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Abstract

The daily volume of Tweets in Twitter is around
500 million, and the impact of this data on appli-
cations ranging from public safety, opinion min-
ing, news broadcast, etc., is increasing day by day.
Analyzing large volumes of Tweets for various ap-
plications would require techniques that scale well
with the number of Tweets. In this work we come
up with a theoretical formulation for sampling
Twitter data. We introduce novel statistical met-
rics to quantify the statistical representativeness of
the Tweet sample, and derive sufficient conditions
on the number of samples needed for obtaining
highly representative Tweet samples. These new
statistical metrics quantify the representativeness
or goodness of the sample in terms of frequent
keyword identification and in terms of restoring
public sentiments associated with these keywords.
We use uniform random sampling with replace-
ment as our algorithm, and sampling could serve
as a first step before using other sophisticated sum-
marization methods to generate summaries for hu-
man use. We show that experiments conducted on
real Twitter data agree with our bounds. In these
experiments, we also compare different kinds of
random sampling algorithms. Our bounds are at-
tractive since they do not depend on the total num-
ber of Tweets in the universe. Although our ideas
and techniques are specific to Twitter, they could
find applications in other areas as well.

1 Introduction
With Twitter’s rising popularity, the number of Twitter users
and Tweets are on a steady upward climb. It has been ob-
served that around 500 million Tweets are generated daily.
Twitter data is interesting and important since its impact on
applications ranging from public safety, voicing sentiments
about events [Mejova et al., 2013], news broadcast, etc., is
increasing day by day. The number of Tweets being so large
means that there is a necessity to come up with strategies to
deal with this data in a scalable fashion. One possible ap-
proach to deal with such large amounts of data is to sample

the data and work with a subset of the original universe. Sam-
pling Tweets has multiple uses. For example, extractive sum-
marization of Tweets for human readers is essentially a sam-
pling algorithm. Additionally, Twitter itself uses a 1% ran-
dom sample in its API, which immediately raises questions
such as: Can we produce representative samples using simple
methods like random sampling? How many Tweets should
we randomly sample so that the information contained in the
universe is also contained in the sample? In this work, we pro-
pose different statistical properties to characterize the good-
ness of a random sample in the context of Twitter. We derive
sufficient conditions on the number of samples needed in or-
der to achieve the proposed goodness metrics. For theoretical
analysis, we sample Tweets in a uniform random fashion with
replacement.

Topic modeling in Twitter [Hong and Davison, 2010] is
done using distributions over keywords which could include
nouns like the names of personalities, places, events, etc.
Twitter is also widely used to convey opinions or sentiments
about these nouns. Motivated by this, we consider two statis-
tical properties to quantify the representativeness of a sam-
ple. These are the frequency of occurrence of nouns and the
conditional frequencies of sentiments, conditioned on each
frequent noun. These frequencies constitute the conditional
sentiment distribution of the noun. In order to compute this
distribution, we assume that there are three possible senti-
ments for each Tweet—positive, negative or neutral. The con-
ditional frequencies are computed as empirical frequencies
as explained in later sections. In our theoretical analysis and
experiments, we assume that a perfect parts of speech tag-
ger [Bird et al., 2009] provides the information on whether
a word is a noun or not. Similarly, we assume that our senti-
ment analysis algorithm accurately classifies the sentiment of
each Tweet into one of the three categories.

An overview of our contributions is presented now. We the-
oretically derive sufficient conditions on the number of sam-
ples needed so that:
a) nouns that are frequent in the original universe are frequent
in the sample, and infrequent nouns in the universe are infre-
quent in the sample.
b) the conditional sentiment distributions of frequent nouns in
the universe are close to the corresponding conditional senti-
ment distributions in the sample.
c) the dominant sentiment conditioned on a noun is also dom-
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inant in the sample.
The exact statements of these results will be made in later

sections. Our bounds are attractive since they do not depend
on the number of Tweets in the universe, and depend only
on the maximum length of a Tweet which can be readily
bounded. We evaluate our theoretical bounds by performing
experiments with real Twitter data.

To the best of our knowledge, ours is the first work dealing
with ideas of frequent noun mining, which is analogous to fre-
quent itemset mining in the database literature. It is also the
first work to deal with ideas of restoring sentiment distribu-
tions associated with frequent nouns and preserving dominant
sentiments associated with any particular noun. So the artic-
ulation and theoretical treatment of these ideas in sampling
Twitter data distinguish our work from the current literature.
Our ideas and results would be of interest to data providers
and researchers in order to decide how much data to use in
their respective applications. They could be used as a simple
first step in extractive summarization or opinion mining in or-
der to save on computation, especially when Tweets spanning
multiple days are to be analyzed.

In the next section we give a literature review, following
which, we set up the problem and introduce mathematical
notations in Section 3. Sections 4 and 5 are used to state
our theoretical results on frequent noun mining and sentiment
restoration respectively. We then show our simulations and
experimental results with real Twitter data in Section 6. All
the main proofs are in the Appendix.

2 Related Work
Summarization algorithms for Twitter aim to extract repre-
sentative Tweets from a large universe for human consump-
tion. These algorithms are closely related to document sum-
marization methods [Nenkova and McKeown, 2012]. Ex-
tractive Tweet summarization algorithms have been stud-
ied in the literature by [Sharifi et al., 2010], [Yang et al.,
2012], [Chakrabarti and Punera., 2011]. A graph based sum-
marization algorithm for a small universe size of 1000 has
been proposed in [Liu et al., 2012]. A comparison of various
methods for summarizing Twitter data can be found in [In-
ouye and Kalita, 2011]. These existing Tweet summariza-
tion methods are often computationally expensive and would
not scale to millions of Tweets, which is typical of the daily
Tweet volume. Therefore, as mentioned previously, random
sampling could serve as a first step before using any of these
algorithms for human readable summaries, provided the ran-
dom sample is representative of the universe.

There have been many papers that deal with the quality of
samples given by Twitter API’s free 1% sample. These pa-
pers are primarily empirical in nature. In [Morstatter et al.,
2013] the authors compare the API’s feed with the Tweets
obtained from Firehose—which is also provided by Twitter,
but contains all the Tweets instead of a sample. In [Ghosh
et al., 2013], the authors empirically compare random sam-
pling against sampling done with the help of human ex-
perts. In [Morstatter et al., 2014], the authors analyze the
bias in Twitter’s API without using the costly Firehose data.
The effects of using multiple streaming APIs is considered

by [Joseph et al., 2014]. As can be seen, there have been many
papers on the empirical analysis of the quality of Tweets sum-
maries and the Twitter API itself. It is also understood that
random sampling preserves statistical properties of the uni-
verse. But to the best of our knowledge there has not been
a treatment of the problem from our viewpoint of deriving
conditions on sample sizes needed to produce representative
samples, and ours is the first study to theoretically character-
ize the behaviour of random Tweet sampling.

3 Problem Formulation
The set of Tweets that form our universe of Tweets is de-
noted by T . This set contains N Tweets, each of which can
have a maximum of L words. From N Tweets, we uniformly
and randomly sample K Tweets with replacement. The set of
Tweets in the sample is denoted using S. Each Tweet is mod-
elled as a bag of words. Moreover, we assume that each Tweet
has an associated sentiment, which can be in one of three pos-
sible classes—positive, negative or neutral. Some notations
used throughout the paper:

Kw = #Tweets in T that contain nounw

KS
w = #Tweets in S that contain nounw

Kw,p = #positive sentiment Tweets in T that contain nounw

KS
w,p = #positive sentiment Tweets in S that contain nounw

fw =
Kw

N
, fSw =

KS
w

K
(Noun frequency in universe & sample)

fw,p =
Kw,p

Kw
, fSw,p =

KS
w,p

KS
w

(Conditional sentiment frequency)

Similar notations are used for minus (negative) and neutral
sentiments, where we replace p (plus) in the subscript with
m and n to denote minus and neutral respectively. The or-
dered triple of (fw,p, fw,m, fw,n) forms the sentiment distri-
bution conditional on noun w. As mentioned in the introduc-
tion, we derive sufficient conditions on the number of samples
needed so that important statistical properties of the universe
are retained in the sample with the desired probability. We
now clarify two points related to our theoretical analysis.

Firstly, the sampling algorithm we use for analysis is a
batch sampling method, which fixes a sample size and then
does uniform random sampling with replacement. But when
Twitter’s API gives a 1% sample, it is very likely that it would
perform sequential sampling, where each Tweet in the uni-
verse would be sampled one-by-one and independent of all
other Tweets with probability 1%. We use batch sampling for
analysis since the analysis is much cleaner than the case of
sequential sampling. Experiments with real data suggest that
the performance of both methods depend strongly only on the
number of samples, and not on whether sampling is done in
batch mode or in sequential mode.

Secondly, our sampling method is random and it may the-
oretically be possible to derive equations for the exact proba-
bilities of the associated events as a function of K. But com-
puting them and solving the resulting non-linear equations
for the sufficient K would be very difficult. Doing this might
give stronger bounds for K, but its infeasibility motivates
us to derive sufficient conditions on K using bounds on the
probabilities instead of the exact probabilities. The sufficient
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sample sizes would depend only on parameters that govern
probabilistic goodness guarantees demanded by the applica-
tion and not on N , which is an added benefit. In the next two
sections, we describe the statistical properties that we want to
retain, the associated probabilistic goodness guarantees, and
state our results on the sample size bounds.

4 Sampling for θ−frequent Nouns
For a number θ ∈ [0, 1], a noun whose frequency in T is at
least θ is said to be a θ−frequent noun. In this section, we
derive a sufficient condition on the number of Tweets to be
sampled in order to accomplish two goals. For some ε ∈ [0, 1],
these two goals are:
• Nouns that occur with frequency more than θ in T occur

with frequency more than (1− ε/2)θ in S.
• Nouns that occur with frequency lesser than (1 − ε)θ in
T occur with frequency less than (1− ε/2)θ in S.

We declare a failure event to have occurred if after sampling
K Tweets, the algorithm fails to accomplish any one of these
two goals. This idea and the theoretical results that follow
are very closely related to θ−frequent itemset mining in the
database literature. Following the analysis in [Chakaravarthy
et al., 2009], if noun w is θ−frequent, then

P{fSw ≤ (1− ε/2)θ} ≤ exp{−ε2Kθ/8}.

If noun w’s frequency is lesser than (1− ε)θ, we get

P{fSw ≥ (1− ε/2)θ} ≤ exp{−ε2(1− ε)Kθ/12}.

To bound the failure probability, we have to bound the proba-
bility of failure over all nouns. We can accomplish this using
the union bound in conjunction with a bound on the num-
ber of nouns. If the dictionary contains M nouns, then the
number of nouns in the Tweet universe is upper bounded by
min{M,NL}. So we will get that the failure probability is
upper bounded by h if

K ≥ 12

ε2(1− ε)θ (min{log(M), log(NL)} − log(h))

This bound depends on the number of nouns and on the
size of the Tweet universe, whereas we would like to derive
a bound that depends only on L, since L is easier to up-
per bound than M or N . In order to derive this bound, we
use the results of [Chakaravarthy et al., 2009]. In this direc-
tion, we first derive a simple upper bound for the number of
θ−frequent nouns.
Lemma 1. The number of nouns that occur with frequency
at least θ is upper bounded by L/θ.

Proof. The total number of words ≤ NL. A θ-frequent noun
would consume at least Nθ words. So the number of θ-
frequent nouns cannot exceed L/θ.

Lemma 2. If the size of the sample obeys
K ≥ 24

ε2(1−ε)θ (log
8L

(1−ε)θh + 5), then the probability of a
failure is upper bounded by 4h for h < 1/4.

Proof. We omit the full proof here since it follows from the
proof of Theorem 3.1 in [Chakaravarthy et al., 2009] and
from Lemma 1.

5 Sampling for Sentiment Restoration
Since Twitter is used as an important medium for voicing
opinions, it is important for the conditional sentiment distri-
bution of nouns in the summary to be close to the correspond-
ing distribution in the universe. For some λ ∈ [0, 1], we say
that the sentiment distribution of word w is not restored if the
following event occurs

{|fSw,p−fw,p| > λ}∪{|fSw,m−fw,m| > λ}∪{|fSw,n−fw,n| > λ}
(1)

We say that a failure occurs if even a single θ−frequent
noun’s sentiment distribution is not restored. We want to
sample enough Tweets so that the probability of failure is
bounded above by h ∈ [0, 1].

Theorem 1. If K ≥ log((hθ)/(6L))

log(1− θ + θ exp{−λ2/3}) , then the

probability of failure to restore sentiment is less than h.

Proof. Proof is in the Appendix 8.1.

In opinion mining, one may not want to guarantee that the
entire distribution conditioned on noun w be restored. One
may rather be interested to simply guarantee that the dom-
inant sentiment in the universe also dominates in the sam-
ple. A sentiment is said to dominate if its frequency condi-
tioned on w is higher than the other two conditional frequen-
cies. For example, if noun w is such that fw,p > fw,m and
fw,p > fw,n, then positive sentiment is said to be the dominant
sentiment in the universe. The goal of dominant sentiment
preservation is to sample enough Tweets so that this prop-
erty is preserved with high probability in the sample as well
i.e., fSw,p > fSw,m and fSw,p > fSw,n. For deriving the sufficient
number of Tweets to guarantee this, we develop a prelimi-
nary result in Lemma 3. Let (X1, X2, X3) be jointly multino-
mial random variables with parameters (M, f1, f2, f3), where
f1 + f2 + f3 = 1 and f1 > f2 > f3. Consider first

P{X3 > X1} = E[P{X3 > X1 |X2 = x2}]
= E[P{X3 > (M − x2)/2 |X2 = x2}] (2)

It can be shown that conditional on X2 = x2, X3 is binomial
with parameters (M − x2, f ′3 = f3/(f1 + f3)).
Lemma 3. For δ3 = 1

2f ′3
− 1, P{(X3 > X1) ∪ (X2 > X1)}

≤ 2[f2 + (1− f2) exp{−(δ23f ′3)/(2 + δ3)}]M

Proof. Proof is in the Appendix 8.2.

We can use Lemma 3 with similar notations to derive a
bound on the number of Tweets that are adequate to preserve
the dominant sentiment for noun w. We relabel fw,p, fw,m
and fw,n using fw,1, fw,2 and fw,3 such that they are ordered
as fw,1 > fw,2 > fw,3. The same notation is followed for
Kw,1, Kw,2 and Kw,3. Similarly, we use f ′w,3 =

fw,3

fw,1+fw,3
and

δw,3 = 1
2f ′w,3

− 1.

Theorem 2. For h ∈ [0, 1], the probability that noun w’s
dominant sentiment is not dominant in the sample is upper
bounded by h if K ≥

log(h/2)

log

(
1− fw + fw

(
fw,2 + (1− fw,2) exp

{
− δ2w,3

2+δw,3
f ′w,3

}))

Proof. Proof is in Appendix 8.3.
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Figure 1: Bounds on sample size for θ-frequent noun mining
for ε = 0.1 and as a function of the failure probability.

6 Simulations and Experiments
6.1 Data Set Description
Using Twitter’s free API, we created a data set based on cer-
tain important political events of 2014, which we call the
PE-2014 data set. This is done by using a comprehensive vo-
cabulary to filter and retain only those Tweets that pertain to
certain political events. These Tweets form our Tweet uni-
verse with a volume of ∼ 200, 000 Tweets per day. Although
this is substantially smaller than the total daily Tweet vol-
ume, it could still be too large a set for more sophisticated
summarization algorithms, especially if we want to summa-
rize Tweets from multiple days. Our simulation results are
obtained over one day’s worth of data (March 22, 2014).

6.2 Theoretical Bounds
To characterize the bounds given by our theoretical results,
we need an estimate or an upper bound for L. For these re-
sults, we estimate L to be 33 words by going through the
entire PE-2014 data set once. If going through the universal
Tweet set once is too costly, then an upper bound for L would
be 140, which is the maximum number of characters allowed
per Tweet. Fig. 1 shows the number of samples needed to
achieve the conditions in Lemma 2. While some of the sam-
ple sizes could be large, the values are still smaller and in-
dependent of the total daily Tweet volume. Fig. 2 shows the
bound in Theorem 1 as a function of the probability of failure
to restore the sentiment distribution of all θ−frequent nouns.
This is plotted for different values of the deviation λ and θ.
The values in Fig. 2 are much smaller that the values in Fig. 1.
This is because in Theorem 1, we do not impose any condi-
tions on the frequency of θ−frequent nouns in the sample.
Therefore for these settings of θ, ε and λ, the sufficient condi-
tion on sample size for frequent noun mining is also sufficient
for sentiment preservation. In [Riondato and Upfal, 2012], the
authors derive bounds for frequent itemset mining in terms of
the VC dimension. This could give us tighter bounds for fre-
quent noun mining, but it is part of our future work.

The leftmost panel of Fig. 3 compares the theoretical
bounds for dominant sentiment preservation (Theorem 2) and
sentiment distribution restoration for a single noun. For the
same failure probability, the bounds on the sample size for
preserving the dominant sentiment are much smaller than the
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Figure 2: Bounds for sentiment restoration over all θ-frequent
nouns as a function of the failure probability.

Table 1: Errors in θ−frequent noun mining in PE-2014,
shown for θ = 0.1, ε = 0.1 and 100 Monte Carlo rounds

# samples (K) # freq. noun errors Mean max. deviation
2000 7 0.0952
4000 3 0.0706
8000 0 0.0488

10000 0 0.0426

bound on the sample size for restoring the entire distribution.
In the middle panel of Fig. 3, we compare the two cases of
dominant sentiment preservation shown in the left panel. One
would expect the case with fw,1 = 0.9, fw,2 = 0.06, fw,3 =
0.04 to have a smaller sample size bound as compared to
fw,1 = 0.45, fw,2 = 0.35, fw,3 = 0.2, due to the closeness
of frequencies in the latter case. This intuition is confirmed in
the middle panel. It is also possible to encounter cases when
the bounds for order preservation are larger than the bounds
for distribution restoration as seen in the rightmost panel of
Fig. 3. Since the conditional frequencies of the sentiments
are very close to each other (fw,1 = 0.35, fw,2 = 0.33, fw,3 =
0.32), the number of samples needed to preserve their order
exceeds the number of samples needed to restore their distri-
bution for these parameters. In such cases though, preserving
sentiment order may not be important since human users may
conclude that no sentiment really dominates.

6.3 Experiments with Real Data
We measure the sample quality in terms of statistical prop-
erties and failure events related to the theoretical formula-
tion, and compare them with the theoretical results for a range
of sample sizes. For identifying θ−frequent nouns, the error
events measured over 100 Monte Carlo rounds are shown in
the second column of Table 1. We measure the maximum
deviation in sentiment for word w as

max{|fSw,p − fw,p|, |fSw,m − fw,m|, |fSw,n − fw,n|} (3)

The third column of Table 1 shows the maximum deviation
in Eq. 3, maximized over the θ−frequent nouns and averaged
over 100 Monte Carlo rounds.

From the second column of Table 1, we infer that for
θ = 0.1 and ε = 0.1 it would be sufficient to sample around
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Figure 3: Sentiment distribution restoration vs. dominance preservation for one noun with fw = 0.15, allowed deviation λ = 0.15.

Table 2: Error events in preserving the dominant sentiment for PE-2014 data, shown for three most frequent nouns and 100
Monte Carlo rounds. The fourth noun is an illustration of a case with difficult order preservation. Two different sample sizes
and their corresponding error counts are shown as ordered tuples for each noun.

Noun number Noun frequency (fw) Sentiments (fw,p, fw,m, fw,n) Number of samples Errors in order restoration
Noun 1 0.25 (0.31, 0.25, 0.44) (2000, 4000) (1, 0)
Noun 2 0.14 (0.32, 0.19, 0.49) (2000, 4000) (0, 0)
Noun 3 0.12 (0.23, 0.27, 0.50) (2000, 4000) (0, 0)
Noun 4 0.054 (0.378, 0.255, 0.367) (2000, 4000) (39, 38)

8000 Tweets in order to satisfy the θ−frequent noun mining
condition for these parameters. In Lemma 2, the ε parameter,
the constant factor, and the need to make infrequent nouns of
the universe infrequent in the sample makes the theoretical
bounds in Fig. 1 much larger than the ones needed in prac-
tise. Also, we see from the third column of Table 1 that it is
enough to sample 2000 Tweets to achieve a mean maximum
sentiment deviation of 0.0952 for θ = 0.1. These agree with
the sufficient conditions in Theorem 1 and are quite close to
the bounds shown in Fig 2. Table 2 shows that the number of
errors in sentiment order preservation for three most frequent
nouns is negligible. The last line is for a fourth noun whose
sentiment order is intuitively hard to preserve.

6.4 Comparison with Sequential Sampling
In sequential sampling we go through the Tweets in the uni-
verse one-by-one and sample a Tweet independent of others
with probability p. For the same data set, we perform sequen-
tial sampling with two different p values—0.01 and 0.02. For
each value of p, we perform 100 Monte Carlo rounds and
measure the same metrics as in batch sampling. These results
are shown in Table 3. From this table, we see that the per-
formance of sequential sampling and random sampling with
replacement (shown in Table 1) are very similar, and are pri-
marily influenced by the sample size alone.

7 Conclusion
In this work we have derived bounds on the number of ran-
dom samples needed to guarantee statistically representative
Tweet samples. Random sampling can be used as a first step
before using other sophisticated algorithms to form human
readable summaries or for mining social opinion. For ex-
ample, if we want to find out Twitter sentiment for a key-

word that we know is frequent in the universe, then we could
run our sentime nt analysis tools on a much smaller ran-
dom sample whose size does not depend on N . Therefore,
using random sampling as a first step could provide signifi-
cant computational savings for many such applications with
practical accuracy requirements. Our experiments with real
data confirm that the bounds agree with the sample sizes
needed in practice. Our results would readily apply to fre-
quent topic mining and restoring topic models represented
as mixture distributions in order to sample a diverse set of
Tweets. These ideas also easily extend to applications beyond
Twitter to other short messages such as call center transcripts.
The theoretical analysis of sequential sampling is part of our
future work. Moreover, the bounds for frequent noun min-
ing could be made tighter by using the VC dimension ideas
from [Riondato and Upfal, 2012], which is also part of our
future work.

8 Appendix: Proofs

8.1 Proof of Theorem 1

The event of the sentiment distribution of word w not being
preserved is:

{|fSw,p−fw,p| > λ}∪{|fSw,m−fw,m| > λ}∪{|fSw,n−fw,n| > λ}

First consider the event {|fSw,p − fw,p| > λ} conditional on
KS
w. Conditional on a realization of KS

w, KS
w,p is a binomial

random variable with parameters KS
w and fw,p. So we can use

Chernoff’s bound [Chernoff, 1952] for binomial random vari-
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Table 3: Error events in θ−frequent noun mining in PE-2014 data shown for θ = 0.1, ε = 0.1 and 100 Monte Carlo rounds. The
number of sentiment order preservation errors in the last column is the sum over the 3 most frequent nouns shown in Table 2.

p bAvg. # of samplesc # error events in θ− freq. noun mining Mean max. deviation # sentiment order preservation errors
0.01 2385 0 0.0883 0
0.02 4790 0 0.0627 0

ables to derive an upper bound on the probability of the event.

P
{
|fSw, − fw,p| > λ

∣∣∣∣KS
w

}
=

P
{
KS
w,p > KS

w
Kw,p

Kw

(
1 + λ

Kw

Kw,p

)∣∣∣∣KS
w

}
+ P

{
KS
w,p < KS

w
Kw,p

Kw

(
1− λ Kw

Kw,p

)∣∣∣∣KS
w

}
≤ exp(−λ

2KS
w

3fw,p
) + exp(−λ

2KS
w

2fw,p
) ≤ 2 exp(−λ

2KS
w

3fw,p
) (4)

We can remove the conditioning by taking expectation over
all possible realizations of KS

w to get:

P{|fSw,p − fw,p| > λ} ≤ E
[
2 exp(−λ

2KS
w

3fw,p
)

]
(5)

The expectation in the Eq. 5 is over the realizations of KS
w.

This expectation is the moment generating function of a bi-
nomial random variable with parameters (K, fw) evaluated
at −λ2/(3fw,p) [Papoulis and Pillai, 2002]. Using the union
bound and adding the bounds for the three sentiments we have
P{Sentiment not preserved for noun w}

≤ 6[1− fw + fw exp(−λ2/(3max{fw,p, fw,m, fw,n}))]K

≤ 6[1− fw + fw exp(−λ2/3)]K (6)

In order to bound the probability of failure, which is the
probability that the sentiment distribution of at east one
θ−frequent noun is not preserved, we again apply the union
bound over all θ−frequent nouns. The function of fw on the
R.H.S. of Eq. 6 decreases with fw. Since we have taken w
to be θ−frequent, this expression is maximized by substi-
tuting θ in place of fw. Moreover, the bound on the num-
ber of θ−frequent nouns is L/θ, which gives the upper
bound on the probability of failure to preserve sentiment for
any θ frequent noun as (6L/θ)[1− θ + θ exp(−λ2/3)]K . So if

K ≥ log((hθ)/(6L))

log(1− θ + θ exp{−λ2/3}) then the probability of fail-

ure will not exceed h—proving Theorem 1.

8.2 Proof of Lemma 3
P
{
X3 > (M − x2/(2)

∣∣X2 = x2
}

= P
{
X3 > (M − x2)f ′3(

1

2f ′3
− 1 + 1)

∣∣∣∣X2 = x2

}
≤ exp

{
− (δ23(M − x2)f ′3)/(2 + δ3)

}
(7)

The application of Chernoff’s bound to get Eq. 7 is possible
since f1 > f3 resulting in f ′3 < 1/2. The marginal distribution
of M − X2 is binomial with parameters (M, 1 − f2). Taking
expectation w.r.t. X2, we get

P{X3 > X1} ≤ [f2 + (1− f2) exp{−(δ23f ′3)/(2 + δ3)}]M

By symmetry

P{X2 > X1} ≤ [f3 + (1− f3) exp{−(δ22f ′2)/(2 + δ2)}]M

Now we can use the union bound and write the probability
that X1 is smaller than either X2 or X3 as

P{(X3 > X1) ∪ (X2 > X1)}

≤ [f3 + (1− f3) exp{−(δ22f ′2)/(2 + δ2)}]M

+ [f2 + (1− f2) exp{−(δ23f ′3)/(2 + δ3)}]M (8)

The bound in Eq. 8 can be further simplified by consider-
ing δ23

2+δ3
f ′3. This is equal to f ′3

(2f ′3−1)(4f ′3+1)
, which is a de-

creasing function of f ′3 if f ′3 < 1/2. This holds because
we have taken f ′3 to be f3

f1+f3
and assumed that f1 > f3.

Since f2 > f3, we have f ′2 = f2
f1+f2

> f3
f1+f3

= f ′3. Conse-

quently, exp{− δ23
2+δ3

f ′3} > exp{− δ22
2+δ2

f ′2}. Now we can write
the bound in Eq. 8 as

P{(X3 > X1) ∪ (X2 > X1)}

≤ 2[f2 + (1− f2) exp{−(δ23f ′3)/(2 + δ3)}]M (9)

This concludes the proof of Lemma 3.

8.3 Proof of Theorem 2
We follow a similar proof by conditioning first on a real-
ization of Kw. Conditioned on Kw, (Kw,1,Kw,2,Kw,3) are
jointly multinomial with parameters (Kw, fw,1, fw,2, fw,3).
From Lemma 3, we have

P{Noun w’s sentiment not preserved |Kw} ≤

2[fw,2 + (1− fw,2) exp{−(δ2w,3f ′w,3)/(2 + δw,3)}]Kw (10)

We average over Kw again whose marginal distribution is
binomial with parameters (K, fw). This gives the probability
generating function [Papoulis and Pillai, 2002].

P{Noun w’s sentiment not preserved} ≤

2

[
1− fw,2 + fw(fw,2 + (1− fw,2) exp

{
−

δ2w,3
2 + δw,3

f ′w,3

}]K
So if

K ≥
log(h/2)

log

(
1− fw + fw

(
fw,2 + (1− fw,2) exp

{
− δ2w,3

2+δw,3
f ′w,3

}))
then the probability of noun w’s sentiment is not preserved

is lesser than h. This proves Theorem 2.
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