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Abstract We present a RNA deep sequencing (RNAseq)

analysis of a comparison of the transcriptome responses to

infection of zebrafish larvae with Staphylococcus epidermidis

and Mycobacterium marinum bacteria. We show how our

developed GeneTiles software can improve RNAseq analysis

approaches by more confidently identifying a large set of

markers upon infection with these bacteria. For analysis of

RNAseq data currently, software programs such as Bowtie2

and Samtools are indispensable. However, these programs

that are designed for a LINUX environment require some

dedicated programming skills and have no options for visual-

isation of the resulting mapped sequence reads. Especially

with large data sets, this makes the analysis time consuming

and difficult for non-expert users. We have applied the

GeneTiles software to the analysis of previously published

and newly obtained RNAseq datasets of our zebrafish infec-

tion model, and we have shown the applicability of this

approach also to published RNAseq datasets of other organ-

isms by comparing our data with a published mammalian

infection study. In addition, we have implemented the

DEXSeq module in the GeneTiles software to identify genes,

such as glucagon A, that are differentially spliced under

infection conditions. In the analysis of our RNAseq data, this

has led to the possibility to improve the size of data sets that

could be efficiently compared without using problem-

dedicated programs, leading to a quick identification of mark-

er sets. Therefore, this approach will also be highly useful for

transcriptome analyses of other organisms for which well-

characterised genomes are available.

Keywords RNA deep sequencing . Host pathogen
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Introduction

In our previous research, we have used zebrafish larval infec-

tion models to study the transcriptome response to infection

by several pathogens (Ordas et al. 2011; Stockhammer et al.

2010; van der Vaart et al. 2013; van Soest et al. 2011;

Veneman et al. 2013). In addition, we have tested the response

of zebrafish larvae to infection by the opportunistic bacterium
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Staphylococcus epidermidis as a model for biomaterial-

associated infections that are often caused by this species in

clinical practise (Boelens et al. 2000; Broekhuizen et al. 2008;

Busscher et al. 2012; Zaat et al. 2010). These studies have led

to a high throughput model that resulted in a large set of

RNAseq data sets highlighting a new bottleneck in our re-

search: the fast and user-friendly analysis of large datasets that

can be easily visualised for comparative purposes.

In the analysis of our former transcriptome data sets, there

was a need for specialised scripting languages to quickly find

good marker genes for the disease. We used an existing

visualisation program, Integrative Genomics Viewer (IGV)

(Robinson et al. 2011), that shows the data solely along a line

representing the genome, thereby requiring zooming in to

view the aligned reads. IGV and many other open source

visualisation programs, such as MapView (Bao et al. 2009),

Tablet (Milne et al. 2010), GenoViewer (Laczik et al. 2012)

and BamView (Carver et al. 2013), also require the user to

scroll or manually search for other genes to bring these into

focus; and an overview of a selection of genes based on

alignment results is not available. Finally, most of these data

visualisation programs do not allow the export of present-

ed visual results, other than taking screenshots. In our

previous analysis of RNAseq data, we were reliant on

manual counting of reads as guided by the IGV viewer

(Veneman et al. 2013).

In this paper, we used the transcriptome data set obtained

from the zebrafish high throughput screening system for

S. epidermidis infection (Veneman et al. 2013) as a case study

to optimise and automate the data analysis pipeline. Using the

resulting software package, we also went further and added a

larger RNAseq data set from Mycobacterium marinum infec-

tion data for comparisons of specificity of the transcriptome

responses. We also integrated the DEXSeq algorithm that can

be used to give an estimate of probability of the occurrence of

differential splicing. This has led to the identification of genes

that are differentially spliced after a microbial infection in

zebrafish larvae. Finally, we wanted to include a comparison

with whole organism infection data in other vertebrate species.

Unfortunately, there are still few available RNAseq data for

this that can be mapped on Ensembl genome data; and as a

result, we have only been able to compare our zebrafish

infection data with the RNAseq data from a bovine digital

dermatitis (BDD) model as published by Scholey et al. 2013

(Scholey et al. 2013). However, the results are sufficient to

show that our approach makes also such interspecies compar-

isons of RNAseq datasets very easy and this can quickly lead

to conclusions on conserved immune responses, even in com-

parisons between very different fish and mammalian infection

models.

Material and methods

Bacterial strains and growth conditions

The S. epidermidis strain O-47, containing a pWVW189-

derived mCherry expression vector (De Boer L. unpublished),

was grown as described in Veneman et al. (2013). The

M. marinum strain E11 was grown as described in Carvalho

et al. 2011 (Carvalho et al. 2011). Two reaction vials with 1 ml

of the culture were centrifuged at 14,680 rpm for 1 min. The

pellets were combined and washed three times with 1 ml

phosphate-buffered saline (PBS). Suspensions were prepared

based on the optical density at 600 nm and by plating and

colony-forming unit (cfu) determination. The inoculates were

suspended in 2 % polyvinylpyrrolidone 40 (PVP40,

CalBiochem) to 2.0×107 or 3.0×107 cfu/ml.

Zebrafish husbandry

Zebrafish were handled in compliance with animal welfare

regulations and maintained according to standard protocols

(http://ZFIN.org). Embryos were grown at 28 °C in egg water

(60 μg/ml Instant Ocean Sea Salt, Sera Marin). The egg water

was refreshed every day.

Experimental outline

Infection experiments were performed with mixed egg

clutches from wild-type ABxTL strain zebrafish. Embryos

were staged at 2 h post-fertilisation by morphological criteria;

and 20 cfu of the mCherry-expressing S. epidermidis O-47 or

30 cfu of the mCherry-expressing M. marinum E11 bacteria,

suspended in 2 % PVP40, were injected into the yolk.

Automated microinjections were performed as described in

(Carvalho et al. 2011). At 5 days post-fertilisation, embryos

(N ~100) were collected from the 2 h post-fertilisation injected

and non-injected group, snap frozen in liquid nitrogen and

stored at −80 °C for RNA isolation.

RNA deep sequencing

RNA isolation was performed as described in Veneman et al.

(2013). A total of 3 μg of RNA was used to make RNAseq

libraries using the Illumina TruSeq RNA Sample Preparation Kit

v2 (Illumina Inc., San Diego, USA). In the manufacturer’s

instructions, two modifications were made. In the adapter liga-

tion, step 1 μl instead of 2.5 μl adaptor was used. In the library

size selection step, the library fragments were isolated with a

double Ampure XP purification with a 0.7× beads to library

ration. The resulting mRNAseq library was sequenced using an
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Illumina HiSeq2000 instrument according to the manufacturer’s

description with a read length of 2×50 nucleotides. Image anal-

ysis and base calling were done by the Illumina HCS version

1.15.1. The raw RNAseq data have been deposited in the NCBI

GEO database with the accession numbers GSE42846,

GSE44351 and GSE57792.

Data analysis

GeneTiles was used for quantification and visualisation of the

RNAseq data. When using GeneTiles, the complete data pro-

cessing pipeline, including the used parameters, is available for

download. This enables the user to perform the same analysis

locally or try small modifications (for bioinformaticians).

Here, we give a quick list of the used programs and their

function within our current pipeline. A detailed explanation

including the used parameters is available in Online Resource 2.

In order of use in GeneTiles:

1. Bowtie2 (Langmead and Salzberg 2012) is used to align the

reads in the fastq file to the genome (obtained from

Ensembl). Bowtie2 generates SAM files that contain the

reads together with the location on the genome. Upon mul-

tiple hits, the best quality hit is selected or upon a tie of

multiple best hits, the reads are randomly distributed (the

manual of Bowtie2 is referred to for other default

behaviour).

2. Samtools (Li et al. 2009) is used to convert and compress

the SAM files into a binary BAM file.

3. Samtools is furthermore used to sort the reads in the BAM

files based on the aligned read location in the genome,

resulting in a sorted BAM file.

4. The BAM files is indexed to be able to quickly find the

aligned reads based on a location in the genome, i.e. to be

able to quickly search the BAM file. The index is saved as

a BAI file.

5. Using the available annotation fromEnsembl, we can search

the BAM file for reads within a gene. All reads that at least

partially fall within the gene exon and intron regions are

counted once. This is done with a python script which

consists of the combination of HTseq and pysam (Anders

et al. 2014). The output of this script is a tab-separated file

(tsv) containing the read counts per gene.

6. We used DESeq, an R-script, to perform statistical analy-

sis. DESeq is used to normalise the reads using a DESeq

scaling factor, computed as the median of the ratio, for

each gene, of its read count over the geometric mean

across samples. Then variance and average of the mea-

surement compared to the control is expressed as a P

value, by calculating the dispersion per gene using

DESeq. The size factors, as well as the P values, are stored

in ‘tsv’ files.

7. Using scripts, similarly as in step 5, also the input files for

DEXSeq can be generated. DEXSeq requires:

a. A ‘gtf’ file containing the experiment design.

b. For all samples, a ‘txt’ file containing the counts

obtained for the mapping data in the .SAM files.

c. Genome annotation (from Ensembl) in a ‘gff’ file.

Scripts to obtain these files are also available in the

Supplement.

8. Using DEXSeq, another R-script perform amore complex

statistical analysis; we can look at the reads within exons

and compare the variance and average per exon between

measurement and control groups of the samples. DEXSeq

uses binning, where exons are cut into bins, based on

known exon boundaries. When a read overlaps multiple

bins, it is counted in each bin. Per bin, based on the

annotation, two comparisons can be made, a comparison

between the same exon bins in different samples (groups)

and a comparison between an exon bin and its neighbour

exon bins within the same group of samples. Note that,

therefore, DEXSeq requires at least two groups containing

at least two samples. Based on both comparisons, a like-

lihood test is performed resulting in a P value. More

details are available in Anders et al. 2012 (Anders et al.

2012). The output of size factors and P values are stored

as ‘tsv’ files.

9. Using a script, all tsv files are combined into an excel file

available for download, e.g. per experiment, chromo-

some, per filtered results of most significant reads or

highest ratio between measurement and control. In addi-

tion, an index is built for fast visualisation online (closed

source).

Through the website of Wikipathways [http:/ /

wikipathways.org/index.php/Download_Pathways], the SVG

images were downloaded on the GeneTiles server. Using

Javascript, on the client side and within the SVG images, the

gene boxes are given a background colour based on a user

selection, e.g. P value or ratio. For this, the genes and/or

proteins are matched to their Ensembl references on the se-

lected genome. In addition, also the human pathways are

searched for find homologs of genes using Ensembl biomart.

Using these homologs, predictions of homolog pathways can

be accessed; this enables to search a larger set of pathways

contained in the human section of Wikipathways. It should be

noted that using the human pathways to find information
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about zebrafish biology should be treated with caution and can

only lead to suggestions for further investigation.

Results and discussion

Software design

RNAseq data, containing tens of millions of reads, is mostly

processed using scripts. After processing, a selection of reads

is analysed using RNAseq viewers. Directly browsing the

processed RNAseq data is difficult due to the large dynamic

range of length scales of reads (50 bp), exons (~200 bp),

introns (~3 kb), genes (~20 kb) and chromosomes (~65 Mb).

Using a minimal size of 1 pixel per read, a computer screen

allows only for ~50 kb to be visible. In addition, most

RNAseq viewers show introns at the same scale as exons,

which in most experiments means that 90 % of the visible

sequence data does not display aligned reads. We created an

online viewer, GeneTiles (www.Genetiles.com), that does

allow for browsing all the aligned reads, while eliminating

almost completely the need for user intervention (such as

zooming in). The genes in a chromosome are visible as tiles

in a 2D array. The tile colour and intensity are a measure of the

significance of the number of reads of experiment versus

control, indicating changes in expression levels. When a tile

is selected, the gene is loaded underneath, scaled to fit the

width of the screen. In a schematic view, all introns are shrunk

to a fixed short length to visualise the aligned reads in a graph

above the exons. To accomplish fast browsing, all reads are

indexed on the server directly after data processing. This

indexed data is also available for download to apply custom

filtering in Excel or other programs. The export functions of

the tiles and genes as scalable vector graphics makes it easy

for the user to modify the final visualisation for publication.

Workflow

Automated analysis of RNAseq data using GeneTiles does not

need any programming steps anymore in a Linux environment

by the user and performs directly a visualisation of the

differentially expressed data, making it easier to interpret. To

validate this new software package, RNAseq data from

zebrafish bacterial infection experiments was obtained from

Veneman et al. (2013) and used as the initial test model. All

programs used byVeneman et al. (2013) are implemented, and

more visualisation and export options are added in a server-

based environment (Fig. 1, Online Resource 1). Therefore, the

analysis pipeline of GeneTiles represents a combination of the

previously described tools that have been previously shown to

be useful for RNAseq analyses (Hatem et al. 2013). This

makes it very manageable because it reduces the amount of

high-end computers required in the research group for align-

ment and analysis, as all calculations are performed on the

server. To start the analysis, the user can choose between

various genomes that have been imported from Ensembl.

Subsequently, the fastq files will be uploaded, followed by

the option to analyse the data as single-end or paired-end. The

files will be aligned automatically, after which the control or

measurement treatment can be chosen. DESeq (Anders and

Huber 2010) will normalise the data, and subsequently

DEXSeq (Anders et al. 2012) will extract differentially

expressed bins that indicate differential splicing. A table con-

taining the differentially expressed genes or visualisations

containing tiles or individual genes can be exported at this

point.

With respect to the use of Bowtie2 aligner, we want to point

out that it will fail to map reads spanning exon-exon bound-

aries to the genome. This problem could be solved using a

splice aware aligner based on Bowtie2, such as Tophat2 (Kim

et al. 2013). This option will be included in a future version of

the GeneTiles package. However, Tophat2 is more computa-

tionally intensive and depends on the correct predictions of

splice sites. Therefore, the analysis without the splice aware

aligner, as used in this paper, will remain present.

Fig. 1 Pipeline of RNAseq data analysis. The diagram shows the

workflow of the data analysis starting at the raw fastq files until the

final visualisation performed automatically by the GeneTiles server. The

analysis pipeline is an open source and available in the Supplement
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Different analysis methods

Considering that the RNA samples of the S. epidermidis in-

fection experiments were paired-end sequenced, we had the

possibility to explore the added value of paired-end over

single-end sequencing. We compared the outcome of the

differential expression of these two methods as well as the

difference in sample sizes as shown in Fig. 2a. It can be noted

that a the number of differentially expressed genes does not

give an estimate of the reliability of the data; however, con-

sidering the high quality of RNAseq data, it can be assumed

that adding an extra biological sample provides more relevant

information than analysing a smaller group of samples by

paired-end sequencing. Our data support this assumption

since we found only a slight increase of 23 % in the differen-

tially expressed genes when performing paired-end analysis in

the four S. epidermidis-infected samples, using a P value of

0.05 as cut-off filter.

Secondly, we analysed the number of the differentially

expressed genes with all possible options regarding samples

sizes (Fig. 2b). We found a set of 359 differentially expressed

genes when only analysing one sample with a P value of 0.05

and compared this large set of genes to our reference set of 203

genes (resulting from the analysis of paired-end sequence data

of all four samples) (Fig. 2c). This comparison shows a rather

small overlap of only 23.7 % (single-end) and 27.6 % (paired-

end). As expected, this overlap increases, and therefore, the

number of false-positives decreases when adding more sam-

ples (Fig. 2c). In order to provide a statistically more stringent

analysis of the differentially expressed genes, we have also

included, in the GeneTiles software, a tool for minimising

false discovery based on the algorithm of Benjamini and

Hochberg 1995 (Benjamini and Hochberg 1995), using the

implementation of DESeq. The resulting adjusted values show

far more stringent results (Fig. 2b) but generally confirm the

limited value of performing paired-end sequencing as com-

pared to the added value of adding more biological controls.

Comparison of S. epidermidis versus M. marinum infection

in zebrafish embryos

We compared the different transcriptome host responses of

zebrafish embryos upon S. epidermidis or M. marinum yolk

injection. The previous comparison as shown by Veneman

et al. (2013) was based on a single biological replicate of

M. marinum-infected zebrafish embryos. We used this single

replicate and added 5 more independent biological replicas,

which led to a total of 6 replicas ofM. marinum, 4 replicas of

S. epidermidis-infected zebrafish embryos and a total of 9

replicas of non-infected control samples. As found before

(Veneman et al. 2013), S. epidermidis infection elicits a much

smaller transcriptional host response of immune-related genes

compared toM. marinum (Fig. 3). However, the total number

of the differentially expressed genes was increased since sev-

eral genes were previously not found to be significantly reg-

ulated by S. epidermidiswhere they do show a response in this

analysis. Another finding is the high induction of genes upon

M.marinum infection compared to the S. epidermidis-infected

samples (Fig. 3b). An explanation could be that the

M. marinum bacterium is a natural fish pathogen, and there-

fore, it is better recognised as intruder. S. epidermidis in large

quantities is also pathogenic for fish; however, since it is not a

natural pathogen, it could not be very well recognised as well

as M. marinum. For instance, we now observe a high induc-

tion of the leptin B gene (lepb) upon infection with

S. epidermidis (Fig. 4). In this case, the difference with the

previous study is caused by errors in the automated annota-

tion of probes in the micro-array used in Veneman et al.

(2013), which was used as benchmark for the RNAseq anal-

ysis. The high expression of lepb found in M. marinum-

infected samples is in line with the results earlier described

by Wieland et al. 2005 (Wieland et al. 2005), where they

found a higher mycobacterial load in the lungs of leptin-

deficient ob/ob mice.

Differential splicing

Another feature in the GeneTiles software is the inte-

gration of the DEXSeq analysis tool (Anders et al.

2012), which allows searching for genes that are differ-

entially spliced. The analysis strategy of differential

splicing is schematically shown in Fig. 5a, with an

example that shows that 1 of 4 exons is spliced out

from a pre-mRNA to form the mature mRNA. With

both the S. epidermidis and M. marinum infection data

sets, we found glucagon A (gcga) as top candidate to

be differentially spliced with large enrichment of two 5′

exons (Fig. 5b), which are indicated by the dark blue

bars underneath the representing exons. Supporting this

finding, the pro-glucagon gene has been described be-

fore as being differentially spliced into multiple peptides

in teleost fish (Holland and Short 2010).

We also demonstrate that GeneTiles can quickly point

out false negative results based on DEXSeq as a result of

ambiguous Ensembl annotations. For instance, in our anal-

ysis of infection markers, granulin antisense (grnas) ap-

peared as a candidate for differential splicing. However,

the actual differential expression found of grnas occurs

from a fusion of two genes, granulin 1 (grn1) and granulin

2 (grn2), which are located at this same position as shown

in Fig. 6.
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Comparing different host infection models

To date, we have only found 1 publication in PubMed describ-

ing RNAseq analysis of the host after a bacterial infection

in vivo other than in zebrafish (Scholey et al. 2013). The data

of Scholey et al. 2013 (Scholey et al. 2013), describing the

bovine digital dermatitis (BDD, an infectious foot disease), was

used to compare the host response in the cow and zebrafish.

The raw data with the accession number GSE41732 was

�Fig 2 Comparing single- and paired-endRNAseq analysis. aThe different

sample sizes (N=1–4) for analysis are visualised. b The total number of the

differentially expressed genes with a fold change larger than 2 or smaller

than −2 and a P value smaller than 0.05 (solid grey bars) or an adjusted P

value smaller than 0.05 (patterned dark bars). cThe light grey circles of the

Venn diagrams show the total number of the differentially expressed genes

for all the sample sizes with a fold change larger than 2 or smaller than −2

and a P value smaller than 0.05 as shown in (b), and the overlap of the

differentially expressed genes compared to the N=4 paired-end data set.

The bar graphs show the overlap in percentage of these different sample

sizes compared to the N=4 paired-end data set

Fig. 3 An overview of the

differentially expressed genes. a

The GeneTiles output shows a

much larger set of genes with a P

value smaller than 0.05 with the

M. marinum-infected samples

compared to the S. epidermidis-

infected samples. Each tile

visualises one gene, sorted on P

value. The colour and intensity

are a function of the ratio between

measurement and control

samples. b Comparing the data

from 3A is shown in the Venn

diagrams on the left and the

overlaps in white digits are shown

in a quantitativemanner in the bar

graph on the right

Immunogenetics



obtained from the GEO database and analysed with the

GeneTiles software package. Comparing the differential ex-

pression data from Scholey et al. 2013 (Scholey et al. 2013),

we could not validate all transcripts, since 23 % of the tran-

scripts are retired and are not available anymore, due to the

updated version of the Bos taurus 4.0 Ensembl annotation to

the COW UMD3.1 Ensembl annotation. All other transcripts

could be validated.

Both zebrafish and bovine gene identifiers were

linked to the human orthologs using the Ensembl data-

base. The results show that 61 % of the zebrafish genes

and 95 % of the bovine genes could be translated to

human orthologs; a comparison of the differentially

expressed gene sets in both disease models (P value

0.05) is shown in the Venn diagrams in Fig. 7. Gene

ontology (GO) (Huang da et al. 2009a; Huang da et al.

2009b) analysis on the overlapping set of the

differentially expressed genes between the cow and

zebrafish showed that the differentially expressed genes

are categorised in multiple response processes (Fig. 7).

The group of upregulated overlapping genes between

BDD, M. marinum and S. epidermidis infection includes

the following genes: prostaglandin-endoperoxide syn-

thase 2 (PTGS2); cytochrome P450, family 24, subfam-

ily A, polypeptide 1 (CYP24A1); oncostatin M receptor

(OSMR); optineurin (OPTN); EPH receptor A2

(EPHA2); signal transducing adaptor family member 2

(STAP2); stathmin-like 4 (STMN4); LIM domain and

actin binding 1 (LIMA1); interleukin 1, beta (IL1B);

solute carrier family 3 (amino acid transporter heavy

chain), member 2 (SLC3A2) and interleukin 1 receptor

accessory protein (IL1RAP). As expected, most of these

genes are related to the immune system such as OPTN,

which can activate Fas-ligand pathways to induce

Fig 4 Lepb as the highest induced gene. For both S. epidermidis O-47-infected (FC 36, P value 4.99×10−6) andM. marinum E11-infected (FC 148, P

value 1.54×10−10) samples, Lepb was found to be the highest induced gene

Immunogenetics



Fig. 5 Finding the differentially spliced genes. a Schematic view of the

principal differential splicing, where two different mRNAs are formed

from one gene. b For both the S. epidermidis-infected (FC 1.17, P value

4.62×10−1) and M. marinum-infected (FC 4.70, P value 2.06×10−10)

samples, glucagon A (gcga) was found to be differentially spliced as

shown by the dark blue bar under the left exon. The screenshot of the

GeneTiles visualisation demonstrates a schematic view, where introns are

compressed to allow more space for visualisation of reads on exons. The

gradient-blue bar on the right indicates the P value predicting the

differential splicing. The bottom image is a gene representation from

Ensembl
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apoptosis or anti-inflammatory responses (Wild et al.

2011); and IL1B that is a well-known cytokine produced

by activated macrophages, which then can indirectly

activate PTGS2 that also is significantly expressed

(Lappas 2013). The IL1RAP is essential for signal trans-

duction of IL1 in order to induce proinflammatory pro-

teins upon infection (Subramaniam et al. 2004).

Pathway analysis

The visualisation is not only limited to the coloured tiles as

described above, but can also be used for functional analysis

using WikiPathways (Kelder et al. 2012). With 96 zebrafish

and 267 human pathways at the moment implemented in the

software package, this allows the user a fast overview of

differential expression in biological networks. An example is

given in Fig. 8, where the toll-like receptor signalling pathway

is showing the differential expression data of M. marinum-

infected embryos using the pathway we submitted to

WikiPathways that has been accepted in the curated

collection.

Conclusions

The described toolbox for RNAseq data analysis offers two

different levels of support in an integrative setting. First, the

software combines several programs needed for open source

RNAseq analysis such as Bowtie2, Samtools, the ‘R’ statisti-

cal package, DESeq, DEXSeq, HTseq and pysam. These

programs are placed in a pipeline (script) that runs these

programs in the required order, with correct in- and output

settings. Second, the processed data is visualised in a user-

friendly way and made available for export with a choice of

quantitative settings.

The advantages and ease of the use of this combined

toolbox is demonstrated by analysis of the previously

published RNAseq datasets from zebrafish and cow

Fig. 6 The differential splicing indicated by the dark blue bars at exon 2

and 4 from grnas proved to be incorrect. The differential expression

found indicated by the 4 boxes at grnas (FC 1.87, P value 3.05×10−3)

derived from grn1 (FC 1.57, P value 1.80×10−2) and grn2 (FC 3.33, P

value 2.23×10−3). The screenshot of the GeneTiles visualisation

demonstrates a non-schematic view, where introns are not compressed

showing the actual length of the introns and exons. The gradient-blue bar

indicates the P value predicting the differential splicing. The bottom

image is a gene representation from Ensembl
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infectious disease models, as well as the new RNAseq

data of a zebrafish mycobacterial infection experiments.

This resulted in a highly confident innate marker set for

systemic innate immune response to infection by patho-

genic and non-pathogenic bacterial species in zebrafish.

Furthermore, the data is viewable in a pathway view using

the pathways stored at WikiPathways. In this way, it was

also possible to quickly determine the effect of the num-

ber of replicates and the evaluation of potential false

positive results, as is the case for the analysis of

differential splicing using the DEXSeq algorithm.

Comparing our experiences with our previous analyses

(Veneman et al. 2013) and the re-analyses performed here,

we can estimate that we have saved several months of

working time while obtaining far superior output files that

could be rapidly compared to the new RNAseq data sets

also from other organisms. The data analysed in this study

is available at the GeneTiles website for further analysis

and as demonstration material. This makes it possible to

rapidly evaluate new immune markers in the datasets

Fig. 7 Overlap with other host

pathogen RNAseq experiments.

The Venn diagrams show the

number of human orthologs of the

differentially expressed (FC >2 or

<−2, P value <0.05) genes from

the bovine digital dermatitis,

M. marinum E11 and

S. epidermidis O-47 infection

data. The gene ontology analysis

(Huang da et al. 2009a; Huang da

et al. 2009b) is based on the

overlapping groups indicated by

the green and magenta drops

Immunogenetics



described in this paper but also can be used to identify

new markers based on other search criteria.

Availability and requirements

The analysis is open source and available for download, as

well as offered as Supplementary Material. All visualisation

images are also available for download on the demo page of

http://www.genetiles.com. The analysis pipeline, including the

source and a complete script to run the same analysis locally, is

available for download. It is offered together with the open

demo for everyone, and it is possible to apply small changes

locally to change the analysis or to select the input files.
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