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Abstract 
Residence time in a flow measurement of radioactivity is the time spent by a 
pre-determined quantity of radioactive sample in the flow cell. In a recent re-
port of the measurement of indoor radon by passive diffusion in an open vo-
lume (i.e. no flow cell or control volume), the concept of residence time was 
generalized to apply to measurement conditions with random, rather than di-
rected, flow. The generalization, leading to a quantity rt∆ , involved use of a) 
a phenomenological alpha-particle range function to calculate the effective 
detection volume, and b) a phenomenological description of diffusion by 
Fick’s law to determine the effective flow velocity. This paper examines the 
residence time in passive diffusion from the micro-statistical perspective of 
single-particle continuous Brownian motion. The statistical quantity “mean 
residence time” rT  is derived from the Green’s function for unbiased sin-
gle-particle diffusion and is shown to be consistent with rt∆ . The finite sta-
tistical lifetime of the randomly moving radioactive atom plays an essential 
part. For stable particles, rT  is of infinite duration, whereas for an unstable 
particle (such as 222Rn), with diffusivity D and decay rate λ , rT  is approx-
imately the effective size of the detection region divided by the characteristic 
diffusion velocity Dλ . Comparison of the mean residence time with the 
time of first passage (or exit time) in the theory of stochastic processes shows 
the conditions under which the two measures of time are equivalent and helps 
elucidate the connection between the phenomenological and statistical de-
scriptions of radon diffusion.  
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First-Passage Time, Exit Time 

 

1. Introduction: Residence Time in the Measurement of  
Radon Activity 

1.1. Measurement of Radon by Geiger-Mueller Detectors 

Of the many sources and causes of airborne radioactive contamination [1], the 
naturally occurring contaminant radon is perhaps the most pervasive, since it 
arises as one of the daughter products, and the only radioactive gas, in the decay 
series of uranium-238 (238U), uranium-235 (235U), and thorium-242 (242Th) dis-
persed widely in rocks and soils throughout the Earth. The radon isotope with 
the longest half-life, 222Rn, is of particular concern. The World Health Organiza-
tion (WHO) reports 222Rn to be the leading cause of lung cancer among people 
who have never smoked, and to significantly increase the risk of lung cancer 
over that due to smoking alone in those who do smoke or have smoked in the 
past [2]. Although no level of indoor radon exposure is regarded as safe, the 
WHO recommends a reference level of 100 Bq/m3 to minimize health hazards 
(Ref [2], p. ix). Similarly, the US Environmental Protection Agency (EPA) re-
commends a level of 4 pCi/L above which remedial action should be taken [3]. 
(For comparison, note that 1 picocurie per liter = 37 becquerel per cubic meter.) 
It is desirable, therefore, in view of the health risks posed by radon, to develop 
methods to measure indoor radon activity in a rapid, accurate, convenient, and 
inexpensive way. 

In a recent paper [4] Silverman proposed and demonstrated the use of two 
pancake-style Geiger-Mueller (GM) counters to measure quantitatively the ac-
tivity concentration, i.e. activity per unit volume, of radon-222 (222Rn) by passive 
diffusion without the requirement, common to virtually all other methods of 
radon measurement, of a fixed instrumental control volume. This new mea-
surement protocol enables the user to determine radon concentration imme-
diately after a short-term (e.g. 24 hour) sampling time, thereby eliminating the 
cost, delay, and sample loss of sending samples to an external testing laboratory 
for analysis. Application of the GM method yielded results of equivalent accura-
cy and higher precision, particularly in repeated short-term measurements, in 
comparison with results obtained concurrently with state-of-the-art certified 
commercial radon detectors also utilizing passive diffusion. 

Briefly summarized, the reported GM method employed one GM detector to 
record counts of α , β , and γ  particles, and the other GM detector, covered 
with an alpha-blocking layer, to record just β , and γ  particles. The detectors 
were located so that the count-rate difference was exclusively attributable to al-
pha detection from 222Rn and its polonium progeny 218Po, 214Po in the room 
air—i.e. not contaminated by emissions from radioactive elements in the con-
struction materials of surrounding surfaces. Theoretical analysis based on the 
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physics of atomic diffusion in air and alpha particle interactions in matter pro-
vided the means to convert the alpha count rate (e.g. cpm = counts per minute) 
into a radon activity concentration (Bq/m3 or pCi/L). 

The methodology and accompanying analysis in [4] relied on the short range 
of alpha transmissivity in matter. For example, the 5.49 MeV alpha emitted in 
the decay of 222Rn to 218Po is about 4 cm in air (at 1 atm and 20˚C). Moreover, 
the energy loss of an alpha particle per collisional interaction is approximately a 
constant 35 eV for each ionizing encounter [5], leading to a transmission proba-
bility that is essentially constant over the greater part of the particle’s range, then 
decreasing rapidly to zero after a total of about 51.5 10×  interactions. It is this 
feature that enabled [4] to represent the alpha transmission through air (or a 
condensed medium like the thin mica window of the GM detector) by a pheno-
menological range function of the form 

( )
1

exp 1 1rQ r
Rκ
α

κ
−

    = − +   
     

                    (1) 

whose variation with distance r from the alpha point of origin is shown in the 
solid red plot of Figure 1 for the 5.49 MeV alpha in air. The red trace calculated 
from Equation (1) with alpha range parameter 4.03 cmRα =  and fall-off para-
meter 28κ =  is visually indistinguishable from the empirical alpha transmis-
sivity curve [6]. The mean range Rα , marked by the dashed black vertical line is 
defined by the distance at which alpha transmission is 50%, as indicated by the 
dashed black horizontal line in the figure. The fluctuation in alpha range values 
about Rα  as the particle rapidly comes to rest is closely represented by a Gaus-
sian distribution ( )2,N Rα σ  (dashed blue curve) with relative uncertainty 

Rασ  of ~5% [7]. In the figure, the amplitude of the Gaussian is scaled down 
by a factor 2 to facilitate visual presentation of both plots. 
 

 
Figure 1. Plot of 5.49 MeV alpha transmissivity in air (solid red) as modeled by range 
function ( )Q rκ  for mean range 4.03 cmRα =  and fall-off parameter 28κ = . Super-

posed is the Gaussian distribution ( )2, RN Rα σ  (dashed blue) of range variations about 

Rα  with 0.05R Rασ = . The horizontal dashed line marks 50% transmission; the vertical 

dashed line locates Rα . 
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1.2. Radon Transport as a Process of Macroscopic Diffusion 

The measurement procedure described in [4] pertained primarily to the diffusive 
ingress of radon through a single external subterranean (or partly subterranean) 
wall, such as commonly occurs in the basements of residences and research labs. 
For purposes of mathematical modeling, these conditions entail one-dimensional 
atomic diffusion from a planar source. For atoms diffusing from the source at 
the wall through the room air and over the GM detectors, positioned so that the 
detector windows are horizontal (in the plane 0z = ) and facing upward, the ef-
fective detection volume dV  in the half space 0z ≥  (centered on each detector 
window) and effective cross section dA  of flow through a surface Σ  normal 
to the GM window were defined and evaluated in [4] by means of ( )Q rκ  as 
follows 

( ) ( )2
0

0

d 2π dd
z

V Q r V r Q r rκ κ
∞

>

= =∫∫∫ ∫                  (2) 

( ) ( )
0

d 2π ddA Q r rQ r rκ κ
∞

Σ

= Σ =∫∫ ∫ .                 (3) 

Although the integrations are theoretically over the volume and cross section 
of the entire room (or, as a practical matter, over an infinite range for a room 
size Rα� ) rather than over the finite space and surface of an instrumental 
control volume, the constraint posed by the alpha range function ( )Q rκ  leads 
to finite results. For example, evaluation of Equations (2) and (3) for the 5.49 
MeV alpha of 222Rn in air yielded ( )222 3Rn 138.8 cmdV =  and 

( )222 2Rn 51.2 cmdA = . 
For measurements of radioactivity executed over a period of time in an open 

volume, it is necessary to determine the rate at which radioactive atoms pass 
through the region of detectability. This was accomplished in [4] by modeling 
the detection process as a radioactive flow measurement [8], such as employed 
in high-performance radioactive liquid chromatography [9], by defining an ef-
fective residence time rt∆  

0r d dt V v A∆ =                              (4) 

in which 

( ) 6
0 0 0    4.81 0.22 10 m sv D λ −= = ± ×                     (5) 

is the flow velocity determined by the 222Rn diffusion coefficient [10] [11] 

( ) 5 2 1
0 1.1 0.1 10 m sD − −= ± × ⋅                       (6) 

and decay rate [12] 

( ) 6 1
0 2.098 0.0004 10 sλ − −= ± × .                      (7) 

In a conventional flow measurement, the sample consists of a stream that 
passes through a flow cell aligned perpendicular to the detector surfaces. The 
detectors, which are photomultiplier tubes in the case of flow scintillation 
counting, therefore sample the radioactive material only for the time that the 
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atoms reside in the flow cell. This residence time is the ratio of the flow velocity 
and sample flow rate (in units of volume per time). In liquid chromatography 
the flow velocity is a well-defined, experimentally adjustable quantity, but in the 
diffusion of a radioactive gas it is a characteristic parameter of a stochastic 
process. Expression (5) was derived in [4] by solution of the one-dimensional 
steady-state diffusion equation with implementation of open-volume boundary 
conditions and account taken of loss by radioactive decay. 

Although not reported in [4], the integrals in Equations (2) and (3) upon 
substitution of range function (1) can be expressed in terms of known special 
functions yielding the following closed forms for the effective detection volume 
and area 

( )2
33

3

6Li e2 ππ 1
3dV R

κ

α κ κ

− −  = + −    
               (8) 

( )2
22

2

2Li e1 ππ 1
3dA R

κ

α κ κ

− −  = + +    
               (9) 

in which 

( )
1

Li
n

s s
n

zz
n

∞

=

= ∑                          (10) 

is the polylogarithm function. For index 2s = , the function is related to the di-
logarithm function 

( ) ( )2
1

lndilog d Li 1
1

x yx y x
y

≡ = −
−∫ .               (11) 

Use of the preceding expressions (8) and (9) together with relations (4) and (5) 
leads to the following closed form expression for the residence time 

( ) ( ) ( )
( ) ( ) ( )

2 3
3

2 2
2

1 π 6 Li e2
13 1 π 2 Li e
3

r
Rt
D

κ
α

κ

κ κ

λ κ κ

−

−

 
+ − − 

∆ =  
 + + − 
 

.        (12) 

Evaluation of relation (12) for passive diffusion of 222Rn in air yields a resi-
dence time 5637 s ~ 1.57 hrt∆ = . 

Although residence time defined in terms of the diffusive flow of a macros-
copic current of radioactive gas resulted in values of radon concentration in ac-
cord with measurements by a calibrated standard, it is nevertheless of interest, 
both conceptually and practically, to examine the concept of residence time from 
a micro-statistical perspective of particle Brownian motion. For one, this latter 
approach avoids the adoption of a phenomenological range function with ad-
justable parameter κ . And for another, the examination of radon transport by 
Brownian motion sheds light on the physical process of diffusion, clarifies theo-
retical points concerning the calculation of expectation values, and distinguishes 
the statistical concept of residence time from the concept of time of first passage, 
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which frequently arises in the study of stochastic processes. These two approach-
es—macro-statistical diffusion and micro-statistical Brownian motion—address 
two differently expressed, but basically equivalent, practical questions. In the 
former (diffusion), the question is “On average how many particles per unit time 
flow through the detection region?”; in the latter (Brownian motion), the 
question is “On average how long does one particle remain in the detection re-
gion?”. 

The development and investigation of such a micro-statistical model is the 
principal objective of this paper. This is accomplished in the following sections 
by calculating the exact time-dependent probability density (Green’s function) 
for Brownian motion of radon from a planar source and showing that a certain 
integral of this function over time provides the sought-for statistical expectation 
value corresponding to the residence time in the macro-statistical model devel-
oped in [4]. In this regard, Equations (8), (9), and (12) will be useful later in the 
comparison of the residence time as modeled in [4] with the mean residence 
time obtained from the micro-statistical treatment developed in this paper. 

2. Micro-Statistical Calculation of Residence Time 
2.1. Conditional Probability for Single-Particle Brownian Motion 

with Decay 

The equation for the conditional probability ( ), ,0G t ′r r  of diffusion of an un-
stable particle from some source point ( ), ,x y z′ ′ ′ ′=r  at time 0t′ =  to a field 
point ( ), ,x y z=r  at time t with diffusion coefficient D and decay rate λ  
takes the form [13] [14] 

( ) ( ) ( )2, ,0
, ,0 , ,0

G t
D G t G t

t
λ

′∂
′ ′− ∇ = −

∂

r r
r r r r             (13) 

and leads to the solution 

( )
( )

2

3 2

1, ,0 exp e
44π

tG t
DtDt

λ−
 ′−

′  = −
 
 

r r
r r .              (14) 

The Green’s function expressed in Equation (14) is a three-dimensional Gaus-
sian conditional probability density—i.e. a probability per unit volume—as in-
dicated by the dimensionality ( ) 3 2 3LengthDt − −   =     of the right side of the 
equation. 

In a coordinate system with vertical z-axis and horizontal x-axis directed 
normally outward from the particle source plane ( 0x′ = ), the probability densi-
ty for arrival of a particle at r  irrespective of the initial location ( )0, ,y z′ ′  of 
the particle in the source plane is obtained by integrating (14) over the coordi-
nates y′ , z′  as follows: 

( ) ( ) ( ) ( )
2 23 2 1 24 4, 4π e e , d d 4π e eDtt x Dt tp x t Dt f x y x y Dtλ λ

∞ ∞
− −′− −− − −

−∞ −∞

′ ′ ′ ′= =∫ ∫ r r (15) 

where ( ),f x y′ ′  is the prior probability (in a Bayesian sense), assumed to be 
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uniform, of the particle distribution in the source plane. Since ( ),f x y′ ′  is a 
constant, it can be assigned whatever numerical value makes ( ),p x t  a function 
whose integral over the entire x-axis is unity. Taking ( ), 1f x y′ ′ =  leads to the 
second equality in (15), which is equivalent to the Green’s function for 
one-dimensional diffusion with decay from a delta function source. 

The function ( ),p x t  in Equation (15), plotted in Figure 2, is the conditional 
probability density for finding a particle within the vertical plane located at ho-
rizontal coordinate x at time t, given that the particle was in the plane 0x =  at 

0t = . To keep symbolic notation as simple as possible where there is no confu-
sion, the initial (0,0) condition is not explicitly shown in the argument. Never-
theless, it bears emphasizing that the coordinates expressed in Equation (15) are 
actually spatial and temporal intervals. Moreover, radioactive decay is a Markov 
or “memoryless” process [15]—that is, an unstable nucleus does not age, but has 
the same probability of decay within a specified time interval irrespective of 
when the interval was begun. Therefore, Equation (15) applies whether the 
source plane is taken to be the wall through which radon enters the room or a 
plane (to be adopted shortly) bisecting the detection volume above the detector 
window. 

Reduction of the problem of 3-dimensional diffusion from a planar source to 
diffusion from a point source on the horizontal axis is a consequence of the iso-
tropic symmetry of Equation (14), which permits factorization into a product of 
three independent one-dimensional degrees of freedom. The isotropic symmetry 
itself comes from neglect of gravity, the effects of which are shown in Appendix 
1 to be negligible under the circumstances of measuring radon activity by the 
method developed in [4] and elaborated further in this paper. 

From Equation (15), one can calculate the cumulative probability 

( ),P x t≥ ≥ −� �  of the particle being somewhere between the plane x = −�  
(entrance plane of the detection region) and x = �  (exit plane of the detection 
 

 
Figure 2. Probability density of one-dimensional unconstrained Brownian motion (Equ-
ation (15)) as a function of displacement starting at the origin for times (s): (a) 20 (violet); 
(b) 50 (blue); (c) 100 (gold); (d) 200 (green); (e) 600 (red). Radon parameters: 

5 2 1
0 1.1 10  m sD − −= × ⋅ , 6 1

0 2.1 10  sλ − −= × . 
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region) during the time interval t begun when the particle was placed at 0x =  
(the vertical plane bisecting the detection region centered above the detector 
window) 

( ) 2 4e, e d erf e
4π 4

t
x Dt tP x t x

Dt Dt

λ
λ

−
− −

−

 
≥ ≥ − = =  

 
∫
�

�

�
� � .        (16) 

The error function in Equation (16) is defined by 

( ) ( )2

0

2erf e d erf
π

x ux u x−= = − −∫                  (17) 

and is an anti-symmetric function of its argument. 
The time interval rT  (mean statistical residence time) of a particle within the 

detection region is then obtained by averaging over all values of the interval t in 
Equation (16) by the following integral 

( ) ( )1
0

, d 1 erT P x t t ζλ
∞ − −= ≥ ≥ − = −∫ �� �                (18) 

in which 

Dζ λ=                              (19) 

is the characteristic diffusion length. (See Ref. [4], Appendix 1) For 222Rn, it fol-
lows from relations (6) and (7) that 

0 0 0 2.29 0.10 mDζ λ= = ± .              (20) 

In the limit that →∞�  in Equation (18), the residence time 1
rT λ−→ , the 

statistical lifetime of the unstable nucleus. (Note: the lifetime 1λ−  and half-life 

1 2τ  are related by 1
1 2 ln 2τ λ−= .) 

The mean value rT  expressed in Equation (18) calls for a brief explanation 
because its justification comes from a statistical relation that may not be widely 
familiar. Ordinarily, the expectation value T  of a distributed quantity (i.e. 
random variable) T is performed by an integration weighted by a probability 
density function (pdf) ( )tφ  in an expression like 

( )
0

dT t t tφ
∞

= ∫                      (21) 

in which ( )dt tφ  is the probability that a realization t of random variable T falls 
within the interval ( ), dt t t+ . However, ( ),P x t≥ ≥ −� �  in Equation (16) is not 
the probability density for residence time T . Moreover, it is dimensionless, so 
that to multiply ( ),P x t≥ ≥ −� �  by t and integrate over a range of t would lead 
to a quantity that has the incorrect dimension of time squared. 

A procedure entirely equivalent to (21) for computing expectation values is to 
use the cumulative distribution function (cdf) ( )F t  defined as the probability 

( )P T t≤  given by 

( ) ( )dt
F t s sφ

−∞
= ∫ .                     (22) 

It can then be shown (in Appendix 2) that the expectation value T  takes 
the form 
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( )( ) ( )0

0
1 d dT F t t F t t

∞

−∞
= − −∫ ∫ .                 (23) 

For a random variable defined on the positive real axis only, the second term 
on the right side of Equation (23) vanishes. This is the case for ( ),P x t≥ ≥ −� � , 
which can be related to the cdf of the residence time by the following argument. 
The probability ( ),P x t≥ ≥ −� �  that the particle lies in a region between −�  
and �  after time interval t means that the actual residence time T must be 
greater than t, otherwise the particle would have left the region. Thus, one can 
write the equivalence 

( ) ( ) ( ), 1P x t P T t F t≥ ≥ − = > = −� �             (24) 

where the second equality in Equation (24) follows from the definition (22) of 
the cumulative distribution function. Since ( ) 0F t =  for 0t < , it then follows 
from relations (23) and (18) that 

( )( ) ( )
0 0

1 d , drT T F t t P x t t
∞ ∞

≡ = − = ≥ ≥ −∫ ∫ � � .      (25) 

2.2. Comparison of Phenomenological and Statistical Residence 
Time Functions 

For purposes of comparison, the two expressions for residence time are collected 
below with substitution of the characteristic diffusion length (19) 

Phenomenological: 
( ) ( ) ( )
( ) ( ) ( )

2 3
3

2 2
2

1 π 6 Li e2
13 1 π 2 Li e
3

r
Rt
D

κ
α

κ

κ κ

λ κ κ

−

−

 
+ − − 

∆ =  
 + + − 
 

  (26) 

Statistical: ( )( )1 1 exprT Dλ λ−= − −� .           (27) 

Numerical evaluation of the statistical residence time (27) requires substitu-
tion of a specific length 2L = �  of the detection volume dV . Since a fixed 
length implies a sharply defined volume dV , such a substitution corresponds to 
a phenomenological residence time (26) in the limit κ →∞ , as illustrated by 
plot (f) in Figure 3. Moreover, since the characteristic diffusion length (20) for 
222Rn is about 2.3 m and the range of the alpha particle in air is only about 0.04 
m, the exponent in Equation (27) is ~ 0.017 1ζ� � . It is therefore appropriate 
to compare 

2lim
3r

Rt
D
α

κ λ→∞
∆ →                      (28) 

with the Taylor series expansion of relation (27) truncated at the lowest order of 
ζ�  

1lim
2r

LT
D D Dζ λ λ λ λ→∞

→ = =
� � .                (29) 

For the two expressions (28) and (29) to yield the same residence time interval, 
the effective length of the detection volume L would be related to the mean alpha 
range by 
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Figure 3. Plot of range function ( )Q rκ  as function of r for parameter κ  equal to (a) 0 

(thin black dash); (b) 2.5 (red); (c) 5 (green); (d) 20 (blue); (e) 50 (violet), (f) ∞  (thick 
black dash). For κ = ∞ , ( )Q rκ  takes the form of a step function. 
 

4 3L Rα= .                       (30) 

For the case of a 5.49 MeV alpha in air with experimental mean range 
4.03 cmRα = , relation (30) leads to a detection volume of horizontal length 

5.37 cmL = , which, as shown in Figure 1, corresponds very closely to the dis-
tance through air at which the alpha range function ( )Q rκ  is perceived to 
drop to 0. Exact numerical evaluation of residence times (26) and (27) for L giv-
en by relation (30) yields 

5636.7 s 1.57 h
5524.8 s 1.54 h

r

r

t
T
∆ = =
= =

                    (31) 

which are in excellent accord. 
From the definition (22) of the cdf, one obtains the corresponding pdf by ap-

plication of the Leibniz rule [16] for differentiating an integral 

( ) ( )d dp t F t t= .                         (32) 

It then follows from relation (24) that the pdf for the random variable T 
whose expectation is the residence time rT  is given by 

( )
( )2

3

 exp 4d 1 e erf e erf
d 4 44π

t t
T

Dt
p t

t Dt DtDt
λ λ λ− −

 −     = − = +           

� �� � . (33) 

Figure 4 shows a plot of pdf (33) as a function of time for parameters charac-
teristic of 222Rn with �  given by expressions (29) and (30). The sharp rise (to a 
maximum max 34 sT ≈ ) with long “fat tail” of the pdf resembles an inverse Gaus-
sian or Levy distribution. The first term ( 3 2t−∝ ) on the right hand side of pdf 
(33), known as the Smirnov density [17], derives exclusively from continuous 
Brownian motion; the second term depends on radioactive decay and would be 
absent if the diffusing particle were stable ( 0λ = ). It is to be noted that the 
mean residence time for a diffusing stable particle, whether calculated  
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Figure 4. Probability density (Equation (33)) of the residence time of a particle in the re-
gion x≥ ≥ −� � , plotted for the radon parameters of Figure 2 and length 0.05 m=� . 
The steep rise and long tail resemble an inverse Gaussian or Levy distribution. The max-
imum occurs at ~38 s; the mean is ~5557 s. 
 
simply by relation (25) or much more onerously from expression (21) with 

( )tφ  replaced by pdf (33), is infinite. One sees this explicitly by taking the limit 
of Equation (27) as 0λ → . The interpretation of this result for a stable particle 
undergoing one-dimensional Brownian motion, as is demonstrated in books on 
stochastic processes [18], is that the particle will eventually return to a specified 
location with a probability of 100%, but on average only after a random walk of 
infinite duration. However, an unstable particle, which does not survive long 
enough to take an infinite walk, has a finite mean residence time—a result that 
one would of course expect on physical grounds. 

In the following section the residence time is obtained in a different way by 
examining stochastic events referred to as “first passage” or “first return”, which 
occur widely in problems involving Brownian motion with boundaries. 

2.3. Comparison of Residence Time with First Passage Time to 
One Absorbing Boundary 

The time of first passage (FPT) is the time for a particle undergoing Brownian 
motion to first reach a specified site. The problem has wide applicability in fields 
as diverse as physics, chemistry, biology, economics, and others [19]. Consider 
the first-passage of an unstable particle with decay rate λ  and diffusion coeffi-
cient D undergoing a random walk from an initial position 0x  to the boundary 

bx . Since there is no further interest in the particle once it has reached bx , the 
particle is considered absorbed at the boundary. One might therefore interpret 
the residence time as the mean time for a particle to diffuse from the initial loca-
tion 0 0x =  to the exit bx = �  of the detection region. The particle is then ab-
sorbed at the exit and cannot return. 

Mathematically, it is required to find a probability density function ( )1 ,p x t  
for one-dimensional diffusion of an unstable particle such that ( )1 , 0bp x t = . 
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Since the diffusion equation is linear, the sought-for function is readily found 
from solution (15) by the method of images [20] to be 

( ) ( ) ( )2 2
0 0

1

21, exp exp e
4 44π

b tx x x x x
p x t

Dt DtDt
λ−

    − + −    = − −
        

. (34) 

The method of images entails placing an “anti-source” of particles at just such 
a location as to null the net probability at bx x= . From the form of expression 
(34), one sees that ( )1 ,p x t  vanishes identically for bx x= . Figure 5 shows 
plots of pdf (34) as a function of x for different values of t with 0 0x =  and 

5 cmbx =  (marked by a vertical dashed line) for the diffusion and decay para-
meters of 222Rn. The atom is free to wander over the range ( ), bx−∞  with va-
nishing probability at the barrier. The spatial range of physical significance does 
not extend beyond bx . 

The probability ( ),bP x x t<  that the particle has not reached the absorbing 
barrier in time t, referred to as the survival probability ( )S t , is then given by 

( ) ( ) ( )1 1 , d erf 4 ebx t
bS t p x t x x Dt λ−

−∞
= =∫ ,             (35) 

which is seen to be of identical form to the cumulative probability (16) of finding 
the particle in the region ( )x≥ ≥ −� �  with no absorbing boundaries. Thus, the 
mean time of first passage to the boundary 

( ) ( )( )1
FP1 10

d 1 expT S t t Dλ λ
∞ −= = − −∫ �             (36) 

is identical under the stated circumstances to the residence time rT  in (18). 
Likewise, the probability density function of the random variable whose mean is 

FP1T , which is given by 

( ) ( )FP1 1  d dp t S t t=− ,                         (37) 

is identical to pdf (33) for ( )Tp t . Although the constrained pdf (34) differs  
 

 
Figure 5. Probability density (34) as a function of displacement of Brownian motion with 
initial location 0 0x =  and absorbing boundary at 0.05 mbx =  (marked by vertical 
dashed line) for times (s): (a) 10 (violet); (b) 20 (blue); (c) 50 (gold); (d) 100 (green); (e) 
200 (red). Radon parameters are the same as in Figure 2. 
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from the unconstrained pdf (15) mathematically and visually (as seen by com-
paring Figure 2 and Figure 5), the equivalence of the spatial integrals (16) and 
(35) follows by making the transformation of variable 2 by x x= −  in the 
integral (35), leading to the expression 

( ) ( ) ( )

( ) ( )

2 2
1

2

e exp 4 d exp 4 d
4π

e exp 4 d ,
4π

b b

b

b

x xt

xt

x

S t x Dt x y Dt y
Dt

x Dt x P x t
Dt

λ

λ

−−

−∞ −∞

−

−

 
= − − − 

 

= − = ≥ ≥ −

∫ ∫

∫ � �

   (38) 

identical to probability (16). 
A plot of the survival probability ( )1S t  as a function of time is shown in 

Figure 6. Over a short time interval, as shown in the insert, ( )1S t  starts flat and 
then decreases approximately linearly in time. Over a long time interval, ( )1S t  
exhibits a heavy 

1
2t−  tail due to the asymptotic behavior of the error function. 

2.4. Comparison of Residence Time with First Passage Time to 
Two Absorbing Boundaries 

From the analyses of the previous two sections one might expect that the resi-
dence time of radon within the detection region could also be modeled as the ex-
it time or time of first passage of a particle to either of two absorbing boundaries 
representing the entrance and exit planes of the detection region. This inference 
would, in fact, be incorrect. It is instructive to understand why this latter system 
gives rise to a residence time of different functional form and entirely different 
magnitude. 

Mathematically, it is now required to find a probability density function 

( )2 ,p x t  such that a particle diffusing from initial position 0 0x =  to either 
boundary bx = ±�  is absorbed, i.e. ( ) ( )2 2, , 0p t p t= − =� � . The solution is 
 

 
Figure 6. Survival probability (35) as a function of time (s) for the absorbing boundary 
and parameters of Figure 5. 
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again obtained by the method of images, where, in marked contrast to the simple 
solution (34) for the case of one absorbing boundary, an infinite number 
( N →∞ ) of image functions placed at 4n�  and ( )4 2n − �  with 

1, 2, ,n N= ± ± ±�  must be employed to null the probability density at both 
boundaries. The complete solution takes the form 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

2 2

2 2

22

2

, lim , ,

, , , ,

4 241, , exp exp e
4 44π

N

N
N

N n

n N

n t

p x t p x t N

p x t N p x t n

x nx n
p x t n

Dt DtDt
λ

→∞

=−

−

=

=

    + −+   = − − −
       

∑

��

 (39) 

in which ( ) ( )2 , ,0np x t  alone enforces only the boundary at x = �  as shown in 
Figure 5. 

Figure 7 shows plots of pdf (39), truncated at 1N = , for 0.05 m=�  and 
different values of time 100 st ≤ . Clearly, the particle is confined between the 
two boundaries, indicated by vertical dashed lines. However, as time increases, 
the Gaussian functions corresponding to 0, 1n = ±  spread, and each image 
function eventually crosses the opposite boundary. To maintain the two boun-
dary conditions, therefore, additional image functions are required. Figure 8 
shows spatial plots of pdf (39) at the fixed time interval 2000 st =  for increas-
ing numbers of image pairs 4,5,6,7N = . A minimum of 7 image pairs (in ad-
dition to the 0n =  Gaussian) is required to maintain absorption of the particle 
at the two boundaries. As time increases further, additional image pairs must be 
added. One sees, therefore, why the exact solution for arbitrary time comprises 
an infinite number of image functions. 
 

 
Figure 7. Probability density ( ), , 1p x t N =  (39) of Brownian motion with two absorb-

ing boundaries at 0.05 m± = ±�  as a function of distance (m) for times (s): (a) 5 (violet); 
(b) 10 (blue); (c) 20 (gold); (d) 50 (green); (e) 100 (red). The horizontal dashed black line 
marks the lower bound 0 of a probability density. Vertical dashed lines mark the bounda-
ries between which the particle is confined. 
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Figure 8. Probability density ( ) ( )2 , 2000,Np x t N=  (39) of Brownian motion with two 

absorbing boundaries at 0.05 m± = ±�  as a function of displacement (m) for number of 
image pairs N = (a) 4 (red); (b) 5 (gold); (c) 6 (blue); (d) 7 (black). The horizontal dashed 
black line marks the lower bound 0 of a probability density. Vertical dashed lines mark 
the boundaries between which the particle is confined. For a time interval of 2000 s, a 
minimum of 7 image pairs is required to confine the particle between the specified boun-
daries. Plots b, c, d have been scaled up by factors 40, 4000, and 40,000 for visibility. 
 

The survival probability that the particle has not reached either boundary 
within time t is given by 

( ) ( ) ( ) ( )2 2 2, d n

n
S t p x t x S t

∞

−
=−∞

= = ∑∫
�

�
              (40) 

in which 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 , , d

4 1 4 3 4 11 erf erf 2erf e .
2 4 4 4

n n

t

S t p x t n x

n n n
Dt Dt Dt

λ

−

−

=

 + − −     
= + −      

       

∫
�

�

� � �  (41) 

The corresponding first-passage or exit time is 

( ) ( ) ( )( )FP2 2 20 0
d lim d

N
n

N n N
T S t t S t t

∞ ∞

→∞ =−

= = ∑∫ ∫ .              (42) 

Performing the integrations and taking the limit in Equation (42) leads to an 
exit time 

( ) ( )( )2 2
FP2

1 e 1 e 1T ζ ζ

λ
= − +� � ,                    (43) 

with diffusion length ζ  given by expression (19). Evaluating relation (43) for 
the diffusion and decay parameters of 222Rn with 0.05 m=�  leads to an exit 
time FP2 113.6 sT = , which is very much shorter than the previously obtained 
residence time (27) 5524.8 srT = . 

The difference between FP2T  and FP1rT T=  is not just a matter of magnitude, 
but also of analytical structure. Series expansion of FP2T  to the first 
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non-vanishing term in ζ�  (which is 1�  for 222Rn) and Rα≈�  leads to 
2

FP2 2T D≈ �                          (44) 

independent of the decay rate λ , in contrast to 

rT Dλ≈ � .                          (45) 

The discrepancy between (44) and (45), which one might have thought de-
scribed the same physical system—namely, a decaying particle initially at 0x =  
in Brownian motion between two locations at x = ±�—arises because the two 
physical systems are not at all equivalent. 

When a randomly moving particle reaches one or the other of the two ab-
sorbing boundaries it is removed from the system. This is not the case for radon 
diffusing through a region of width 2�  overlying the detector. The particle in 
this system can exit the region of detectability or diffuse back into it with a 
probability of 50%. The space open to the radon atom is effectively infinite 

( )x∞ > > −∞ , whereas the space open to the particle between two absorbing 
barriers is finite ( )x> > −� � . In the system with one absorbing barrier at x = � , 
whose time of first passage FP1T  is equal to the residence time rT , the region of 
space available to the particle ( )x∞ > > �  is still infinite. 

To understand the physical significance of the time interval (44) in the context 
of radon diffusion in an open volume (no boundaries) consider the temporal 
value at which pdf (33) for the residence time rT  is maximum. Since the statis-
tical lifetime 1λ−  is very long ( 1 ~ 5.5 dλ− ) compared with the mean residence 
time ( ~ 1.5 hrT ), one can, for the purposes of finding the maximum, set λ  
equal to 0, i.e. drop the second term on the right side of the second equality in 
(33). The location of the peak of the first term (i.e. Smirnov density 3 2t−∝ ) is 
then obtained by setting the time derivative of its logarithm to zero, and leads to 

2
max 6t D= � ,                         (46) 

which, to within a numerical factor, has the same form as FP2T . Evaluated for 
radon diffusivity 0D  and length 0.05 m=� , one obtains max ~ 38 st , in close 
agreement with the maximum of the plot in Figure 4. 

It is worth noting here, although the derivation is given elsewhere [21], that 
the mean exit time (referred to as time to capture) ( )CT x  of a stable particle 
diffusing from some initial position 0x  to either of two absorbing boundaries 
can be calculated directly from solution of a Poisson equation 

( )2
C 0 1 0D T x∇ + =                        (47) 

with implementation of appropriate boundary conditions. For a stable particle 
undergoing a one-dimensional random walk between absorbing boundaries at 
−�  and +�  the solution to (47) is 

( ) ( )2 2
C 0 0 2T x x D= −� ,                     (48) 

which reduces to 2 2D�  for the chosen initial condition 0 0x = . As expected 
for consistency, this is also the result obtained by taking the limit of FP2T  in re-
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lation (43) as λ  approaches 0 

( ) 2
FP20

lim 2T D
λ→

= � .                   (49) 

In the case of an unstable particle with decay rate λ  diffusing between two 
absorbing boundaries, it can be shown [22] that the corresponding time to cap-
ture follows from an equation of the form 

( ) ( )2
C 0 C 0 1 0D T x T xλ∇ − + =                  (50) 

and leads to a solution that for 0 0x =  reduces exactly to FP2T  in relation (43). 

3. Mutual Consistency of Brownian Motion and Mass  
Diffusion 

The preceding sections have demonstrated the equivalence of residence times 
calculated from models of a) free diffusion of a macroscopic sample of radon gas 
under a concentration gradient, and b) unconstrained Brownian motion of indi-
vidual radon atoms moving forward or backward independently with equal 
probability—i.e. oblivious to the concentration gradient. Since approach a) ap-
pears to involve directed motion attributable to a kind of force (i.e. gradient of a 
potential1) and approach b) clearly involves random motion in the absence of 
any force, it may not be immediately apparent why the two approaches actually 
describe the same physical process. Here, in brief, is an explanation, as illu-
strated schematically in Figure 9. Suppose there are ( )N x  particles at x and  
 

 
Figure 9. Relation of Brownian motion to Fick’s law. Individual atoms (black dots) un-
dergo a random walk to the left with probability p or to the right with probability q. For 
an unbiased walk, 0.5p q= = . Since the number of atoms ( ) ( )dN x N x x> + , more 

atoms move to the left at x than atoms move to the right at dx x+ . The net flux to the 
left through dx is proportional to the gradient d dN x−  even though individual atoms 
are insensitive to the gradient. 

 

 

1From a thermodynamic perspective, the potential responsible for diffusion is the chemical potential 
µ , which, for an ideal gas, is given by ( )0 lnk nµ µ θ= + , where k is Boltzmann’s constant, θ  is 

the absolute temperature, n is the particle density, and 0µ  is the chemical potential of some estab-
lished reference state. 
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( )dN x x+  particles at dx x+ , and that each particle has a probability p to 
move left and q to move right along the x-axis with equal speed. The net trans-
port (or differential flux) of particles to the left through the region dx is given to 
first order in dx by 

( ) ( ) ( ) ( ) ( ) ( )D F d d dNj x j x x pN x qN x x p q N x q x
x

∂
+ ∝ − + = − −

∂
.   (51) 

For equal probabilities 1 2p q= = , the drift current density ( )Dj x  vanishes, 
and relation (51) leads to a fluctuation current density 

( ) ( )
F

d1
2 d

N x
j x

x
∝ −                          (52) 

that captures the physical content of Fick’s law. The greater transport of particles 
to the left does not arise because there is an asymmetric force acting on individ-
ual particles, but because of the greater number of particles to enter the region 
dx from the right (closer to the source) than from the left. For each particle, 
however, the two directions of motion are equally probable. The applicability of 
Fick’s law to radon diffusion has, in fact, been tested and confirmed experimen-
tally [23]. 

4. Conclusions 

Implementation of the newly introduced procedure [4] to measure indoor radon 
activity concentration quantitatively and accurately by means of two GM detec-
tors requires knowledge of the rate at which radon atoms pass through the open 
detection region, or, equivalently, the mean time spent by a radon atom within 
the detection region. 

The analyses in this paper have established that one must exercise caution in 
adopting a stochastic model to describe the time spent by a radioactive atom in 
the detection region. For example, although it may seem reasonable to define 
(and presumably measure) the residence time as the mean time for an atom 
within the detection region to first reach either the entrance or exit plane, this 
choice is physically unsatisfactory. It ignores the possibility that the atom, having 
reached a boundary, can proceed away from or back into the detection region 
with equal probability. As a consequence, this first-passage or exit time, given 
approximately by 

( )
( )

2

FP2

length of detection region
diffusion coefficient

T ∼ ,               (53) 

is too short and would lead to a measurement of radon concentration that is sig-
nificantly lower than actual (see Equation (27) of Ref. [4]). On the other hand, 
the present analysis has established the equivalence of defining the residence 
time as either a) the mean time spent by the atom between the entrance and exit 
planes of the detection region irrespective of how often the atom may pass 
through a boundary or b) the time the atom first reaches the exit plane of the 
detection region. The two times are identical mathematically and given ap-
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proximately by 

( )
( )( )FP1

length of detection region

diffusion coefficient radioactive decay rate
rT T= ∼ .   (54) 

Given the system parameters D, λ , �  (diffusion coefficient, decay rate, 
half-length of detection region) of the diffusion of a radioactive atom, expres-
sions (53) and (54) comprise the only two independent combinations that lead 
to quantities with the dimension of time. The statistical or geometric interpreta-
tion of these times can be inferred from the probability density function (33) 
plotted in Figure 4. This pdf exhibits a sharp rise to a maximum maxT  and then 
an infinitely long, heavy tail. Time interval (53) is a measure of maxT , whereas 
interval (54) is a measure of the first moment rT , which constitutes the physical 
residence time. The figure illustrates why maxrT T� . The finiteness of rT  is 
due to the transient existence of the radioactive sample. For a stable particle, 

0λ =  and the first moment of the resulting Smirnov density ( )3 2t−∝  is infi-
nite, indicative of the possibility for a stable particle to undertake an infinitely 
long random walk. By contrast, approximately half of a sample of radioactive 
particles have decayed within a time 1 ln 2λ− , which for 222Rn is ~3.8 days. 
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Appendix 1: 
Density Profile of Radon Gas in a Uniform Gravitational Field 

The point at issue is whether the vertical density profile of radon gas is affected 
by gravity over a dimension of order of the alpha-particle range ~ 5 cmRα . If 
that were the case, then analysis of the residence time of a radon atom in the de-
tection volume would require use of an anisotropic Green’s function. 
The barometric law for equilibrium gas pressure ( )P z  as a function of altitude 
z is [24] 

( ) ( )d dP z z mgn z= −                         (55) 

where ( )n z  is the number density (particles per volume), m is the mass per 
particle, and g is the acceleration of gravity taken here to be a constant 9.8 m⋅s-2 
close to the Earth’s surface. The gas is assumed to behave ideally with equation 
of state [25] 

P nkθ=                             (56) 

where θ  is the absolute temperature in Kelvin (K) and 231.38 10 J Kk −= ×  is 
Boltzmann’s constant. The two cases of potential relevance to the measurement 
of indoor radon are the isothermal and adiabatic atmospheres. 

(A) Isothermal Atmosphere (Constant Temperature θ ) 
Elimination of pressure by substitution of Equation (56) into (55) leads to a 

logarithmic differential equation for density whose solution is 

( ) ( ) ( )0 expn z n z ξ= −                       (57) 

with scale parameter 

A  k mg N k Mgξ θ θ≡ = .                    (58) 

In the second equality of (58) M is the radon molar mass and 
23

A 6.02 10N ×∼  is Avogadro’s number. 
For 222Rn (M = 0.222 kg) at room temperature ( 300 Kθ ∼ ), the scale para-

meter is approximately 0 1146 mξ ≈ , and the ratio 5
0  3.5 10 1Rα ξ −≈ × � .  

Therefore the density profile (57) over the detection volume is essentially con-
stant ( ) ( ) 00 1 1n z n z ξ≈ − ≈  for z in the range ( )0R zα ≥ ≥ . 

(B) Adiabatic Atmosphere (Constant Entropy) 
Although a room (e.g. a laboratory) or a building may be kept under isother-

mal conditions, the lowest section of the Earth’s atmosphere (the troposphere) is 
not isothermal, but more accurately described by the adiabatic constitutive rela-
tion [26] 

( ) ( ) ( ) ( )( )0 0P z P n z n
γ

= ,                 (59) 

where γ  is the ratio of heat capacity at constant pressure to the heat capacity at 
constant volume. For an atmosphere comprised predominantly of diatomic mo-
lecules, one has 7 5 1.4γ = = . Use of relation (59) together with (55) and (56) 
leads to the atomic density 
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( ) ( ) ( ) ( )( )( )
1

1 1 0 1 1 0n z n z γγ ξ− −= − −             (60) 

with the scale parameter ( )0ξ  defined by Equation (58) in terms of the 
ground-level temperature 0θ . Since it is evident from part (A) that the second 
term in the bracketed expression of (60) is 1� , one can expand the bracket in a 
Taylor series to first order to obtain ( ) ( ) 00 1n z n z γξ≈ −  for the parameters 
(room temperature and radon molar mass) used in part (A). Since 1γ > , the 
density profile of the radon gas is even more uniform in the adiabatic atmos-
phere than in the isothermal atmosphere. 

It is to be concluded, therefore, that gravity has a negligible effect on the equi-
librium density profile of radon within the detection volume, and that use of the 
isotropic Green’s function for calculating the radon residence time is justified. 

Appendix 2: 
Use of the Cumulative Distribution Function to Calculate  
Expectation Values 

If ( )f x  is the probability density function (pdf) of a random variable X, and 
( ) ( )dx

F x f x x
−∞

′ ′= ∫  is the corresponding cumulative distribution function  
(cdf), then the expectation value X  is given by 

( ) ( )

( ) ( )0

0

d d

d d .

X xf x x x F x

x F x x F x

∞ ∞

−∞ −∞

∞

−∞

= =

= +

∫ ∫

∫ ∫
               (61) 

Integration by parts of the two integrals on the second line of (61) yields 

( ) ( )

( ) ( )( ) ( )( )

0 0

0 0 0

d d

d d 1 1 d

x F x F x x

x F x x F x F x x

−∞ −∞

∞ ∞ ∞

= −

= − − = −

∫ ∫

∫ ∫ ∫
               (62) 

where use was made of the properties ( ) 0F −∞ = , ( ) 1F ∞ = , ( )
0

0
x

xF x
=
=   , 

( ) 0
x

xF x
=−∞

=   . 

It then follows from (61) that 

( )( ) ( )0

0
  1 d dX F x x F x x

∞

−∞
= − −∫ ∫ .               (63) 

For an intrinsically positive variable X the second term on the right side of 
(63) vanishes. In that case, the same procedure can be used to show that the va-
riance of X is given by 

( ) ( )( ) ( )( )( )2

0 0
var 2 1 d 1 dX x F x x F x x

∞ ∞
= − − −∫ ∫ .          (64) 
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