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ANALYSIS OF RIVER WAVE TYPES 

Michael G. Ferrick 

INTRODUCTION 

Long-period waves in rivers are a consequence of 

unsteady flow, which may occur as a result of hydro

electric power generation or flow control at a dam, 

the breach of a dam, the formation or release of an 

ice jam, or rainfall/runoff processes. River waves 

have flow depths that are several orders of magni

tude smaller than their wavelengths, so they are 

classified as shallow-water waves. The study of river 

waves is complicated by the hydraulic properties of 

rivers and the time scales of the wave motion, which 

range over several orders of magnitude. Natural riv

ers vary greatly in size and in discharge. Impounded 

rivers are both wider and deeper than they were in 

their natural state, and they have diverse hydraulic 

properties. Flood waves in large river systems de

velop over several days, while those in some small 

rivers can form in several minutes. Flow control and 

hydroelectric turbine gates may be adjusted rapidly, 

creating abrupt flow waves both upstream in the 

reservoir and downstream in the tailwater river. Be

cause of this diversity, general physical insights re

garding river waves are elusive. 

Observations indicate that river waves are a pri

mary cause of river ice cover breakup. Therefore, 

a theory describing the interactions between a river 

wave and the ice cover would have great practical 

importance. When a river becomes covered with ice, 

frictional energy dissipation increases, but the effect 

of this increased friction on river wave behavior has 

not been established. This understanding is a pre

requisite to the development of theories of ice cover 

stability in the presence of river waves. 

The Saint-Venant equations of continuity and 

momentum are generally used to describe unsteady 

flow in rivers. Within this basic model, river waves 

may be classified as dynamic, gravity, diffusion, or 

kinematic waves, corresponding to different forms 

of the momentum equation. Dynamic waves are de

scribed by retaining all terms of the momentum equa

tion. As is typical of shallow-water waves, dynamic 

river waves have a celerity that is related to the water 

depth. The momentum equation for gravity waves 

ignores the effects of bed slope and viscous energy 

losses; graVity waves propagate at the dynamic wave 

celerity and their flows are dominated by inertia. 

Diffusion and kinematic waves are at the opposite 

extreme. The diffusion wave momentum equation 

ignores inertia, and the kinematic wave equation ig

nores both inertia and the pressure gradient caused 

by varying flow depths over distance. Both of these 

wave types travel at a celerity governed by the fric

tional resistance of the river bed. This celerity is re

lated to the velocity of the flow and is significantly 

slower than the dynamic wave celerity. Diffusion 

and kinematic wave propagation requires the move

ment of a large quantity of water. In this paper 

these waves are frequently grouped together and are 

called bulk waves. 

Our present understanding of the relationships 

between various river wave types is based on linear 

stability theory (Ponce and Simons 1977, Menendez 

and Norscini 1982). This linear theory provides use

ful, but largely qualitative, inSights into the behavior 

of each wave type, and the transitions between wave 

types are not considered: waves of a given type in

clude or exclude specific terms or processes in the 

momentum balance. The concept of step changes 

between river wave types is not reasonable. There 



must be cases that are intermediate between wave 

types, suggesting the need for a treatment of wave 

transitions. Wave types are identified either by us

ing the linear theory or by comparing magnitudes 

of normalized terms of the dynamic wave momen

tum equation (Henderson 1963, Woolhiser and 

Liggett 1967), and then applying judgment to in

terpret the results. 

The object of this paper is a) to develop a quanti

tative method for identifying river wave types and 

b) to clarify the relationships between wave types. 

The analysis is based on the principle that the bal

ance between friction and inertia determines river 

wave behavior. The Saint-Venant equations are 

combined to form a system equation. Written in 

dimensionless form, the system equation provides 

scaling parameters that quantify the magnitudes of 

all terms in the equation and indicate the relative 

importance of friction, inertia, and pressure gradient 

effects on a wave. By interpreting the scaling param

eters probabilistically, additional data can be incorpo

rated into the analysis to account for the variable 

physical characteristics of a river and a wave. This 

more general interpretation provides an improved 

estimate of the friction/inertia balance, insigh t into 

the continuous nature of transitions between wave 

types, and a measure of the reliability of wave type 

assessments near a transition. Finally, we identify 

the scaling parameter ranges that correspond to each 

wave type and transition with data from case studies. 

These case studies encompass a wide range of river 

and wave conditions, attesting to the general utility 

of the approach. 

BACKGROUND 

Courant and Friedrichs (1948) noted the analogy 

between nonlinear wave motion in gases and in shal

low water, and they developed the mathematics to 

treat first-order, quaSi-linear hyperbolic flow equa

tions for functions of two independent variables. 

Continuity of all functions and all required deriva

tives of these functions was assumed. Stoker (1957) 

applied this theory to the study of river flow waves, 

providing the mathematical and conceptual basis for 

our present understanding of river waves. Following 

Stoker, we consider an idealized river with a wide 

rectangular prismatic channel and no local inflow. 

The Saint-Venant equations of mass conservation 

and momentum balance are then written 

ay + v ay + y av = 0 
at ax ax (1) 

2 

where y the flow depth (m) 

v = the flow velocity (m/s) 

g acceleration due to gravity (m/S2) 

So the river bed slope 

Sf the energy gradient of the flow 

x = the longitudinal distance (m) 

time (s). 

Stoker transformed eq 1 and 2 into their character

istic form: 

(3) 

dx 
along dt = v + c, 

and 

(4) 

dx 
along - = v - c 

dt ' 

where c = -Jgy dermes the shallow-water surface 

wave celerity and kl and k2 are constants. The solu

tions of dx/dt = v ± c yield two distinct sets of curves 

in the x-t plane, called characteristics. The inverse 

slopes of these curves define the dynamic wave celer

ity, that is, the speed of shallow-water waves in a 

flOwing stream. The dynamic wave celerity is inde

pendent of the river bed and energy slopes, and ap

pears to be the only wave speed contained in the 

governing equations. 

The momentum equation describing a gravity 

wave is obtained from eq 2 by omitting the river 

bed slope and energy gradient terms. The theory of 

characteristics can also be applied for these waves, 

and. the resulting equations are simplified forms of 

eq 3 and 4: 

v + 2c = kl 
dx 

along dt v + c, 

dx 
along - = v - c 

dt ' 

(5) 

(6) 

Waves described by eq 5 and 6 have been termed 

"simple" waves. Gravity waves are undamped and 

propagate at the dynamic wave celerity. 



The diffusion wave momentum equation is ob

tained by neglecting the inertia terms [av/at, v(av/ 

ax)] in eq 2~ Differentiating both this momentum 

equation and eq 1 with respect to x, and differen

tiating the momentum equation with respect to t, 

yields three equations that are combined with eq 1 

to eliminate derivatives of the depth. The Chezy 

equation, with dimensionless conveyance coefficient 

C. assumed constant, is used to describe the energy 

slope. Performing these operations yields 

(7) 

where 

5 gC; RSo gC; Ry 
cd = - v - andD =---

2 v 2v 

Equation 7 is an advective-diffusion equation with 

R the hydraulic radius of the channel. If we retain 

the wide-channel assumption, the hydraulic radius 

is equivalent to y/k, where k = 1 for open water con

ditions and k = 2 if the channel is covered with ice. 

The kinematic wave momentum equation is ob

tained by omitting the inertia and the derivative of 

depth with distance (ay/ax) terms in eq 2. Then, 

proceeding as with diffusion waves yields the well

known kinematic wave equation 

(8) 

where 

3 
ck ="2 v. 

The important distinction between the bulk waves 

is that diffusion waves attenuate, while kinematic 

waves do not. 

Comparing eq 3 through 8, we find that the equa

tion for river wave celerity changes with the form of 

the momentum equation that is used. The celerities 

of diffusion and kinematic waves are both related to 

the velocity of the flow. The celerities of these bulk 

waves are typically much smaller than the dynamic 

wave celerity and are generally lumped together and 

termed the kinematic wave celerity. 

Stoker (1957) argued that because the equations 

describing dynamic waves are more general, imper

ceptible dynamic waves, or "forerunners," must 

occur simultaneously when the primary wave is kine-

3 

matico This concept of an ever-present role for dy

namic waves in river flow mechanics is widely accept

ed. Therefore, river wave studies based upon "sim

plified" gravity, diffusion, and kinematic wave equa

tions are perceived as inherently ~ess accurate than 

those using the more complete dynamic wave equa

tions. 

The governing equations for each wave type are 

nonlinear, and the geometry of natural channels is 

highly variable. These conditions generally require 

that numerical solutions be used to describe river 

waves. The algorithms typically chosen to solve the 

dynamic wave equations in applications use first- or 

second-order accurate difference approximations 

and coarse numerical meshes. The solutions obtained 

with these models therefore include significant errors, 

due to truncation and discretization, that cause nu

merical diffusion and dispersion of the solution. 

When the effects of certain physical processes are 

small relative to other processes, the terms of the 

governing equation have widely different magnitudes. 

Equations of this type are termed "stiff," and are 

difficult to solve numerically. Woolhiser and Liggett 

(1967) reported numerical difficulties that resulted 

from modeling predominantly kinematic waves using 

dynamic wave characteristic equations. The stability 

of explicit numerical methods depends on the dy

namic wave celerity, even for cases where the inertia 

terms are negligible. When stability problems occur, 

the cure is often achieved by increasing numerical 

diffusion in the algorithm, further degrading the ac

curacy of the solution. Taken together, these con

siderations imply that more complete equations may 

not yield more accurate river wave simulations. 

The problems associated with universal application 

of the dynamic wave equations suggest the alternative 

approach of using physical insight to identify an ap

propriate wave type. However, wave types cannot at 

present be identified with a known degree of certain

ty. For example, Cunge et al. (1980) stated that 

rapidly varying river flows require the use of the dy

namic wave equations, but Ferrick et al. (1984) 

studied a large number of instantaneous flow releases 

in two rivers and found that in all cases the inertia of 

the flow was negligible. The logic linking rapid flow 

variation with inertia is clear but insufficient to en

sure dynamic wave behavior. The converse example 

is that slowly developing, long-period floods behave 

as kinematic waves. A more quantitative representa

tion of the roles of friction and inertia would make 

it possible to characterize and identify river wave 

types. 



ANALYSIS 

River waves propagating at the dynamic and kine

matic wave celerities are generally observed in differ

ent situations. In impounded rivers, where depth is 

much greater than wave amplitude, observed wave 

celerities are those of dynamic waves (Ferrick and 

Waldrop 1977, Ferrick 1979), but wave propagation 

observed in free-flowing rivers is more commonly at 

the kinematic wave celerity (Ferrick et al. 1984). 

These observations suggest that it may be possible 

to distinguish between bulk and dynamic waves 

simply by measuring and classifying wave celerity. 

We might also reason that river waves are shallow

water waves of extremely long wavelength. A depth 

parameter nondimensionalized by wavelength, which 

follows from the simple harmonic small-amplitude 

wave theory of ocean gravity waves, differentiates 

between deep-water and shallow-water conditions. 

Extending these ocean wave classification ideas to 

rivers, in light of typical wavelength differences be

tween rapidly and gradually varying flows, suggests 

tha t a dimensionless depth or a dimensionless wave

length may be indicative of wave type. 

A connection between the form of the momen

tum equation and the physical characteristics of a 

river and wave would provide a means to identify 

wave type and would clarify the relationships be

tween waves. Each of the river-wave types that have 

been identified is described by equations that are 

subsets of the Saint-Venant equations. To consider 

the behavior of solutions of this equation system, we 

will assume that the functions describing depth and 

velocity possess continuous second derivatives and 

that the river bed slope is constant. Then, differen

tiating eq 1 and 2 with respect to distance x, differ

entiating eq 2 with respect to time t, and combining 

these three equations with eq 1 and 2 to eliminate 

the depth derivative terms yields a system equation: 

+ ( 2~) av + [~R2 _ 2gS
o C;K at L-; 

av av av 
+ 3 (- + v -)] - = 0 

at ax ax 
(9) 

in which the Chezy equation with constant C* is 

again used to describe the energy slope. The second

order terms in eq 9 follow from the inertia and pres

sure gradient terms in eq 2. The quasi-linear fIrst

order terms result from the energy or friction slope 

and the bed slope terms, and the nonlinear fIrst-order 
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terms are due to inertia. This system equation has 

the form 

av av 
= f (v, ax ' at ,x, t) . (10) 

The second-order terms in second-order differential 

equations are generally of principal significance. As 

B2 - A C is greater than zero, eq 9 is hyperbolic with 

a pair of characteristic curves (Hildebrand 1962) de

fmed by 

4X2 4x 
A t::;-) - 2B ~~) + C = 0 . 

dt dt 
(11) 

Solving eq 11 for dx/dt again yields the dynamic 

wave celerity v ± c as the inverse slope of the charac

teristics. 

The assumption implicit in the development of 

eq 3 and 4 is that all the processes represented in eq 

2 are of comparable magnitude. However, from the 

perspective of the system equation, the behavior of 

a river wave must depend on the relative contribu

tions of inertia, friction, and pressure. When inertia 

is signiflcant, dynamic waves are of primary impor

tance in river flow mechanics, as indicated by eq 3 

and 4. The role of dynamic waves diminishes with 

the relative importance of inertia. Bulk wave be

havior indicates that the second-order terms of eq 9 

are dominated by the quasi-linear first-order terms; 

that is, friction dominates inertia. 

An evaluation of the relative magnitudes of the 

terms in eq 9 and a basis for interpreting these re

sults would provide a quantitative measure of the 

importance of each process in the momentum bal

ance and would indicate the wave type. Writing eq 

9 in dimensionless form permits an assessment of 

these relative magnitudes. Introducing parameters 

vo, Yo' ax, and ~t, which are in some sense charac

teristic of the flow and wave motion, we rewrite eq 

9 in terms of dimensionless variables v* = v /vo' y* = 
y/Yo'x* = x/ax, and t* = t/~t as 

v* av* 5 V*2 av* 
+F1"*-a *+Fc (-2*-S)-a * y t y x 

av* av*) av* = 0 
+ 3 Cr (at* + Cr v* ax* ax* (12) 



where 

S 

To proceed, we must define the physical scaling 

variables vo'Yo, Ax, and t:J and evaluate So and C*. 

Mean velocity and depth characterize the flow and 

provide velocity and depth scales v 0 and Yo' The 

length scale that is important in the development of 

river waves is related to the wavelength. With mean 

flow depth as the depth scale, the comparable length 

scaling parameter Ax is the half-wavelength, and 

kAx/yo appearing in parameters FI and Fe is a di

mensionless wavelength. The effect of friction on a 

wave is cumulative over the propagation distance. 

At distances less than a wavelength from the point 

of wave origin, Ax is taken as half the wave propaga

tion distance. flt is the time required for the wave 

to travel distance Ax. Therefore, Ax/ flt is the mea

sured wave celerity em' These three variables are 

evaluated with information from a pair of gauging 

stations. To obtain measured wave celerity, the river 

distance between the gauges is divided by the elapsed 

time between the wave arrivals. Wavelength is then 

obtained by mUltiplying wave celerity by the mean 

time for wave passage at the gauges. As the Chezy 

conveyance coefficient is depth-dependent, the most 

representative value of C* for a reach is obtained 

from steady-flow stage measurements near the mean 

of the expected range. Finally, So is evaluated as the 

mean bed slope of the river reach. 

The fundamental dimensionless parameters of eq 

12 are the Courant number Cr , the Froude number 

Fo' a friction parameter F I , and the slope ratio S. 

Froude number F 0 represents a ratio of speeds, com

paring the characteristic flow velocity to the surface 

wave celerity evaluated at the characteristic flow 
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depth. With few exceptions, the range of Froude 

numbers for rivers is between 0 and 2, most com

monly between 0 and 1. Slope ratio S compares the 

river bed slope to the energy gradient of the flow 

evaluated at the characteristic depth, velocity, and 

channel conveyance. For free-flowing rivers the 

value of the slope ratio is approximately 1. It is 

higher for reservoirs, where the presence of back

water significantly reduces the energy gradient. 

The magnitudes of the terms in eq 12 directly re

flect the importance of the physical processes they 

represent. The behavior of solutions of eq 12 can be 

assessed by considering Cr and FI together with Fe 

and D I , forming a group of dimensionless scaling 

parameters. Courant number Cr is composed of a 

characteristic flow velocity and length and time 

scales that are characteristic of the wave motion; it 

is the ratio of characteristic flow velOcity to measured 

wave celerity, limiting the range of possible values to 

between 0 and 1. All terms in eq 12 except a2 v*/ 
at*2 are functions of the Courant number. The 

terms having the Courant number as their dimen

sionless scaling parameter follow from the inertia 

terms of eq 2. The scaling parameter representing 

the largest inertia term cannot be larger than 3 and 

typically is about 1. 

The effects of friction and bed slope on river flow 

are represented by the first-order terms with coeffi

cients FI and Fe' The values of these scaling param

eters relative to 1 characterize the importance of 

friction in the momentum balance and, therefore, 

define the boundaries and govern the transitions be

tween bulk, dynamic, and gravity wave types. Fe is 

related to the kinematic flow number obtained by 

Woolhiser and Liggett (1967) from a direct normali

zation of eq 2. Both measured wave celerity and di

mensionless wavelength are components of FI and Fe' 

though neither alone is adequate to characterize fric

tion. The magnitudes of the friction parameters vary 

linearly with dimensionless wavelength. The meas

ured wave celerity is a component of the Courant 

number. Bulk flow cases, where the flow velocity 

approaches the wave celerity, correspond to a large 

Courant number and increased relative magnitudes 

of the friction parameters. For the opposite condi

tion of small flow velocity relative to measured wave 

celerity, the friction parameter magnitudes decrease 

due to their dependence on the Courant number, in

dicating a reduced role of friction relative to other 

processes. The other basic component of FI and Fe 

is the dimensionless channel conveyance, which ac

counts for differences in the rate 'of energy dissipa

tion between different river and flow situations. 

Fe is presented in Figure 1 as a function of the 



Figure 1. Friction scaling parameter F c as a func

tion of Courant number for a range of dimension

less wavelengths and a typical dimensionless chan

nel conveyance. 

Courant number for a range of dimensionless wave

lengths and an assumed dimensionless channel con

veyance of about 9. Larger values of channel con

veyance displace the band of curves to the right, 

corresponding to smaller F c ' with the converse true 

for smaller conveyances. Courant numbers greater 

than 0.4 and dimensionless wavelengths greater than 

4000 are typical in natural rivers. For these condi

tionsFc is greater than 10, indicating at least an or

der-of~magnitude dominance of friction over inertia. 

In reseIVoirs, wavelengths can be short due to hydro

power operations. and flow occurs at greater depths 

and smaller velocities than in free-flowing rivers. 

This combination of conditions yields a small Cour

ant number, large channel conveyance, and small di

mensionless wavelength, and F c for reservoir waves 

can be significantly less than 1. When an ice cover 

6 

Figure 2. Scaling parameter DI as a function 

of Courant number for a range of Froude 

numbers. 

is present, the dimensionless wavelength of a given 

wave and the relative magnitudes of the friction 

parameters increase. 

The magnitude of scaling parameter DI indicates 

the im portance of pressure gradient effects on the 

wave. DI represents the square of the ratio of the 

Courant number to the Froude number, and can be 

physically interpreted as the square of the ratio of 

the surface wave to the measured wave celerity. 

Figure 2 presents DI as a function of Courant num

ber for a range of Froude numbers. A value of DI = 
1 indicates that the measured wave celerity is equal 

to the surface wave celerity at the mean flow depth. 

When DI is significantly greater than 1, measured 

wave celerity is much smaller than the correspond

ing dynamic wave celerity, generally favoring bulk 

wave behavior. 

When the friction parameters are much greater 

than 1, river flow waves exhibit bulk wave behavior 

and, to a good approximation, eq 12 becomes 



(13) 

where 

a nondimensional form of eq 7. The diffusion and 

kinematic wave equations are contained within the 

Saint-Venant system equation. For high-friction 

flow conditions, the bulk wave portion of the system 

equation is dominant, and the apparent wave celer

ity is that of a bulk wave. The bulk flow waves de

scribed by eq 13 are independent of the characteris

tic equations 3 and 4. 

The bulk wave Courant number is generally great

er than 0.5, as the flow velocity is only slightly less 

than the wave celerity. The magnitude of D relative 

to 1 indicates the importance of wave diffusion rela

tive to advection. D for bulk river waves is generally 

less than 1, indicating that the waves are advection

dominated. With friction dominating inertia and ad

vection dominating diffusion, the equations describ

ing bulk waves have evolved from a second-order hy

perbolic system to a dominantly hyperbolic first

order system. When So ~ Sfo' the dimensionless 

diffusion coefficient D varies inversely with the prod

uct of bed slope and non dimensional wavelength. 

D is presented in Figure 3 as a function of dimension

less wavelength for a range of Froude numbers and a 

dimensionless channel conveyance of about 9. 

Dynamic wave behavior is indicated when the mag

nitude of one or both of the friction parameters is on 

the order of 1. As friction and inertia both make im

portant contributions to the momentum balance, dy

namic wave behavior is an intermediate condition be

tween bulk wave and frictionless gravity wave behav

ior. Dynamic wave behavior occurs over a wide range 

of conditions, and wave subtypes can be identified 

that correspond to varying magnitudes of the Cour

ant number and friction parameters. 

At the transition from bulk to dynamic waves, 

friction is quite,great. The magnitudes of Fe and Cr 

are both on the order of 1 , and all terms of eq 12 are 

significant, defining the "complete equation" case. 

Fe on the order of 1 and Cr < < 1 dermes the "tran

sition" case, where the flow velocity is small relative 

to observed wave speed and the contribution of 

friction is smaller than in the complete equation case. 

The small Courant number indicates that transition 

waves do not retain significant bulk wave character. 

The mathematical description is also simpler, as many 

of the terms of eq 12, including the nonlinear first

order terms, are negligible. As friction is reduced fur

ther, Fe and Cr are « 1, and FI is reduced to the 

order of 1. Negligible Fe indicates the lack of influ

ence of the channel bed slope on the flow. These 

conditions are representative of flow in reservoirs. 

Figure 3. Dimensionless diffusion coefficient of bulk waves as a func

tion of dimensionless wavelength for a range of Froude numbers and 

a typical dimensionless channel conveyance. 
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The dimensional system equation for the "reservoir" 

case is 

where 

v 
"/=C2 R' 

* 

(14) 

the familiar telegraph equation or equation of a 

damped vibration. Assuming that c and "/ are con

stants, eq 14 has solutions of the form 

v = e-"Yt eik[x ± c .J 1 - 'Y2 /(k
2 

c
2

) tJ (15) 

where k is an arbitrary nonzero constant. The resis

tance term ov/ot of eq 14 follows from the FI term 

of eq 12; it provides exponential wave attenuation 

and retards wave celerity, separating the behavior of 

reservoir dynamic waves from that of gravity waves. 

The amplitude decay of reservoir waves is directly 

proportional to the magnitude of F1, indicating a 

gradual transition between wave types. 

Gravity wave behavior with dominant inertia oc

curs when friction is negligible: FI and F;; « 1. 

Gravity waves, like bulk and dynamic waves, have 

subtypes, each of which is undamped due to the 

absence of friction. The "wave equation" case oc-

F1 , Fe »1 I Bulk waves 
I 

I 
I 

I River waves I ForFe=O(11i l 
I I Dynamic waves I 

Fr ,Fe« 1 i Gravity waves I 

curs when Cy « 1. The system equation for this 

case is the classical wave equation, obtained from 

eq 14 by setting "/ = O. Physically, this condition is 

approximated by a smooth, deep forebay of a hydro

power station in which the flow velocity is small rel

ative to the surface wave speed. The "simple wave" 

case occurs when the Courant number is on the or

der of 1. The method of characteristics provides a 

convenient formulation (eq 5, 6) for constructing 

solutions for this case. Positive disturbances upstream 

generate waves with converging characteristics, lead

ing to wave steepening and shock formation. Wave 

propagation over small distances in a smooth chan

nel may be adequately represented as a simple wave, 

but, as shown in Figure 1, friction increases with 

the Courant number eq 12, limiting the applicability 

of these equations. 

The scaling parameter magnitudes determine 

wave behavior and type. The structure for under

standing river wave behavior developed from our 

analysis is depicted in Figure 4, where the progres

sion of wave subtypes is presented in a natural order. 

Only one dimensionless parameter changes in mag

nitude between two adjacent wave subtypes, tend

ing from friction-dominated kinematic waves to 

frictionless gravity waves. The continuous depend

ence of the scaling parameters on the scaling variables 

indicates gradual transitions between wave types and 

subtypes. 

0«1 I Kinematic I 
I waves 

0=0(1) I Diffusion I 
I waves 

Cr , Fe = 0 (I) I Complete eqn.! 

I case 

Cr « I, Fe=O(lU Transition ~ 
I case 

Cr,Fe« I I Reservoir I I case 

Cr«1 J Wove eqn. I 
I case 

Cr=O(I) 
I Simple wove I 
I case 

Figure 4. River wave structure obtained from the analysis of the Saint- Venant 

equations. 
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Probabilistic scaling parameters 

Our analysis of the equations governing river 

waves provides a structure with which to consider 

wave behavior. Choosing representative scaling var

iables Vo ,Yo, Ax, f:,.t, C*, and So, we obtain quanti

tative estimates of the dimensionless scaling parame

tersF1,Fc ' Cp andD1• For cases sufficiently removed 

from the transitions between wave types, these in

tuitive, deterministic parameters may provide suffi

cient information to understand wave dynamics. 

However, assuming representative or mean scaling 

variables provides no information about the effects 

on the wave of the physical variability of the river. 

It could be argued that single-valued variables cannot 

meaningfully represent natural rivers, which have 

significant geometric variability. An example of this 

problem is attempting to characterize reservoir depth 

by a mean of 6 m, when depth varies between 2 m 

upstream and 15m downstream. Further insight 

concerning the transitions between river wave types 

requires a more complete description of the scaling 

parameters than is provided by estimates of their 

mean values. A practical modeling requirement that 

has not been addressed is how to assess the confidence 

of wave type interpretation when scaling parameters 

fall near a transition. 

We will now consider the more general case where 

scaling variables are continuous, possessing a mean 

and a distribution. By treating these physical quan

tities as random variables, probabilistic concepts can 

be applied. As functions of random variables, the 

scaling parameters are themselves random variables. 

Rosenblueth (1975) developed a method for estimat

ing the first and second moments and minimum val

ues of a function of random variables, given the first 

two or three moments of each variable and correla

tion coefficients for each pair of random variables. 

The estimate obtained of the mean value of the func

tion is equivalent to a second-order Taylor series ap

proximation, and the estimate of the coefficient of 

variation is a first-order approximation. The method 

is algebraic, replacing the distribution of each random 

variable by point estimates and not requiring the com

putation of derivatives. 

Before proceeding, the Rosenblueth method for 

a function of two correlated random variables will 

be described in detail. The coefficient of variation 

of a random variable x is defined as 

(16) 

where Sx is the standard deviation of x and xis the 

mean. The correIa tion coefficient of random vari

ables x 1 and Xl is defmed as 

9 

(17) 

where COV(XI ,Xl) is the covariance. A correlation 

coefficient of magnitude 1 indicates a perfect linear 

correlation between the variables, while a coefficient 

of 0 indicates uncorrelated variables. The scaling 

variable ranges corresponding to the propagation of 

a river wave through a reach are relatively small. 

Numerical experiments have shown that if the rela

tionship between random variables over a limited 

range can be written as 

(18) 

then the magnitude of p will be approximately 1. 

In general, sufficient data will not be available to 

describe the precise nature of the distribution of 

each scaling variable. Therefore, for simpliCity we 

will assume that these distributions are symmetric 

about the mean value. The point estimates repre

senting the distribution of a scaling variable are then 

p =p = l+p 
++ -- 4 

(19) 

These point estimates sum to 1 and, in the case of 

uncorrelated random variables, are each~. The 

point estimates provide weighting factors for evalu

ating the function at points a standard deviation 

from the mean of each random variable: 

Y++ = Y(XI + Sx 
1 

,Xl + Sx ), 
2 

Y+ =Y(Xl+Sx ,Xl - Sx ), 
- 1 :z 

(20) 

Y _+ = Y(Xl - Sx 
1 

,X2 + Sx ), 
:z 

Y __ =Y(Xl-S
X1 

,Xl -Sx:z). 

Then, the expected values or moments of the func

tion can be obtained: 

(21) 

The expected value or mean of Y is found by setting 

n = 1. The variance of Y is readily compu ted as 

(22) 



Table 1. Application of Rosenblueth (197 S) method to 

Liard River da ta. 

Input: Vo = 0.72 mis, VVo = 0.25, C = 1.4 mis, Vc = 0.20 

Output: y = Cr = 0.5357(++), 0.8036(+-),0.3214(-+),0.4821(--) 

p = 0.6 

E[Cr ] 0.520 

V[Cr ] 0.0127 

VCr 0.216 

Rosenblueth (1975) discussed the generalization of 

this technique to functions of any number of ran

dom variables. 

A sample calculation using Rosenblueth's proce

dure to obtain parameters describing the Courant 

number distribution for data from the Liard River 

(Parkinson 1981, 1982) is given in Table 1. The 

coefficients of variation chosen for wave celerity 

bound most of the observed values within one stan

dard deviation of the mean. Because the mean flow 

velocity is a computed value, a relatively large coef

ficient of variation for velocity was assumed. Flow 

velocity and wave celerity for bulk flow waves can 

be related by an equation of the form of eq 18 and 

p ~ 1. However, to examine the sensitivity of the 

compu tation to the correlation coefficient, results 

are given in Table 1 for three different p values. 

With increasing p the mean Courant number decreas

es only slightly, but the variance and coefficient of 

variation decrease significantly. Estimates of the 

maximum and minimum values of the Courant num

ber distribution should be greater than Cr +_ and less 

than Cr _+ ' respectively. 

Given a function of random variables, Rosen

blueth's method provides an improved estimate of 

the mean and estimates of scatter about the mean 

and the limits of the distribution. The mean, stan

dard deviation, and limits of a random variable unique

ly specify a {3 distribution. Harr (1977) gives the 

general expression for this distribution as 

_ 1 (y-a)a (b-y) (3 
f(y) - (b-a)B( a+ 1, (3+ 1) b-a b-a 

where 

(Y-a)2 (1 -) (1 -) a=-2- -y - +y 
Sy 

a+l 
(3 = --- - (a+2) , 

y 

(23) 
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P = 0.8 P = 1.0 

0.514 0.509 

0.0067 0.0007 

0.159 0.053 

and 

__ ~y-a) y--
b-a 

where a and b are the minimum and maximum val

ues of y, respectively, and B is a beta function. 

When a and {3 have the same sign, the {3 distribution 

is unimodal and bell-shaped. The coefficients of 

skewness and kurtosis of the {3 distribution can be 

readily obtained. With this distribution the proba

bility of y in a given range can be determined. 

To incorporate the effects of the physical varia

bility of the river on the wave, we will use the Ros

enblueth method and obtain a corresponding {3 dis

tribution of the friction scaling parameters. This 

procedure allows further investigation of the bulk/ 

dynamic and dynamic/gravity wave transitions and 

provides a reliability estimate for wave type deter

mination when the friction parameter mean is near 

a transition. 

Case studies 

The river wave structure that has been developed 

depends on parameter magnitudes that are large or 

small relative to 1 or are on the order of 1. We will 

now use experience from case studies to define more 

precisely the parameter ranges corresponding to each 

wave type and transition. We will also classify a num

ber of diverse river wave cases and consider changing 

wave behavior over distance to test the usefulness 

and practicality of our analysis. 

Individual case studies and physical variables rep

resentative of each river and wave are presented in 

Table 2, as well as the first-order Taylor series ap

proximations of the mean values of the scaling param

eters-that is, the parameter evaluated at the mean 

values of all scaling variables. Estimated Manning's 

roughness and river bed slope values are designated 

in the table with an e. For free-flowing rivers where 

measured velocities were unavailable, the Chezy 



equation with the characteristic depth, river bed 

slope, and conveyance was used to obtain a comput

ed mean characteristic velocity, which is designated 

with a c. The mean velocity for reservoirs was com

puted using the continuity equation from the mean 

discharge, channel width, and characteristic depth. 

Bulk flow waves occur when the friction parame

ters are sufficiently large relative to 1. Because the 

Courant number is by definition less than 1, Fe is 

always smaller than FI and is the natural parameter 

to define the boundary between bulk and dynamic 

waves. Parkinson (l981, 1982) studies the river 

waves that initiated ice-cover breakup on the Liard 

and Mackenzie Rivers. These waves had long peri

ods, characteristic of spring flood waves in large 

river systems. The bulk wave behavior that occurred 

is reflected in the large friction parameter magnitudes 

for these cases. Large values of Fe also correspond 

to data from open-water and flow-over-the-ice con

ditions in a free-flowing reach of the Ottauquechee 

River (Ferrick and Lemieux 1983), again indicating 

bulk wave behavior. Ferrick (l980) numerically 

modeled rapidly varied flow waves from laboratory 

studies of dam breaches at the Waterways Experi

ment Station. A wave release to a previously dry 

channel, corresponding to a mean Fe value of 11, 

was precisely simulated using a bulk wave numerical 

model. In addition, Ferrick et al. (l984) found that 

rapidly varied flow waves in the Hiwassee and Clinch 

Rivers, with a minimum mean Fe value of 12, behaved 

as bulk waves. 

According to these observations, Fe greater than 

about 10 indicates bulk wave behavior. The system 

equation terms that are more than an order of mag

nitude smaller than the other terms are apparently 

negligible. With this guideline we can approximate 

the transitions between wave types and subtypes as 

corresponding to scaling parameter magnitudes 

greater than 10 (» 1) and less than 0.1 «< 1). Be

cause the scaling parameters representing a given 

river reach and wave are continuous, however, any 

single-valued defmition of a transition is inadequate. 

The governing equations used for analysis change 

between bulk, dynamic, and gravity wave conditions, 

and these transitions will be considered in detail. 

All of the bulk wave cases have mean Courant 

numbers greater than 0.5 (Table 2), a necessary but 

apparently not sufficient condition for the occur

rence of bulk waves. Table 2 also confums that large 

dimensionless wavelengths favor but do not guaran

tee bulk wave behavior. The wave diffusion present 

in all cases was sufficient to prevent the formation 

of a shock wave or depth discontinuity at the wave 

front. However, as the magnitude of D approaches 

0" the probability of wave steepening and shock 
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formation increases. Only in the Clinch River was 

wave diffusion sufficient to produce significant 

wave peak attenuation. These observations support 

the order-of-magnitude approximation for locating 

the transition between the bulk wave sUbtypes. Mean 

dimensionless diffusion coefficients less than about 

0.1 indicate kinematic waves, and diffusion waves 

occur when D is larger. 

The case studies from Table 2 that bracket the 

bulk/dynamic wave transition Fe = 10 are waves 

having a I-hr period on the Clinch River and a short

period wave on the Ottauquechee River that occurred 

immediately following ice cover breakup (moving 

ice). In this discussion we refer to these cases as 

simply Clinch River and Ottauquechee River. The 

extensive documentation available from the Clinch 

River study allows well-supported estimates of the 

coefficien t of varia tion for the scaling variables. 

These values were chosen so that the majority of the 

data fall within one standard deviation of the mean, 

and essentially all data are within three standard 

deviations of the mean. With less data available 

from the Ottauquechee River, we assume for pur

poses of comparison that the coefficients of varia

tion equal those from the Clinch River. The coeffi

cients of variation of velocity, wave celerity, wave

length, and hydraulic depth were taken as 0.15, and 

as 0.20 for channel conveyance. For both cases, 

correlation coefficients for velOcity/depth, convey

ance/ depth, velocity/celerity, and wavelength/ celer

ity were specified. Observed bulk wave celerity on 

the Clinch River indicates a velocity/wavelength 

correlation. The rela tively high wave celerity on the 

Ottauquechee River indicates dynamic wave effects, 

and wave celerity/depth and wavelength/depth cor

relations. The correlated variables for river flow are 

related analytically in the form of eq 18, and there

fore correlation coefficients of 1 were assumed. 

With these input data, Rosenblueth's method 

yields the mean, coefficient of variation, and mini

mum and maximum Fe values presented in Table 3. 

Table 3 also includes parameters of the (3-distribution 

fit to Fe and probabilities of Fe in selected ranges for 

each case. We note that the second-order estimates 

of the mean for each case are Significantly larger 

than the first-order estimates in Table 2. The rela

tively large coefficients of varia tion of Fe indicate 

that these distributions have significant spread. The 

(3 distributions representing the Fe distributions for 

the Clinch and Ottauquechee Rivers (Fig. 5) extend 

a significant distance on either side of the approxi

mate transition, Fe = 10. Therefore, a fmite proba

bility exists that bulk or dynamic wave behavior will 

occur in each case. This fact implies that point esti

mates of Fe falling near a transition are of limited 



Table 2. Case studies of river waves. 

k~ 

S t 
Y /k V tt 

Y 
0 c 

~ 
0 

ave t 
C

2 0 0 m 0 

(xl03 ) 
n 

(m/s) (m/s) (x 10-2 ) 
F C F 0 F 

Case ave * (m) (km) llt 0 r I I c 

WES Flume 5.0 0.009 0.125 

dry 330 0.02 0.58 1 • 1 1105 63 1.3 0.53 20 0.17 11 0.016 

wet 530 0.08 1.4 2.3 545 16 1.6 0.61 3.5 0.15 2.1 

CRREL Flume 

open 0.10 0.0044 2400 0.09 0.37 0.9 0.110 1205 12 0.39 0.41 0.41 1 • 1 0.17 

0.37 0.0079 740 0.09 0.34 12 0.36 0.38 1.2 1 • 1 0.46 

1.56 0.010 460 0.08 0.52 14 0.59 0.58 3.4 0.97 2.0 

- Ice 0.10 0.015 200 0.09 0.38 1 • 1 
N 

0.130 1205 14 0.38 0.35 5.0 0.85 1.8 

0.37 0.014 220 0.08 0.40 16 0.40 0.36 5.2 0.81 1.9 

1.56 0.014 210 0.07 0.47 19 0.47 0.43 7.5 0.84 3.2 

Hiwassee River 5.1 0.066 23 1.0 1.1 c 1.4 0.35 0.79 5.1 

1 hr 2.5 30m 25 170 130 0.038 

3 hr 7.6 90m 76 510 400 0.013 

C I Inch River 0.36 0.026 150 1.0 0.73c 1.0 0.23 0.73 10 

1 hr 1.8 30m 18 17 12 0.81 

2 hr 3.6 60m 36 34 25 0.40 

LI ard River 0.33 0.04 79 2.0 O.72c 1.4 180 36h 900 0.11 0.51 1100 21 560 0.037 

ice covered 

Mackenz Ie 0.12 0.03 160 3.0 0.76c 1.4 360 72h 1200 0.10 0.54 790 29 430 0.068 

River 

Ice covered 

Ohio River 0.095 0.03 

220 7.6 1.3c 7.5c 54 120m 71 0.15 0.17 11 1.3 1.9 

230 9.0 1.4c 5.6c 200 600m 220 0.15 0.25 47 2.8 12 0.24 



OttauQuechee 

River 3.1 

open 0.04 35 0.18 0.44c 0.55 2.0 60m 110 0.33 0.80 500 5.9 400 0.015 

flow over ice 0.04 49 0.47 0.84c 0.88 16 300m 340 0.39 0.95 1300 5.9 1200 0.005 

fragmented 0.03e 110 0.90 0.55c 4.0 1.6 400s 18 0.13 0.14 4.4 1.2 0.62 

cover 1 

fragmented 0.03e 120 1.2 0.54c 3.2 1.3 400s 11 0.11 0.17 3.0 2.4 0.51 

cover 2 

moving ice O.oSe 50 1.9 1.3c 2.8 1. 7 600s 9 0.30 0.46 16 2.3 7.4 

St. Lawrence 0.04e 0.03 180 4.5 0.6 8.2 0.064 0.073 1.3 

River 

fee covered 

2 hr 30 60m 67 5.3 0.39 

6 hr 89 180m 200 16 1.2 

Old HI ckory 0.032 190 6.5 0.14 7.3 0.018 0.019 1.2 

Reservoir 

I-' 2 hr 26 60m 40 0.80 0.015 
w 

4 hr 52 120m 80 1.6 0.030 

Pine Fa II s 0.02Se 

Reservoir 

Ice covered 

upstream 210 2.1 0.40 2.0 7.2 60m 34 0.063 0.20 6.5 9.9 1.3 

portion 

downstream 280 4.9 0.17 3.9 14 60m 29 0.017 0.044 0.91 6.3 0.040 

portion 

Wheeler 0.028 240 5.9 0.20 6.7 0.026 0.030 1.3 

Reservoir 

2 hr 24 60m 41 1.0 0.030 

4 hr 48 120m 81 2.0 0.060 

t-e = estlmated MannJng's roughness and rJver bed slope va lues. 
ttc = Olezy equatJon used, wJth characterJstJc depth, rJver bed slope, a nd convey a nee. 



Table 3. Bulk/dynamic wave transition. 

Case f3 PfFc<8] PfFc<10] PfFc<12] 

Clinch River 15.1 0.477 3.0 50 0.838 4.30 0.17 0.28 0.39 

Ottauquechee 8.75 0.375 2.0 

River 

30 1.97 8.35 0.46 0.68 0.84 

0.14 

0.12 I' 
I \ 
I \ 

0.10 I \Ottauquechee River 

I \ 
I \ 

0.08 I \ 

I \ 
I \ 

0.06 
I 
I 

0.04 I 
I 
I 

0.02 I 
I 
I 

0 40 

Fe 

Figure 5. Probability distributions of friction scaling parameter 

Fe representing case studies of the Clinch River and the Ottau

quechee River. 

value as indicators of wave type, and emphasizes 

that the transitions between wave types in rivers are 

continuous. If we consider the transition range 

8:5.Pc :5.12, the ratio ofprobabilities, R1 , of bulk

to-dynamic wave behavior for Pc outside this range is 

P[Fe > 12] 

Rl = P[Pc < 8] (24) 

Values of Rl near 1 do not identify wave type, but 

progressively larger deviations from 1 indicate wave 

type with increasing reliability. In our case, R 1 

(Clinch) = 3.6 andRl (Ottauquechee) = 0.35, indi

cating probable bulk wave behavior and probable dy

namic wave effects, respectively. The diagnosis of 

Clinch River bulk wave behavior is strongly support

ed by modeling results (Ferrick et al. 1984). 

Dynamic waves span a range of the friction param

eters of abou t two orders of magnitude. The scaling 

parameter bounds that identify complete-equation 

dynamic waves are roughly defmed as Fe < 10 and 
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G- > 0.1. In these relatively high friction cases, 

where dynamic waves typically result from some 

rapidly varying initial condition, frictional effects 

can eventually restore bulk wave behavior. Down

stream-propaga ting waves follOwing a dam breach 

or the sudden release of an ice jam are examples of 

such cases. Stoker (1957) simulated the propagation 

of the front of a hypothetical, rapidly varying, large

amplitude flood wave on the Ohio River using the 

dynamic wave equations. At the upstream boundary 

he imposed a 1.5-m/hr rise in the water level for a 

4-hr period between initial and final steady-flow 

conditions. The magnitudes of the friction parame

ters and the Courant number for 2 hr after the initi

ation of the wave (Table 2) indicate Significant iner

tia. However, average scaling variables representative 

of the first 10 hr of the simulation yield mean fric

tion parameters in the bulk wave range. Mean scal

ing variables representing the latter part of this time 

period produce even larger friction parameter magni

tudes and a mean Courant number greater than 0.5. 



Stoker stated that prior to his work more gradual 

flood waves recorded on the Ohio River had been 

successfully described with bulk wave models, as 

would be expected based on our analysis. 

The other complete-equation dynamic wave 

cases given in Table 2 are predominantly rapidly 

varying flow waves with small dimensionless wave

lengths. This group of cases includes a laboratory 

dam breach release to a channel with a significant 

base flow (WES flume-wet), laboratory studies (Fer

rick 1984) of the effects of bed slope and ice cover 

upon a sequence of flow waves (CRREL flume), 

and three waves on the Ottauquechee River immedi

ately prior to and during ice cover breakup. The 

laboratory flume cases each had bulk measured wave 

speeds, but because of very smooth channels the 

friction parameters fall in the dynamic wave range. 

At break-up the Ottauquechee study reach was 

ponded to a large depth relative to wave amplitude. 

The channel conveyance at the breakup was much 

smaller than in the laboratory studies, but the meas

ured river wave celerities approached those of dy

namic waves and are reflected in small Courant num

bers. The upstream half of ice-covered Pine Falls 

reservoir (Kartha 1976) is a complete-equation dy

namic wave case that did not involve a short-period 

flow wave. However, a large channel conveyance 

and a low flow velocity relative to measured wave 

celerity compensate for a relatively large dimension

less wavelength. 

The Courant number for the transition dynamic 

wave case is smaller than that for the complete equa

tion case, and the friction parameter Fe is also gener

ally smaller. The dimensionless scaling parameter 

bounds that identify transition dynamic waves are 

roughly defined as Fe > 0.1 and Cr < 0.1. Waves of 

2-hr and 6-hr durations in the ice-covered St. Lawr

ence River between Lake Ontario and Cardinal, 

Ontario (Yapa 1983), are examples of transition-case 

dynamic waves. The observed wave celerity was that 

of a dynamic wave and was much greater than the 

flow velocity. 

The reservoir dynamic wave case is characterized 

by a small flow velocity relative to measured wave 

speed and relatively small frictional effects. This 

case is roughly defined by dimensionless parameters 

Fe and Cr < 0.1. In Table 2 waves from hydroelec

tric power generation in Old Hickory Reservoir on 

the Cumberland River (Ferrick 1979), in the down

stream half of Pine Falls Reservoir on the Winnipeg 

River (Kartha 1976), and in Wheeler Reservoir on 

the Tennessee River (Ferrick and Waldrop 1977) are 

reservoir waves. Wave propagation in the upstream 

portion of the Old Hickory and Wheeler Reservoirs 

is subject to larger frictional effects than farther 
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downstream and, if analyzed separately, would be 

classified as a higher-friction dynamiC wave type. 

For each of these cases friction remains important, 

as velocity decay to 10% of the original amplitUde 

occurs within a 4- to 6-hr period (eq 15). 

The case studies compiled in Table 2 do not in

clude a case that falls in the gravity wave range. The 

reservoir dynamic waves are the smallest friction 

cases available, with estimated mean FJ values of 

about 1 from the Old Hickory, Pine Falls, and 

Wheeler Reservoir data. We will use the 2-hr wave 

period data from Wheeler Reservoir to consider the 

dynamic/gravity wave transition. A treatment of 

this boundary consistent with that used for the 

bulk/ dynamic wave transition provides values of FJ 

between 0.083 and 0.125 as the transition range. 

Table 4 presents wave amplitude decay times of 

2-hr period waves on Wheeler Reservoir for FJ as 

computed and bounding the transition. The actual 

conditions are far removed from the transition. 

The scaling variables presented in Table 2 for 

Wheeler Reservoir are mean values for the complete 

reservoir. These values, repeated in Table 5 along 

with estimated coefficients of variation, provide in

put for the Rosenblueth method. Wheeler is a typi

cal reservoir in that dramatic changes in depth and 

flow velocity occur over its length, reflected in large 

coefficients of variation. If we partition the reser

voir and consider the 40-km reach farthest down

stream, this physical variability is greatly reduced. 

All coefficients of varia tion are reduced by roughly 

a factor of 2, which, for purposes of comparison, 

Table 4. Wave amplitude decay time (hr). 

0.9 

0.5 

0.1 

0.2 

1.4 

4.6 

1.7 

11 

37 

2.5 

17 

55 

Table 5. Input data for Rosenblueth's method. 

Wheeler Reservoir Wheeler Reservoir 

(complete) (downstream) 

Variable x Vx x Vx 

yo(m) 5.9 0.25 8.0 0.125 

vo(m/s) 0.2 1.0 0.1 0.5 

c. 15.5 0.02 15.5 0.01 

cm(m/s) 6.7 0.15 8.5 0.075 

~(m) 24,000 0.15 31,000 0.075 



Table 6. Dynamic/gravity wave transition. 

Case FI VFI FImin FImax Q (3 P[FI<O.083 ] P[FI<O.100] P[FI<O.125 ] 

Wheeler Reservoir 0.65 0.457 0.0 3.8 2.8 17.5 0.0017 0.0033 0.0070 

Wheeler Reservoir 0.35 0.268 0.0 1.0 7.7 15.4 0.0001 0.0005 0.0025 

(downstream) 

5r----.----,-----.----.----~----._--_.----~ 

4 r, 
! \ 

3 I \Wheeler Reservoir 

I \ (downstream) 

I \ 
2 I \ 

o 
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/ 
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Figure 6. Probability distributions of friction scaling parame

ter F I representing case studies of Wheeler Reservoir and the 

downstream portion of Wheeler Reservoir. 

we assume is exactly the case. In addition, the mean 

flow depth in the lower portion of the reservoir is 

grea ter and the velocity is smaller than values repre

senting the complete reservoir, moving FI toward 

the dynamic/gravity wave transition. These data are 

also given in Table 5. The correlation coefficients 

used in the method were identical to those for dy

namic waves in the Ottauquechee River. 

Presented in Table 6 are parameters of the FI 

distribution for both cases from the Rosenblueth 

method, parameters describing a ~-distribu tion fit 

to FI, and probabilities bounding and within the dy

namic/gravity wave transition. The second-order 

estimate of the mean for the complete reservoir is a 

third smaller than the first-order estimate given in 

Table 2. The mean FI of the downstream portion 

is about one-half the value for the complete reser

voir, with a significantly smaller coefficient of varia

tion. The ratio 

P[FI > 0.125] 

P[FJ < 0.083] , 
(25) 

16 

where a large value of R z relative to 1 indicates dy

namic wave behavior and an R z value much less 

than 1 indicates gravity wave behavior, reveals that 

neither case approaches the wave transition. The 

pronounced difference in spread between the FI 

distributions and the small probability that F I is 

less than 0.1 can be readily seen with a plot of these 

distributions (Fig. 6). These results demonstrate 

that river waves in reservoirs may resemble gravity 

waves over small distances, but waves propagating 

more than a few wavelengths are significantly af

fected by friction. 

CONCLUSIONS 

The Saint-Venant system equation, formed by 

combining the continuity and momentum equations, 

contains a pair of wave celerities. The dynamic 

wave celerity is associated with the second-order 

terms, which are due to inertia and the pressure 

gradient, and the kinematic wave celerity is associ-



ated with the first-order terms, which are due to bed 

slope and friction. River wave behavior is controlled 

by the balance between friction and inertia. The 

non dimensional scaling parameters of the Saint

Venant system equation can be used to quantify 

this balance. The dimensionless parameters define 

a spectrum of river waves, with continuous transi

tions between wave types and subtypes. Dynamic, 

gravity, diffusion, and kinematic waves correspond 

to specific scaling parameter ranges of this spectrum. 

Bulk waves occur when the friction terms of the 

system equation dominate the inertia terms. Dynam

ic waves occur when the second-order inertia terms 

of the system equation are significant. Because fric

tion in rivers is generally important, there are few 

cases where the inertia terms dominate the friction 

terms and river waves behave as gravity waves. 

The parameter range corresponding to each wave 

type and transition was defined using data from 

case studies, allowing direct application of the scal

ing parameters for identification of wave type. The 

capability to identify wave type is necessary to the 

construction of appropriate mathematical models of 

river flow. Changes in wave behavior with propaga

tion distance for rapidly varying initial flow condi

tions and changes resulting from the presence of an 

ice cover can be addressed quantitatively using the 

scaling parameters. Interpreting the scaling parame

ters as random variables supplies the generality need

ed to consider waves in rivers with significant physi

cal property ranges and provides a measure of the 

reliability of wave type assessments near a transition. 
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