at any state return TRUE while all others return FALSE. The
difference is that the encoding of the enabling function ranks
all failed sites and links in a particular state based on the
hypothetical site availability values (which would result if
they were chosen to be repaired next). Only the enabling
function designated to the highest-ranked site or link for that
particular state returns TRUE and all others return FALSE.
Table 7 shows a description of the set of additional enabling
functions needed for the best-"rst repairman model.

4. EVALUATION

We test the modelling techniques developed in the paper
with a "ve-site ring topology. Sites were labelled by 1, 2,
3, 4 and 5 with site 5 being the highest linearly ordered site
among all initially; links were labelled with 12, 23, 34, 45
and 51 (bidirectional)2. Four different repairman models

2The modelling techniques developed in the paper can be generally
applicable to all types of network topologies. For the "ve-site ring, we

were examined. For the independent repairman model,
sites and links fail and repair independently of each other.
The SPN for the independent repairman model consists of
Figures 1, 2, 3 and 4 with Tables 1, 2, 3 and 4. The
underlying Markov chain contains 8674 states. For the
remaining three dependent models, we let all sites and links
share the same repairman. In particular, for the linear-order
repairman model, we assume that failed sites and links are
repaired in the order of site 5, site 4, . . . , down to site 1
and then link 54, link 54, . . . , down to link 12, so that a
higher repair rank is assigned to a higher linearly ordered
site (among sites) and a link connecting higher linearly
ordered sites (among links). The SPN for the dependent
repairman model with FIFO consists of Figures 1, 2, 3 and
4 with Tables 1, 2, 4 and 5, with the number of states in
the underlying Markov chain being 8674. The SPN for the
dependent repairman model with linear-order consists of the
same four "gures with Tables 1, 2, 3, 4 and 6, with the
underlying Markov chain containing 5429 states. Finally,
the SPN for the dependent repairman model with best-"rst
consists of the same four "gures with Tables 1, 2, 3, 4 and 7;
the number of states in this case is 3821. The time it takes to
solve these models using SPNP [16] is in the order of a few
minutes on a SUN Ultra 1 machine.
The site and system availability metrics considered in the

case study were obtained by assigning proper `rewards' with
states of the system [16]. The system availability metric, i.e.
the steady-state probability that a major partition exists, was
obtained by associating a reward rate of 1 with those states in
which the enabling function f () is evaluated to TRUE and
a reward rate of 0 otherwise. The site availability metric,
i.e. the probability that an update arriving at an arbitrary site
will succeed, was obtained by associating a reward rate of
1× k/n with those states in which the enabling function f ()
is evaluated to TRUE and a reward rate of 0 otherwise, with
k representing the number of `up' sites in the major partition
(if it exists) in a particular state and n is the total number of
sites (copies) in the system.

4.1. Availability for the independent repairman model

Figure 5 shows the site availability values for the
independent repairmanmodel under various combinations of
site and link repair-rate/failure-rate ratios. While the repair-
rate/failure-rate ratios can be arbitrarily large, in this paper
we consider a range of ratio values from 1 to 20 so as to
facilitate the comparison of our results with those published
in [2] which had previously considered only either site or
link failures, but not both. The reader can refer to [10] for the
case when the ratios are larger and also when the assumption
of frequent updates is relaxed. Here, the x-axis is the ratio
of the mean time to failure per link to the mean time to
repair per link or, equivalently, the ratio of link repair rate to

explicitly include every site and every link in de"ning the SPN model. It
may be possible to exploit the symmetric property of the "ve-site ring and
apply model reduction techniques [15] to de"ne a smaller yet symmetric
SPN model without losing the solution exactness. This aspect is not
explored in this paper.
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FIGURE 5. Site availability of "ve-site ring under independent
repairman model.

link failure rate. The asymptotic case where only links are
fallible as obtained in previous studies [2] is also shown for
comparison reasons. From the signi"cant difference in site
availability shown in the "gure, we conclude that models
which consider either only fallible sites or fallible links,
but not both, in previous studies can very unrealistically
overestimate the site availability metric.

4.2. Comparing availability metrics under various
repairman models

Figure 6 shows the site availability values obtained under
four different repairman models, with the ratio of the site
repair rate to the site failure rate "xed at 10:1. Figure 7
shows the same data except using the system availability
as the comparison metric. The x-axis is again the ratio of
the mean time to failure per link to the mean time to repair
per link. From the "gure, we observe the effect of repair
dependency: the site availability of dynamic voting with
independent repair is much higher than those with dependent
repair. This is because in the latter cases only one repairman
is available and all failed sites and links must compete for
the same repair resource, while in the former case every site
or link has its own designated repairman. Only when the
ratio of repair rate to failure rate is relatively high can the
availability of the best-"rst repairman model approximate
that of the independent repairman model.
Among the three dependent repairman models, however,

the best-"rst repairman model can always provide a better
site availability value than the other two. These are two
reasons by which best-"rst improves the availability when
compared with other dependent repairman models.

1. The best-"rst repairman model can avoid unfavourable
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states which other dependent repairman models cannot.
These unfavourable states occur when the system
contains either (a) one or more up but out of date
copies or (b) one up and current copy which is not
the distinguished copy, and one or more up but out
of date copies. These unfavorable states result from
ineffective repair activities which occur during a period
in which a major partition does not exist. For the FIFO
and linear-order repairman models, it is possible that a
major partition still could not result even after several
repairs. For the best-"rst repairman model, however,
if the system is in such a state (in which a major
partition does not exist), it will avoid going into these
unfavourable states (in which no major partition exists
again after some repairs) by repairing the distinguished
site "rst such that after a selective repair a major
partition always results.3

2. If the system is in a state in which a major partition
exists and some failed sites and links need to be
repaired, then best-"rst will choose a failed site or
link to repair next such that the size of the major
partition after the repair will become the largest among
all possible choices. This eliminates the bad effect

3We should mention that these arguments are valid only under the
assumption of frequent updates. Without frequent updates, even the best-
"rst repairman model cannot guarantee the existence of a major partition
after a repair.

of ineffective repairs. As an example, consider a
system being partitioned into two parts, with one part
containing two up sites and one other part containing
two up sites and one down site. An ineffective repair
in this case can repair the down site (as could be done
by FIFO and linear-order) instead of the failed link
which partitions the "ve sites, thus resulting in a major
partition of size 3. Best-"rst would select the failed
link to repair and after the repair the size of the major
partition is 4 instead. In addition, in cases in which
repairing any member of a group results in the same
availability improvement outcome, it will select the one
with the shortest repair time so that for most of time the
system can stay in those states in which it has a high
availability.

Figure 8 shows the difference in site availability between
best-"rst and linear-order, and also between best-"rst and
FIFO, as a function of the ratio of the repair rate to the
failure rate, assuming that the repair rates for sites and links
are identical and the failure rates for sites and links are also
identical, i.e. µs = µl = µ and λs = λl = λ. Figure
9 shows the same except using the system availability as
the metric. These two "gures show the impact of `effective
repairs' employed by the best-"rst repairman model (and to
some extent by the linear-order repairman model). When
the ratio of the repair rate over the failure rate (µ/λ) is very
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FIGURE 9. Difference in system availability among dependent repairman models.

high, i.e. greater than 20, the difference among these three
dependent repairman models is small since sites/links can
be repaired much faster than they can fail, so it matters little
which repairman model is being used. However, as the ratio
of µ/λ becomes lower (say between 5 and 15), the impact
of effective repairs manifests itself more (because at any
time there can be many failed entities waiting to be repaired)
and the difference in availability becomes higher. This also
re#ects the condition under which the best-"rst repairman
model can bene"t the system most when compared with
the other two repairman models. Finally, when the ratio
becomes very low (i.e. approximately 1) in which case
sites/links can fail faster than they can be repaired, the site
or system availability metric is so low anyway that the effect
of effective repairs becomes less signi"cant. The concave
curves shown in Figures 8 and 9 indicate that there exists a
data point at which best-"rst has the largest edge over the
other two repairman models.

5. CONCLUSIONS

In this paper, we proposed and investigated four repairman
models which can exist in replicated data management.
Using dynamic voting as a case study, we developed
modelling techniques based on Petri nets to analyse the
effect of these repairman models on availability. We
discovered that (a) an availability model that considers only

site or link failures/repairs, but not both, can give a very
unrealistic, overestimated value of the availability metric;
(b) a signi"cant difference in availability exists between two
systems with independent and dependent repairman models,
except when the repair rate is much higher than the failure
rate (i.e. when µ/λ is greater than 20); (c) when several
sites and links have to share the same repairman, the best-
"rst repairman model can always provide a better availability
than the FIFO and linear-order repairman models; the
difference in availability becomes more pronounced as the
site/link failure rate increases relative to the site/link repair
rate; and there exists a region in which the difference in
availability is signi"cant. From these results, we conclude
that ignoring concurrent site/link failure modes or repair
dependency can unduly overestimate the availability of
replicated data. We urge that tools such as those developed
in the paper be used to estimate realistically the resulting
availability metric of replicated data, since after all the
main reason for using replicated data is to improve the data
availability of the system.

Some possible future research areas include (a) extending
and applying the modelling techniques to analysing other
pessimistic algorithms such as those based on coteries [17,
18] and (b) developing modelling techniques to study the
trade-off between the reduction in data processing overheads
(say due to the use of more constrained quorum sets based
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on a hierarchical or tree structure) and the sacri"ce in
availability (due to the more constrained way of "nding
a quorum) for database environments where a combined
performance/availability design goal must be met.
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