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Abstract Observations on continuous populations are often rounded when recorded
due to the precision of the recording mechanism. However, classical statistical app-
roaches have ignored the effect caused by the rounding errors. When the observations
are independent and identically distributed, the exact maximum likelihood estimation
(MLE) can be employed. However, if rounded data are from a dependent structure,
the MLE of the parameters is difficult to calculate since the integral involved in the
likelihood equation is intractable. This paper presents and examines a new approach
to the parameter estimation, named as “short, overlapping series” (SOS), to deal with
the α-mixing models in presence of rounding errors. We will establish the asymp-
totic properties of the SOS estimators when the innovations are normally distributed.
Comparisons of this new approach with other existing techniques in the literature are
also made by simulation with samples of moderate sizes.
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1 Introduction

The rounding of data may be due to the precision of the measuring instruments in
experiments or the nature of the recording/storage mechanism. In general, the round-
ing scheme is to record the measurements to the nearest multiples of the precision
unit. Except for categorical data, all observations of continuous populations have to
be rounded. It is obvious that the rounding errors affect the statistical inferences if the
rounding error effect is ignored. However, it had not drawn serious attention in the old
days because sample size was small and the inaccuracy caused by the rounding errors
was tolerable relatively to the statistical problem. However, it is no longer the case
nowadays, owing to the wide adoption of modern computers. We are able to collect,
store and analyze data sets of huge sizes and/or large dimensions. For example, in
a data mining problem, the sample size may be as large as several millions. Then,
it is natural to ask whether the classical statistical inferences are still reliable when
the rounding errors are ignored? It has been noted in the literature that the standard
t test will reject the true hypothesis with a probability close to one if the data are
rounded and the sample size is large. Therefore, the rounding errors have to be taken
into account in all large sample problems.

Rounding error has received considerable attention in the literature (see, e.g.,
Dempster and Rubin 1983; Heitjan 1989). For rounded data from independent and
identically distributed (i.i.d) samples, there are four approaches to deal with the round-
ing error. The first is the so-called Sheppard’s correction for the sample covariance
estimator whose derivation is based on the Taylor expansion of the likelihood function
and hence it is also called the maximum-likelihood corrections. The earliest discus-
sion on rounded data at least dates back to Sheppard (1898). Recent work can be
found in Tricker (1984, 1990a,b), Tricker et al. (1998), and Vardeman and Lee (2005)
who investigated the effect of the parameter estimation and control charts based on
rounded data from normal and non-normal populations such as gamma and exponen-
tial. Dempster and Rubin (1983) compared the rounding effects in a rounded linear
models using three well known statistical approaches: the Sheppard’s correction, the
BRB correction and the usual least squares estimation by considering the rounded data
as unrounded. The third approach treats the rounding error as additive and uniformly
distributed. In the above mentioned references, the formulae in BRB and Sheppard’s
corrections are equivalent to assuming the rounding errors as uniformly distributed
over a symmetric interval with length equal to the rounding precision and are inde-
pendent of the rounded values or the true value of the observed sample respectively.
However, it is not difficult to examine the invalidity of these assumptions since the
rounding errors and the rounded data are both functions of the original data. Heitjan
(1989) gave a detailed review of the most popular approaches in dealing with rounded
data. Heitjan and Rubin (1991) presented a general model for coarsened data, includ-
ing rounded, heaped, censored and missing data. Bai et al. (2008) showed that the
sample variance of the rounded data of a sample from a normal population is incon-
sistent. The sample mean is also inconsistent unless the true mean is a multiple of half
a precision unit. This stimulates statisticians to reinstitute the mathematical model to
“recover” the true sample values which may lead to better inferences based on the
rounded data. All earlier works had failed to provide consistent estimation except the
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Rounded data analysis 1145

recent works by Lee and Vardeman (2001, 2002, 2003) who investigated confidence
interval estimation of the parameters μ or σ 2 when a rounded sample came from
the N (μ, σ 2) population. They also extended their results to the balanced one-way
ANOVA with random effects. However, they did not obtain simultaneous interval
estimation of the parameter μ and σ 2 since their method was based on an unjustified
inversion of the rounded data likelihood ratio test. Hall (1982) and Coppejans (2003)
examined the influence of rounding errors on nonparametric density estimation and
proposed a weighted average of neighboring frequency estimators. Wright and Bray
(2003) showed the danger of ignoring heaping before presenting a case-study of the
ultrasound measurements. They analyzed a mixture model for rounded data by the
Bayesian approach implemented by using the Gibbs sampler. The general issue of
rounding continuous data has been indispensable for practitioners. Some recent refer-
ences are made to Tricker et al. (1998), Vardeman and Lee (2005), Vardeman (2005)
and Grimshaw et al. (2005).

The rounding errors in dependent sequences of random variables may cause an
error of the statistical inferences in a more complicated way than that in i id cases.
Jones (1980) theoretically discussed the problem of maximum likelihood estimation in
ARMA models when data were rounded, Machak and Rose (1984, 1985) reported on
studies of the problem of rounding errors in ARMA models, Stam and Cogger (1993)
considered the effects of rounding errors in parameter estimation of autoregressive
(AR) models, deriving appropriate adjustments for the estimates of the parameters
when using rounded data, and Rose (1993) addressed the impact of rounding errors on
model identification and parameter estimation for ARMA(1, 1). In practical hydro-
logic examples, such as the frequency distributions of rainfall or storm-water runoff
and a flooding study of the American River, the Sheppard’s correction techniques were
employed, see Durrans et al. (2004). Durrans and Pitt (2004) extended the Sheppard’s
corrections to allow unequal rounding intervals at different instants and then applied
their extension to mammalogical studies, where the date of parturition of animals were
obtained from collections in intervals larger than one day. Many financial, economic,
labor, public health variables are also continuous but rounded. In the stock market,
the stock price Pt (or the return Rt := Pt −Pt−1

Pt −1 ) of stock at date t is allowed to change
only at discrete grids. Brock et al. (1987) proposed the so-called BDS test to examine
the serial independence of a time series data. For this test, Krämer and Runde (1997)
seriously pointed out that the BDS test would reject the true null hypothesis with a prob-
ability as high as 0.8 when the data was rounded to integers and 0.20 when rounded to
one decimal digit. Such a phenomenon was also pointed out by Kozicki and Hoffman
(2004). Bai et al. (2008) presented approximate maximum likelihood estimation and
proved strong consistency and asymptotic normality of the new estimates.

The general problem will be formulated as follows. Consider a time series {Xt }
with a specified model, where Xt is the modelled random variable at time t . Sup-
pose that {xt , t = 1, . . . , T } is the realizations from time t = 1 to T and {x̃t } the
recorded values of {xt }. That is, xt = x̃t + εt , where εt represents the rounding error.
Suppose Xt is a random variable, let the rounded value be denoted by ˜Xt . It is easy
to see that both ˜Xt and εt are functions of Xt . Thus, εt cannot be independent of Xt

or ˜Xt unless in some specially constructed distributions. Also, εt is not uniformly
distributed. Although the mathematical form of rounding error looks like that of the
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measurement error, the major difference lies in that the former cannot be independent
of the recorded observations, or the unknown value to be measured. Thus, statistical
techniques that have been proposed to deal with the measurement errors cannot be
transplanted to the rounded data.

This article focuses on the estimation of the parameters in certain mixing sequences
including the ARMA model under normality assumptions. As pointed out by Stam
and Cogger (1993, p. 489), the maximum likelihood estimator based on the rounded
data is intractable both numerically or by Monte Carlo, such as MCMC, because the
integrals involved in the likelihood function have too many folds to compute even
when the number of observations is moderately large. So they arrived at appropriate
adjustments for the estimates using Taylor series expansion, following approaches
of Lindley (1950) and Tallis (1967). In the literature, almost all works employ vari-
ous corrections such as BRB and Sheppard under various model structures. We shall
propose a new approach to calculate estimates of the parameters.

This article is organized as follows. In the next section, we propose a new method
to estimate the parameters for an α-mixing sequence under assumption of a known
parametric form of the distributions. This new method is named the “short, overlap-
ping series” (SOS) approach because the small, manageable segments of data may
have overlaps—this is part of how it maintains some efficiency. Then, we consider
the small segments as independent random variables (or vectors) to obtain the pseudo
maximum likelihood estimator of the parameters. We also illustrate our approach by
some examples. In Sect. 3.1 we establish the asymptotic properties of that estimator
under the regularity conditions. We will show the asymptotic properties when rounded
data are from α-mixing sequences including some of the time series models. Further-
more, we give the estimators of the asymptotic covariance matrix for three cases in
Sect. 3.2. In Sects. 3.3 and 3.4, as illustrations, we establish more detailed properties
of the estimators for rounded data from IID and ARMA models. In Sect. 4, we present
a modified version of the SOS method to further reduce the computation time of the
parameter estimates. In Sects. 5 and 6, we compare our new method with the existing
methods in the literature through simulation studies. Some discussion and comments
are presented in Sect. 7. Some technical details are given in the Appendix.

2 SOS method

We first briefly show that the exact maximum likelihood approach could not be emp-
loyed for rounded data from a dependent sequence with a continuously distribution.

Let X = (X1, . . . , Xn) be a random sample, and suppose that its joint density
belongs to a parametric family, { fn(x, θ), θ ∈ � ⊆ R p}. Suppose the sample data are
observed in rounded form with rounding interval width h. Thus, the rounded sample
data Yi are defined by:

Yi = yi if yi − h/2 ≤ Xi < yi + h/2. (1)

For the rounded data, the exact log-likelihood function is given by:
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lr (θ; y) = log

(∫ yn+h/2

yn−h/2
· · ·
∫ y1+h/2

y1−h/2
fn(x; θ) dx1 · · · dxn

)

(2)

where y = (y1, . . . , yn)
′
. The corresponding maximum likelihood estimator (MLE)

θ̂r (y) = (θ̂1r (y), . . . , θ̂pr (y)) should be found by maximizing (2) or solving
the following systems of equations:

∂lr (θ; y)
∂θ j

|
θ=θ̂r (y)

= 0, j = 1, . . . , p. (3)

However, the MLE θ̂r (y) is actually intractable from the above equations because the
value of the n fold integral in (2) might be too small to be stored as non-zero in any
computer system. Even these values are not that small for small or moderately large
n, the calculation to a high level of accuracy of the n fold integral is not an easy job.
For example, if we require the 4th decimal of accuracy, then at least, the integration
interval for each fold needs to be split into 104 subintervals. If the length of the series
n is as small as 100, then the integral needs to calculate the density function values at
10400 grids. This is unaffordable for almost any existing computers. Therefore, various
adjustments or corrections for the parameter estimation are proposed in the literature
by using Taylor expansion of lr (θ; y) in powers of h when it is small. The famous
ones are the Sheppard’s correction and the BRB correction. In Lindley (1950); Tallis
(1967); Dempster and Rubin (1983), and Stam and Cogger (1993), such corrections
are deeply discussed for multivariate distribution models, linear regression models,
linear autoregressive models, etc. However, the major drawback of these corrections
is that they do not provide consistent estimation of the parameters because h does
not actually tend to 0 and hence the error caused by eliminating the higher order h
terms in the Taylor expansion does not actually tend to 0. So far we have not found
in the literature any consistent estimation of the parameters for rounded time series
observations, until Bai et al. (2008).

Incorporating this problem, we propose the following procedure to estimate the
parameters θ . From now on, we shall assume that the rounding scheme is to have
the data rounded to integers without loss of generality. We split the random vector
X = (X1, . . . , Xn) into pieces of length a + 1 as follows:

X = {(X1, . . . , Xa+1) , (X2, . . . , Xa+2) , . . . , (Xn−a, . . . , Xn)}

and let Xt = (Xt , . . . , Xt+a)
′, where a = 0, 1, 2, . . . , n − 1, for which the realiza-

tions are denoted by xt=(xt , . . . , xt+a)
′. Correspondingly, the rounded version of X

vectors and observations are denoted by Yt=(Yt , . . . ,Yt+a)
′ and yt = (yt , . . . , yt+a)

′,
respectively. If the X sequence is mixing, then the sequence {Y1, . . . ,Yn−a} is also
mixing. When finding the parameter estimates, we just regard the Y-sequence as
iid a + 1-dimensional random vectors. Because the small, manageable segments
of data may have overlaps, we will name the method “short, overlapping series”.
Consequently, we name the sum of piece-wised log-likelihood functions as the SOS
log-likelihood which is given by
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lsos(θ) =
n−a
∑

t=1

q(yt , θ) =
n−a
∑

t=1

log p(yt , θ), (4)

where

p(yt , θ) =
∫ yt +1/2

yt −1/2
f (xt ; θ) dxt . (5)

1 is the a + 1 dimensional vector of all elements 1 and f (xt ; θ) is the density function
of a +1 consecutive variables in the strong stationary process {xt }. The corresponding
SOS-score function is given by

l̇sos(θ) =
n−a
∑

t=1

q̇(yt , θ) =
n−a
∑

t=1

ṗ(yt , θ)

p(yt , θ)
, (6)

where l̇sos(θ) denotes the derivative vector of lsos(θ) with respect to components of θ .
Note that when a = 0 and a = n − 1, the SOS-log-likelihood function become the
exact log-likelihood for the rounded iid sequence and that for the whole dependent
sequence, respectively. Under regularity conditions, the new estimator θ̂n of θ is a
solution to the SOS-estimating equation l̇sos(θ) = 0 and thus is consistent. When the
SOS log-likelihood function lsos(θ) is strictly concave, the solution is also unique. In
some cases a solution with a close form can be found; but more often, a numerical solu-
tion can be obtained by iterative approaches such as Newton–Raphson, quasi-Newton
Raphson and simulated annealing.

The Newton–Raphson algorithm iteratively updates the parameter estimates by the
formula

θk = θk−1 −
{

1

n
l̈(θk−1)

}−1 {1

n
l̇(θk−1)

}

, k = 1, 2, . . . , (7)

where l̈ is the Hessian matrix of second derivatives of lsos and θ0 is an initial value. A
variation on this is the Fisher scoring algorithm in which the factor − 1

n l̈sos is replaced
by its expectation. Start from good initial values, both methods converge rapidly to
the SOS estimator θ̂n . Meanwhile, we shall also discuss the estimate of the asymptotic
covariance matrix of θ̂n . In the following sections, the asymptotic properties of the
SOS-estimators are analyzed.

Remark 1 Bai et al. (2008) considered the rounded data from AR(p) or MA(p)
sequences and proposed that for each � = 1, . . . , k, choose a+1 consecutive variables
(X�, . . . , Xa+�). And after each k − a − 1 consecutive variables, we choose another
a +1 consecutive variables, and so on. In such a way, we obtain m = [n/k] sequences
of (a +1)-vectors with spacings k −a −1 variables between two consecutive vectors.
When k (or k−a−1) is large, each subsequence can be considered as one of iid vectors
and hence we may get an approximate MLE θ�. Finally, we use the average of the k
estimates as the final estimate of the parameter θ . This method seems more intuitive
than the method described above. However, it has been proved that the asymptotic
variance is the same as the estimator proposed in this paper.
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Remark 2 If a searching approach is employed to find the maximum of the
SOS-log-likelihood (4), for each value of θ and t , we need to compute the a + 1
fold integral for p(yt , θ). If the Newton–Raphson approach (7) is used, at each recur-
sion step, for each t , we need to compute a +1 fold integrals for p(yt , θ), ṗ(yt , θ) and
p̈(yt , θ). In practice, only a = 1 or 2 can be used for a numerical integral approach
to compute the estimates. If a is relatively large, one may need to use a Monte-Carlo
approach (say, the MCMC approach, or the E-M algorithm) to approximate these
integrals. We alert readers that the Monte–Carlo method will have a very slow con-
vergence rate and large computational errors. It is even more time consuming than the
numerical integration technique if we require the same computation accuracy. Thus,
if a has to be large (see next remark), we need to further find alternate methods to
reduce the number of integral folds for faster computation. For details, see Sect. 4.

Remark 3 Obviously, if a larger a is chosen, the SOS-log-likelihood is closer to the
exact log-likelihood and hence the efficiency of the SOS-estimates should be theoret-
ically higher. However, a larger a will exponentially increase the computation errors
and computation time. Thus, one may wish to choose a to be as small as possible
to reduce computation error and save time. However, a small a may cause an iden-
tifiability problem. This depends on how many parameters can be identified by the
function p(yt ; θ). For the normal distribution, the mean value and the (a+1)×(a+1)
covariance matrix can be solved from p(yt ; θ) and its derivatives. For an ARMA(p, q)
model, the model coefficients and the innovation variance can only be identified by
a covariance matrix of order (p + q + 1)× (p + q + 1). Thus, for ARMA(p, q)
models, the smallest choice of a is p + q. To reduce the computation time when
p + q + 1 is large, see the modified SOS method in Sect. 4.

3 Asymptotics

In this section, we first consider the asymptotics of the SOS-estimators, including the
consistency and asymptotic normality as n → ∞. Then, we give consistent estimators
of the asymptotic covariance matrix of the SOS estimators.

3.1 Consistency and asymptotic normality

The following two results describe the asymptotic behavior of θ̂n . First, we list a set
of regularity conditions which are parallel to those popularly used in the literature
for MLE and then show the consistency result. Finally, we state an asymptotic nor-
mality result with an explicit formula of the asymptotic variance. Without loss of
generality, suppose that the original sample is x1, . . . , xn . Under this assumption, the
SOS-log-likelihood function of the n − a rounded observations y1, . . . , yn−a is

lsos(y, θ) =
n−a
∑

t=1

log p(yt , θ) :=
n−a
∑

t=1

q(yt , θ)
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To establish the asymptotic properties, we need the following regularity conditions
related to the SOS-log-likelihood function:

1. The parameter space� is an open set of R
k and the true value θ0 is an inner point

of �.
2. The sample space, i.e., X = {x; fa+1(x; θ) > 0}, is independent of the param-

eters.
3. λ

({x : p(y, θ) �= p(y, θ ′)}) > 0 ∀θ �= θ ′, where λ is the Lebesgue measure in
R

a+1.
4. {Xt } is strictly stationary and α-mixing.
5. At the true value θ0,

ψ(θ0; θ) =
∫

fa+1(x; θ0) log p(y, θ)dx

exists for all θ ∈ � and is continuous in θ , where p(y, θ) is the probability
defined in (5).

6. For each compact subset � of �, there is an integrable function h(y) = h�(y)
such that

‖ ḟa+1(x; θ)‖∞
f (x; θ) ≤ h(y)

for all θ ∈ �, where y is the vector of rounded x and the norm ‖ · ‖∞ denotes
the maximum absolute value of entries of the indicated vector or matrix. Here,
that the function h(y) is integrable means Eh(Y) =∑j h( j )p( j, θ0) < ∞.

7. Except for a null set of X , for each fixed x,

sup
θ∈�c

m

f (x; θ) → 0, m → ∞,

where {�m} is an increasing sequence of compact subspaces �m of� such that
∪�m = �.

8. For some constant δ > 0,

Eh(Y)2+δ < ∞,

where the function h(y) is as defined in condition 6.
9. The α-mixing coefficients satisfy

∞
∑

n=1

α
δ/(2+δ)
n < ∞.

10. The integration in x and the differentiation in θ about f (x, θ) are interchangeable.
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Comments on the regularity conditions

– Conditions 1–5 are commonly assumed for almost all parametric statistical prob-
lems. Especially, condition 2 is necessary for the identifiability of parameters.

– In usual MLE problems, condition 6 is assumed to be

‖ ḟa+1(x; θ)‖∞ ≤ g(x)

where g(x) is integrable with respect to the Lebesgue measure. Correspondingly,
our h is similar to g(x)/ f (x, θ). Thus, it is equivalent to h(y) being integrable with
respect to f (x, θ)dx. The difference lies in that x is changed to y, the rounded value.
This is not a strong restriction because h(x) ≤ K h(y) for some constant K unless
h(x) has a rate higher than eb‖x‖ for any b > 0.

– Condition 7 assumes the density value tends to 0 as the parameter tends to the
boundary of the parameter space. In some references, this condition is assumed to
be f (x, θ) → 0 as ‖θ‖ → ∞, e.g., Chen (1997).

– Conditions 8–10 are commonly assumed for the central limit theorems of MLE.

Theorem 1 Under regularity conditions 1–6, the local SOS–MLE is consistent, that
is, for some compact subspace �, if θ0 is an inner point of �, then

̂θn → θ0 a.s.

where

θ̂n = arg

{

sup
θ∈�

lsos(θ)

}

.

Theorem 2 Under regularity conditions 1–7, the global SOS–MLE is strong
consistent.

In hypothesis testing or confidence interval estimation, it is important to establish
the asymptotic distribution. To this end, we shall prove the following theorem.

Theorem 3 Under regularity conditions 1–10,

√
n − a(θ̂n − θ0)

d→ Nk

(

0, I −1(θ0)V (θ0)I
−1(θ0)

)

where Nk(μ,�) denotes a multivariate normal variable of dimension k with mean
vector μ and covariance matrix �, and

I (θ0) = E
∂q(Y1, θ)

∂θ

∂q(Y1, θ)

∂θ ′

∣

∣

∣

∣

θ=θ0

,

V (θ0) = I (θ0)+
∞
∑

t=1

E

[

∂q(Y1, θ)

∂θ

∂q(Yt+1, θ)

∂θ ′ + ∂q(Yt+1, θ)

∂θ

∂q(Y1, θ)

∂θ ′

]

∣

∣

∣

∣

∣

θ=θ0

.
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The asymptotic covariance of θ̂n is needed to estimate when the asymptotic
normality of θ̂n is used in hypothesis testing or confidence interval estimation. We
will discuss it for three cases in the next subsection.

3.2 Estimating the asymptotic covariance matrix

As discussed in Sect. 3.1, in the application of the asymptotic normality of θ̂n , there
is a need of a consistent estimate of the asymptotic covariance matrix of θ̂n . In this
subsection, we will discuss estimates of the asymptotic covariance matrix in three
cases in accordance with the correlation of score functions ∂q(Yt ,θ0)

∂θ
as follows:

Case 1 { ∂q(Yt ,θ0)
∂θ

} are uncorrelated for different t .

In this case, V (θ0) = I (θ0) = E ∂q(Y1,θ)
∂θ

∂q(Y1,θ)
∂θ ′

∣

∣

θ=θ0
. The moment method sug-

gests estimating V (θ0) by V̂n = 1
n−a

∑n−a
t=1

∂q(yt ,θ)
∂θ

∂q(yt ,θ)
∂θ ′

∣

∣

θ=θ̂n
. It is easy to prove

that V̂n − Vn(θ0)
p→ 0, where Vn(θ0) is V̂n with θ̂n replaced by θ0. Then, the conver-

gence of Vn(θ0) is an easy consequence of the ergodicity of α-mixing sequences. For
example, in Sect. 3 (Rounding an IID Sample), we can estimate I (θ0) and V (θ0) by

În = 1

n − a

n−a
∑

t=1

1

p2(yt ; θ)
∂p(yt ; θ)
∂θ

∂p(yt ; θ)
∂θ ′

∣

∣

∣

∣

∣

θ=θ̂n

.

Case 2 { ∂q(Yt ,θ0)
∂θ

} is m-dependent.

In this case,

V (θ0) = E
∂q(Y1, θ)

∂θ

∂q(Y1, θ)

∂θ ′

∣

∣

∣

∣

θ=θ0

+
m
∑

t=1

E

[

∂q(Y1, θ)

∂θ

∂q(Y1+t , θ)

∂θ ′ + ∂q(Y1+t , θ)

∂θ

∂q(Y1, θ)

∂θ ′

]

∣

∣

∣

∣

∣

θ=θ0

.

Therefore, by the moment method, we may estimate V (θ0) by

V̂n = 1

n − a

n−a
∑

t=1

∂q(yt , θ)

∂θ

∂q(yt , θ)

∂θ ′

∣

∣

∣

∣

∣

θ=θ̂n

+ 1

n − a

m
∑

τ=1

n−a−τ
∑

t=1

[

∂q(yt , θ)

∂θ

∂q(yt+τ , θ)
∂θ ′ +∂q(yt+τ , θ)

∂θ

∂q(yt , θ)

∂θ ′

]∣

∣

∣

∣

θ=θ̂n

.

Then by the Ergodic theorem and θ̂n − θ0
a.s.→ 0, it is easy to show that

V̂n − Vn(θ0)
a.s.→ 0.
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For example, in Sect. 3.4, for the rounded MA(q) model, we can estimate V (θ0) by

V̂n = 1

n − a

n−a
∑

t=1

1

p2(yt ; θ)
∂p(yt ; θ)
∂θ

∂p(yt ; θ)
∂θ ′

∣

∣

∣

∣

∣

θ=θ̂n

+ 1

n − a

q
∑

τ=1

n−a−τ
∑

t=1

1

p(yt ; θ)
1

p(yt+τ ; θ)

×
[

∂p(yt ; θ)
∂θ

∂p(yt+τ ; θ)
∂θ ′ +∂p(yt ; θ)

∂θ

∂p(yt+τ ; θ)
∂θ ′

]∣

∣

∣

∣

θ=θ̂n

.

Case 3 { ∂q(Yt ,θ0)
∂θ

} are weakly dependent.

In this case, we have

V (θ0) = E
∂q(Y1, θ)

∂θ

∂q(Y1, θ)

∂θ ′

∣

∣

∣

∣

θ=θ0

+
∞
∑

t=1

E

[

∂q(Y1, θ)

∂θ

∂q(Yt+1, θ)

∂θ ′ + ∂q(Yt+1, θ)

∂θ

∂q(Y1, θ)

∂θ ′

]

∣

∣

∣

∣

∣

θ=θ0

By the moment approach, we can estimate V (θ) by

V̂n = 1

n − a

n−a
∑

t=1

∂q(yt , θ)

∂θ

∂q(yt , θ)

∂θ ′

∣

∣

∣

∣

∣

θ=θ̂n

+ 1

n−a

mn
∑

τ=1

ωnτ

n−a−τ
∑

t=1

[

∂q(yt , θ)

∂θ

∂q(yt+τ , θ)
∂θ ′ + ∂q(yt+τ , θ)

∂θ

∂q(yt , θ)

∂θ ′

]

∣

∣

∣

∣

∣

θ=θ̂n

,

whereωnτ is a reducing factor which tends to 1 for all fixed τ and tends to 0 as τ → ∞
with certain rate. For example, by Theorem 6.20 and Lemma 6.22 of White (2001) and
under the regularity conditions guaranteeing θ̂n − θ0

a.s.→ 0, we may choose mn → ∞
with a rate mn = o(n1/4) and ωnτ = 1 − τ/(mn + 1) for τ = 1, 2, . . . ,mn , and we
have

V̂n − Vn(θ0)
a.s.→ 0.

3.3 Rounding IID data

As mentioned in the Introduction, without loss of generality, from now on we will
assume that the observations are rounded to the nearest integers. Suppose that the
original sample X1, . . . ,Xn are iid d-dimension random vectors. If a = 0, then the
SOS MLE simply reduces to the exact MLE. Therefore, the general theory for MLE
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holds. In more detailed, under this assumption, the log-likelihood of the rounded
observations y1, . . . , yn is

ln(y; θ) =
n
∑

t=1

log p(yt , θ) =
∞
∑

j=−∞
fjqj(θ)

where θ is a k-dimensional parameter vector, qj(θ) = log p( j; θ) with

p( j; θ) = P

(

Xt ∈
d
∏

h=1

( jh − 0.5, jh + 0.5]
)

, j = ( j1, j2, . . . jd)
′

and fj is the frequency of j among y1, . . . , yn .
By Theorems 1 and 2, we have the following corollaries:

Corollary 1 Under regularity conditions 1–3, 5 and 6, we have

̂θ → θ0, almost surely.

Corollary 2 Under regularity conditions 1–3 and 5–7,

√
n(̂θn − θ)

d→ N (0, I −1(θ0))

where the Fisher information matrix is given by

I (θ0) =
∞
∑

j=−∞

1

pj(θ)

∂pj(θ)

∂θ

∂pj(θ)

∂θ ′

∣

∣

∣

∣

∣

∣

θ0

Corollaries 1 and 2 show that the maximum likelihood estimates of the parameters
based on rounded data are consistent and asymptotically normal. An estimate of I (θ0)

can be obtained by replacing θ0 with θ̂n .

3.4 Rounding the ARMA(p, q) and AR(p) models

In this subsection, we first spell out the ARMA model, paying particular interest to its
distributional properties with an unrounded (true) sample. Following that, we derive
the SOS estimator and its properties.

Suppose that {Xt } is a causal ARMA(p, q) process

Xt − φ1 Xt−1 − · · · − φp Xt−p = c + εt − ϑ1εt−1 − · · · − ϑqεt−q , (8)

where εt
i.i.d.∼ N (0, σ 2) for t = 1, . . . , n. It is well known that the causality condition

is that 1 − φ1z − · · · − φpz p �= 0 for |z| ≤ 1.
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Lemma 1 Let {Xt } satisfy the causal ARMA(p, q) process (8), or equivalently,

φ(B)Xt = c + ϑ(B)εt

where

φ(B) = 1 − φ1 B − · · · − φp B p

and

ϑ(B) = 1 − ϑ1 B − · · · − ϑq Bq ,

and B is the backward-shift operator, that is,

B j Xt = Xt− j , j = 0,±1,±2, . . .

Then, the causal expression of Xt can be given as follows:

Xt = μ+ ψ(B)εt = μ+
∞
∑

j=0

ψ jεt− j

where

ψ(B) = ϑ(B)

φ(B)
=

∞
∑

j=0

ψ j B j , μ = c

1 − φ1 − · · · − φp
,

and
∑∞

j=0 | ψ j |< ∞.

This lemma can be found in Brockwell and Davis (1991), Chapter 3.

Proposition 1 Under the assumptions of Lemma 1 and the assumptions that εt
i.i.d.∼

N (0, σ 2), the following assertions hold:

• For any fixed m, (Xt , Xt−1, . . . , Xt−m)
′ is of multivariate normal distribution N (μ·

1m+1,�(m+1)×(m+1))withμ = c/(1−φ1−· · ·−φm), γi = E(Xt+i −μ)(Xt −μ),
and

�(m+1)×(m+1) = σ 2 · Vp+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

γ0 γ1 γ2 · · · γm

γ1 γ0 γ1 · · · γm−1
γ2 γ1 γ0 · · · γm−2
...

...
...

...
...

γm γm−1 γm−2 · · · γ0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

·

• {Xt } is a strictly stationary Gaussian time series.
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Proof That X = (X0, X1, . . . , Xm)
′ is an m + 1 dimensional normal distribution can

be seen from the causal expression Xt = μ+∑∞
k=0 ψkεt−k . The expression of μ can

be obtained by taking expectation on both sides of (8). The expression of � can be
obtained by definition of γi . Further, by the causal expression of Xt , we have

γi = σ 2
∞
∑

k=0

ψkψk+i .

��
For a general ARMA(p, q)model, we need to take a = p + q and apply the the-

ory discussed in Sect. 3.1. Now, as an illustration, consider the case of ARMA(1, 1).
Based on the general procedure of SOS, split the rounded data as follows:

(Y1,Y2,Y3) , (Y2,Y3,Y4) , . . . , (Yn−2,Yn−1,Yn) .

For any integer j1, j2, and j3, let j = ( j1, j2, j3)′, Aj =∏3
h=1( jh −0.5, jh +0.5] and

Xt = (Xt , Xt+1, Xt+2)
′. Then the probability of the event {Y1= j1,Y2= j2,Y3= j3} is

found as follows:

P(Xt ∈ Aj)
�= P (Yt = j1,Yt+1 = j2,Yt+2 = j3)

=
∫

(X1,X2,X3)∈A j

1

2π |�3×3| 1
2

· exp

⎡

⎣−1

2

⎛

⎝

x1 − μ

x2 − μ

x3 − μ

⎞

⎠

′
�−1

3×3

⎛

⎝

x1 − μ

x2 − μ

x3 − μ

⎞

⎠

⎤

⎦ dx .

Considering Y1, . . . ,Yn−2 as a sample of iid 3-dimensional random vectors, the SOS
log-likelihood is

lsos(y; θ) =
n−2
∑

t=1

log p(yt ; θ) =
∞
∑

j=−∞
fjq( j, θ) (9)

where θ is a 4-dimensional (μ, σ 2, φ1 and ϑ1) parameter vector, j = ( j1, j2, j3)′ and

fj =
n−2
∑

t=1

I{Yt =j}, q( j; θ) = log p( j; θ),

p( j; θ) = P

(

Xt ∈
3
∏

t=1

( jt − 0.5, jt + 0.5]
)

.

By Theorems 1 and 2, we have the following corollaries.

Corollary 3 Suppose conditions of Proposition 1 hold, then we have

̂θn → θ0 a.s.
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Corollary 4 Suppose conditions of Proposition 1 hold, then we have,

√
n − a

(

θ̂n − θ0

) d→ N
(

0, I −1(θ0)V (θ0)I
−1(θ0)

)

where

I (θ0) =
∞
∑

j=−∞

1

p( j; θ)
∂p( j; θ)
∂θ

∂p( j; θ)
∂θ ′

∣

∣

∣

∣

∣

∣

θ0

V (θ0) = I (θ0)+
∞
∑

t=1

∞
∑

j,k=−∞

pt,j,k(θ)

pj(θ)pk(θ)

[

∂pj(θ)

∂θ

∂pk(θ)

∂θ ′ + ∂pk(θ)

∂θ

∂pj(θ)

∂θ ′

]

∣

∣

∣

∣

∣

∣

θ0

,

where

pt,j,k(θ) = P
(

X1 ∈ Aj,X1+t ∈ Ak
)

.

4 Ramification of the SOS approach

As argued in Remark 3 in Sect. 2, the parameters may not be identifiable in the
SOS method if the a chosen too small or the computation too time consuming if a is
large. Now, we propose the following modified procedure to obtain the SOS Estimator
(MSOSE) of parameters θ .

1. Split the data as the following:

(X1, X2) (X2, X3) (X3, X4) · · · (Xn−3, Xn−2) (Xn−2, Xn−1) (Xn−1, Xn)

(X1, X3) (X2, X4) (X3, X5) · · · (Xn−3, Xn−1) (Xn−2, Xn)

(X1, X4) (X2, X5) (X3, X6) · · · (Xn−3, Xn)
...

...
...

...
...

(X1, Xn−1) (X2, Xn)

(X1, Xn)

2. For brevity, let Xi t = (Xt , Xt+i )
′, where i = 1, 2, . . . , n−1; t = 1, 2, . . . , n−i .

Consider {Xi t } as a sample of independent 2-dimensional random vectors with 1 ≤
i ≤ a, 1 ≤ t ≤ n − i , where a is a fixed integer in {1, 2, . . . , n −1}. Then maximizing
the SOS log-likelihood

∑

i
∑

t qi (yi t , θ) where qi (yi t , θ) = log pi (yi t , θ), pi (yi t , θ)

is the probability that Xi t falls in the square with center yi t and edge length of rounding
unit. We then obtain an MSOSE of parameters θ , denoted bŷθn .

As mentioned in Sect. 2, without loss of generality, suppose that the original sam-
ple is X1, . . . , Xn . Under this assumption, the modified SOS log-likelihood of the
observations {yi t } is
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lmsos(y, θ) =
n−1
∑

t=1

log p1(y1t , θ)+
n−2
∑

t=1

log p2(y2t , θ)+ · · · +
n−a
∑

t=1

log pa(yat , θ)

=
n−1
∑

t=1

q1(y1t , θ)+
n−2
∑

t=1

q2(y2t , θ)+ · · · +
n−a
∑

t=1

qa(yat , θ)

where a is fixed.
Similar to the discussion given in Sect. 3, we have the following theorems.

Theorem 4 Under regularity conditions 1–7,

̂θn → θ0 a.s.

Theorem 5 Under regularity conditions 1–10,

√
n − a(θ̂n − θ0)

d→ N (0,G)

where the matrix G is given in the proof of these theorems which is postponed to the
Appendix.

5 Simulation results

5.1 AR(1) model

Consider the following two AR(1) models:

(a) Xt = c + φXt−1 + εt ; (b) Xt = φXt−1 + εt (10)

where εt
i.i.d.∼ N (0, σ 2). Data X1, . . . , Xn are generated from the above models and

denote the corresponding rounded data by Y1, . . . ,Yn . The AR(1) models of the forms
in (10) are fitted by various methods and the simulation results are summarized in
Tables 1 and 2 for models (a) and (b) of (10) respectively. The first two columns
show the parameter notation and the true values of the parameters. In the simula-
tion, the sample size is 10,000 for model (a) and 100 for model (b) and repeated 100
times for each model. A traditional procedure for the unrounded data is the so-called
conditional maximum likelihood estimator (CMLE). The third column, labeled as
“unrounded sample”, shows the average of the estimates of parameters by the CMLE
based on the unrounded data X and the corresponding square roots of the estimated
MSE (mean squared error) in parentheses. The fourth columns, labeled as “uncor-
rected, rounded”, presents the average of the estimates of parameters by the CMLE
based on the rounded data Y and the corresponding square roots of the MSE. The
fifth columns, labeled “A–K corrected”, presents the average of estimates and their
square roots of MSE, adjusted by the formulae (3.1.1)–(3.1.3) for the rounded data
for autoregressive processes, suggested by Stam and Cogger (1993). The last column,
labeled as “SOS method”, presents the simulation results by the new method.
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Table 1 Simulations for the model (a) of (10)

True Unrounded Uncorrected A–K SOS
model sample rounded corrected method

μ 1.0 1.0000 (0.0031) 1.0000 (0.0026) 1.0004 (0.0027) 1.0000 (0.0050)

φ 0.3 0.2988 (0.0107) 0.0976 (0.2028) 0.1015 (0.1988) 0.3035 (0.0314)

σ 2 0.0625 0.0624 (0.0009) 0.0556 (0.0073) −0.0280 (0.0905) 0.0625 (0.0018)

μ 1.0 1.0006 (0.0048) 1.0009 (0.0040) 1.0000 (0.0037) 1.0005 (0.0058)

φ 0.5 0.5003 (0.0086 ) 0.2261 (0.2743) 0.2269 (0.2736) 0.5093 (0.0249)

σ 2 0.0625 0.0626 (0.0010) 0.0792 (0.0169) −0.0086 (0.0711) 0.0619 (0.0022)

μ 1.0 0.9985 (0.0123) 0.9990 (0.0128) 1.0000 (0.0121) 1.0000 (0.0122)

φ 0.8 0.8007 (0.0058) 0.5799 (0.2204) 0.5840 (0.2163) 0.8079 (0.0122)

σ 2 0.0625 0.0626 (0.0008) 0.1545 (0.0920) 0.0422 (0.0205) 0.0600 (0.0033)

μ 2.25 2.2501 (0.0035) 2.1861 (0.0821) 2.1679 (0.0822) 2.2557 (0.0092)

φ 0.3 0.2991 (0.009) 0.1559 (0.1445) 0.1592 (0.1411) 0.3076 (0.0208)

σ 2 0.0625 0.0625 (0.0009) 0.1403 (0.0778) 0.0549 (0.0081) 0.0595 (0.0043)

μ 2.25 2.2504 (0.0047) 2.1890 (0.0612) 2.1890 (0.0613) 2.2526 (0.0071)

φ 0.5 0.4988 (0.0089) 0.2930 (0.2073) 0.2995 (0.2008) 0.5130 (0.0216)

σ 2 0.0625 0.0626 (0.0009) 0.1489 (0.0864) 0.0577 (0.0060) 0.0602 (0.0034)

μ 2.25 2.2506 (0.0113) 2.2402 (0.0149) 2.2387 (0.0196) 2.2491 (0.0126)

φ 0.8 0.7997 (0.0055) 0.5914 (0.2089) 0.5972 (0.2031) 0.8099 (0.0129)

σ 2 0.0625 0.0626 (0.0009) 0.1673 (0.1049) 0.0549 (0.0086) 0.0596 (0.0039)

μ 1 1.0014 (0.0154) 1.0014 (0.0156) 0.9979 (0.0137) 1.0023 (0.0142)

φ 0.3 0.2993 (0.0094) 0.2781 (0.0238) 0.3022 (0.0118) 0.3011 (0.0098)

σ 2 1 0.9998 (0.0146) 1.0908 (0.0921) 0.9991 (0.0167) 0.9971 (0.0158)

μ 1 0.9982 (0.0197) 0.9982 (0.0196) 1.0004 (0.0178) 1.0034 (0.0189)

φ 0.5 0.5004 (0.0091) 0.4712 (0.0303) 0.5050 (0.0103) 0.4991 (0.0094)

σ 2 1 1.0011 (0.0147) 1.1036 (0.1048) 1.0017 (0.0159) 0.9995 (0.0141)

μ 1 1.0231 (0.1056) 1.0233 (0.1058) 1.0109 (0.1016) 0.9881 (0.0982)

φ 0.9 0.9000 (0.0051) 0.8859 (0.0151) 0.9041 (0.0060) 0.9006 (0.0046)

σ 2 1 1.0008 (0.0150) 1.1506 (0.1516) 1.0020 (0.0184) 1.0003 (0.0156)

μ 1 0.9996 (0.0070) 0.1000 (0.0075) 1.0007 (0.0073) 1.0000 (0.0087)

φ 0.3 0.3000 (0.0111) 0.2292 (0.0716) 0.2347 (0.0660) 0.3019 (0.0105)

σ 2 0.25 0.2500 (0.0037) 0.3341 (0.0842) 0.2466 (0.0061) 0.2481 (0.0052)

μ 1 1.0009 (0.0099) 1.0005 (0.0102) 1.0011 (0.0107) 1.0002 (0.0105)

φ 0.5 0.4999 (0.0084) 0.3999 (0.3482) 0.4091 (0.0915) 0.5025 (0.0121)

σ 2 0.25 0.2498 (0.0036) 0.3482 (0.0983) 0.2510 (0.0051) 0.2474 (0.0055)

μ 1 1.0005 (0.0264) 0.9998 (0.0266) 0.9981 (0.0245) 1.0022 (0.0261)

φ 0.8 0.7998 (0.0052) 0.7140 (0.0863) 0.7252 (0.0752) 0.8005 (0.0067)

σ 2 0.25 0.2497 (0.0034) 0.3806 (0.1307) 0.2558 (0.0079) 0.2472 (0.0064)

μ 2.25 2.250 (0.0077) 0.2480 (0.0088) 2.2480 (0.0077) 2.2506 (0.0070)

φ 0.3 0.3005 (0.0102) 0.2304 (0.0703) 0.2352 (0.0658) 0.3025 (0.0136)

σ 2 0.25 0.2497 (0.0037) 0.3390 (0.0892) 0.2515 (0.0050) 0.2488 (0.0053)
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Table 1 continued

True Unrounded Uncorrected A–K SOS
model sample rounded corrected method

μ 2.25 2.2510 (0.0099) 2.2508 (0.0104) 2.2527 (0.0105) 2.2494 (0.0113)

φ 0.5 0.4980 (0.0083) 0.3984 (0.1020) 0.4097 (0.0908) 0.5028 (0.0109)

σ 2 0.25 0.2501 (0.0039) 0.3500 (0.1001) 0.2524 (0.0060) 0.2473 (0.0054)

μ 2.25 2.2524 (0.0254) 2.2524 (0.0252) 2.2491 (0.0229) 2.2574 (0.0260)

φ 0.8 0.7998 (0.0056) 0.7144 (0.0860) 0.7252 (0.0753) 0.8004 (0.0076)

σ 2 0.25 0.2499 (0.0035) 0.3808 (0.1309) 0.2541 (0.0066) 0.2471 (0.0061)

Table 2 Simulations for the model (b) of (10)

True Unrounded Uncorrected A–K SOS
model sample rounded corrected method

φ −0.8 −0.81 (0.058) −0.58 (0.131) −0.78 (0.145) −0.76 (0.113)

σ 2 0.0625 0.06 (0.009) 0.16 (0.041) 0.05 (0.042) 0.07 (0.027)

φ −0.5 −0.51 (0.096) −0.23 (0.161) −0.47 (0.371) −0.39 (0.291)

σ 2 0.0625 0.06 (0.009) 0.07 (0.029) −0.01 (0.029) 0.07 (0.019)

φ −0.2 −0.20 (0.100) −0.06 (0.093) −0.15 (0.241) −0.15 (0.266)

σ 2 0.0625 0.06 (0.009) 0.05 (0.023) −0.03 (0.022) 0.058 (0.016)

φ 0 −0.03 (0.091) −0.01 (0.083) −0.04 (0.244) 0.02 (0.262)

σ 2 0.0625 0.06 (0.009) 0.05 (0.019) −0.04 (0.019) 0.06 (0.015)

φ 0.2 0.19 (0.095) 0.05 (0.112) 0.12 (0.370) 0.10 (0.234)

σ 2 0.0625 0.06 (0.010) 0.05 (0.023) −0.03 (0.023) 0.06 (0.014)

φ 0.5 0.46 (0.086) 0.16 (0.139) 0.33 (0.314) 0.46 (0.275)

σ 2 0.0625 0.06 (0.009) 0.07 (0.029) −0.01 (0.028) 0.06 (0.021)

φ 0.8 0.77 (0.072) 0.52 (0.146) 0.74 (0.174) 0.77 (0.108)

σ 2 0.0625 0.06 (0.010) 0.15 (0.035) 0.04 (0.035) 0.06 (0.026)

φ −0.8 −0.80 (0.059) −0.70 (0.039) −0.78 (0.083) −0.78 (0.088)

σ 2 0.25 0.24 (0.059) 0.38 (0.077) 0.25 (0.061) 0.25 (0.058)

φ −0.5 −0.51 (0.089) −0.42 (0.089) −0.50 (0.099) −0.52 (0.122)

σ 2 0.25 0.25 (0.037) 0.35 (0.052) 0.25 (0.052) 0.25 (0.058)

φ −0.2 −0.19 (0.101) −0.15 (0.105) −0.19 (0.130) −0.20 (0.127)

σ 2 0.25 0.25 (0.036) 0.33 (0.050) 0.25 (0.050) 0.25 (0.045)

φ 0 −0.01 (0.099) −0.01 (0.109) −0.01 (0.138) 0.01 (0.129)

σ 2 0.25 0.25 (0.040) 0.33 (0.052) 0.25 (0.052) 0.24 (0.045)

φ 0.2 0.18 (0.105) 0.15 (0.105) 0.19 (0.129) 0.20 (0.147)

σ 2 0.25 0.25 (0.036) 0.33 (0.051) 0.24 (0.051) 0.24 (0.043)

φ 0.5 0.49 (0.073) 0.39 (0.092) 0.47 (0.104) 0.48 (0.102)

σ 2 0.25 0.25 (0.035) 0.35 (0.048) 0.26 (0.048) 0.25 (0.048)

φ 0.8 0.77 (0.070) 0.68 (0.087) 0.76 (0.081) 0.79 (0.076)
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Table 2 continued

True Unrounded Uncorrected A–K SOS
model sample rounded corrected method

σ 2 0.25 0.25 (0.038) 0.38 (0.057) 0.26 (0.058) 0.24 (0.048)

φ −0.8 −0.80 (0.060) −0.77 (0.067) −0.79 (0.064) −0.79 (0.059)

σ 2 1 1.00 (0.130) 1.13 (0.148) 1.00 (0.149) 0.98 (0.153)

φ −0.5 −0.50 (0.073) −0.47 (0.077) −0.49 (0.079) −0.49 (0.092)

σ 2 1 1.02 (0.152) 1.12 (0.173) 1.02 (0.173) 0.99 (0.155)

φ −0.2 −0.21 (0.103) −0.20 (0.105) −0.21 (0.113) −0.20 (0.105)

σ 2 1 0.99 (0.139) 1.07 (0.157) 0.98 (0.158) 1.00 (0.152)

φ 0 −0.02 (0.104) −0.01 (0.101) −0.02 (0.109) −0.01 (0.113)

σ 2 1 1.00 (0.160) 1.09 (0.179) 1.01 (0.179) 1.00 (0.163)

φ 0.2 0.19 (0.081) 0.18 (0.082) 0.19 (0.088) 0.19 (0.104)

σ 2 1 0.98 (0.146) 1.06 (0.161) 0.98 (0.161) 1.01 (0.156)

φ 0.5 0.48 (0.092) 0.46 (0.094) 0.48 (0.097) 0.50 (0.082)

σ 2 1 0.98 (0.134) 1.08 (0.138) 0.98 (0.139) 1.00 (0.131)

φ 0.8 0.78 (0.066) 0.75 (0.073) 0.78 (0.069) 0.80 (0.060)

σ 2 1 0.99 (0.145) 1.13 (0.159) 0.99 (0.157) 0.98 (0.149)

φ −0.8 −0.80 (0.058) −0.79 (0.060) −0.80 (0.059) −0.79 (0.061)

σ 2 4 3.94 (0.596) 4.09 (0.612) 3.95 (0.611) 3.94 (0.532)

φ −0.5 −0.52 (0.076) −0.51 (0.079) −0.52 (0.079) −0.47 (0.094)

σ 2 4 3.98 (0.633) 4.08 (0.654) 3.98 (0.654) 3.92 (0.447)

φ −0.2 −0.21 (0.096) −0.20 (0.099) −0.21 (0.100) −0.19 (0.109)

σ 2 4 4.10 (0.589) 4.20 (0.600) 4.11 (0.600) 3.95 (0.550)

φ 0 −0.01 (0.105) −0.02 (0.100) −0.02 (0.102) 0.00 (0.110)

σ 2 4 3.96 (0.563) 4.04 (0.580) 3.96 (0.580) 3.89 (0.541)

φ 0.2 0.18 (0.096) 0.18 (0.096) 0.18 (0.097) 0.20 (0.110)

σ 2 4 4.13 (0.562) 4.20 (0.570) 4.11 (0.571) 3.98 (0.546)

φ 0.5 0.48 (0.096) 0.47 (0.096) 0.48 (0.097) 0.48 (0.084)

σ 2 4 3.99 (0.564) 4.10 (0.572) 4.00 (0.573) 3.98 (0.539)

φ 0.8 0.78 (0.066) 0.77 (0.068) 0.78 (0.067) 0.80 (0.064)

σ 2 4 3.95 (0.558) 4.08 (0.586) 3.95 (0.586) 3.94 (0.548)

Table 1 presents results of a simulation study on the model (a) of (10) with parameter
combinations of μ = c

1−φ = 1, 2.25, φ = 0.3, 0.5, 0.8, 0.9 and σ 2 = 0.0625, 0.25,
1.0.

One can see that the SOSE significantly improves the CMLE. Comparing with the
A–K correction, one sees that the SOSE is also clearly better than the A–K correc-
tion when σ 2 is small and slightly better than the latter when σ 2 is large. A serious
draw-back of the A–K correction is that the estimate of σ 2 may take negative values.

Table 2 shows the simulation results for the model (b) of (10) with parameter com-
binations of φ = −0.8,−0.5,−0.2, 0, 0.2, 0.5, 0.8 and σ 2 = 0.0625, 0.25, 1, 4.
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The simulation results show that both A–K and SOS are significantly improves the
CMLE. The simulation results show that the SOS method produces smaller MSE in
25 cases and slightly larger MSE in 2 cases among total 28 cases. We believe that the
SOS is slightly better than A–K correction and exceptions are due to the randomness
since the length size is only 100.

5.2 AR(2) model and ARMA(1,1) model

In order to save computation time, we present the modified SOSE (MSOSE) as pro-
posed in Sect. 4. We shall adopt this method to the following models AR(2) and
ARMA(1,1):

(a) Xt = c + φ1 Xt−1 + φ2 Xt−2 + εt ; (b) Xt − φXt−1 = c + εt − ϑεt−1. (11)

where εt ∼ i id N (0, σ 2). We generate X1, . . . , Xn first from the models and then
round them to Y1, . . . ,Yn .

As an illustration, consider model (b) of (11). We have

(Xt , Xt−1)
′ ∼ N (μ1,�1) , (Xt , Xt−2)

′ ∼ N (μ1,�2)

where μ = c/(1 − φ),

�1 =
[

R(0) R(1)
R(1) R(0)

]

, �2 =
[

R(0) R(2)
R(2) R(0)

]

,

and

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

R(0) = 1 + ϑ2 − 2ϑφ

1 − φ2 σ 2,

R(1) = φ(1 + ϑ2)− ϑ(1 + φ2)

1 − φ2 σ 2,

R(2) = φ2(1 + ϑ2)− φϑ(1 + φ2)

1 − φ2 σ 2.

Based on the above argument, split the data Y1,Y2, . . . ,Yn as follows:

(Y1,Y2) (Y2,Y3) (Y3,Y4) · · · (Yn−3,Yn−2) (Yn−2,Yn−1) (Yn−1,Yn)

(Y1,Y3) (Y2,Y4) (Y3,Y5) · · · (Yn−3,Yn−1) (Yn−2,Yn)

Then the MSOS log-likelihood of the rounded observations is

lmsos(y; θ) =
2
∑

k=1

n−k
∑

t=1

log pk(yt , yt+k, θ) =
2
∑

k=1

n−k
∑

t=1

qk(yt , yt+k, θ) (12)

where θ = (μ, R(0), R(1), R(2))′ and
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pk(yt , yt+k, θ) = Pθ (Xt ∈ (yt − 0.5, yt + 0.5]; Xt+k ∈ (yt+k − 0.5, yt+k + 0.5]) ,
qk(yt , yt+k, θ) = log pk(yt , yt+k, θ).

If we write pk(i, j, θ) as pi jk(θ), then

pi jk(θ) =
∫ i+0.5

i−0.5

∫ j+0.5

j−0.5

1

2π |�k | 1
2

exp

[

−1

2

(

x1 − μ

x2 − μ

)′
�−1

k

(

x1 − μ

x2 − μ

)]

dx2dx1

where

�k =
(

R(0) R(k)
R(k) R(0)

)

, k = 1, 2.

The MSOSE will processed through the following steps.

Step 1 Obtain the MSOSE of parameters μ, R(0), R(1), and R(2) by maximizing
(12), and denoted them by μ̂, R̂(0), R̂(1) and R̂(2), respectively.

Step 2 Solve the equations

R̂(0) = 1 + ϑ2 − 2ϑφ

1 − φ2 σ 2,

R̂(1) = φ(1 + ϑ2)− ϑ(1 + φ2)

1 − φ2 σ 2, (13)

R̂(2) = φ2(1 + ϑ2)− φϑ(1 + φ2)

1 − φ2 σ 2.

Then we obtain the estimators of φ, ϑ and σ 2, denoted by φ̂, ϑ̂ and σ̂ 2, respectively.

Remark 4 Generally, the system of Eqs. (13) does have a solution provided
(

R̂(0) R̂(1)
R̂(1) R̂(2)

)

is positive definite. Because of the strong consistency of the MSOSE

and of the limiting matrix being positive definite, we know that for almost all large n,
the equations (13) does have a solution. However, sometimes, due to random effect,

the matrix
(

R̂(0) R̂(1)
R̂(1) R̂(2)

)

may not be positive definite and hence the equation system (13)

may not have any solutions. In this case, we may minimize the mean square errors,
that is,
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min
μ,φ,ϑ,σ 2

(

(

R̂(0)− 1 + ϑ2 − 2ϑφ

1 − φ2 σ 2
)2

+
(

R̂(1)− φ(1 + ϑ2)− ϑ(1 + φ2)

1 − φ2 σ 2
)2

+
(

R̂(2)− φ2(1 + ϑ2)− φϑ(1 + φ2)

1 − φ2 σ 2
)2
)

For this set of models, the simulation comparison is made only between CMLE and
MSOSE since the A–K correction does not apply to these models. The simulations
are based on 100 datasets of sample lengths 1,000 and 10,000 as shown in Tables 3
and 4. The simulation result show that the MSOSE is much better than the CMLE in
the sense of smaller biases and square root of MSE (Tables 3, 4).

6 Applications

We shall revisit the data analysis given in Table Series C of the book Time Series
Analysis (Forecasting and Control) (Box et al. 1994, pp. 544) to illustrate our estima-
tion procedures. The 226 data are records of chemical process temperature readings
per minute. From Table Series C , we can see that the 226 chemical temperature data
take values at most to one digit after decimal point. But we know that temperature is
continuous. Thus, the 226 values in the data set are in fact having rounded. If con-
ventional methods are directly used to analyze the rounded data, this will cause some
serious errors, as explored in the Introduction. In order to avoid such problems, we
use our estimation procedures to deal with the rounded data. As pointed out in the
book (pp. 189) that data in Table Series C are suggested to be an AR(1) process about
φ = 0.8 after taking the first difference. That is, the data satisfy the following model

�xt = c + φ � xt−1 + εt ,

Table 3 Simulations for the model (a) of (11)

Method ĉ(
√

MSE) φ̂1(
√

MSE) φ̂2(
√

MSE) σ̂ 2(
√

MSE)

(c = 1, φ1 = 0.8, φ2 = −0.15, σ 2 = 1.0, n = 1, 000)

CMLE 1.0549 (0.1015) 0.7303 (0.0759) −0.0973 (0.0627) 1.1306 (0.1396)

MSOSE 1.0137 (0.0768) 0.7984 (0.0355) −0.1518 (0.0373) 0.9959 (0.0493)

(c = 1, φ1 = 0.8, φ2 = −0.15, σ 2 = 1.0, n = 10, 000)

CMLE 1.0463 (0.0539) 0.7339 (0.0667) −0.0997 (0.0514) 1.1346 (0.1356)

MSOSE 1.0001 (0.0270) 0.8010 (0.0107) −0.1506 (0.0120) 0.9988 (0.01659)

(c = 1, φ1 = 0.5, φ2 = 0.24, σ 2 = 1.0, n = 1, 000)

CMLE 1.0800 (0.1289) 0.4716 (0.0418) 0.2472 (0.0326) 1.1070 (0.1177)

MSOSE 1.0093 (0.0955) 0.4987 (0.0333) 0.2389 (0.0356) 1.0102 (0.0510)

(c = 1, φ1 = 0.5, φ2 = 0.24, σ 2 = 1.0, n = 10, 000)

CMLE 1.0756 (0.0830) 0.4759 (0.0260) 0.2446 (0.0098) 1.1089 (0.1102)

MSOSE 0.9953 (0.0309) 0.5025 (0.0118) 0.2384 (0.0116) 0.9967 (0.0154)
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Table 4 Simulations for the model (b) of (11)

Method ĉ(
√

MSE) φ̂(
√

MSE) ϑ̂(
√

MSE) σ̂ 2(
√

MSE)

(c = 0.5, φ = 0.7, ϑ = −0.5, σ 2 = 1.0, n = 1, 000)
CMLE 0.4984 (0.0623) 0.7019 (0.0269) −0.3619 (0.1422) 1.1976 (0.2038)

MSOSE 0.5078 (0.0700) 0.6945 (0.0265) −0.5143 (0.0695) 0.9868 (0.0605)

(c = 0.5, φ = 0.7, ϑ = −0.5, σ 2 = 1.0, n = 10, 000)

CMLE 0.5057 (0.0230) 0.6975 (0.0082) −0.3663 (0.1340) 1.2141 (0.2147)

MSOSE 0.4980 (0.0183) 0.7002 (0.0081) −0.5038 (0.0206) 0.9947 (0.0196)

(c = 0.5, φ = 0.9, ϑ = −0.5, σ 2 = 1.0, n = 1, 000)

CMLE 0.5248 (0.0932) 0.8958 (0.0155) −0.3389 (0.1639) 1.2620 (0.2696)

MSOSE 0.5281 (0.0925) 0.8952 (0.0153) −0.5101 (0.0660) 0.9859 (0.0696)

(c = 0.5, φ = 0.9, ϑ = −0.5, σ 2 = 1.0, n = 10, 000)

CMLE 0.5041 (0.0307) 0.8996 (0.0051) −0.0083 (0.1620) 1.2570 (0.2576)

MSOSE 0.5004 (0.0254) 0.8999 (0.0044) −0.5058 (0.0206) 0.9902 (0.0232)

Table 5 Comparisons of
CMLE, A–K and SOS methods
for a real data set given in
Box et al.

Uncorrected A–K corrected SOS method
rounded

c −0.0092 −0.0092 −0.0061

φ 0.8074 0.8074 0.8274

σ 2 0.0178 0.0165 0.0164

where εt
i.i.d.∼ N (0, σ 2) and � denotes the first order difference operator, that is,

�xt = xt − xt−1. Table 5 provides parameter estimates of θ = (c, φ, σ 2) using the
CMLE, A–K and SOS methods, respectively. In this example, a is chosen as 1 for
the SOS method, the computation time is about 6 seconds. The computation time
for the CMLE and A–K methods is about 1 second each by using S-Plus. From
Table 5, we see that the SOSE of φ is 0.8274 and the CMLE of φ is 0.8074, giving
the difference of 0.02. Note that

√

n/σ 2 × 0.02 = 2.3426 >> 1.96, showing that
the difference between the two estimation approaches is significant. The real data set
suggests that the SOS method is superior to the conventional methods when dealing
with the rounded data.

7 Comments and conclusions

As mentioned in the Introduction, rounded data are so popularly encountered in almost
every discipline and huge data sets are often met in many situations. Therefore, the
rounding error must be taken into account when statistical inferences are made to such
problems. From the analysis of the real data given in book by Box et al. the error
due to the rounding effect is significant even when the sample size is as small as 225.
Our simulation also shows that the rounding errors can have more important effect on
dependent sequences such as ARMA(p) models.
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On the other hand, although our discussion is limited to rounding errors, the idea
of our SOS method applies to the other coarsened errors such as heaped, ceilinged
and trimmed error which are frequently met in applications and having more serious
effects on statistical inferences involving large data sets.

Although this paper has dealt with some important rounded data problems, many
rounded data problems have not yet been dealt with, for example, the handling of
rounded data in all kinds of non-parametric statistical models. Further investigation is
needed.
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Appendix

Definition 1 For a sequence of random vectors {Zt }, letF t
τ ≡σ(Zτ , . . . , Zt ),F t−∞ ≡

σ(. . . , Zt ), F∞
τ ≡ σ(Zτ , . . .) be the σ -fields generated by the random variables indi-

cated in the brackets, and define the mixing coefficients

φm ≡ sup
τ

sup
{F∈F τ−∞,G∈F∞

τ+m :P(F>0)}
|P(G|F)− P(G)|

and

αm ≡ sup
τ

sup
{F∈F τ−∞,G∈F∞

τ+m }
|P(G ∩ F)− P(G)P(F)|.

If, for the sequence {Zt }, φ(m) → 0 as m → ∞, {Zt } is called φ-mixing. If, for the
sequence {Zt }, α(m) → 0 as m → ∞, {Zt } is called α-mixing.

Lemma 2 Let (�,F , P) be a probability space and let g be an F -measurable func-
tion into R

k . Define Yt ≡ g(. . . , Zt−1, Zt , Zt+1, . . .), where Zt is a q ×1-dimensional
random vector. If {Zt } is strictly stationary, then {Yt } is also strictly stationary.

Proof See Stout (1974, p. 170, p. 182). ��
Lemma 3 Let (�,F , P) be a probability space and let g be an F -measurable func-
tion into R

k . Define Yt ≡ g(Zt , Zt+1, . . . , Zt+τ ), where τ is finite. If the sequence of
q ×1 vectors {Zt } is φ-mixing (α-mixing) of size −a, a > 0, then {Yt } is also φ-mixing
(or α-mixing) with the same size −a.

Proof See White and Domowitz (1984, Lemma 2.1). ��
Lemma 4 Let (�,F , P) be a probability space and {Zt } be a strictly stationary
sequence. If α(m) → 0 as m → ∞. Then {Zt } is ergodic.

Proof See Rosenblatt (1956). ��
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Lemma 5 Let (�,F , P) be a probability space and {Zt } be a strictly stationary

ergodic scalar sequence with E |Zt | < ∞, then Z̄n ≡ 1
n

∑n
t=1 Zt

a.s.→ μ ≡ E Zt .

Proof See Stout (1974, p. 181). ��
Proof of Theorem 1 Under regularity condition 4, for each fixed θ ∈ �, by
Lemmas 2–4, it is easy to see that q(Yt , θ) is a strictly stationary ergodic sequence.
Under regularity condition 5, from Lemma 5, as n → ∞, we have

ψn(Y, θ) ≡ 1

n − a

n−a
∑

t=1

q(Yt , θ)
a.s.→ ψ(θ0, θ) = Eq(Yt , θ)

=
∑

j

p( j, θ0) log p( j, θ). (14)

The regularity condition 3 guarantees that θ = θ0 is the only maximizer of ψ(θ0, θ).

Next, we show that the convergence (14) is uniform for θ ∈ �, where � is an
arbitrarily given compact subset of �. Choose a finite subset {θi , i = 1, . . . ,m} from
�. Then, we have

sup
θ∈�

|ψn(Y, θ)− ψ(θ0, θ)| ≤ max
i≤m

|ψn(Y, θi )− ψ(θ0, θi )|
+ sup
θ∈�

min
i≤m

[|ψn(Y, θ)− ψn(Y, θi )| + |ψ(θ0, θ)− ψ(θ0, θi )|] . (15)

The first term tends to 0 by (14). By regularity condition 6, the third term can be made
arbitrarily small by suitably choosing the finite set {θi }. To complete our assertion,
we only need to show that the second term in (15) can be made arbitrarily small by
suitably choosing the finite set {θi }. By regularity condition 6 and the mean value
theorem, we have

sup
θ∈�

min
i≤m

|ψn(Y, θ)− ψn(Y, θi )|

≤ sup
θ∈�

min
i≤m

1

n − a

n−a
∑

t=1

(h(Yt ))‖θ − θi‖ a.s.−→ (Eh(Y1)) sup
θ∈�

min
i≤m

‖θ − θi‖

which proves our assertion.
For any ε > 0, by the continuity of ψ(θ0, θ), we have

inf
‖θ − θ0‖ > ε

θ ∈ �
(ψ(θ0, θ0)− ψ(θ0, θ)) > 0.

From this and the uniform convergence of (14), we conclude that with probability 1,
when n is large

sup
‖θ − θ0‖ > ε

θ ∈ �

ψn(Y, θ) < ψn(Y, θ0).

123



1168 B. Zhang et al.

This proves that any maximum points θ̂n of ψn(Y, θ) for θ ∈ � must be in the ball
{‖θ − θ0‖ ≤ ε}. Consequently, Theorem 1 is proved. ��
Proof of Theorem 2 For a constant b < ψ(θ0, θ0), define

Am =
{

x ∈ X ; max
θ∈�c

m

q(y; θ) > b

}

.

By regularity condition 7, for each x ∈ X , there is an integer m such that sup
θ∈�c

m
q(y; θ) < b. Therefore,

P(Am) → 0, as m → ∞. (16)

Therefore,

sup
θ∈�c

m

1

n − a

n−a
∑

t=1

q(yt ; θ)

≤ b

n − a

n−a
∑

t=1

1(Xt ∈ Ac
m)

a.s.−→ b(1 − P(Am)).

Choose m so large that b(1 − P(Am)) < ψ(θ0, θ0). Then, with probability 1 for all
large n,

sup
θ∈�c

m

lsos(Y, θ) < lsos(Y, θ0).

This shows that θ̂n ∈ �m . By Theorems 1 and 2 follows. ��
Lemma 6 Let 0 < δ < ∞ be fixed. Suppose that the stationary sequence {Zt } sat-
isfies the α-mixing condition with E Zt = 0, E |Zt |2+δ < ∞ (0 < δ < ∞), and
∑∞

n=1 α
δ/(2+δ)
n < ∞. Put Sn = ∑n

t=1 Zt . Then limn→∞ n−1 E S2
n = σ 2, 0≤σ 2<∞.

If σ 2 > 0, Sn/σ
√

n converges in distribution to the standard normal.

Proof This is the Corollary 5.1 of Hall and Heyde (1980). ��
Proof of Theorem 3 Let lsos(Y, θ) be the SOS log-likelihood based on the sample
(Y1, . . . ,Ya+1), (Y2, . . . ,Ya+2), . . . , (Yn−a, . . . ,Yn) and let θ0 be the true value of θ .
By the mean-value-theorem, we have

0 = ∂lsos(Y, θ)
∂θ

∣

∣

∣

∣

θ=θ̂n

= ∂lsos(Y, θ)
∂θ

∣

∣

∣

∣

θ=θ0

+
[

∂2lsos(Y, θ)
∂θ∂θ ′

∣

∣

∣

∣

θ=θ̂∗
n

]

· (θ̂n − θ0)

where θ̂∗
n is a point on the segment connecting θ0 and θ̂n . Then we obtain

(

θ̂n − θ0

)

=
[

− ∂2lsos(Y, θ)
∂θ∂θ ′

∣

∣

∣

∣

θ=θ̂∗
n

]−1
∂lsos(Y, θ)

∂θ

∣

∣

∣

∣

θ=θ0

.
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Consider the convergence of − 1
n−a

∂2lsos(Y,θ)
∂θ∂θ ′

∣

∣

∣

θ=θ̂∗
n

. Let

Wt = −∂
2q(Yt , θ))

∂θ∂θ ′

∣

∣

∣

∣

θ=θ0

for t = 1, . . . , n − a. Then we get

− 1

n − a

∂2lsos(Y, θ)
∂θ∂θ ′

∣

∣

∣

∣

θ=θ0

= − 1

n − a

n−a
∑

t=1

Wt .

First, we notice that

− 1

n − a
E
∂2lsos(Y, θ)
∂θ∂θ ′

∣

∣

∣

∣

θ=θ0

= −EW1 = −E
∂2q(Yt , θ)

∂θ∂θ ′ = E
∂q(Yt , θ)

∂θ

∂q(Yt , θ)

∂θ ′

∣

∣

∣

∣

θ=θ0

= I (θ0)

where I (θ0) is the Fisher information matrix of θ0 based on the joint pdf of (Y1, . . . ,

Ya+1). By the fact that eacĥθn is consistent with θ0, adopting to the proof of Theorem 2,
we can show that

− 1

n − a

∂2lsos(Y, θ)
∂θ∂θ ′

∣

∣

∣

∣

θ=θ̂∗
n

a.s.−→ I (θ0).

Now, we discuss the limiting distribution of 1√
n−a

∂lsos(Y,θ)
∂θ

∣

∣

∣

θ=θ0
which can be

expressed as

1√
n − a

n−a
∑

t=1

∂q(Yt , θ)

∂θ

∣

∣

∣

∣

∣

θ=θ0

.

By regularity conditions, the assumptions of Lemma 6 are satisfied. And by this lemma,
we conclude that

1√
n − a

n−a
∑

t=1

∂q(Yt , θ)

∂θ

∣

∣

∣

∣

∣

θ=θ0

L−→ N (0, V (θ0)).

Here, the matrix V (θ0) can be derived by using

V ar

(

1√
n − a

n−a
∑

t=1

Zt

)

= I (θ0)+
n−a−1
∑

t=1

(

1 − t

n − a

)

E
[

Z1 Z ′
t+1 + Zt+1 Z ′

1

]

→ V (θ0)= I (θ0)+
∞
∑

t=1

E

[

∂q(Y1, θ)

∂θ

∂q(Yt+1, θ)

∂θ ′ + ∂q(Yt+1, θ)

∂θ

∂q(Y1, θ)

∂θ ′

]

∣

∣

∣

∣

∣

θ=θ0
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Finally, we obtain

√
n − a

(

θ̂ − θ0

)

L−→ N
(

0, I −1(θ0)V (θ0)I
−1(θ0)

)

. ��

Proof of Corollaries 3 and 4 We only need to show that conditions 1 − 10 of Sect. 3
are satisfied. Ibragimov and Linnik (1971) show that a Gaussian autoregressive aver-
age ARMA(p, q) process (p, q ∈ N ) has αm → 0, and that, as m → ∞, αm

approaches 0 exponentially. Thus, for the Gaussian ARMA(p, q) process, the con-
ditions for Lemma 6 is satisfied. That is, the conditions 5 and 9 are satisfied. From
Proposition 1, we know that the Gaussian ARMA(p, q) process is strictly stationary.
So, condition 4 is satisfied. As other conditions are easy to verify, the details of the
proofs are omitted. ��

Proof of Theorem 4 is similar to the proof of Theorem 1. ��

Proof of Theorem 5 Let lmsos(Y, θ) be the modified SOS log-likelihood based on the
sample Yi t for 1 ≤ i ≤ a, 1 ≤ t ≤ n − i , where a is a finite constant that takes values
in {1, 2, . . . , n − 1}. Let θ0 be the true value of θ . The Mean value theorem yields

0 = ∂lmsos(Y, θ)
∂θ

∣

∣

∣

∣

θ̂n

= ∂lmsos(Y, θ)
∂θ

∣

∣

∣

∣

∣

θ0

+
[

∂2lmsos(Y, θ)
∂θ∂θ ′

]

∣

∣

∣

∣

∣

θ̂∗
n

· (θ̂n − θ0)

where θ̂∗
n is a point on the segment connecting θ0 and θ̂n . Then we obtain

(θ̂n − θ0) =
[

−∂
2lmsos(Y, θ)
∂θ∂θ ′

]−1
∣

∣

∣

∣

∣

θ̂∗
n

∂lmsos(Y, θ)
∂θ

∣

∣

∣

∣

∣

∣

θ0

.

We first consider the convergence of −1

n

∂2lmsos(Y, θ)
∂θ∂θ ′

∣

∣

∣

∣

θ̂∗
n

. Let

Wit = −∂
2qi (Yi t , θ)

∂θ∂θ ′

∣

∣

∣

∣

θ0

for 1 ≤ i ≤ a, 1 ≤ t ≤ n − i . Then we obtain

−1

n

∂2lmsos(Y, θ)
∂θ∂θ ′

∣

∣

∣

∣

θ0

= −1

n

a
∑

i=1

n−i
∑

t=1

Wit .
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First, we notice that

−1

n
E
∂2lmsos(Y, θ)

∂θ∂θ ′

∣

∣

∣

∣

θ0

= −
a
∑

i=1

(

1 − i

n

)

EWi1

→ −
a
∑

i=1

E
∂2qi (Yi t , θ)

∂θ∂θ ′ =
a
∑

i=1

E
∂qi (Yi t , θ)

∂θ

∂qi (Yi t , θ)

∂θ ′

∣

∣

∣

∣

∣

θ0

Let I (θ0) =
a
∑

i=1
Ii (θ0) =

a
∑

i=1
E ∂qi (Yi t ,θ))

∂θ
∂qi (Yi t ,θ)

∂θ ′

∣

∣

∣

∣

θ0

, where Ii (θ0) is the Fisher infor-

mation matrix of θ0 based on the joint pdf of (X1, X1+i ). Using the fact that eacĥθn

is consistent with θ0. In a similar manner to the proof of Theorem 4, we can show that

−1

n

∂2lmsos(Y, θ)
∂θ∂θ ′

∣

∣

∣

∣

θ̂∗
n

a.s.−→ I (θ0).

Next, we discuss the asymptotic properties of
1√
n

∂lmsos(Y, θ)
∂θ

∣

∣

∣

∣

θ0

which can be

expressed as

1√
n

a
∑

i=1

n−i
∑

t=1

∂qi (Yi t , θ)

∂θ

∣

∣

∣

∣

∣

θ0

.

Now, let Ui,t = ∂qi (Yi t ,θ)
∂θ

|θ0 for 1 ≤ i ≤ a, 1 ≤ t ≤ n − i . Then we have

1√
n

∂lmsos(Y, θ)
∂θ

∣

∣

∣

∣

θ0

= 1√
n

a
∑

i=1

n−i
∑

t=1

Ui,t

where EUi,t = 0 for 1 ≤ i ≤ a, 1 ≤ t ≤ n − i . Let

{Zt }s
t=1 = {U1,1,U1,2, . . . ,U1,a,U1,a+1,

U2,3,U2,4, . . . ,U2,a+1,U2,a+2, . . . ,Un−1,n}

where s = an − a(a+1)
2 . From Lemma 3, {Zt } is α-mixing with mixing coefficients

of the same order.

Furthermore, we see that

V ar

(

1√
n

s
∑

t=1

Zt

)

=
a
∑

i=1

(

1 − i

n

)

Ii (θ0)+
s
∑

j=1

s
∑

k= j+1

E
[

Z j Z ′
k + Zk Z ′

j

]

→ V (θ0) = I (θ0)+
∞
∑

j=1

∞
∑

k= j+1

E
[

Z j Z ′
k + Zk Z ′

j

]
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Applying Lemma 6, it follows that

1√
n

s
∑

t=1

Zt
L−→ N (0, V (θ0)) .

Hence, we obtain

√
n(θ̂ − θ0)

L−→ N (0,G) .

where G = I −1(θ0)V (θ0)I −1(θ0). ��
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