
 Open access Book Chapter DOI:10.1007/978-3-642-00155-0_7

Analysis of Sanskrit Text: Parsing and Semantic Relations — Source link

Pawan Goyal, Vipul Arora, Laxmidhar Behera

Institutions: Indian Institute of Technology Kanpur

Published on: 18 Feb 2009

Topics: Sanskrit, Parsing, Dependency grammar, Sandhi and Grammar

Related papers:

 SanskritTagger: A Stochastic Lexical and POS Tagger for Sanskrit

 Designing a Constraint Based Parser for Sanskrit

 Shallow syntax analysis in Sanskrit guided by semantic nets constraints

 Extracting Dependency Trees from Sanskrit Texts

 Formal Structure of Sanskrit Text: Requirements Analysis for a Mechanical Sanskrit Processor

Share this paper:

View more about this paper here: https://typeset.io/papers/analysis-of-sanskrit-text-parsing-and-semantic-relations-
1spbzcas0d

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-00155-0_7
https://typeset.io/papers/analysis-of-sanskrit-text-parsing-and-semantic-relations-1spbzcas0d
https://typeset.io/authors/pawan-goyal-2j9gj3e3mv
https://typeset.io/authors/vipul-arora-1jre69n349
https://typeset.io/authors/laxmidhar-behera-4xflx7sewf
https://typeset.io/institutions/indian-institute-of-technology-kanpur-3mhbahla
https://typeset.io/topics/sanskrit-1nkzqz9m
https://typeset.io/topics/parsing-3t590anb
https://typeset.io/topics/dependency-grammar-1y2ancaf
https://typeset.io/topics/sandhi-3v4jwa0o
https://typeset.io/topics/grammar-1cridtik
https://typeset.io/papers/sanskrittagger-a-stochastic-lexical-and-pos-tagger-for-10bosdnvbw
https://typeset.io/papers/designing-a-constraint-based-parser-for-sanskrit-5gb3dwl70e
https://typeset.io/papers/shallow-syntax-analysis-in-sanskrit-guided-by-semantic-nets-3ef9narbsi
https://typeset.io/papers/extracting-dependency-trees-from-sanskrit-texts-4grnm8podz
https://typeset.io/papers/formal-structure-of-sanskrit-text-requirements-analysis-for-4l1qoxqeip
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/analysis-of-sanskrit-text-parsing-and-semantic-relations-1spbzcas0d
https://twitter.com/intent/tweet?text=Analysis%20of%20Sanskrit%20Text:%20Parsing%20and%20Semantic%20Relations&url=https://typeset.io/papers/analysis-of-sanskrit-text-parsing-and-semantic-relations-1spbzcas0d
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/analysis-of-sanskrit-text-parsing-and-semantic-relations-1spbzcas0d
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/analysis-of-sanskrit-text-parsing-and-semantic-relations-1spbzcas0d
https://typeset.io/papers/analysis-of-sanskrit-text-parsing-and-semantic-relations-1spbzcas0d

HAL Id: inria-00203459
https://hal.inria.fr/inria-00203459

Submitted on 10 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Sanskrit text : parsing and semantic relations
Pawan Goyal, Vipul Arora, Laxmidhar Behera

To cite this version:
Pawan Goyal, Vipul Arora, Laxmidhar Behera. Analysis of Sanskrit text : parsing and seman-
tic relations. First International Sanskrit Computational Linguistics Symposium, INRIA Paris-
Rocquencourt, Oct 2007, Rocquencourt, France. ฀inria-00203459฀

https://hal.inria.fr/inria-00203459
https://hal.archives-ouvertes.fr

ANALYSIS OF SANSKRIT TEXT: PARSING AND SEMANTIC

RELATIONS

Pawan Goyal

Electrical Engineering,

IIT Kanpur,

208016, UP,

India

pawangee@iitk.ac.in

Vipul Arora

Electrical Engineering,

IIT Kanpur,

208016, UP,

India

vipular@iitk.ac.in

Laxmidhar Behera

Electrical Engineering,

IIT Kanpur,

208016, UP,

India

lbehera@iitk.ac.in

Abstract

In this paper, we are presenting our work

towards building a dependency parser for

Sanskrit language that uses determinis-

tic finite automata(DFA) for morpholog-

ical analysis and ’utsarga apavaada’ ap-

proach for relation analysis. A computa-

tional grammar based on the framework

of Panini is being developed. A linguis-

tic generalization for Verbal and Nomi-

nal database has been made and declen-

sions are given the form of DFA. Verbal

database for all the class of verbs have

been completed for this part. Given a

Sanskrit text, the parser identifies the root

words and gives the dependency relations

based on semantic constraints. The pro-

posed Sanskrit parser is able to create

semantic nets for many classes of San-

skrit paragraphs(
�✂✁ ✄✆☎✞✝✠✟☛✡

). The parser is

taking care of both external and internal

sandhi in the Sanskrit words.

1 INTRODUCTION

Parsing is the ”de-linearization” of linguistic in-

put; that is, the use of grammatical rules and other

knowledge sources to determine the functions of

words in the input sentence. Getting an efficient

and unambiguous parse of natural languages has

been a subject of wide interest in the field of

artificial intelligence over past 50 years. Instead

of providing substantial amount of information

manually, there has been a shift towards using

Machine Learning algorithms in every possible

NLP task. Among the most important elements

in this toolkit are state machines, formal rule

systems, logic, as well as probability theory and

other machine learning tools. These models,

in turn, lend themselves to a small number

of algorithms from well-known computational

paradigms. Among the most important of these

are state space search algorithms, (Bonet, 2001)

and dynamic programming algorithms (Ferro,

1998). The need for unambiguous representation

has lead to a great effort in stochastic parsing

(Ivanov, 2000).

Most of the research work has been done for

English sentences but to transmit the ideas with

great precision and mathematical rigor, we need a

language that incorporates the features of artificial

intelligence. Briggs (Briggs,1985) demonstrated

in his article the salient features of Sanskrit

language that can make it serve as an Artificial

language. Although computational processing

of Sanskrit language has been reported in the

literature (Huet, 2005) with some computational

toolkits (Huet, 2002), and there is work going

on towards developing mathematical model and

dependency grammar of Sanskrit(Huet, 2006), the

proposed Sanskrit parser is being developed for

using Sanskrit language as Indian networking lan-

guage (INL). The utility of advanced techniques

such as stochastic parsing and machine learning

in designing a Sanskrit parser need to be verified.

We have used deterministic finite automata

for morphological analysis. We have identified

the basic linguistic framework which shall facili-

tate the effective emergence of Sanskrit as INL. To

achieve this goal, a computational grammar has

been developed for the processing of Sanskrit lan-

guage. Sanskrit has a rich system of inflectional

endings (vibhakti). The computational grammar

described here takes the concept of vibhakti and

karaka relations from Panini framework and uses

them to get an efficient parse for Sanskrit Text.

The grammar is written in ’utsarga apavaada’ ap-

proach i.e rules are arranged in several layers each

layer forming the exception of previous one. We

are working towards encoding Paninian grammar

to get a robust analysis of Sanskrit sentence. The

paninian framework has been successfully applied

to Indian languages for dependency grammars

(Sangal, 1993), where constraint based parsing is

used and mapping between karaka and vibhakti

is via a TAM (tense, aspect, modality) tabel. We

have made rules from Panini grammar for the

mapping. Also, finite state automata is used for

the analysis instead of finite state transducers.

The problem is that the Paninian grammar is

generative and it is just not straight forward to

invert the grammar to get a Sanskrit analyzer, i.e.

its difficult to rely just on Panini sutras to build

the analyzer. There will be lot of ambiguities

(due to options given in Panini sutras, as well

as a single word having multiple analysis). We

need therefore a hybrid scheme which should

take some statistical methods for the analysis of

sentence. Probabilistic approach is currently not

integrated within the parser since we don’t have

a Sanskrit corpus to work with, but we hope that

in very near future, we will be able to apply the

statistical methods.

The paper is arranged as follows. Section 2

explains in a nutshell the computational process-

ing of any Sanskrit corpus. We have codified the

Nominal and Verb forms in Sanskrit in a directly

computable form by the computer. Our algorithm

for processing these texts and preparing Sanskrit

lexicon databases are presented in section 3. The

complete parser has been described in section

4. We have discussed here how we are going

to do morphological analysis and hence relation

analysis. Results have been enumerated in section

5. Discussion, conclusions and future work follow

in section 6.

2 A STANDARDMETHOD FOR

ANALYZING SANSKRIT TEXT

The basic framework for analyzing the Sanskrit

corpus is discussed in this section. For every

word in a given sentence, machine/computer is

supposed to identify the word in following struc-

ture. < Word >< Base >< Form ><

Relation >.

The structure contains the root word (<Base>)

and its form <attributes of word> and relation

with the verb/action or subject of that sentence.

This analogy is done so as to completely disam-

biguate the meaning of word in the context.

2.1 <Word>

Given a sentence, the parser identifies a singular

word and processes it using the guidelines laid out

in this section. If it is a compound word, then the

compound word with ☞✍✌✏✎✒✑ has to be undone. For
example:

✁✓✡✕✔✗✖✙✘✏✚✛☎✜✝✣✢✥✤
=
✁✓✡✦✔✗✖✧✤

+
�★✘✏✚✙☎✞✝✣✢✥✤

.

2.2 <Base>

The base is the original, uninflected form of the

word. Finite verb forms, other simple words and

compound words are each indicated differently.

For Simple words: The computer activates the

DFA on the ISCII code (ISCII,1999) of the San-

skrit text. For compound words: The computer

shows the nesting of internal and external ☞ ✖✛✘ ☞
using nested parentheses. Undo ☞✩✌✏✎✪✑ changes be-
tween the component words.

2.3 <Form>

The <Form> of a word contains the information

regarding declensions for nominals and state for

verbs.

• For undeclined words, just write u in this col-
umn.

• For nouns, write first.m, f or n to indicate the
gender, followed by a number for the case (1

through 7, or 8 for vocative), and s, d or p to

indicate singular, dual or plural.

• For adjectives and pronouns, write first a, fol-
lowed by the indications, as for nouns, of

gender (skipping this for pronouns unmarked

for gender), case and number.

• For verbs, in one column indicate the class
(
✚✙✫
) and voice. Show the class by a num-

ber from 1 to 11. Follow this (in the same

column) by ’1’ for parasmaipada, ’2’ for

ätmanepada and ’3’ for ubhayapada. For fi-

nite verb forms, give the root. Then (in the

same column) show the tense as given in Ta-

ble 3. Then show the inflection in the same

column, if there is one. For finite forms, show

Table 1: Codes for

<Form>

pa/ passive

ca/ causative

de/ desiderative

fr/ frequentative

Table 2: Codes for Fi-

nite Forms, showing the

Person and the Number

1 ✬✓✭ ✖✯✮ ✄✆✰✓✱
2

✖✍✲✥✳✛✖✴✮ ✄✵✰✓✱
3 ✶✸✷ ✖✯✮ ✄✆✰✓✱
s singular

d dual

p plural

Table 3: Codes for

Finite verb Forms,

showing the Tense

pr present

if imperfect

iv imperative

op optative

ao aorist

pe perfect

fu future

f2 second future

be benedictive

co conditional

the person and number with the codes given

in Table 2. For participles, show the case and

number as for nouns.

2.4 <Relation>

The relation between the different words in a

sentence is worked out using the information

obtained from the analysis done using the guide-

lines laid out in the previous subsections. First

write down a period in this column followed by

a number indicating the order of the word in the

sentence. The words in each sentence should

be numbered sequentially, even when a sentence

ends before the end of a text or extends over

more than one text. Then, in the same column,

indicate the kind of connection the word has to

the sentence, using the codes given in table 4.

Then, in the same column, give the number

of the other word in the sentence to which this

word is connected as modifier or otherwise. The

relation set given above is not exhaustive. All the

6 karakas are defined as in relation to the verb.

3 ALGORITHM FOR SANSKRIT

RULEBASE

In the section to follow in this paper, we shall

explain two of the procedures/algorithms that we

have developed for the computational analysis of

Sanskrit. Combined with these algorithms, we

Table 4: Codes for <Relation>

v main verb

vs subordinate verb

s subject(of the sentence or a subordinate clause)

o object(of a verb or preposition)

g destination(gati) of a verb of motion

a Adjective

n Noun modifying another in apposition

d predicate nominative

m other modifier

p Preposition

c Conjunction

u vocative, with no syntactic connection

q quoted sentence or phrase

r definition of a word or phrase(in a commentary)

have arrived at the skeletal base upon which many

different modules for Sanskrit linguistic analysis

such as: relations, ☞✩✌✏✎✪✑ , ☞ ✖✛✘ ☞ can be worked
out.

3.1 Sanskrit Rule Database

Every natural language must have a representa-

tion, which is directly computable. To achieve

this we have encoded the grammatical rules

and designed the syntactic structure for both the

nominal and verbal words in Sanskrit. Let us

illustrate this structure for both the nouns and the

verbs with an example each .

Noun:-Any noun has three genders: Mas-

culine,Feminine and Neuter. So also the noun

has three numbers: Singular, Dual and Plural.

Again there exists eight classification in each

number: Nominative, Accusative, Imperative,

Dative, Ablative, Genitive, Locative and Vocative.

Interestingly these express nearly all the relations

between words in a sentence .

In Sanskrit language, every noun is deflected

following a general rule based on the ending al-

phabet such as
�★✹✺✘✏✻✼✘ ✎ ✢ . For example, ✻✽✘✏✖ is in

class
�✂✹✺✘✏✻✽✘ ✎ ✢ which ends with �

(a). Such clas-

sifications are given in Table 5. Each of these have

different inflections depending upon which gender

they correspond to. Thus
�★✹✺✘✏✻✼✘ ✎ ✢ has different

masculine and neuter declensions,
�✂✘✏✹✺✘✏✻✽✘ ✎ ✢ has

masculine and feminine declensions, ✾ ✹✩✘✿✻✼✘ ✎ ✢ has

masculine, feminine and neuter declensions. We

have then encoded each of the declensions into

ISCII code, so that it can be easily computable

in the computer using the algorithm that we have

developed for the linguistic analysis of any word .

Table 5: attributes of the declension for noun

Class∗ Caseη Genderζ❀❂❁❄❃❆❅✞❃❈❇❊❉
(1) ❋ ❁❄❃❈❅✜❃❈❇❊❉

(14)
❁❄●❍❃■
(1) ❏ ❑✧▲❈▼✓◆ (1)❀❂❃❈❁❄❃❈❅✜❃❈❇❊❉

(2) ❖ ❁☛❃❈❅✞❃❆❇❊❉
(15)

❁❄P ■
(2) ◗✥❘❚❙✼▲❈❯✓◆ (2)❱✧❁❄❃❈❅✜❃❈❇❊❉

(3) ❲ ❁❄❃❈❅✜❃❈❇❊❉
(16)

❁❄❅✞❳
(3) ❲✵❏ ❑❩❨ ❬ ❁ ▲❈❯✓◆ (3)❭ ❁❄❃❈❅✜❃❈❇❊❉

(4) ❲ ❁❄❃❆❅✞❃❈❇❊❉
(171) ❬❫❪❵❴❛❋ ❃ ❲ (4) Number@❜❝❁☛❃❈❅✞❃❆❇❊❉

(5) ❏ ❁❄❃❈❅✜❃❈❇❊❉
(18)

❀ ❏ ❃ ❋ ❃ ❲ (5) ❞ ❁❄❡❛❢ ❲ (1)❣✛❁❄❃❆❅✞❃❈❇❊❉
(6) ❤ ❁☛❃❈❅✞❃❆❇❊❉

(19) ❬❫❪❥✐ ❇ ❖ (6) ▲❆❦ ❡❧❢ ❲ (2)♠♥❁❄❃❈❅✜❃❈❇❊❉
(7)

❅✞❁☛❃❈❅✞❃❆❇❊❉
(20)

❀ ▲♦❖ ❁❄❅✜❳
(7) ✐❛♣❑ ❡❛❢ ❲ (3)❞ q ❁❄❃❈❅✜❃❈❇❊❉

(8)
❡❛❁❄❃❈❅✜❃❈❇❊❉

(21) ❬❫❪❵✐❈r✆❖s❲ (8)❀ r ❁❄❃❈❅✜❃❈❇❊❉
(9) t ❁❄❃❈❅✜❃❈❇❊❉

(22)❀✧✉❛❁❄❃❆❅✞❃❈❇❊❉
(10) ✈ ❁❄❃❈❅✜❃❈❇❊❉

(23)❢❫❁❄❃❈❅✜❃❈❇❊❉
(11) ❬ ❁❄❃❈❅✜❃❈❇❊❉

(24)✇❂❁❄❃❆❅✞❃❈❇❊❉
(12) ♣ ❁❄❃❈❅✜❃❈❇❊❉

(25)❉✵❁❄❃❈❅✜❃❈❇❊❉
(13)

Let us illustrate this structure for the noun

with an example . For
�★✹✩✘✿✻✼✘ ✎ ✢ , masculine,

nominative, singular declension:

This is encoded in the following syntax:

(163{1∗, 1η , 1ζ , 1@}) .

Where 163 is the ISCII code of the declension

(Table 6). The four 1’s in the curly brackets repre-

sent Class, Case, Gender and Number respectively

(Table 5) .

Table 6: Noun example

�
Masculine

Singular(① ✹✺②❄③✍✁
)

Endings ISCII Code

Nominative ④ 163

Pronouns:-According to Paninian grammar

and Kale, (Kale) Sanskrit has 35 pronouns which

are: ☞ ②✕⑤
, ✌ ②❄⑥

, ✶✸⑦ , ✶✸⑦ ✳
, ✾ ✢✓✻

, ✾ ✢❍✖
,� ✎ ✳ , � ✎ ✳✙✢❍✻

, ✾ ✢✓✻
, ⑧ ②☛✢⑨✤

, ⑧ ② , ✁ ✟❄✖
,

✳✛✖
,✌ ✳✙✖

,
✮ ⑩❶②❚⑤
,

✮❄✻
,

�✂②☛✻
,

✡ ✌❸❷ ✫
, ✶ ✮❄✻

,
� ✑ ✻

,❹✜②
,

� ✎ ✢✓✻
, ⑧ ✳✙✡ ✤

, ① ✢✓✡ ✤
, ✾ ✢❍✡ ✤

,
�✂✡ ☞ ✤ , ① ✹

,✌✏❺ , ✳ ✄✆❻❵✖✙✡
, ⑦ ②☛✢⑨✤

and ✌ ✹✺✖✒✤
.

We have classified each of these pronouns into

9 classes: Personal, Demonstrative, Relative, In-

definitive, Correlative, Reciprocal and Possessive.

Each of these pronouns have different inflectional

forms arising from different declensions of the

masculine and feminine form. We have codified

the pronouns in a form similar to that of nouns .

Adjectives:- Adjectives are dealt in the same

manner as nouns. The repetition of the linguistic

morphology is avoided .

Verbs:- A Verb in a sentence in Sanskrit

expresses an action that is enhanced by a set of

auxiliaries”; these auxiliaries being the nominals

that have been discussed previously .

The meaning of the verb is said to be both

vyapara (action, activity, cause), and phala (fruit,

result, effect). Syntactically, its meaning is in-

variably linked with the meaning of the verb ”to

do”. In our analysis of Verbs, we have found that

they are classified into 11 classes(
✚✛✫
, Table 7).

While coding the endings, each class is subdivided

according to ”✾✆❼ ✤ ” knowledge, ☞ ✟ ❼ ✤ , � ✌ ✁ ❼ ✤ and②✟ ❼ ✤ ; each of which is again sub-classified as into 3
sub-classes as

�✂✘ ⑧ ✖✛✁ ✟❄✮❄✡
,

✮❄✻✽❹✞✖ ❽❄✮❄✡
and✶✸⑦ ✳✛✮☛✡

,

which we have denoted as pada. Each verb sub-

class again has 10 lakaaras , which is used to ex-

press the tense of the action. Again, depending

upon the form of the sentence, again a division

of form as
✹ ✷ ⑤❵②☛✘✏☎✞✳

,
✹✩✖❊⑤❥②❄✘✏☎✜✳

and ⑦ ✘✏②☛②❄✘✏☎✜✳
has

been done. This classification has been referred

to as voice. This structure has been explained in

Table 7.

Table 7: attributes of the declension for verb

Class∗ itγ padaη Tenseζ❾❥❡❛❃ ▲❈❋➀❿ ❳ (1) ❬ q❧➁ ➂ (1) ❀➃❃❆➄❊P ❲ q❛❏❛❋ (1) ❯✓➁ ➂ (1)❀ ❋ ❃ ▲❈❋➀❿ ❳ (2) ❀ ▲❈❲✵➁ ➂ (2) ❏ ❅ ◗ P ➅ ❏❧❋ (2) ❯✓◆ (2)▲❈❋ ❡❛❃ ▲❈❋➀❿ ❳ (3) ❡q❧➁ ➂ (3) ❜ ❤✼➆✽❏❛❋ (3) ❯✏➇➈➁ (3)◗ ❡❛❃ ▲❈❋➀❿ ❳ (4) ❯✪r❛➁ ➂ (4)❉ ❑✧❋ ❃ ▲❈❋➀❿ ❳ (5) ▲ ❡ ▲♦❖✵▲❈❯✓◆ (5)➉✵➊❝❃ ▲❈❋➀❿ ❳ (6) ❀❂❃ t❸❙ ■ ▲❈❯✓◆ (6)❉ ❲ ❃ ▲❈❋➀❿ ❳ (7) ▲❈❯✓➁ ➂ (7)➋✛➌✍❃ ▲❆❋✜❿ ❳ (8) ❯ ❑ ➁ ➂ (8)❢ ❑ ❅✜❃ ▲❈❋➀❿ ❳ (9) ❯ ❑✧◆ (9)✇ ❑ ♣✠r ➄ ➆ ❃ ▲❈❋➀❿ ❳ (10) ❯ ➇ ◆ (10)❁❄➍❥➎ ➂ ❡❛❃ ▲❈❋➀❿ ❳ (11)
V oiceλ Person@ Numberδ❁❄● ■ ❡❛❃❈➏ ➆ (1) ❴✆➐ P ❏ ❑ ➉ ✈ (1) ❞ ❁❄❡❛❢ ❲ (1)❁☛P ■ ❡❛❃❈➏ ➆ (2) P❄➑ ➆ P ❏ ❑ ➉ ✈ (2) ▲❆❦ ❡❧❢ ❲ (2)❤ ❃❈❡❛❡❧❃❈➏ ➆ (3) ❜❝●➒P ❏ ❑ ➉ ✈ (3) ✐❛♣❑ ❡❧❢ ❲ (3)

.

Let us express the structure via an example for➓✒②❄✘ ✌ ✡✽✚✙✫
,

✮❄✻✼❹✜✖ ❽❄✮☛✡
, Present Tense, First person,

Singular. This is encoded in the following syntax:

(219(194{1∗ , 1γ , 2η , 1ζ , 1λ, 1@, 1δ})).
Where 219194 is the ISCII code of the endings

(Table 8). The numbers in curly brackets represent

class, ”it”, pada, tense, voice, person and number

respectively (Table 7).

Table 8: Verb example

PRESENT
Singular(① ✹✺②❄③✍✁)
Endings ISCII Code

First ✌ ✢ 219194

Separate database files for nominals and verbs

have been maintained, which can be populated as

more and more Sanskrit corpsuses are mined for

data. The Sanskrit rule base is prepared using the

”Sanskrit Database Maker” developed during this

work.

3.2 Deterministic Finite Automata: Sanskrit

Rule Base

We have used deterministic finite automata (DFA)

(Hopcraft, 2002) to compute the Sanskrit rule

base, which we developed as described in section

III A. Before we explain the DFA, let us define it.

A deterministic finite automaton consists of:

1. A finite set of states, often denoted Q.

2. A finite set of input symbols, often denoted

S.

3. A transition function that takes as arguments

a state and input symbol and returns a state,

often commonly denoted d.

4. A start state, one of the states in Q, denoted

q0.

5. A set of final or accepting states F. The set

F is a subset of Q.

Thus, we can define a DFA in this ”five-tuple”

notation: A = (Q,S, d, q0, F). With this short
discussion of the DFA, we shall proceed to the

DFA structure for our Sanskrit Rule Base. Since

we are representing any word by ISCII codes that

range from 161 to 234, we have effectively 74 in-

put states. In the notation given below, we are rep-

resenting the character set by {C0, C1, . . . , C73},
where Ci is the character corresponding to the

ISCII code 161 + i. Thus, if we define a DFA =

M(Q,S, d, q0, F) for our Sanskrit Rule Database,
each of the DFA entities are as follows:

• Q = {q0, qC0, qC1, . . . , qC73}×{0, 1}. 0 rep-
resents that the state is not a final state and 1

tells that the state is a final state.

•
∑

= {C0, C1, . . . , C73}

• δ((qx, a), Y) = δ(qY , a)or δ(qY , b) a,b
ǫ{0, 1}

• q0 =< q0, 0 >

• F ⊂ {qC0, qC1, . . . , qC73} × {1}

In this work, we have made our DFA in a matrix

form with each row representing the behavior of

a particular state. In a given row, there are 74

columns and entries in a particular column of the

corresponding row store the state we will finally

move to on receiving the particular input corre-

sponding to the column. In addition, each row

carries the information whether or not it is a final

state.

For example: D[32][5] = 36 conveys that in the
DFA matrix D[i][j], in 32nd state, if input is C5,
we will move to state no. 36 .(To be noted: C5
is the character corresponding to the ISCII code

166.).

In the graph below, we are giving an example

how the DFA will look as a tree structure. The

particular graph is constructed for the verb declen-

sions for the class
➓✒②☛✘ ✌ ✡➔✚✛✫ . The pada is ✮☛✻✼❹✜✖ ❽❄✮❄✡

and the tense is present tense. The search in this

DFA will be as follows:- If the first ending of the

input corresponds to one of the state 163, 195 or

219, we will move ahead in the DFA otherwise

the input is not found in this tree. On getting a

match, the search will continue in the matched

branch. .

In general, the search in the DFA is done as fol-

lows (We take the example of searching for ⑦ ② ✭→④
in the DFA tree constructed above:-

• Firstly, an input word is given as the input to
the user interface in Devanagari format .

• The word is changed to its equivalent ISCII
code (203212195163 in this case).

• The automaton reads the forms in the reverse
order to lemmatize them. In our DFA, we

START

163

219

195

163212 163212218

163204 163204218

195

194

219215

219204

219204218

219194

219194232

219194232198

FINAL

219

163

195

212

215

204

194

218

218

232
198

232

218

204

195

194

218

Figure 1: DFA tree obtained for
➓✒②☛✘ ✌ ✡➔✚✛✫✮❄✻✽❹✞✖ ❽❄✮❄✡

present tense.

give one by one the last three digits of the

ISCII code till the matching is there.

– Start state: 000

– input to DFA: 163, i.e character C2.

– In the DFA matrix we will check the en-

try D[0][2]. If it is zero, no match is

there for this entry and hence no match

either for the word. Else we will move

to the state specified by the entry.

– In this case, we get the entry corre-

sponding to state ”163”. That means it

is either an intermediate state or a final

state. From the graph, it is visible that

the tree accepts 163 just after the start

state. Also, it is not a final state. Now

wewill have 195 (i.e. C34) as next input
and 34th column of the row correspond-

ing to state 232 will be checked and the

search continues till no match.

– Final match will be 163195.

• The final match will be checked for being eli-
gible for a final state which is true in this case.

We can verify it from the graph given.

• Remaining part of the word is sent to
database engine of program to verify and to

get attributes. The word corresponding to the

stem, Devanagari equivalent of 203212, that

is ⑦ ②) will be sent to database.
• If both criteria are fulfilled (final state match
and stem match through database), we will

get the root word and its category (verb in

this case). The attributes such as tense, form,

voice, class, pada, person, number are coded

in the final state itself according to the nota-

tions given in table 5 and 7. All the possible

attributes are stored and it is left up to the fi-

nal algorithm to come up with the most ap-

propriate solution.

Let me just explain how we have obtained the

deterministic finite automata. Clearly, the states

are obtained via input symbols. Ambiguity re-

mains in {0, 1}. If the state is not a final state at
all, it is declared as intermediate state without any

ambiguity to be considered for non-deterministic.

When the state is a final state, for example con-

sider
✚✛☎✜✝ ✌ ✢ and ✚ ✌ ✖✙❻❵✳ ✌ ✢ . When we encounter✌ ✢ in ✚✛☎✜✝ ✌ ✢ , we get the root as ✚✙☎✜✝ . (Of course,

we have to add the ➣❫↔♥✎ ✢ and go through ✑ ✘ ⑧ ②❄✘✏✡✟☛↕
getting

✚✛✖✧✤
as root verb.) But in

✚ ✌ ✖✙❻❵✳ ✌ ✢ , ✌ ✢ is
not a final state. It seems at this point that we could

have obtained a non-deterministic finite automa-

ton. We have resolved the problem by accepting

the following facts:

1. Final state can be intermediate state too but

not the other way round.

2. Our algorithm doesn’t stop just as it gets to

a final state, it goes to the highest possible

match, checks it for being final state and, in

case it isn’t, it backtracks and stops at the op-

timal match which satisfies the two criteria

as told in the algorithm (final state match and

stem match through database).

There might be another ambiguity too, for exam-

ple, in
✻✼✘✏✖✙✘✏➓✒✳✙✘✏✖✧✤

,
�★✘✏➓✒✳✙✘✏✖✒✤

is a final state but it

refers to
✹✺✻✼✫

, ☞✍➙✒✬ ✡✽✘✏✁ , and �★✮❄✘✏✡➔✘✏✁ karaka. This
seems to be non-deterministic. We have avoided

this problem by suitably defining the states. Fi-

nal state represents all possibilities merged in a

single state. It is up to the algorithm to come up

with the unique solution. There could be situation

where longest match is not the right assignment.

To deal with this, all other possible solutions are

also stacked and are substituted (if needed) when

we go for relation analysis. For example, let us

take the word ☞ ✁✓✘✏➓✒✳✛✘✿✖✧✤ . We assume that ☞ ✁✓✘ ,☞ ✁✓✘ ✌✿⑦ and ☞ ✁✓✘✏➓✒✳✙✘ are valid root words. Our al-
gorithm will choose ☞ ✁❍✘ as root word along with
the attributes (3 possibilities here). But the other

solutions are also stacked in decreasing order of

the match found. It is discussed in the relation

analysis, how we deal with this situation.

4 ALGORITHM FOR SANSKRIT

PARSER

The parser takes as input a Sanskrit sentence and

using the Sanskrit Rule base from the DFA Ana-

lyzer, analyzes each word of the sentence and re-

turns the base form of each word along with their

attributes. This information is analyzed to get re-

lations among the words in the sentence using If-

Then rules and then output a complete dependency

parse. The parser incorporates Panini framework

of dependency structure. Due to rich case endings

of Sanskrit words, we are using morphological an-

alyzer. To demonstrate the Morphological Ana-

lyzer that we have designed for subsequent San-

skrit sentence parsing, the following resources are

built:

• Nominals rule database (contains entries for
nouns and pronouns declensions)

• Verb rule database (contains entries for 10
classes of verbs)

• Particle database (contains word entries)

Now using these resources, the morphological

analyzer, which parses the complete sentences of

the text is designed.

4.1 Morphological Analysis

In this step, the Sanskrit sentence is taken as in-

put in Devanagari format and converted into ISCII

format. Each word is then analyzed using the DFA

Tree that is returned by the above block. Follow-

ing along any path from start to final of this DFA

tree returns us the root word of the word that we

wish to analyze, along with its attributes. While

evaluating the Sanskrit words in the sentence, we

have followed these steps for computation:

1. First, a left-right parsing to separate out the

words in the sentence is done.

2. Second, each word is checked against the

Sanskrit rules base represented by the DFA

trees in the following precedence order: Each

word is checked first against the avavya

database, next in pronoun, then verb and

lastly in the noun tree.

The reason for such a precedence ordering is pri-

marily due to the fact that avavya and pronouns

are limited in number compared to the verbs, and

verbs are in-turn limited compared to the infinite

number of nouns that exist in Sanskrit.

4.1.1 Sandhi Module

In the analysis, we have done, the main prob-

lem was with words having external sandhi. Un-

less we are able to decompose the word into its

constituents, we are unable to get the morph of the

word. So, a rulebase sandhi analyzer is developed

which works on the following principles.

• Given an input word, it checks at each junc-
tion for the possibility of sandhi.

• If it finds the junction, it breaks the word into
possible parts and sends the first part in the

DFA.

– If it finds a match, it sends the second

part in DFA.

∗ If no match, it recursively calls the
sandhi module (For the possibility of

multiple sandhi in a single word).

∗ If match is found, terminates and re-
turns the words.

– If no match, it goes to the next junction.

The rules for decomposing the words are taken

from Panini grammar. The search proceeds en-

tirely backwards on the syllabic string. Emphasis

is given on minimum possible breaks of the string,

avoiding overgeneration.

Panini grammar has separate sections for vowel

sandhi as well as consonant sandhi. Also, there

is specification of visarga sandhi. Below, we are

describing the simplified rules for undoing sandhi.

Vowel Sandhi:- We have considered
✡✕✔✗➛❊⑤

☞✞➜✠✌❸✑ , ②✦➝ ✌✏➞✯☞✞➜✠✌❸✑ , ✚ ✄✵✫ ☞✞➜➟✌❸✑ , ✳✙✫ ☞✞➜✠✌❸✑ and �★✳✛✘ ✌ ✡☞✞➜✠✌❸✑ in vowels. (✮❄✻✼➠➡✮ , ✮ ⑩➢②❚⑤❵➠➡✮
and ✬ ✹ ➤ ✌ ✢ ⑦ ✘✿②

are not taken into account yet.)

1.
✡✕✔✗➛❊⑤ ☞➥➜✠✌❸✑ :- If the junction is the ✖✙✘✏➦✓✘ corre-
sponding to

�✂✘
, ➧ , ➨ or ➩ , it is a candidate

for
✡✕✔✗➛❊⑤ ☞✞➜➟✌❸✑ . The algorithm for an example

word ⑦ ✘✏✁✦⑩➢✡✽✳
is explained.

• We assume that we don’t get any match
at the junction

�★✘
after ⑦ .

• The junction ➨ is a candidate for ✡✕✔✗➛❊⑤
☞✞➜➟✌❸✑ . So the following breaks are made:
1. ⑦ ✘✏✁ ✄

+ ✶ ✡✽✳ , 2. ⑦ ✘✏✁ ✄
+ ➨ ✡✽✳

, 3.⑦ ✘✿✁❩⑩
+✶ ✡➔✳ , 4. ⑦ ✘✿✁❩⑩

+ ➨ ✡➔✳
. For each

break, the left hand word is first sent to

DFA and only if it is a valid word, right

word will be sent. In this case, first so-

lution comes to be the correct one.

2.
②✦➝ ✌✏➞➫☞✞➜✠✌❸✑ :- In this case, the junction is ① ✟ , �✆➭ .
The corresponding break-ups are:

• ① ✟ :- (� or �✂✘
) + (① or ① ✟).

•
�✵➭
:- (

�
or

�✂✘
) + (

�✆➯
or

�✆➭
).

The algorithm remains the same as told in

previous case.

3.
✚ ✄✆✫ ☞✞➜➟✌❸✑ :- In this case, the junction is① , �✵➯ , �★✻♦✤

,
� ↔ ✤ . The corresponding break-

ups are:

• ① :- (� or �✂✘
) + (✾ or ➧).

•
�✵➯
:- (

�
or

�✂✘
) + (✶ or ➨).

•
�✂✻♦✤
:- (

�
or

�✂✘
) + (➲ or ➩).

•
� ↔ ✤ :- (� or �✂✘

) + (➳ or ➵).
The algorithm follows the same guidelines.

4.
✳✙✫ ☞➥➜✠✌❸✑ :- In this case, the junction is a ha-
lanta followed by

✳
,
②
,
✻
, ↔ . The corre-

sponding break-ups are:

• halanta +
✳
:- (✾ or ➧) + �

.

• halanta +
②
:- (✶ or ➨) + �

.

• halanta +
✻
:- (➳ or ➵) + �

.

• halanta + ↔ :- (➲ or ➩) + �
.

The algorithm follows the same guidelines.

5.
�★✳✛✘ ✌ ✡ ☞✞➜✠✌❸✑ :- In this case, the junction is�★✳✒✤
,

�★✘✏✳✒✤
,

�★②❥✤
,

�★✘✏②❥✤
followed by any

vowel. The corresponding break-ups are:

•
�✂✳✒✤
+ vowel:- ① + vowel. (same vowel

is retained.)

•
�✂✘✏✳✧✤

+ vowel:- ① ✟ + vowel.
•

�✂②❥✤
+ vowel:-

�✵➯
+ vowel.

•
�✂✘✏②❥✤

+ vowel:-
�✵➭
+ vowel.

The algorithm follows the same guidelines.

Consonant Sandhi:- For dealing with consonant

sandhi, we have defined some groups taking clue

from panini grammar such as
✹ ✄
,

③ ✄
, ❼✄ , ✢ ✄

,
✮ ✄

each of which have 5 consonants which are similar

in the sense of place of pronunciation. Also, there

is a specific significance of first, second, third etc.

letter of a specific string. The following ruleset is

made:

• Define string s1, with first five entries of ❼✄
and 6th entry as

✱
. Also, define s2, with first

five entries of
✢ ✄
and 6th entry as ☞ . The rule

says,

The junction is a + halanta + c, and the

breakup will be b + halanta and c, where

a, c ǫ s1, b ǫ s2 and the position of a and b are

same in the respective strings.

For example, in the word
✻✽✘✏✖✙❻❵✱❄➸ ④ , the junc-

tion is
✱
+ halanta +

✱
. The break-up will

be, ☞ +halanta and ✱ . Hence we get ✻✽✘✏✖ ☞ ✤ +✱☛➸ ④ .
• Define string s1, with first five entries of

③➺✄
and 6th entry as

↕
. Also, define s2, with first

five entries of
✢ ✄
and 6th entry as ☞ . The rule

says,

The junction is a + halanta + c, and the

breakup will be b + halanta and c, where

a, c ǫ s1, b ǫ s2 and the position of a and b are

same in the respective strings.

For example, in the word ☞✍➻➽➼ ✁
, the junction

is ➼ + halanta + ➼ . ➼ is the third character
of string s1. The break-up will be,

✡
+halanta

and ➼ . Hence we get ☞ ✡ ✤
+ ➼ ✁

.

• We have defined strings as
➛➢➯❄✱

and
�★➛➢➯❄✱

with
�★➛❶➯☛✱

containing first two characters of

all the five strings
✹ ✄
,

③ ✄
, ❼✄ , ✢ ✄

,
✮ ✄
as well

as
↕
,

✱
, ☞ . ➛➢➯❄✱

contains all other conso-

nants and all the vowels. The rule says, if we

get a junction with a + halanta + c, where

a,c ǫ
➛➢➯❄✱
, a will be changed to corresponding�★➛➢➯❄✱
while undoing the sandhi. Similarly,

other rules are made.

• The vowels are categorized into ➾ ❹✞②
and

✡✕✔✗➛❊⑤
categories. ➾ ❹✞②

contains
�
, ✾ , ✶ , ➲

and
✡✕✔✗➛❊⑤

contains
�✂✘
, ➧ , ➨ , ➩ . If the

junction is a +
✁
+ halanta +

✁
, where a ǫ➾ ❹✜②

, the break-up will be: a +
✁
+ halanta

and φ, where φ denotes null, i.e. other
✁
is

removed. For example,
✢ ✌ ❹✜✖✙➚✍✻✼➪✒✳ ✟

breaks up

into
✢ ✌ ❹✜✖✛✁✥✤

and
�✂✻✽➪✒✳ ✟

.

Visarga Sandhi:- We have looked at visarga

sandhi in a single word. The rules made are as

follows:

• The junction is
↕
+ halanta + a ǫ

③➺✄
. The

break-up will be ④ and a.
• The junction is

✱
+ halanta + a ǫ ❼✄ . The

break-up will be ④ and a.
• The junction is ☞ + halanta + a ǫ

✢ ✄
. The

break-up will be ④ and a.
• The junction is

✻
+ halanta + a ǫ consonant.

The break-up will be ④ and a.
• The junction is

✻
+ halanta + a ǫ vowel. The

break-up will be ④ and a.
4.2 Relation Analysis

With the root words and the attributes for each

word in hand for the previous step, we shall

now endeavor to compute the relations among the

words in the sentence. Using these relation values

we can determine the structure of each of the sen-

tences and thus derive the semantic net, which is

the ultimate representation of the meaning of the

sentence.

For computing the relations, we have employed

a case-based approach i.e., nominals were classi-

fied as subject, object, instrument, recipient (ben-

eficiary), point of separation (apaadaana) and lo-

cation, to the verb based on the value of the case

attribute of the word, as explained under noun ex-

ample in Section 3.1.

The Sanskrit language has a dependency gram-

mar. Hence the karaka based approach is used to

obtain a dependency parse tree. There are reasons

for going for dependency parse:

1. Sanskrit is free phrase order language.

Hence, we need the same parse for a sentence

irrespective of phrase order.

2. Once the karaka relations are obtained, it is

very easy to get the actual thematic roles of

the words in the sentence.

The problem comes when we have many possi-

ble karakas for a given word. We need to disam-

biguate between them. We have developed some

If-Then rules for classifying the nouns, pronouns,

verb, sub-verbs and adjectives in the sentence. The

rules are as follows: First we are looking at the

sentences having at least one main verb. Nominal

sentences are to be dealt in the similar manner but

the description will be given later.

1. If there is a single verb in the sentence, de-

clare it as the main verb.

2. If there are more than one verb,

(a) The verbs having suffix ➶ ✘
, ➹ ✳✛✮⑨✤ ,✢ ✄✆✖ ✄✵✁⑨✤

are declared subverbs of the near-

est verb in the sentence having no such

affix.

(b) All other verbs are main verbs of the

sentence and relations for all other

words are given in regard to the first

main verb.

3. For the nouns and pronouns, one state may

have many possibilities of the cases. These

ambiguities are to be resolved. The hand

written rules for determining these ambigu-

ities are as follows (Rules are written for

nouns. Adjective precede nouns (May not

precede too due to free word order nature.)

and hence get the same case as nouns. For

pronouns, rules are same as that for nouns.):

(a) Nominative case: The assumption is that

there is only one main subject in an ac-

tive voice sentence. We proceed as fol-

lows:

• All the nouns having nominal case
as one of the attributes are listed.

(For example, ➘→↔ ✖✧✤ has both pos-
sibilities of being nominative or ac-

cusative case.)

• All those connected by
③
are

grouped together and others are kept

separate. We now match each group

along the following lines:

– The number matches with that of

the verb(Singular/dual/plural).

– The root word matches with the

person of the verb(i.e root word

”
�★❹✞✖✙✡ ✤

” for 3rd person, ”
✳ ✄✆❻❥✖✛✡ ✤

”

for 2nd person).

If ambiguity still remains, the one

having masculine/feminine as gen-

der is preferred for being in
✹✩✢✓✘⑤

karaka and declared as subject of the

main verb.

In passive voice,

• Nominative case is related to main
verb as an object. After grouping

and going through the match, the

noun is declared as object of main

verb.

(b) Accusative case: Assuming that the dis-

ambiguation for nominative case works

well, there is no disambiguation left for

this case. All those left with accusative

case indeed belong to that. The noun is

declared as object to nearest sub-verb or

main verb.

(c) Instrumental case: If the sentence is in

passive voice, the noun is declared as

subject of the main verb.

For active voice, ambiguity remains if

the number is dual. The folowing rules

are used:

• We seek if the indeclinable such as☞✍➣ , ☞ ✘✏✹✺✖✒✤
, ☞ ✘ ✑ ⑤❵✖✧✤ , ☞ ✖✙✖✒✤

follow the

noun. In that case, noun is declared

as instrument.

• If the noun is preceded by time or
distance measure or is itself one of

these, it is declared as instrument.

For example ❺ ✘✏➓✒✳✙✘✏✖✧✤ ✌ ✡✽✁✓✘✏➓✒✳✙✘✏✖✒✤✁➈✔✗✻❆➯☛✚ ④➴➼ ✘✏✢ ④ , here ❺ ✘✏➓✒✳✙✘✏✖✧✤
is the

disambiguating feature.

• If ➷❄✌❸✑ ✻ ④ , ✹✩✘✿✫ ④ are following noun,
the noun is declared as instrumental.

(d) Dative case: For dative case, disam-

biguity is with respect to ablative case

in terms of dual and plural nnumbers

The disambiguating feature used here is

main verb. That is, there are certain

verbs which prefer dative case and cer-

tain verbs prefer ablative. For example:

• The verbs preferring dative case are➬ ✄ ✑ ✤ , ✡ ➮ ✄ ➣ ✤ , ➧ ❻❥✳✒✤⑤ , � ☞ ⑩➢✳✒✤ , ❹✜✮✦➤ ➣ ✤ etc.
• The verbs preferring ablative case
are ➼ ✄✆✚ ✄✵➱ ☞ ✘

, ✌ ②☛✻✼✘✏✖
, ✬ ✖✙✘✏✡

,
②❄✘✏✻
etc.

Initially, we have populated the list us-

ing
�★✃☛✘❸✲✥✳✙✘✏✳❵✔

knowledge as well as

some grammar books but this has to be

done statistically using corpus analysis.

(e) Ablative case: The ambiguity here is for

certain nouns with the genitive case in

singular person. The ambiguity resolu-

tion proceeds along the following lines:

• If the noun having ambiguity has
a verb next to it, it will be taken

as ablative (Noun with genitive case

marker is not followed by a verb.)

• If suffixes
✢❍✻✽✮❥✤
,
✢✓✖✛✮❥✤

are used in the

sentence, the noun is declared as ab-

lative.

• If
✢ ✄ ➹ ✳ , ☞ ✡ ➤ ↕

are following the

noun, it is declared as genitive.

• Finally, we look for the disam-
biguating verbs as done in previous

case.

(f) Genitive case: The ambiguity is there in

dual with respec to locative case. We

have used that by default, it will be

genitive since we have not encountered

any noun with locative case and dual in

number.

(g) Locative case: The ambiguities are al-

ready resolved.

Only problematic case will be the situation

discussed in section 3.2 with the example of☞ ✁❍✘✿➓✒✳✛✘✏✖✒✤
. If the algorithm is able to generate a

parse taking the longest possible match, we will

not go into stacked possibilities, but if the subject

disagrres with the verb (blocking), or some other

mismatch is found, we will have to go for stacked

possibilities.

Thus, we have got the case markings. Relation for

nominative and accusative case markings have al-

ready been defined. For other case markings,

• Instrumental: related as an instrument to
main verb in certain cases (taken from�★✃☛✘❐✲✥✳✛✘✏✳❵✔

).

• Dative: related as recipient to main verb in
certain cases, but also denotes the purpose.

• Ablative: related as separation point.

• Genitive: this is not considered as karaka
since karaka has been defined as one which

takes role in getting the action done. Hence it

is related to the word following it.

• Locative: related as location to the main verb.

Still, we have not given any relation to adjectives

and adverbs. For each adjective, we track the

noun it belongs to and give it the same attributes.

It is defined as adjective to the noun. The adverbs

are related to the verb it belongs as adverb.

Based on these relations, we can obtain a se-

mantic net for the sentence with verb as the root

node and the links between all the nodes are

made corresponding to relations with the verb and

interrelations obtained.

Sanskrit has a large number of sentences which

are said to be nominal sentences, i.e. they don’t

take a verb. In Sanskrit, every simple sentence has

a subject and a predicate. If the predicate is not a

finite verb form, but a substantive agreeing with

the subject, the sentence is a nominal sentence. In

that case, the analysis that we have done above

seems not to be used as it is. But in Sanskrit,

there is a notion called
�✂✘ ❷ ✟❄✮

, that is, if one of the

verb or subject is present, other is obtained to a

certain degree of definiteness. Take for example,

the sentence
� ➣ ✖✧✤❒✹ ↔ ✖ ✟❄✁ ✌✏↔♥❮ ✘ ✌ ✖Ï❰

. If instead

of saying the full sentence, I say
� ➣ ✖✞✤Ð✹ ↔ ✖ ✟❄✁

,✌✏↔→❮ ✘ ✌ ✖ is determined as verb. Similarly, if I say✹ ↔ ✖ ✟☛✁ ✌✏↔→❮ ✘ ✌ ✖ , the subject � ➣ ✖✧✤
is determined.� ➣ ✖✒✤ is a kind of appositive expression to the

inflectional ending of the verb ✌✏↔♥❮ ✘ ✌ ✖ . We

have used this concept for analyzing the nominal

sentences. That is, verb is determined from the

subject. Mostly, the forms of
� ☞ ✤ only are used

and relations are defined with respect to that.

Although, the analysis done is not exhaustive,

some ruleset is built to deal with them. Most

of the times, relations in a nominal sentence are

indicated by pronouns, adjectives, genitive. For

example, in the sentence ☞Ñ④Ò☞ ✄ ✎ ✡✽✻ ④Ò➷ ✘ ↔ ✹ ④ ,
there is

�★✘ ❷ ✟❄✮
of the verb

� ✌ ❹✜✢ in the sentence
by the subject ➷ ✘ ↔ ✹ ④ . Hence ➷ ✘ ↔ ✹ ④ is related
to the verb as subject. ☞❒④ is a pronoun referring
to ➷ ✘ ↔ ✹ ④ and ☞ ✄ ✎ ✡➔✻ ④ is an adjective referring
to ➷ ✘ ↔ ✹ ④ . Similarly, ✾ ✡➔✖✧✤Ó✢✓❹✞✳Ô✚➈➤ ➣ ✖✒✤✓❰

. In this

sentence, ✾ ✡✽✖✧✤ is a pronoun referring to ✚❊➤ ➣ ✖✒✤
and✢✓❹✞✳

is a genitive to
✚♦➤ ➣ ✖✒✤

. Here again, there will

be
�✂✘ ❷ ✟☛✮

of the verb
� ✌ ❹✞✢ and ✚♦➤ ➣ ✖✒✤

will be

related to the verb as subject.

5 RESULTS

5.1 Databases Developed

The following Sanskrit Rule Databases have been

developed during the project:-

• Nominals (
↕→Õ❵✡➔➠➡✮

) rule database contains

entries for nouns and pronouns declensions

along with their attributes.

• Verb (✑ ✘✏✢ ✄✵➠➡✮
) rule database contains entries

for 10 classes of verb along with their tenses.

• Particle (
�★Ö❥✳✛✳

) database.

Along with these databases, we have developed

some user interfaces (GUI) to extract information

from them. For example, if we want to get the

forms of a particular verb in a particular tense, we

can just open this GUI and give also obtained. the

root word and tense information.

5.2 Parser Outputs

Currently, our parser is giving an efficient and ac-

curate parse of Sanskrit text. Samples of four of

the paragraphs which have correctly been parsed

are given below along with snapshot of one sen-

tences per paragraph.�★✁ ✄✆☎✞✝✠✟❄✡
1:-

✮ ⑩ ➻ ✳✙✘ ④ ✚ ✄✵✰✓③✩✻✼✫✙✘ ④ ✻✼✖✙✫✿✔✗✳ ✟×✚ ✄✵✰✓✹✄ ↔ ✟✬ ✘✿✢ ④✗✌ ✁✓✳✙✖ ✟❄✁ ☞✍✎ ✲✥✳✙✘✏✖✒✤ ✶ ✮❄✘✏❹✜✳Ø✖ ✟ ✑ ✘ ✌ ②❄✁ ④✛✌ ↕→❻❵✳✙✘✏✁⑨✤
☞✩➙ ✳✛✹♦✤Ù�Ú✲✥✳✛✘✏✮☛✳ ✌✏✎ ✢Û❰➥✚ ✄✵✰✓✹✄ ↔ ✟Ü�★✁✟❄✹ ✟❄✝❥✤ ➣ ✻✼✘ ④☛☞✍✌✿✎ ✢Ý❰✹ ✟❄③✍✁ ➷ ✘ ↔ ✘ ④ ❰Ú✹ ✟❄③✩✁ ✬ ➭❄Þ❫✘ ④ ❰Ú✚ ✄✆✰❍③✩✻✼✫✙✘ ④Ñ✬ ➭❄Þ❫✘✏✁⑨✤✝✣✘✿➦❍✘✿✁⑨✤✩✮☛✘✏ß☛✳ ✌✏✎ ✢Ý❰ ✬ ➭❄Þ❫✘ ④✺➷ ✘ ↔ ✘✏✁⑨✤✺✮❄✘✏ß➒✳ ✌✿✎ ✢Ý❰ ☞ ②✟❸⑤②✟❄✡➔✖ ✎ ➦✓✘✏✁⑨✤ ✌ ②☛↕✦✄ ➞ ➠➡✮✟❄✫ ✶✸à ✘✿✻✼✳ ✌✏✎ ✢Ý❰á✚ ✄✵✰✓③✍✻✽✫✛✘ ④✌ ↕→❻❵✳✙✘✏✁⑨✤â②✟☛✡✽❹✜✳ã� ✭ ⑤❵✖✒✤ä� ✌ ✮ ➷ ➯ ✑ ✳ ✌✏✎ ✢Ý❰ ✬❄✌ ✢ ✌ ✡✽✁✓✖✒✤
✬ ✘✿✢ ④å☞ ✘✏✳✛✖✒✤ ☞ ②✟❸⑤ ✌ ↕♥❻❥✳✙✘ ④ ✳✙æ✙✖✒✤ç� ✌ ✮è✹✄é②❚⑤ ✌✿✎ ✢Ý❰✢ ✟ê②❄✁✓✖✒✤ë✚ ⑧ ②❄✘ ☞✍✌ ✖ ✑→④ �★✘✏✁✓✳ ✌✿✎ ✢Ý❰Ï✢✟ ✌ ✁✓✳✛✖ ✟❄✁Ö❥✳✛✘✿✳✛✘✏✖✙✖✒✤❄✹✄é②✕⑤ ✌✏✎ ✢Ý❰ ① ✢ ✟ ✌ ↕♥❻❥✳✙✘ ④❫① ② ✑ ✖❊⑤❵❹✜✳ì✻ ❷ ✫✛✖✒✤✹ ✌ ✻✼❻❥✳ ✌✏✎ ✢Ý❰

.

Figure 2: Parser output for
✮❩⑩ ➻ ✳✙✘ ④ ✚ ✄✵✰✓③✍✻✽✫✛✘ ④✻✽✖✛✫❵✔✗✳ ✟Ò✚ ✄✵✰✓✹✄ ↔ ✟ ✬ ✘✏✢ ④í✌ ✁✓✳✙✖ ✟❄✁ ☞✩✎ ✲✥✳✙✘✏✖✒✤ ✶ ✮❄✘✿❹✞✳✖ ✟ ✑ ✘ ✌ ②❄✁ ④✺✌ ↕→❻❵✳✙✘✏✁⑨✤ ☞✩➙ ✳✛✹♦✤ë�î✲✥✳✙✘✏✮❄✳ ✌✏✎ ✢Ý❰

�★✁ ✄✆☎✞✝✠✟☛✡
2:-

✖✙✖ ✚➈➤ ➣✟ ① ✹✺✖✒✤ ✶ ✮❄②❄✁✓✖✒✤ï②❄✢❈⑤❥✢ ✟å❰
✶ ✮❄②❄✁✓❹✜✳ ☞ ✖❵✔✗✮✟ ① ✹✩✘ð✚❶➯❄↕→✘ ↔ ✘ð②❄✢❈⑤❥✢ ✟å❰ � ➣ ✖✒✤
✬❄✌ ✢ ✌ ✡✽✁✓✖✒✤ ✬ ✘✏✢ ④✂☞ ⑩➢✳❶➯❸⑤✦✡➔✳✙✘✏✢⑨✤Ù✮ ⑩➢②✕⑤❥✖✒✤Ù↕♥ñ✒✳✙✘✏✖✒✤ ⑧ ✳ ➶ ✘↕ò➭❄③✍✘ ✌ ✡✽✹✺✖✒✤ ✌ ② ✑ ✘✏✳ ✚❶➯☛↕♥✘ ↔ ✘✏✖✒✤å✚✙☎✞✝í✘ ✌ ✖Ï❰ó✢✓➦✖✙✖Ô✚➢➭ ④ ✖✛✘✏✖✒✤ ✬ ✢➈✔ ❷ ✢ ✟å❰ô✖✙✖õ✚❶➯ ④ ✁❍✘✿✖ ✑ ② ↔ ✘� ✌ ❹✜✢Û❰ ✑ ② ↔ ✘✿✳✛✘ ④ ② ⑧✥☞ ✘✏✳✙✘ ④ ✁✓✘✏✖ó✚➢➭❄✻❩✔õ� ✌ ❹✜✢Û❰� ➣ ✖✒✤ ✑ ② ↔ ✘✿✖✒✤ ✬✟ ➙ ✫✙✘✂❹✞✮✦➤❸↕→✘ ✌ ✖Ï❰➀✢✓❹✞✳✙✘ ④✺☞ ✘✏öî✘✿✳✛✘✏✖✒✤

✹✺➪✒÷ ⑩ ✳ ✟å❰ ☞ ✘ ✬❄☞ ➚✩✘ ⑦ ② ✌ ✢Ý❰✞✚❶➭☛✻❩✔✗✖✒✤é� ✌ ✮Û✹✺✻✼✘✏➓✒✳✙✘✏✖✒✤
☞✞➜ ②☛✘ ➣ ✳✛✘ ✌ ✖ø❰ ✢ ⑧ ✮❄ùä✘✏✢✥✤ú✚❶➯❄↕→✘ ↔ ✘✿✖✒✤û✖✙✘ ➼ ⑤❥✳✛✘ ✌ ✖ø❰✚➢➯❄✖✛✳✙✖✒✤

, ⑦ ✄✵ü→✘✏② ✌ ↕→✃☛✘ ✌ ✁Ô✢➟➤❐✫✙✘ ✌ ✁õ③ ✌ ✁✓✻✼❹✜✳✛✘ ✌ ✖ø❰✢✓✢ ④ ✖✙✖ ✑ ② ↔ ✘✏✳ ❽ ☞ ✄✵❹✜②❄✘✏✡ ⑩ ✌ ✁Ô✹✞➯❄✖ ↔ ✘ ✌ ✁ý✢➟➤❐✫✛✘ ✌ ✁✡➔✡✟å❰õ�★✁ ✎ ✢✓✻✼✖✒✤➴✚❶➭☛✻❩✔✗✖✒✤ï✖ ✄✵þ✩✘ ✌ ✖Ï❰ ☞ ✘Ïÿ ✌✏❼➒✌ ✢❹✜②❄✖✛✘✿✢❍✻✽✖✒✤ ✑ ② ↔ ✘✏✖✒✤ ✑ ✳✛✢ ✟å❰ ✑ ② ↔ ✘✏✳✙✘ ④ ➨✣✑✓✌✏☞❷ ✔✗✻✽✖✒✤ä�★②❄✢✓✻ ✌ ✢Ý❰❝✢ ⑧ ✮❄ùä✘✿✢⑨✤ � ➣ ✖✒✤ ✑ ② ↔ ✘✿✖✒✤é✡✄ ✁ ✑ ✖✒✤✡✄ ➣✟ï❰ ① ✢✓✢⑨✤Ð✖✛✖ ✌ ✁ ⑧ ✳✙✹✩✖❊⑤ ④ ❰ï✚❶➯ ☞ ✟❄②❄✘✏✹✺✘ ↔ ✟ � ➣ ✖✒✤✚➢➯❄✖ ✌✿➣ ✖ ✬❄✌ ✢❍✮☛✘✏✡✽✹✺✘✏✁⑨✤ ②✟❄✡➔✖ ✎ ➦✓✘✏✁✥✤ê✖ ✎ ✡✽✖✒✤ê✖ ✎ ✡➔✖✒✤✖ ✑ ✄✵✻✽❹✞②❄✻✟❄✫ ✶✸à ✘✏✻✼✳✙✘ ✌ ✖Ï❰
.

Figure 3: Parser output for
� ➣ ✖✞✤ ✬❄✌ ✢ ✌ ✡➔✁❍✖✒✤ ✬ ✘✿✢ ④☞ ⑩❶✳➢➯❸⑤✦✡➔✳✛✘✿✢⑨✤→✮ ⑩➢②✕⑤❥✖✒✤♥↕→ñ✒✳✛✘✏✖✒✤ ⑧ ✳ ➶ ✘✣↕ò➭❄③✍✘ ✌ ✡✽✹✺✖✒✤ ✌ ②✄✂✑ ✘✏✳✯✚➢➯❄↕♥✘ ↔ ✘✏✖✒✤é✚✙☎✜✝✣✘ ✌ ✖Ï❰

�★✁ ✄✆☎✞✝✠✟❄✡
3:-

✖✙✖ ✚➈➤ ➣✟ ① ✹✺✖✒✤ ✶ ✮❄②❄✁✓✖✒✤å②☛✢❈⑤❵✢ ✟å❰
✶ ✮❄②❄✁✓✖✒✤ ✌ ②❄↕→✘ ↔ ✖✒✤ê� ✌ ❹✞✢Ý❰ � ✌ ❹✜✖✛✁✥✤ ✶ ✮☛②❄✁✟✁✓✘✏✁✓✘ ➘♥↔ ②✦➤ ❷ ✘ ④Ð☞✩✌✏✎ ✢Ý❰ ➷❄➣ ② ④ ✮ ✄✆❻❥✮❄✢✓✻✼② ④ � ✌ ✮②❄✢❈⑤ ✎ ✢ ✟å❰✙�★✁✟☛✹✩✘ ④→↔ ✢✓✘ ④ � ✌ ✮ ✌ ②✆☎ ✎ ✢ ✟ï❰✛�✂✘✏✳ ✄✆②❽❸⑤ ✌ ✡➔✹②❄✁✓❹✜✮❄✢✓✳ ④ � ✌ ✮ ☞✍✌✿✎ ✢Ý❰✜� ➣ ✖✒✤ ✬❄✌ ✢ ✌ ✡➔✁❍✖✒✤ ☞ ✘✏✳ ➜ ✹✩✘ ↔ ✟✶ ☎✂✘✏✁✓✹✩✖❊⑤ï✹✄é②✟❸⑤➒❰ � ➣ ✖✒✤ ➣ ✘ ✌ ✁✓✹✺✻✼✘ ✌ ✫ó✢➟➤❐✫✛✘ ✌ ✁ ✌ ✁✝✂✻✼✘✿✹✩✻ ➯ ✌ ✖Ï❰✂� ➣ ✖✒✤ ②❄✘ ✌ ✻✽✫✛✘ ☞ ②❄✘⑤❥✁⑨✤ ②☛✁❍❹✜✮❄✢➈✔✗✁⑨✤ ✌✏☞ ✂þ✍✘ ✌ ✖ø❰ ☞ ✘✏✳ ➜ ✹✺✘ ↔ ✟ ✶ ✮❄②❄✁ ✟ ✖✛✖ ✌ ✮❄✢✠➤❸③✩✻✼✫✙✘ ④✺⑦ ✞ ✖ ✌✏✎ ✢Û❰✢ ❽ ④★☞ ✘✏✹✺✖✒✤ ✖✛✖ ⑦ ✞ ✘✏✢➟➤ ➼ ✘ ④ � ✌ ✮ ⑦ ✞ ✖ ✌✏✎ ✢Ý❰✙✹✺✡✽✘ ✌ ③✍✢⑨✤✚➢➭❄✻❩✔ � ✌ ✮è✢✓➦ �✂✘✿✳✛✘ ✌ ✢Û❰ ☞Ñ④ï✾ ✢✓❹✜✢✓✢ ④ ②✟❄✚ ✟❄✁
✑ ✘✏② ✌ ✢Ý❰❝↕→✘ ❺✽↔ ✟ ➣❫✌ ✻✽✢✓✢➟➤❸✫✙✘ ✌ ✁ ③✩✻ ✌ ✢Ý❰➀✖✙✳✠⑩❶✻✽✘ ④ � ✌ ✮✢✓➦ �★✘✏✚ ⑧ ✳ ✁➟➤ ⑧ ✳ ✌✏✎ ✢Ý❰✂✢✟ ✖ ✑ ✄✆✻✼✖✒✤Ñ✲✥② ✌ ✁❍✖✒✤î✹✄â②❚⑤❥✢ ✟å❰②✦➤ ❷ ✟❄✱ ✄ ②☛✘✏✁✓✻✼✘ ④ ➬➀✔✗÷ ✌✏✎ ✢Ý❰ ✌ ② ✌ ② ✑ ✘ ④ ✮ ✌❸❷ ✫ ④ ②✦➤ ❷ ✟❄✱ ✄✹ ⑩ ➼Ù✌✿✎ ✢Ý❰➥✖✙✖û✖✙✘✏✢➟➤❐③✍✻✽✫✛✘ ④✛☞ ②✟❸⑤✦➓✒✳ ④ ✻ ➯ ✌✏❼ ✹✺✘ ❮ ➪✒÷✓✘ ✌ ✁✑ ✘ ✎ ✳✙✹✩✫✙✘✏✁⑨✤Ý③ ✌ ②❄✢✓✻ ✌✿✎ ✢Ý❰ ✾ ✡✽✖✒✤Ý✡ ➤✠✟ ✳✙✖✒✤ø� ✌ ✢�★✘✏✁ ✎ ✡ ✬ ✡✽✖✒✤ ⑦ ② ✌ ✢Ý❰�★✁ ✄✆☎✞✝✠✟❄✡

4:-
✖✙✖ ✡✟❄↕♥❹✜✳ ✁✓✘✏✖ ⑦ ✘✏✻✽✢✓②❄✱✕⑤❥✖✒✤✓❰✽✖✛✖✡✟☛↕ ✟ ②✟❄✡✽✘✿✁❍✘✿✖✒✤✣�Ú✲✥✳✛✳✙✁✓✖✒✤ ⑦ ② ✌ ✢Ý❰✂②✟❄✡✟❄✱ ✄ ✬ ✘ ✌ ✫✙✁✓✘✏✖✒✤✖✙✁ ✄✵❻❥✳✙✘✏✫✛✘✿þ ➼ ✔✗②❄✁✓✘✏✳ �★✘✏② ✟ ✳✛✹✺✘ ④✸✌ ✁❍✳✙✖✙✘ ④ ② ✌ ✫❊⑤❵✢✓✘ ④☞✍✌✿✎ ✢Ý❰ ②✟❄✡✟❄✱ ✄ � ✎ ✳✛✢✓✖ ④ë➲ ✁✒②✟❄✡ ④ ❰ ➲ ✁✒②✟❄✡✟ ① ✹✩✖✒✤②❄✘☛✡ï✖✒✤Ð②❄✢❈⑤❥✢ ✟

,”➣✟ ✖✙✘✏✁✓②
! ⑧ ②❄✖✧✤ ✹ ➤ ✌ ✱❄✖✒✤ �★② ✟ ✳✙✖✒✤✹ ✄é✰Û❰

” ☞✍➙ ✮ ⑩➢✫ ✟❸⑤ ➼ ✚ ✌ ✢ ➼Ù✎ ✢❩⑩❶✁✓✘✏✖✒✤ ➼ ✔✗②❄✁✓✘ ✑ ✘✏✻ ④�★➚✍✖ ✟☛②å❰�★➚✍þ ✹ ➤ ✌ ✱☛✖✒✤ ✌ ②❄✁✓✘í✁❽❄② ☞✩➙✒⑦ ② ✌ ✢Ý❰➡�★✢ ④⑦ ✘✏✻✼✢➈✔✗✳✙✘ ④ �✂✘✿③✍✘✏✳✙✘⑤ ④➒☞ ②✟❸⑤✕✱❄✘✏✖✒✤ ➼ ✔✗②❄✘✏✁✓✘✏✖✒✤❄✹ ➹ ✳✛✘✏✫✙✘✏✳✹ ➤ ✌ ✱❄✹✺✖❊⑤ ✌ ↕ ❷ ✫✛✘✿✳ ➷☛➣✄ ✌ ② ✑ ✘✏✁⑨✤ ✶ ✮❄✘✏✳✙✘✏✁⑨✤â� ✌ ↕ ❷ ✳ ✎ ✢Û❰

Figure 4: Parser output for
✖✙✖ï✖✙✘✏✢❆➤❐③✍✻✼✫✙✘ ④➔☞ ②✟❸⑤✦➓✒✳ ④✻ ➯ ✌✏❼ ✹✺✘ ❮Ù✎ ÷✓✘ ✌ ✁ ✑ ✘ ✎ ✳✛✹✺✫✙✘✏✁⑨✤✍③ ✌ ②❄✢✓✻ ✌✏✎ ✢

✢ ✟❄✱ ✄ ✬✓✑ ✘✏✁ ④Ù✶ ✮❄✘✏✳ ④ ✚❶➯☛② ➜ ↕ ☞ ✟☛②❄✘✍❰✵✚➢➯ ④ ② ➜ ↕ ✟ ✑ ✟❄✁✓② ④ ,➷❄↔ ✔✗②❄✡➔✘⑤ ④ ②✦➤❐✱ ⑦ ✘ ④ , ② ⑧✥☞ ✘ ④ , ②✦➤ ➞ ✘ ④Ý✑✟☛✁❍② ④Ï☞ ②✟❸⑤✚➢➯❄② ➜ ↕ ➼ ✘ ④ � ✎ ✢ ⑦ ⑤❥② ✌✏✎ ✢Ý❰ ⑦ ⑩➢✖ ✟ ④✛➷❄↔ ② ✑ ⑤❥✁❍✘✿✳ð✚➢➯❄✖✠⑩❶➦✓✖✒✤✚➢➯❄✖✙✳✛✖✒✤ ③õ� ⑧ ✳ ✎ ✢✓✖✒✤ ✶ ✮❄✹ ✄é➠➡✢ ④ ❰ ➷☛↔ ✡➔✘ ④î⑦ ⑩ ✌ ✖✛✖✒✤✹ ✌ ✱❚⑤❵✢ ✄✆✖✒✤ ✶ ✮❄✳ ✄ ➻ ✳ ✎ ✢ ✟å❰✵↕♥❹✜✳✛✘✿✁❍✘✿✖✒✤✩✁✓✳✙✁❍✘✿✁❍✳✙✁✓✘✏➓✒✳✙✘✏✖✒✤✚➢➯❄✖✙✳ ➼✂✎ ✳ ✶ ②✕⑤❥✻✼✹✺✘✏✫✙✘✏✖✒✤ ✾ ✢✓✻✽✮❄✡✽✘ ✭ ✘⑤❵✁✓✘✏✖✒✤ ✾ ✢✓❹✜✢❍✢ ④✬ ✘✿✮❄✫✛✘✿✳ ↕♥✹ ❼ ✘✏✁✓✘✏✖✒✤ ✬ ✳❶➯☛✚ ④ �★✘✏② ✟ ✳✛✹ ④ ❰❝↕→✹ ❼ ✘✏ù②✦➤❸✱ ⑦ ❽❄✻✟☛② ✶✌☞✣✎ ✢ ✟å❰ò�★✢ ④ ✚➢➯❄② ➜ ↕→❹✞✳ú✹ ➤➽✱✟❄ù×� ✌ ②❄☎✜✝✠✟✆☎✹✺ùä✁ã�★✮ ⑩➢②❚⑤ ④→☞✩➙✒➷❄✎✪✑→④ ②☛✢❈⑤❵✢ ✟å❰✗�★✢ ① ②ú✚➢➯ ④→✶ ✮❄✖✙✘✡➔✘✏✢ ✄✆✖✒✤❒✁ ↕✍✡ï✢✟å❰ ⑦ ⑩❶✖ ✟ ④ ① ✹✺✖✒✤Ú✁✓✘✏✖è✚➢➭ ④❒✾✆⑧ ✳ ✌ ✮✌ ②✎☎Ù✢✟å❰ ☞✞➜ ❹✞✹ ➤➽✢ ✟Ò✚❶➭ ④Ñ✾✆✌ ✢ ✮❄✡✟☛✁á❹✜➦➈✔ ✚➢➭ ✮ ✄✑✏é②☛ù
✶✸⑦ ✘✏② ✌ ✮➫✚➈➤ ☞ ✢ ✟å❰➥✹ ➤ ✌ ✱☛② ✑ ⑤❵✁✓✘✏✳Û↕→❹✞✳✙✁✓✘✏↕♥✹✺✘✏✁✓✘✏✖✒✤❫✹❶✔✍✂
❼ ✘✏✁✓✘✏✖✒✤✣✁✓✘✏↕♥✘ ✭ ⑤❵✖✒✤Ó✹ ✟❄③✩✁ê➛✙✘✏✢✓✹✩✡ ➮✞Ö❵✳✙✘✏✁✓✘✏✖✒✤ ✬ ✳❶➯☛✚✛✖✒✤✹ ✄é②✕⑤❥✢ ✟å❰ ☞ ✘✏✖✙②✟❄✡➔❹✞✳ ✬✓✭ ✖ ✟ �★✘ ✌ ③❸⑤❥✹ ✟ ✹ ➤ ✌ ✱ ✌ ②❄✱❄✳ ✟✚ ➙✒⑦ ✔✛✻✼✘✣③✩③✍✘⑤ ✬ ✘✿➱❵✳✙✢✟ï❰✺�✂❹✜✖✙✘✏✹✩✖✒✤✂✚ ✄✆✻✼② ④ ✖ ➣ ✱✕⑤❥✳ ④☞✩➙ ✮ ⑩➢✫❊⑤ ➼ ✚✛✢ ④ ✹ ➹ ✳✛✘✏✫✙✘✏✳ ✹ ➤ ✌ ✱ ✌ ②✆☎✂✘✏✖✒✤ ☞✩➙ ✳✛✹♦✤
✬ ③✩✘✏✻✼✳✙✁⑨✤✓❰ ✹ ➤ ✌ ✱☛✹✩✖❊⑤❥✫ ✟ ➼ ✁✓✘✏✁⑨✤ ✬✟ ✌ ✻✼✢✓② ✎ ✢ ④ ❰å②✟❄✡✟☛✱ ✄
⑦ ⑩ ✌ ✖ ④ ✖✙✘✏✢✓✘ ✾✆✌ ✢ó✹✍✒✥✳✛✢ ✟å❰ð✳ ✭ ✘ï✖✙✘✏✢✓✘ �✂❹✜✖✙✘✏✁⑨✤✮❄✘ ↔ ✳ ✌ ✢Ò✢ ✭ ✘ ✮❩➤✓✒✥②✠✔ ☞ ②☛✘⑤❥✁⑨✤ ➼ ✔✗②☛✘✏✁⑨✤❒�★➚ ✟❄✁ ➘♥↔ ❽ ④✁✓✘✏✁✓✘ ✌ ② ✑ ✮❄✡➔✘ ✭ ❽❥⑤ ④ ✮❄✘ ↔ ✳ ✌ ✢Ý❰ ✳ ✎ ➦ ❽ ④ , ✢ ❽ ↔ ✟ ✎✒✑ ✁ ✟❄✁

,✻ ☞ ✘✏✳✙✁✓✡ ➮ Ö❥✳ ❽ ④ ✹✥✔ ❼ ✁✓✘✏↕♥✹ ❽ ④ ③ ✳✙✘ ✹ ➤ ✌ ✱ ✌ ➬★✳✙✢ ✟✢ ✟❄✁ ☞ ②✟❸⑤✕✱❄✘✏✖✒✤ ➼ ✔✗②❄✘✏✁✓✘✏✖✒✤❒✁✓✘✏↕ ① ② ⑦ ② ✌ ✢Ý❰Ð�★✁✟❄✁✹✺✖❊⑤❵✫✙✘ ☞ ②✟❸⑤✦✱❄✘✿✖✒✤ ✬ ✘ ✌ ✫✛✁✓✘✏✖✒✤❂✖✙✁ ✄✆❻❵✳✙✘✏✫✙✘✏þ ✖ ➣ ✢➈✔ ➣ ✘ ✌ ✁➼ ✘✏✳✙✢✟ï❰
.

Figure 5: Parser output for
②✟❄✡✟❄✱ ✄ ✬ ✘ ✌ ✫✛✁✓✘✏✖✒✤✖✙✁ ✄✆❻❵✳✙✘✏✫✙✘✏þ ➼ ✔✗②❄✁✓✘✏✳ �★✘✏② ✟ ✳✛✹✺✘ ④❫✌ ✁✓✳✛✖✙✘ ④ ② ✌ ✫❊⑤❵✢✓✘ ④☞✩✌✏✎ ✢Ý❰

The parse results pave the way for represent-

ing the sentence in the form of a Semantic Net.

We here give the semantic net for the parse output

given in Figure 2.The Semantic Net is shown in

Figure 6.

❀ ➑ ➆ ❃ ❏❛➆✽▲ ❇❊❉

❿ ❑ ➉s❢❫❅✜❳✼❃✓✔

❏ ✕✗✖✞➆ ❃✘✔
▲❈t✚✙❆➆ ❃ ❲ ➂

P q✵❖ ❃ ▲ ❡ ❲ ✔

❿ ❑ ➉✵❁ ❑➔❯ q

❅✜P✼❳ ❙➽➆ q

❜ ❏ ❃ ◗⑨➆

❴ ❃❈❉✛✔

▲❆❲s➆ P q❛❲

❬ ❇❥➑ ➆ ❃❈P ➂
❬❫❪❥➆ ❁ ➂

subject

adjective

object

adjective

location

adjective

vs

adverb

adverb

object
adverb

Figure 6: Semantic net representation of the sen-

tence [
✮ ⑩ ➻ ✳✙✘ ④ ✚ ✄✆✰✓③✍✻✼✫✙✘ ④ ✻✼✖✙✫✿✔✗✳ ✟ ✚ ✄✆✰❍✹✄ ↔ ✟ ✬ ✘✿✢ ④✌ ✁✓✳✙✖ ✟❄✁ ☞✍✎ ✲✥✳✛✘✏✖✒✤ ✶ ✮☛✘✏❹✞✳ ✖ ✟ ✑ ✘ ✌ ②❄✁ ④ ✌ ↕→❻❵✳✙✘✏✁⑨✤

☞✍➙ ✳✙✹♦✤ �Ú✲✥✳✛✘✿✮❄✳ ✌✿✎ ✢Ý❰
]

6 CONCLUSIONS AND FUTURE

WORK

Our parser has three parts. First part takes care of

the morphology. For each word in the input sen-

tence, a dictionary or a lexicon is to be looked up,

and associated grammatical inforation is retrieved.

One of the criterion to judge a morphological

analyzer is its speed. We have made a linguistic

generalization and declensions are given the form

of DFA, thereby increasing the speed of parser.

Second part of the parser deals with making

”Local Word Groups”. As noted by Patanjali,

any practical and comprehensive grammar should

be written in ’utsarga apavaada’ approach. In

this approach rules are arranged in several layers

each forming an exception of the previous layer.

We have used the ’utsarga apavaada’ approach

such that conflicts are potentially taken care

of by declaring exceptions. Finally, words are

grouped together yielding a complete parse. The

significant aspect of our approach is that we do

not try to get the full semantics immediately,

rather it is extracted in stages depending on when

it is most appropriate to do so. The results we

have got are quite encouraging and we hope to

analyze any Sanskrit text unambiguously.

To this end, we have successfully demonstrated

the parsing of a Sanskrit Corpus employing

techniques designed and developed in section 2

and 3. Our analysis of the Sanskrit sentences in

the form of morphological analysis and relation

analysis is based on sentences as shown in the four

paragraphs in previous section. The algorithm for

analyzing compound words is tested separately.

Hence future works in this direction include

parsing of compound sentences and incorporating

Stochastic parsing. We need to take into account

the
✁✓✘✏✖ ✑ ✘✏✢ ✄

as well. We are trying to come up

with a good enough lexicon so that we can work

in the direction of ☞ ✖✛✘ ☞ ✌ ②❄☎✜✝✠✟❄✡
in Sanskrit

sentences. Also, we are working on giving all

the rules of Panini the shape of multiple layers.

In fact, many of the rules are unimplementable

because they deal with intentions, desires etc.

For that, we need to build an ontology schema.

The Sandhi analysis is not complete and some

exceptional rules are not coded. Also, not all the

derivational morphology is taken care of. We

have left out many ✬❄⑧ ✳✙✳
. Reason behind not

incorporating the ✬❄⑧ ✳✛✳
was that it is difficult

to come up with a general DFA tree for any of

the ✬❄⑧ ✳✙✳
because of the wide number of rules

applicable. For that, we need to encode the Panini

grammar first.

Acknowledgment

We humbly acknowledge our gratitude to revered

Aacharya Sanskritananda Hari, founder and direc-

tor of Kaushalya pitham Gurukulam, Vadodara for

educating us in all aspects of Sanskrit language.

References

Blai Bonet and Hctor Geffner 2001. Planning as
heuristic search. Artificial Intelligence 129.

Ferro, M.V., Souto, D.C., Pardo, M.A.A.. 1998. Dy-
namic programming as frame for efficient parsing.
Computer science, 1998.

Ivanov, Y.A., Bobick, A.F. 2000. Recognition of vi-
sual activities and interactions by stochastic pars-
ing. Volume 22, Issue 8, Aug. 2000 Page(s):852
- 872. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Briggs, Rick. 1985. Knowledge Representation in
Sanskrit and artificial Intelligence, pp 33-39. The
AI Magazine.

G. Huet. 2002. The Zen Computational Linguistics
Toolkit. ESSLLI 2002 Lectures, Trento, Italy.

G. Huet. 2005. A Functional Toolkit for Morphologi-
cal and Phonological Processing, Application to a
Sanskrit Tagger. Journal of Functional Program-
ming 15 (4) pp. 573–614.

G. Huet. 2006. Shallow syntax analysis in Sanskrit
guided by semantic nets constraints. International
Workshop on Research Issues in Digital Libraries,
Kolkata. Proceedings to appear as Springer-Verlag
LNCS, 2007.

Bureau of Indian Standards. 1999. ISCII: Indian
Script Code for Information Interchange. ISCII-91.

Akshar Bharati and Rajeev Sangal. 1993. Parsing Free
Word Order Languages in the Paninian Framework.
ACL93: Proc. of Annual Meeting of Association for
Computational Linguistics. Association for Com-
putational Linguistics, New Jersey, 1993a, pp. 105-
111.

Kale, M.R. A Higher Sanskrit Grammar. 4th
Ed,Motilal Banarasidass Publishers Pvt. Ltd.

Hopcroft, John E., Motwani, Rajeev, Ullman, Jeffrey
D. 2002. Introduction to Automata Theory, Lan-
guages and Computation. 2

nd Ed, Pearson Educa-
tion Pvt. Ltd., 2002.

