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Abstract

The geometry of the resonant orbits of symplectic 4D mappings in the neighbourhood of an
elliptic fixed point is analysed; a perturbative approach based on the construction of the
resonant normal forms and interpolating Hamiltonians is proposed. The classification of
the different types of normal forms and related resonant structures in phase space is given;
the analysis of the truncated interpolating Hamiltonian provides an analytical hint on a
conjecture to generalize the Poincaré-Birkhoff theorem to the 4D case.
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Four-dimensional symplectic mappings are a model of a wide class
of problems in different fields of physics, such as celestial mechanics or
beam dynamics. Contrary to the 2D case, in 4D the structures of the
phase space of a nonintegrable map are not yet completely understood,
even if several results have been obtained in the last decades [1,2].
In this communication we outline a method, based on perturbative
tools, in order to analyse the resonant structures of the orbits of a 4D
symplectic map in the neighbourhood of a bi-elliptic fixed point.

Let us first consider a symplectic 2D integrable map in the form
2 =T(z,2") ="z r=22 2 €C, (1)

i.e. a twist mapping. Let Q(r) = w + Q,r + O(r?) be a real function
of r with Q; # 0. If the amplitude r is such that the frequency
Q(r)/2m is irrational, the orbits are dense on the 1D torus, i.e. on
the circle z = y/re®, ¥ € [0,27[. On the other hand, if the frequency
is rational (r)/2r = p/q', then T has an infinity of parabolic fixed
points z = /re??, ¥ € [0,2n[ of period gq.

If one considers a small perturbation which preserves the symplec-
tic conditions

2 = F(z,2*) = T(z,2") + pG(z,2z%), (2)

[where G(z,2z*) = O(|2%|)], the KAM theorem [3] ensures that for
small perturbations g4 < 1 there exist invariant curves of F, with
‘strongly irrational’ (i.e., diophantine) frequency, that are deformed
circles. On the other hand, the Poincaré-Birkhoff theorem [3-5] states
that among the infinite set of parabolic fixed points of period ¢ of the
map T, only 2jq fixed points survive under perturbation: one has jq
hyperbolic fixed points and jq elliptic fixed points of period g.

Whilst the KAM theorem is valid for mappings with higher dimen-
sionality, the Poincaré-Birkhoff theorem is valid only for 2D symplec-
tic mappings. In fact the proof is based on a method which fully
exploits the reduced dimensionality of the phase space [3-5]. In or-
der to analyse the topology of the orbits of 4D mappings, we propose
an heuristic method based on the perturbative tools of resonant nor-
mal forms. This approach suggests a conjecture to generalize the
Poincaré-Birkhoff theorem to the 4D case, which has been success-
fully tested using computer simulations.

The normal form approach [6-8] is the natural generalization of
the canonical perturbation theory for hamiltonian flows to symplec-
tic mappings: given a symplectic map F in a 2n-dimensional phase
space, having a fixed point in the origin, one looks for a nonlinear

IThroughout the paper p,q will denote integers without common divisors.



transformation # such that F is transformed to a new map U that is
‘particularly simple’, i.e. that has explicit invariants and symmetries.
The map U is the normal form. The conjugating equation of the map
to its normal form reads

# 1 oFo#(¢) =U(¢), 3)

where ¢ are the new variables in phase space, called normal coordi-
nates. U is invariant under a symmetry group generated by a linear
transformation A,, i.e. it commutes with A,: this symmetry condi-
tion defines the normal form U and the conjugating function # (up
to a gauge group).

The existence of a formal solution is guaranteed by theorems that
state that one can build a normal form U with respect to the symme-
try group generated by the linear part of the map A,, or subgroups
of it. Analytic solutions to the functional equation (3) in open neigh-
bourhoods of an elliptic fixed point do not exist in the generic case:
the series are divergent. Indeed, one can prove that the perturbative
series are asymptotic, and therefore optimal truncation can provide
very accurate approximation of the dynamics of the nonlinear map:
this has allowed applications to numerous problems of celestial me-
chanics [9,10] and accelerator physics [11-13].

In order to analyse the geometry of the orbits of the normal forms,
one can build an interpolating Hamiltonian H whose orbits interpolate
the orbits of U; since U commutes with the symmetry group, one has

H(Aqz) = H(z). (4)

The analysis of the interpolating Hamiltonian allows one to determine
perturbative expansions for a wide class of nonlinear quantities that
characterize the dynamics, such as the frequencies, the location and
stability of the fixed points, and the topology of resonant orbits.

In the 2D case, in the neighbourhood of an elliptic fixed point, one
can build normal forms defined by the symmetry groups generated
by the linear matrix A, = Diag (e**,e**). We shall express the nor-
mal forms and the interpolating Hamiltonians in the variables (p, §),
related to the normal coordinates by { = \/ﬁew. One can have two
different types of normal forms: nonresonant normal forms [a/(27)
irrational], which are invariant under the group of continuous rota-
tions, and resonant normal forms [a/(27) = p/q], which are invariant
under the group of discrete rotations by an angle of 27/q. In the first
case the normal form is an amplitude-dependent rotation (i.e. a twist
mapping), and the interpolating Hamiltonian is a function of the am-
plitude p; in the second case the interpolating Hamiltonian has the



form h(p,0) = H(¢):

h(p,0) =Y hay p**'9/? cos(lgf + pu,). (5)
el

We consider a generic mapping with h;o # 0 and a resonance of
order ¢ > 5. The analysis of the interpolating Hamiltonian of the
resonant normal form gives the topology of the resonant orbits: if
we truncate the Hamiltonian at the first significative resonant term
[i.e. neglecting O(p{a+1)/2)], we obtain a pendulum Hamiltonian which
has ¢ hyperbolic and g elliptic fixed points, in agreement with the
Poincaré-Birkhoff theorem. If the first order resonant coefficient hg;
is zero, one has to consider the higher orders: therefore it is possible
to find cases where one has 2kq fixed points, with £ > 1. The above-
described approach is complementary to the theorem: in fact, even if
it does not prove the existence of the fixed points?, it gives an estimate
of the position and of the eigenvalues of the fixed points, which are
relevant quantities of the dynamics [8].

We classify different types of normal forms and interpolating Ham-
iltonians in order to have an analytical hint on the structure of reso-
nant orbits: in the 4D case, symmetry groups that define the normal
form (in the neighbourhood of a bi-elliptic fixed point) are generated
by the linear matrix 4, = Diag (e, ™", e, e7**2). According to
the different values of the frequencies a;, az, the linear part of the map
generates different subgroups of the group of continuous rotations,
and therefore one can define four types of normal forms. Interpolat-
ing Hamiltonians will be expressed in the coordinates (p1,p2,61,02),
related to the normal coordinates by

G = /pre® (2 = /p2e'®. (6)

Nonresonant case: if a;/2m, as/2m,01/c; € R\ Q, the symmetry
group is a two-parameter compact group, direct product of 2D contin-
uous rotations. The normal form is an amplitude-dependent rotation
and the interpolating Hamiltonian is a power series in the amplitudes
p1,p2, which are the independent integrals of motion. The 2D tori
[0,27[x [0, 27| are the invariant surfaces.

Single resonance; if oy = 2mp/q, az/27 € R\ Q, the symmetry
group generated by the linear part is a two-parameter compact group,
given by the direct product of 2D continuous rotations times 2D dis-
crete rotations by an angle 27/q. The interpolating Hamiltonian has
the form

h(pl’PZ, 01) = E hkl.kz.l (pl)kl-'-lq/z(p'b’)k2 COS(lqol + (Pklka.l)' (7)
key 2,1

2In fact, the perturbative series are asymptotic, and therefore one should check
the effect of the neglected remainder of the series in order to have a rigorous proof.
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One has two independent integrals of motion: h and p,.

Coupled resonance; if a; = ap, a; = aq, € R\ Q, the symmetry
group generated by the linear part is a compact group that depends
on one continuous parameter. The interpolating Hamiltonian has the
form

h(p1,p2,01,82) = 3 hieyjers (pr)la 1972 (py)latipl2
klrkﬁtl

x  cos(l(gby — pb2) + Pry ks t)-
(8)

The independent integrals of motion are pp; + ¢p, and h.

Double resonance; if a; = 27p;/q1, @2 = 27p;/q2, the symmetry
group generated by the linear part is a two-parameter compact group,
given by the direct product of discrete 2D rotations by an angle 27/q,
times discrete 2D rotations by an angle 2w/q,. The interpolating
Hamiltonian has the form

h(Pl,Pz) — Z (pl)k1+11<11/2(p2)k2+11<n/2 X
k1 k2 1,12
X [ h;rl k2,12 cos(llqlel + 12Q202 + So;i-l:kZ.lhh) +
4+ P sty €OS(h @161 — 126202 + 05 1, 1 0,)]

(9)

In this case h is the only explicit integral of motion, and therefore
the interpolating Hamiltonian is not trivially integrable such as in the
previous cases.

We first analyse the resonant orbits of the 4D twist mapping

zy = T(z) = exp (iQ(p1,p2))21 p1 = 212
4 = Ty(z) = exp (i(p1, p2))72 p2 = 23,
(10)

since the map is integrable, one can compute all the relevant quantities
of its orbits; the iterates always lies on the 2D torus, but according
to the different values of the nonlinear frequencies, one finds different
topologies.

Nonresonant case. Having fixed (p1, p2) such that Q:(p1,p2)/(27),
Qa2(p1,p2)/(27), Q(p1,p2)/Q2(p1,p2) are irrational, one obtains an
orbit that is dense on the torus; its closure has dimension two, and it
is connected.

Single resonance. We fix (pi1, p2) such that Q,(p1,p2) = 27p/q and
Q2(p1, p2)/(27) is irrational: one obtains an orbit that is dense on the
direct product of a 1D torus times ¢ parabolic 2D fixed points. We
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call these structures ‘single-resonance parabolic fixed lines of period
¢’. The closure of the orbit has dimension one, and is made up of ¢
pieces connected. For each initial condition chosen in 6; € [0,27/q],
6, = 0, one obtains an infinity of different parabolic fixed lines of the
same period, having the same geometry.

Coupled resonance. We fix (p1,p2) such that Qi(p1,p2) = 2mpr
and Q3(p1,p2) = 2mqv, where v € R\ Q: one obtains an orbit, which
lies on the 2D torus, that is dense on the 1D curve of equation

01(t) = 01 + tpl/ 02(t) = 02 + th te [0, 21!'[. (11)

We call this structure ‘coupled-resonance parabolic fixed line’; the
closure of the orbit is connected. For each initial condition chosen in
6, € [0,27/p[, 8, = 0, one obtains an infinity of different parabolic
fixed lines of the same type, having the same geometry.

Double resonance. We fix (pi, p2) such that Qi(p1,p2) = 27p1/qx
and Q,(p1,p2) = 2mp2/ga: one obtains an orbit, which lies on the 2D
torus, that is made up of ¢1g, parabolic fixed points. The dimen-
sion of the orbit is zero, and is made up of ¢;q» components triv-
ially connected. For each initial condition chosen in 6; € [0,27/qi],
6, € [0,27/gs[, one obtains an infinity of families of fixed points.

We have considered the first order resonant truncation of the inter-
polating Hamiltonian in order to analyse the resonant structures of a
symplectic 4D map. We consider a 4D twist mapping T [see Eq. (10)]
having a family of resonant orbits in the neighbourhood of the origin.
We restrict ourselves to the analysis of single or double resonances
with ¢ > 5, and coupled resonances with |p| + |¢| > 5. We conjecture
that a small symplectic perturbation changes the topology of these
orbits according to the following cases.

Single resonance. Let p;,p; be positive amplitudes such that the
single-resonance condition is satisfied, i.e. there exist an infinity of
single-resonance parabolic fixed lines of period ¢. A generic perturba-
tion® preserves only two single-resonance fixed lines of period g¢: one
is elliptic and one is hyperbolic.

Coupled resonance. Let p;, p, be positive amplitudes such that the
coupled-resonance condition is satisfied, i.e. there exist an infinity of
coupled-resonance parabolic fixed lines. A generic symplectic pertur-
bation (see previous footnote) preserves only two fixed lines: one is
elliptic and one is hyperbolic.

Double resonance. Let p;,p; be positive amplitudes such that the
double resonance condition is satisfied, i.e. there exists an infinity of

3This means a perturbation which produces a generic resonant interpolating
Hamiltonian, i.e. whose first resonant coefficient is different from zero. Non-generic
cases give rise to a situation analogous to the 2D case with j > 1.



parabolic fixed points of period ¢qi1q.. A generic symplectic perturba-
tion (see previous footnote) preserves 4qiq; fixed points, which can
be split in four families: fixed points which are obtained by itera-
tion of the map belong to the same family. We denote by (p%, p¥)
the amplitudes of the four families of fixed points, and we define the
quantities

a = 2hj000 B =hi100 v = 2ho,2,0,0
§ = F(@1)*hoo1o(pH)F 6= F(q1) hooro(pi™)?
1 = (0)*hopo1(pE)F 1= —(0:)?hoo0a(pi) T

(12)
and the signs

s1 = sgn[(|6la + [nl7)* — 4l6n(8?]  s2 =sgnlay - 7. (13)

Then, one can prove that, according to the different values of these
signs, the stability of the four families is given by

s; > 0= 2EH + EE + HH
s, <0,s,>0=2CI+ EE + HH
sy <0,85<0=2CI+2EH
(14)

where EE = bi-elliptic fixed points, EH = elliptic-hyperbolic fixed
point, HH = bi-hyperbolic fixed points, and CI = complex instability.
Computations are rather lengthy but straightforward, and are not
presented for sake of brevity.

The numerical check of this conjecture has been performed for
different models using a code for the visualization and animation of
projections and sections of 4D orbits [14], a code for computing the
coefficients of the interpolating Hamiltonian [15], and a code which
computes fixed points [16,17]. Elliptic fixed lines relative to both
single and coupled resonances have been found for different models.
More explicitly, we have considered the 4D Hénon map:

z = e“r (2, — ! (z1 + z;)2 —(z2 + z.E)2
4
zy, = e'“? (zz + %(zl + 27)(z2 + z;))
(15)

In Fig. la we display the projection on a 3D space (z,p.,y) (Where
2 = ¢ —ip, and z; = y —ip,) of the stable neighbourhood of a single-
resonance elliptic fixed line of period ¢ = 5. The linear frequencies

s



were fixed at w,/(27) = 0.205 and w;/(27) = 0.6180; 50 000 iterates
of a suitable initial condition are plotted. In Fig. 1b we display the 3D
projection of the stable neighbourhood of a coupled-resonance elliptic
fixed line, p = 2 and ¢ = 3, for the same model with w,/(27) = 0.638
and w;/(27) = 0.412. One can see that the topology of the orbits
is consistent with the above-quoted scheme. The case of the double
resonance has also been carefully analysed for different models: using
the fixed point code we have found the four families of fixed points
foreseen by the perturbative analysis and checked their stability; tran-
sitions of stability for different values of an external parameter have
been analytically computed according to Eq. (14) and numerically
verified.

A more detailed exposition of the analytical computations and of
the numerical check are given in [14] and it will be described in a
forthcoming paper. We would like to acknowledge Prof. Vrahatis
and Dott. Bazzani for important contributions. We also want to
thank Prof. Turchetti and Prof. Ramis for useful and stimulating
discussions.
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Figure 1. Projection on a 3D space of the iterates of the 4D Hénon mapping:
neighbourhood of a single-resonance (¢ = 5) elliptic line (a) and neighbourhood of a
coupled-resonance (p = 2, ¢ = 3) elliptic line (b). 50 000 iterations are displayed.



