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Analysis of scale dependencies in an urban land-use-change model
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Different processes shaping land-use patterns are observed at different scales. In

land-use modelling, scale can influence the measurement and quantitative

description of land-use patterns and can therefore significantly impact the

behaviour of model parameters that describe land-use change processes. We

present results of a rigorous sensitivity analysis of a cellular urban land-use-

change model, SLEUTH, testing its performance in response to varying cell

resolutions. Specifically, we examine the behaviour of each type of urban growth

rule across different cell sizes, and explore the model’s ability to capture growth

rates and patterns across scales. Our findings suggest that SLEUTH’s sensitivity

to scale extend beyond issues of calibration. While the model was able to capture

the rate of growth reliably across all cell sizes, differences in its ability to simulate

growth patterns across scales were substantial. We also observed significant

differences in the sensitivity of the growth rules across cell sizes, indicating that

SLEUTH may perform better at certain cell sizes than at others. These findings

emphasize the importance of scale considerations in land-use-change modelling

research, particularly in terms of determining the relevant and appropriate scales

of enquiry for the processes being simulated.

1. Introduction

The relationship between land-use patterns and the processes that form them

changes over time and space (Carlile et al. 1989, Gibson et al. 2000, Goetz et al.

2004). Process-based relationships may be easier to discern at fine scales, where

land-use changes can be explicitly linked to the activity of agents in the landscape.

These relationships are less apparent when the emergent land-use-change patterns

are observed over coarser scales where other processes, such as environmental or

macro-economic factors, become dominant (Kok and Veldkamp 2001). In the

context of land-use modelling, the scale of observation can influence the model’s

ability to capture the underlying processes that drive land-use changes, and

relationships established at one spatial scale may not translate to another spatial

scale in a linear fashion (Gardner et al. 1989, Jenerette and Wu 2001, Kok and

Veldkamp 2001).

Urban models operating at a particular scale tend to focus on land-use-change

processes that are relevant at the scale of analysis. Micro-scale models of urban

land-use change, for example, often attempt to simulate the decision-making

processes of individual landowners, modelling local change at the parcel scale (e.g.

Bockstael 1996). Traditional large-scale urban models focusing on whole cities or

regions may simulate interaction patterns between broad-scale factors, such as
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transportation networks, land use, demographic patterns, and regional economics

(Johnston and Barra 2000). Ecologists have frequently considered the scale issue for

landscape models (Carlile et al. 1989, Gardner et al. 1989, Obeysekera and Rutchey

1997), and there are recent examples of land-use modelling frameworks that

integrate multiple scales (Verburg and Chen 2000, Walsh et al. 2001, Soares-Filho

et al. 2002). By linking ecosystems theory with land-use-change modelling, scale

interactions become a central component in the modelling framework (Grimm et al.

2000, Wu and David 2002).

Many of these recent modelling efforts incorporate cellular automata (CA) to

accomplish spatially explicit land-use-change modelling. In contrast to top-down

large-scale urban models, models based on cellular automata simulate land-use-

change processes using local neighbourhood interactions, from which complex

urban patterns emerge (Batty 1998). While CA-based models have been applied to

biological or ecological systems, the approach is relatively new in urban modelling

and has evolved into an active area of research focused on both the techniques and

the theory of using CA to model urban processes (Sui 1998, Wu and David 2002).

Because they are cell-based, CA behaviour and the quantification of urban patterns

can be influenced by both the resolution of the data and the extent of the study area.

However, few studies have explicitly addressed scale sensitivity issues for urban CA.

Here, we present results from a series of sensitivity tests of a widely used CA-

based urban model, SLEUTH (slope, land use, exclusion, urban extent,

transportation, hillshade), to investigate how the model responds to changes in

cell resolution. Specifically, we examine the ability of the model to capture urban

growth patterns across varying cell resolutions and how the behaviour of the growth

rules changes in response to different cell sizes.

2. Background

2.1 CA-based urban models

Cellular automaton models have been widely used to explore urban dynamics. For

example, CA modelling techniques have been employed to study different types of

urban forms (Yeh and Li 2001) and development densities (Yeh and Li 2002), as

well as the evolution of urban spatial structure over time (White and Engelen 2000).

The CA approach has also been used to model patterns of pedestrian movement

(Batty 2003), and to explore urban growth and sprawl (Clarke et al. 1997, Batty

et al. 1999). In formal CA theory, a homogenous lattice of cells, each of which can

change state through time, represents space. Cell changes are regulated by universal

transition rules that specify a set of neighbourhood conditions that, when met, will

initiate a change in state. Within a CA modelling environment, complex global

structures emerge through these local neighbourhood interactions. The CA

framework is appropriate for urban simulation because of this link to complexity

theory and the representation of local-global interactions, but cellular models of

urban systems frequently depart from the formal CA framework, particularly when

links to real systems are desired (O’Sullivan and Torrens 2000). The traditional CA

framework may not, therefore, be well suited to model land-use dynamics, which

can depend on the characteristics of the land itself, overall demand for each

particular land use, and the effects of neighbouring land uses.

Stochastic CA models, where transitions are constrained by local land-use

suitability factors and non-local demographic and economic dynamics, have been
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developed to address these constraints (White and Engelen 1997). Constrained

cellular models (e.g. Clarke et al. 1997, White and Engelen 1997, Yeh and Li 2001)

are examples of what Couclelis (1997) calls ‘the new generation of more realistic CA-

based urban and regional models’. These models incorporate real data through

geographical information systems (GIS) and relax many of the assumptions of

classic CA theory, such as homogeneity of space, uniformity of neighbourhood

interactions, and universal transition functions. Because they are interactive,

constrained CA models are attractive in applied settings as planning tools.

Potential outcomes can be visualized and quantified, the models can be closely

linked with GIS, and raster-based spatial data derived from remote-sensing

platforms can be easily incorporated into the modelling environment.

2.2 SLEUTH

The SLEUTH cellular automaton model is a CA-based urban growth model

(UGM) coupled with a land-cover-change model (US Geological Survey 2003). The

UGM can be run independently of the land-cover-change model, and has been the

primary focus of the model’s developers and users. In their seminal application of

the Clarke urban growth model, a precursor to SLEUTH, in the San Francisco Bay

area, Clarke et al. (1997) stressed the utility of the model in simulating historic

change, the description of which can aid in the explanation of growth processes at a

regional scale, and in predicting future urban growth trends.

SLEUTH is essentially a pattern-extrapolation model (Clarke et al. 1997, Clarke

and Gaydos 1998, Candau 2002, US Geological Survey 2003). It is calibrated to

simulate urban development patterns over a historic time period, and then can

forecast these patterns into the future. Within the UGM, urban dynamics are

simulated using four growth rules, which are applied sequentially during a growth

cycle, or year. The growth rules are defined through five growth coefficients, each of

which can take on a value ranging from 1 to 100. The values for the growth

coefficients are derived during the calibration process, discussed later, where

different parameter sets are tested for their ability to replicate historic growth

patterns.

Despite the many examples of recent and ongoing SLEUTH applications (Silva

and Clarke 2002, Land Use Change Assessment Group 2003, Yang and Lo 2003,

Jantz et al. 2003), there has been little sensitivity testing of the model since the initial

work of Clarke et al. (1997). To date, many of the improvements in the model

involve efforts to refine the computationally intensive brute force calibration

process, such as the development of parallel processing capability (US Geological

Survey 2003) or exploring the use of more efficient genetic algorithms (e.g. Land Use

Change Assessment Group 2003). A notable exception to this is recent work focused

on the temporal sensitivity of SLEUTH (Candau 2002), which suggests that the

density of observation points in the historic time series, as well as the length of time

represented in the series, affects the performance of the UGM. Previous work with

the UGM (Clarke et al. 1997, Clarke and Gaydos 1998) suggested that the control

data set should be resampled to a coarser resolution in order to conserve computing

resources, but Candau (2002) found the optimum coefficient set for the full

resolution sample data set could be excluded if resampled data were used for

calibration.

The growth types simulated by SLEUTH are spontaneous new growth, new

spreading centre growth, edge growth and road-influenced growth. Spontaneous
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new growth simulates the random urbanization of land. The overall probability that

a single non-urbanized cell in the study area will become urbanized is determined by

the dispersion coefficient. New spreading centre growth simulates the development

of new urban centres around cells that have urbanized through spontaneous growth.

The breed coefficient determines the overall probability that a pixel produced

through spontaneous growth will also experience new spreading centre growth.

Edge growth causes cells adjacent to new or existing urban centres to urbanize and is

controlled by the spread coefficient, which influences the probability that a non-

urban cell with at least three urban neighbours will also become urbanized. Road-

influenced growth simulates the influence of the transportation network by

generating new spreading centres in the vicinity of roads and is controlled by the

road gravity coefficient, which defines the distance from roads that can be

influenced by road growth.

Constraints to urban development are introduced through the use of a slope

suitability test. The model requires a raster layer containing the percentage slope at

all cell locations, and slope resistance is calibrated empirically through the slope

coefficient. The user introduces another set of constraints through an ‘excluded

layer’, which designates areas that are partially (e.g. zoning) or wholly (e.g. water,

parks) excluded from development.

Because it is stochastic, SLEUTH utilizes Monte Carlo routines to generate

multiple simulations of growth. As noted earlier, calibration is typically achieved

using a brute-force method, where the user indicates a range of parameter values,

and the model iterates using every possible combination of parameter sets. Each

simulation is compared with the control years within the time series, and averaged

fit statistics are produced to measure the performance of a given set of coefficient

values in reproducing the observed urban development patterns. Because of the

computational requirements of this approach, calibration of SLEUTH typically

occurs in three iterative phases: coarse, medium, and fine. For the coarse

calibration, the maximum parameter value range (1–100) is used, but the model

steps through the range at a coarse increment of 25 to minimize the total number of

simulations. The results of the coarse calibration are evaluated using the fit statistics

generated during the model run, and narrower ranges for each parameter are

selected for the subsequent calibration phase. Several recent publications discuss this

calibration procedure (Candau 2002, Silva and Clarke 2002, US Geological Survey

2003, Jantz et al. 2003). When predictions are produced, multiple simulations are

run to create images showing the probability of any cell becoming urbanized over a

series of annual time steps and to create averaged tabular output (Clarke et al. 1997,

Clarke and Gaydos 1998).

SLEUTH also has a ‘self-modification’ function (Clarke et al. 1997), which

changes the values for the growth coefficients as the model iterates through time,

and which is intended to more realistically simulate the different rates of growth that

occur in an urban system. When the rate of growth exceeds a specified critical

threshold, the growth coefficients are multiplied by a factor greater than one,

simulating a development ‘boom’ cycle. Likewise, when the rate of development falls

below a specified critical threshold, the growth coefficients are multiplied by a factor

less than one, simulating a development ‘bust’ cycle. Without self-modification,

SLEUTH will simulate a linear growth rate, producing the same number of new

urban pixels, on average, each year until the availability of developable land

diminishes.
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3. Methods

3.1 Base data sets

For calibration, SLEUTH requires inputs of historic urban extent for at least four

time periods, a historic transportation network for at least two time periods, slope,

and an excluded layer. In our previous application of SLEUTH to the Washington,

DC–Baltimore, MD area (Jantz et al. 2003), we created a data set to map urban

change for 1986, 1990, 1996, and 2000. Derived solely from Landsat Thematic

Mapper (TM) and Enhanced Thematic Mapper-Plus (ETM+) satellite imagery, this

data set robustly captured developed land cover, including low-density settlement

patterns (Goetz et al. 2004). Originally at a resolution of 30 m, the data were

resampled to 45 m resolution so that available computer resources could

accommodate the array. For this research, we use a subset of the 45 m

Washington, DC–Baltimore, MD data set that is focused on the suburbs west of

Washington, DC in northern Virginia and central southern Maryland (figure 1).

A USGS 7.5-minute digital elevation model was used to create an input layer for

slope. An excluded layer was also produced that consisted of water, which was 100%

excluded from development, as well as federal, state, and local parks, which were

80% excluded from development. This 80% level of exclusion was used since limited

development within many of the parks had occurred in the historic time period.

Two time steps for transportation were derived from Environmental Systems

Research Institute’s (ESRI) (2003) US Streets data set, which represents interstate

highways, major roads and local streets for the circa 2000 transportation network.

We created a 1986 transportation network by overlaying the 2000 roads with a 1986

Landsat TM satellite image and removing roads that did not appear at that time.

The road network used in this study is based on limited access and other major

highways. In the SLEUTH modelling environment, roads can be weighted to extend

the search radius of the road gravity coefficient. In this study, we assigned a

uniform, constant weight of one to all roads, assuming that all roads have the same

influence on growth patterns through time. While we acknowledge that this is not

likely to be the case, this assumption is made less problematic by the fact that we

utilize only a primary road network. Furthermore, the uniform road weighting

allowed for a more straightforward interpretation of the response of the road

growth parameter to changes in cell size.

All input files were rasterized at a 45-m resolution to the spatial extent of the

study area and checked for overlay accuracy. This 45-m base data set represented

the finest cell size that we utilized in these analyses. To create coarser resolution data

sets, all input files were resampled to 90 m, 180 m, and 360 m cell sizes using a

nearest-neighbour resampling algorithm (figure 2), resulting in four input data sets

to test SLEUTH’s performance across four different cell sizes.

3.2 Cell-size sensitivity analyses

3.2.1 Parameter behaviour. We performed four separate coarse calibration

procedures, using seven Monte Carlo iterations for each cell size, and evaluated

the resulting fit statistics and parameter behaviour across scales. Model fit scores are

improved only minimally in the medium and fine calibration phases, so any

sensitivities would be revealed in the coarse calibration phase, precluding the need to

perform additional calibration runs and incur substantially higher computational

costs (Candau 2002, Land Use Change Assessment Group 2003, Jantz et al. 2003).
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Because the implementation of the self-modification function is not well defined, the

model was run with this function disabled. This did not pose a problem since the

growth rate in the historic data was nearly linear (Jantz et al. 2003).

The results of a calibration run can be evaluated based on one or more of the

dozen fit statistics (table 1), each of which captures some aspect of SLEUTH’s

Figure 1. Location of study area showing urban change between 1986 and 2000. The cell
resolution of these data sets is 45 m.
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performance in simulating growth rates, patterns or shape. There is no consensus

regarding which performance measure or set of performance measures to use.

Clarke et al. (1997) relied primarily on four metrics: population, edges, clusters, and

Lee and Sallee. Recent examples show that others have relied on a weighted sum of

all the statistical measures (Yang and Lo 2003), or an unweighted product score of

several metrics (Candau 2002).

The inclusion of multiple metrics complicates interpretation of the model’s

behaviour (Candau 2002). We therefore assessed the response of the model by

individually optimizing four fit statistics related to how SLEUTH captures growth

rates and patterns (table 1). The compare metric, a ratio of the number of modelled

urban pixels to actual urban pixels for the final control year, indicates how well the

model captures the overall rate of development. The growth rate is defined as the

percentage of new urban pixels produced in one year divided by the total number of

urban pixels. On an annual basis, the total amount of new growth is the sum of the

growth produced by each growth rule. In the SLEUTH modelling framework, the

amount of expected development is not provided exogenously in the form of, for

example, expected population growth or new housing starts. Rather, the amount of

annual growth produced in the system is determined by the behaviour of, and

interaction between, the growth rules and can be constrained by the amount of

developable land. Growth rate, therefore, is one aspect of urban form for which

SLEUTH can be calibrated to optimize.

Figure 2. Examples of resampled data sets showing the 45, 90, 180, 360 m cell sizes for 2000
urban extent.
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The clusters and edges metrics are non-spatial pattern metrics. The edges metric is

a least-squares regression score for the modelled urban edge pixel count compared

with the actual urban edge pixel count for the control years. Clusters is a least-

squares regression score for the modelled number of urban clusters compared with

the actual number of urban clusters for the control years. Urban clusters are areas of

contiguous urban land. In cell space, clusters can consist of a single pixel or multiple,

contiguous urban pixels. Contiguity is determined using the eight-neighbour rule.

Finally, the Lee and Sallee shape index (Lee and Sallee 1970, Clarke et al. 1997) is an

explicit measure of spatial fit, and is calculated by taking the ratio of the intersection

and the union of the simulated and actual urban areas, averaged over all control

years.

Qualitatively, these goodness-of-fit measures range from completely non-spatial

(compare focuses entirely on matching the amount of growth in the final control

year) to non-spatial pattern metrics (edges and clusters), to explicitly spatial (Lee

Table 1. Fit statistics calculated by SLEUTHa.

Fit statistic Definition

Compare Ratio of modelled population (PM) of urban pixels to the observed population of
urban pixels (PO) for the final control year:
Compare5PM(final year)/PO(final year)

If PM.PO, then Compare51–(PM(final year)/PO(final year))

Lee and
Sallee

Ratio of the intersection to the union of the simulated (SMi) and the actual urban
areas (SOi) for each control year (i) averaged over all control years (Ni):

Lee and Sallee~

P
SMi\SOi=SMi|SOið Þ

Ni

Population OLS regression score for modelled urban pixels compared with actual urban
pixels for each control year

Edges OLS regression score for modelled urban edge pixels compared with actual urban
edge pixels for each control year

Clusters OLS regression score for modelled number of urban clusters compared with
actual urban clusters for each control year; urban clusters are areas of contiguous
urban land; in cell space, clusters can consist of a single pixel or multiple,
contiguous urban pixels; contiguity is determined using the eight-neighbour rule

Cluster size OLS regression score for modelled average cluster size compared with actual
average urban cluster size for each control year

Slope OLS regression score of the average slope for modelled urban pixels compared
with actual urban pixels for each control year

% Urban OLS regression score for the percentage of available pixels urbanized during
simulation compared with the actual urbanized pixels for each control year

X-mean OLS regression score of average x-axis values for modelled urban pixels
compared with actual average x-axis values for each control year

Y-mean OLS regression score of average y-axis values for modelled urban pixels
compared with actual average y-axis values for each control year

Radius OLS regression score of the average radius of the circle that encloses the
simulated urban pixels compared with the actual urban pixels for each control
year

Product All scores multiplied together; unweighted composite score

aMeasurements derived from the modelled data are averaged over the set of Monte Carlo
iterations. Ordinary least-squares (OLS) regression scores are calculated by fitting a linear
model, y5mx+b, where modelled values for each control year are represented by the
dependent variable y, observed values for each control year are represented by the
independent variable x, slope (m) describes the increase in y as x increases over each time
step, and b is the y-intercept.
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and Sallee). By evaluating how the model behaves when optimizing a single fit score,

we sought to characterize how the growth parameters influence the simulation of

these different aspects of urban form.

Parameter behaviour was observed separately for each optimized metric by

plotting parameter values against the goodness-of-fit score under consideration. In

previous SLEUTH applications, researchers have focused only on a few top scores

to narrow the parameter range during calibration. We calculated the average,

minimum and maximum fit score produced by each parameter value for all 3125

simulations, giving a complete picture of ‘parameter space’ (Candau 2002). This

allowed us to observe what, if any, parameter values or ranges of values were

associated with high or low fit scores. A narrow range of values consistently

associated with high fit scores indicates that the parameter has an influence on the

model’s performance. High variability in parameter values across fit scores indicates

that the parameter has little or no influence. We also compared the maximum score

for each goodness-of-fit measure across cell sizes.

3.2.2 Range of growth rule functionality. To identify the potential range of

influence that each growth rule could exert on an urban system, and how this may

vary with scale, we used the output from the calibration procedures described in the

previous section. Instead of examining the fit of the model, however, we identified

the parameter sets that produced the maximum and minimum levels of growth for

each growth rule at each scale, and noted the corresponding maximum and

minimum levels of growth.

In addition to these tabular data, we utilized visual outputs. We initialized

SLEUTH with the 1986 urban extent and predicted growth to 2000 using the

parameter sets that would maximize each type of growth. We note that the goal of

these predictive scenarios was to illustrate the behaviour of the growth rules, not to

simulate historic growth patterns. SLEUTH can produce images from a single

Monte Carlo iteration where each pixel is classified according to the type of growth

from which it resulted. The patterns produced by each growth type can therefore be

visualized and evaluated independently. Although these visualizations represent

only one possible realization of growth patterns, the images produced by a single

Monte Carlo iteration more effectively communicate the general spatial behaviour

of each growth type than cumulative probability images. There can be variability in

the amount of growth produced by each growth rule in each Monte Carlo

simulation, although in all cases, we noted very low standard deviations relative to

the average amount of growth, indicating minimal variability. While the cumulative

probability images contain information about the certainty associated with the

spatial location of predicted changes, images produced from a single iteration

contain no indication of certainty. We therefore emphasize the illustrative purposes

of the images presented here, and focus on the general spatial patterns produced by

each growth rule.

3.2.3 Goodness of fit. The goodness-of-fit measures calculated by SLEUTH

during calibration evaluate the performance of the model in capturing some aspect

of urban form, whether it is the absolute rate of growth (compare metric), the

number of urban agglomerations (clusters metric), the total amount of urban edge

(edges metric), or the exact shape and location of urban areas (Lee and Sallee

metric). While others have noted that SLEUTH seems unable to capture dispersed

settlement patterns at fine resolutions (Yang and Lo 2003, Jantz et al. 2003), the
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influence of scale on SLEUTH’s ability to capture different aspects of urban form

has not previously been explicitly addressed. We visually and quantitatively

evaluated the urban patterns produced by parameter sets that maximized the

four fit statistics discussed previously: compare, edges, clusters, and Lee and

Sallee.

SLEUTH was initialized with the 1986 urban extent data using the parameter set

that produced the maximum score for each fit statistic for each cell size, and 2000

urban extent was predicted. Using the averaged tabular results from 100 Monte

Carlo iterations, we examined how urban form was simulated by each set of

optimized parameters by comparing the simulated area developed, number of edge

pixels, and number of urban clusters to the control data set for 2000. This enabled us

to evaluate (1) how well the model captured the different aspects of urban form

across scales, (2) aspects of urban form sacrificed when another aspect is optimized,

(3) the utility of the fit statistics in describing the model’s fit.

4. Results

4.1 Parameter behaviour

We found that plotting parameter values against the full range of fit scores was

useful for revealing parameter behaviour and sensitivity, resulting in 16 sets of plots

that compared parameter behaviour across four cell sizes for four different fit

statistics. Each parameter was considered separately and, due to the coarse

calibration procedure, parameters could only take on the values 1, 25, 50, 75 and

100. The mean fit score was calculated for each parameter value, and the maximum

and minimum fit values indicate the total range of fit scores.

An example of a set of plots for the 360 m data set presents parameter behaviour

when the model fit was evaluated by optimizing the compare metric (figure 3). In

this example, the spread coefficient has a strong influence on model performance,

where low spread parameter values are consistently associated with high fit scores.

There is also a clear trend in the mean fit score, which decreases noticeably as the

spread parameter increases. Spread also exhibits low variability across all parameter

values, i.e. each parameter value is associated with a tight range of fit scores. In

contrast, there is not a clear trend in the mean fit score across parameter values for

the dispersion and breed parameters. In both cases, however, the lowest parameter

values never produce the highest fit score. While fit scores for the values between 25

and 100 are highly variable, these parameter ranges produce somewhat higher fit

scores. The road gravity and slope coefficients are also highly variable across the

range of fit statistics and seem to have no clear influence on the model’s ability to

optimize the compare metric at this scale.

To summarize these results across cell sizes, we noted the stable range of

parameter values associated with high fit scores for each set of plots (table 2). No

range is indicated if the parameter’s behaviour was highly variable.

Differences in the behaviour of the growth parameters were observed in response

to different cell sizes. There were also differences in parameter behaviour

corresponding to the fit statistic being used. For example, when the model results

were considered for optimization of the compare metric, which is a measure of how

well the model captures the rate of urbanization, the spread coefficient appeared to

influence the fit of this metric across all cell sizes (table 2A). High fit scores were

consistently associated with a specific range of values for this coefficient, although it

226 C. A. Jantz and S. J. Goetz



should be noted that the value range was not consistent. In general, the value for the

spread parameter tended to be higher (25–50) for the finer-resolution data sets (45

and 90 m) and lower (1–25) for the coarser-resolution data sets (180 and 360 m). Few

of the other parameters exhibited an influence on model performance when

optimizing the compare metric, although slope showed some influence at the finer

Figure 3. Example of plots used to evaluate parameter sensitivity for the 360 m data set
when the compare metric is optimized.
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cell sizes. Dispersion and breed showed a minor influence on fit at the coarsest cell

size, but the parameter value range was large (25–100).

When maximizing the edges pattern metric, the spread parameter was again the

most influential coefficient, particularly for the 45 and 90 m data sets (table 2B). The

dispersion coefficient showed some effect but a wide range (25–100) at high fit scores

for the 45 m data set. The slope coefficient had some influence on fit for the 90 m

data set, ranging between 1 and 50 at high fit scores. Breed and road gravity did not

have any influence on this metric at any scale.

When the clusters metric was maximized, the spread coefficient was less

influential on the fit score across all cell sizes (table 2C). Spread was variable for

the 180 m and 360 m data sets, and showed no effect on fit at the 90 m resolution.

The effect of the dispersion parameter is magnified as resolution decreases,

and the parameter value range associated with high fit scores becomes

narrower.

For the Lee and Sallee metric, patterns in parameter behaviour across scales were

strikingly similar. Both slope and road gravity were highly variable, with slope only

exhibiting an influence on model performance between 25 and 75 at high fit scores

for the 45 m data set (table 2D). Low values for the spread and dispersion

parameters were associated with high fit scores across all cell sizes, and breed

exhibited similar behaviour for the coarser cell sizes. It should be noted that the road

gravity parameter never showed any influence on model performance using any of

the fit statistics considered in this study at any scale. Because of the high variability

displayed by this parameter, we were unable to identify a stable range of parameter

values associated with high fit scores.

Table 2. Summarized results from cell size sensitivity testsa.

Cell
size Compare Edges Clusters

Lee and
Sallee Dispersion Breed Spread Slope

Road
gravity

A: Fit scores (maximizing COMPARE metric) Best-fit parameter range
45 m 1.0 0.93 0.65 0.64 – – 25–50 1–25 –
90 m 1.0 0.83 0.75 0.64 – – 25 75–100 –
180 m 1.0 0.89 0.65 0.59 – – 1–25 – –
360 m 0.99 0.85 0.45 0.60 25–100 25–100 1–25 – –
B: Fit scores (maximizing EDGES metric) Best-fit parameter range
45 m 0.76 1.0 0.69 0.66 25–100 – 25 – –
90 m 0.63 1.0 0.78 0.54 – – 25–50 1–50 –
180 m 0.56 1.0 0.66 0.50 – – 25–75 – –
360 m 0.30 1.0 0.47 0.33 – – 25–100 – –
C: Fit scores (maximizing CLUSTERS metric) Best-fit parameter range
45 m 0.57 0.38 0.86 0.49 – – 1 – –
90 m 0.38 0.75 0.94 0.41 25–100 – – – –
180 m 0.57 0.81 0.92 0.50 75–100 25–100 25–100 1–50 –
360 m 0.65 0.82 1.0 0.48 75–100 – 25–100 – –
D: Fit scores (maximizing Lee and Sallee
metric)

Best-fit parameter range

45 m 0.58 0.84 0.77 0.69 1–25 – 1 25–75 –
90 m 0.62 0.88 0.85 0.71 1–25 – 1 – –
180 m 0.62 0.86 0.80 0.71 1–25 1–25 1 – –
360 m 0.64 0.90 0.70 0.72 1–25 1–25 1 – –

aIn cases where the parameter values were highly variable, ‘–’ indicates that a best-fit range
was not identifiable.
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In terms of the model’s performance as measured by the fit statistics, it was

apparent that SLEUTH was able to capture the overall rate of development at all

cell sizes used in this analysis, producing a perfect or near-perfect fit score for the

compare metric (table 2A). The edges pattern metric was also easily replicated,

achieving a perfect fit for all cell sizes (table 2B). There were, however, some

differences in the model’s ability to capture the number of urban clusters across

scales (table 2C). The maximum score achieved for this metric for the 45 m data set

was 0.86, while a perfect fit was achieved for the 360 m data set. Fit for the Lee and

Sallee metric was similar across scales (table 2D), although it was slightly lower at

finer scales.

4.2 Range of growth rule functionality

The ability of the growth rules to replicate a range of urban growth patterns varied

across scales (figure 4). In general, the maximum amount of growth produced by

each growth type was highest at the 360 m cell size and lowest at the 45 m cell size.

Edge growth was the least sensitive to cell size, with maximum growth levels

between the 180 m and 360 m cell sizes being nearly identical. We note the

dominance of the edge growth type, where the maximum growth potential was an

order of magnitude greater than the maximum growth levels for the other growth

types. Edge growth was also the only growth type where the minimum level of

growth did not approach zero.

The parameter sets that produced the maximum and minimum growth levels for

each growth type were identical across cell sizes, except that the maximum level of

road growth depended on the value for the dispersion parameter, which was lowest

at the coarsest cell size and highest at the finest cell size (table 3).

The parameter sets producing the minimum level of growth were less stable, and

road growth did not show the same scaling effects (table 3). The minimum level of

growth produced by spontaneous new growth occurred when dispersion was at its

lowest value, and the values for spread and slope resistance were relatively high

Table 3. Parameter sets that produce the maximum and minimum levels of growth for each
growth typea.

Dispersion Spread Breed
Slope resis-

tance Road gravity

Maximum growth levels
Spontaneous 100 1 1 1 –
New spreading
centre

100 1 100 1 –

Edge 100 100 100 1 –
Road (360 m) 25 1 100 1 –
Road (90,
180 m)

50 1 100 1 –

Road (45 m) 100 1 100 1 –
Minimum growth levels
Spontaneous 1 50–100 – 50–100 –
New spreading
centre

1 – 1 – –

Edge – 1 – 100 –
Road – 100 1 – –

a–: variable parameter range.
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Figure 4. (A) Maximum and (B) minimum growth levels for each growth type across scales.
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(50–100). The least amount of new spreading centre growth occurred when

dispersion and breed were low. When edge growth was minimized, spread was low,

and slope resistance was at its maximum value. To minimize road growth, spread

was at its maximum value, and breed was at its lowest value.

The visual results (figure 5) represent the maximum influence that any of the

growth rules can have on the system, and each image shows only the pixels produced

by each type of growth, not the total growth in the system. Both spontaneous new

growth and new spreading centre growth show relatively disaggregated and sparse

development patterns. Edge growth dominates the study area at its maximum level,

while road growth forms linear patterns along the road network. The degree of

development produced by each growth rule is noticeably different across scales, with

all growth types reaching their greatest extent at the coarsest cell size. While the

dominance of edge growth at the finest scale is observed, spontaneous new growth

and new spreading centre growth are less dominant, and the development produced

by road growth is minimal.

4.3 Goodness of fit

The choice of appropriate goodness-of-fit measures is crucial, since it determines

how SLEUTH will simulate urban patterns and how forecasts of urban growth will

be created. We evaluated SLEUTH’s performance using four goodness-of-fit

measures—compare, clusters, edges and the Lee and Sallee index—each of which

measures an aspect of how well the model captures rate, spatial pattern, or exact

spatial fit (table 1). The parameter values used to produce each of the highest fit

scores varied across cell sizes and according to the fit statistic in question (table 4).

Frequently, the values producing a high score for one fit statistic were in opposition

to the values producing a high score for another statistic. For example, for the 45 m

and 90 m data sets, the dispersion, breed and spread parameters were at their

Table 4. Parameter values based on optimum fit scores for all cell sizes.

Dispersion Breed Spread Slope Road growth

Compare metric
45 m 1 25 25 1 25
90 m 25 1 25 100 100
180 m 100 100 1 1 50
360 m 50 75 1 50 50
Edges metric
45 m 100 25 25 50 75
90 m 1 100 25 50 75
180 m 75 100 75 25 100
360 m 25 100 100 1 75
Clusters metric
45 m 100 100 100 1 100
90 m 100 100 100 1 100
180 m 100 100 25 25 1
360 m 100 25 25 1 1
Lee and Sallee
45 m 1 1 1 100 1
90 m 1 1 1 100 1
180 m 1 1 1 75 1
360 m 1 1 1 100 1
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maximum setting to optimize the cluster fit score, while they were much lower (1–25)

when the compare statistic was maximized.

The model’s ability to replicate urban form was considered by comparing

simulated development patterns to actual development patterns for the year 2000.

The measures of urban form we considered were: area of development, number of

urban edge pixels, and number of urban clusters. These measures were compared

Figure 5. Visual results from a single Monte Carlo simulation for growth patterns produced
by spontaneous new growth, new spreading centre growth, edge growth and road growth
across all cell sizes with a road network based on limited access and primary roads.

232 C. A. Jantz and S. J. Goetz



across all cell sizes for simulations that maximized the compare, edges, cluster, and

Lee and Sallee fit statistics (figure 6).

The parameter sets that optimized the compare metric succeeded in replicating

developed area successfully across all cell sizes. The parameter sets that optimized

the cluster metric overestimated developed area in all cases, although the

discrepancies between the 45 m and 90 m data sets were larger than those between

the 180 m and 360 m data sets. The Lee and Sallee parameter sets underestimated

area across all cell sizes. Optimizing the edges metric reproduced the amount of area

Figure 6. Simulations based on optimized parameter sets for the cluster, compare, edges,
and Lee and Sallee metrics compared with the observed development patterns in 2000 in terms
of (A) area of development, (B) number of urban edges and (C) number of urban clusters.
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developed reasonably well at the 45 m and 90 m resolutions, but overestimated

development at the 180 m and 360 m cell sizes.

The number of urban edge pixels was scale-dependent. For the control data set,

the number of urban edge pixels was highest in the 45 m data set and lowest in the

360 m data set. Despite a high fit score (table 2B), the number of urban edge pixels

was consistently underestimated by all parameter sets for the 45 m and 90 m data

sets. This underestimation was most extreme for the 45 m data set. For the 180 m

and 360 m data sets, the number of urban edges was matched quite well by the

parameter sets that maximized the cluster and compare metrics, but were slightly

underestimated using parameter sets based on the edges and Lee and Sallee metrics.

It is interesting to note that widely different parameter sets could produce similar

numbers of edge pixels. For example, the two parameter sets that maximized the

edges and Lee and Sallee metrics for the 45 m data set were quite different, yet

produced similar numbers of edge pixels.

As expected, the number of urban clusters also decreased as resolution increased.

Nearly all parameter sets across all scales underestimated the number of urban

clusters that exist in the system in 2000, and it was notable that the parameter set

that optimized the cluster score produced the fewest clusters for all cell sizes except

the 360 m data set. In terms of matching the number of urban clusters for the 2000

control year, the parameter values derived from maximizing the Lee and Sallee

statistic performed the best, although the compare and cluster parameter sets also

provided good estimates for the 180 and 360 m data sets.

To visually assess urban growth patterns, we present images from single Monte

Carlo simulations for each optimized parameter set at each cell size (figure 7). For

the compare metric, the 45 and 90 m data sets relied primarily on the edge parameter

to match the amount of growth in the control data set, while the diffusion and breed

parameters generated most of the growth in the 180 and 360 m data sets (table 4).

The influences of the respective parameter sets were apparent: for the compare

metric, growth occurred in a clustered pattern in the two finer-resolution data sets,

but was more dispersed in the coarser-resolution data sets.

The patterns across scales also varied widely for the edges metric. While most

growth was generated by the spread parameter, the 45 m data set also had a high

value for the dispersion parameter (table 4) and the resulting diffuse growth patterns

were evident. Growth patterns for the 90, 180 and 360 m data sets were more

clustered, although the influence of the high values for dispersion and breed was also

evident in the 180 m data set. High values for the spread parameter in the two

coarser-resolution data sets resulted in an overestimation of developed area.

High values for dispersion, breed, and spread tended to produce high fit scores for

the clusters metric, and the interaction of these parameters was apparent in the third

set of images in figure 7, all of which showed high levels of growth. The optimized

parameter sets based on the Lee and Sallee statistic had uniformly low values,

producing little simulated growth in the system.

5. Discussion and conclusions

5.1 Parameter behaviour

SLEUTH clearly exhibits sensitivity to cell size in terms of the influence that growth

rules have on replicating urban form across cell sizes. The association between high

fit scores and a specific value or range of values for a given parameter indicates that
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the parameter plays a key role in replicating that aspect of urban form being

measured. The spread parameter, for example, is instrumental at all scales in

replicating rates of urban development and in matching the number of urban edge

pixels (table 2). The fact that some parameters exhibit stability at certain cell sizes

and not at others indicates that scale influences the parameters differently. That

dispersion and breed are instrumental in maximizing the clusters metric only at

coarser cell sizes exemplifies this point. Parameter instability poses an issue for

calibration, since it makes the choice of appropriate parameter value ranges

Figure 7. Simulated urban patterns from a single Monte Carlo simulation for all cell sizes
using parameter sets derived from different optimized fit statistics.
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difficult. It also points to deeper issues with the ability of the parameters to function

at certain scales.

Related to this issue, SLEUTH was not able to achieve high fit scores for the

clusters metric across scales. The highest fit was achieved at the coarsest cell size,

while lower fit scores occurred as the resolution of the input data increased. The

clusters metric is one that could potentially be used to capture dispersed settlement

patterns, such as low-density residential ‘sprawl,’ yet it is clear that SLEUTH was

unable to optimize this metric at fine scales in this study area.

The results for the Lee and Sallee metric reveal the limitations of evaluating a CA-

based model in terms of its ability to match the exact spatial location of change,

particularly over a short time period. Stable parameter values were low at all cell

sizes, resulting in simulations where little change was predicted to occur. This

indicates that the exact location of actual development in 1986 was more similar to

development in 2000 than in any simulated version of urban form. The likelihood

that SLEUTH, or any other CA-based model of land-use change, could achieve an

exact spatial match is very low, and not necessary or perhaps even desirable for

some applications.

The failure of the road growth parameter to show a relationship to any fit statistic

at any scale is an important finding, yet difficult to interpret, since this parameter

shows potential to influence growth patterns. Relating growth patterns to the

transportation network is not straightforward, since the transportation network is

both an exogenous force driving growth and an endogenous aspect of the

development process. Whether these results point to a failure of the model to

capture these relationships, or whether the relationship between growth patterns and

the transportation network is not well defined in this particular study area, requires

additional consideration and testing.

The fact that the individual parameters respond to changes in scale differently can

be linked to the operational scales of the land-use-change processes that each

parameter is attempting to capture. Highly dispersed settlement patterns apparent at

fine resolutions, for example, may be the result of local scale factors that SLEUTH

fails to capture. Behavioural CA-based models such as SLEUTH, which use

development rules to mimic the spatial behaviour of certain types of development

(Wu 2002), must be dynamic across scales so that the rules defining development

events can capture the phenomenon of interest at the scale of interest.

5.2 Range of growth rule functionality

The parameter sets producing the maximum growth levels for spontaneous, new

spreading centre, and edge growth followed an expected trend based on the order in

which each was applied in the growth cycle: (1) to produce the maximum amount of

spontaneous new growth, dispersion was at its maximum value, and spread was

equal to one; (2) to maximize new spreading centre growth, dispersion and breed

were at their maximum values with spread equal to one; (3) dispersion, spread, and

breed were at their maximum values to produce high levels of edge growth.

Likewise, slope resistance in these cases was consistently at its lowest value.

For the maximum level of road-influenced growth, it was interesting to note that

the spread parameter was at its lowest value. Road growth is always applied last in

the growth cycle and the number of successful urbanization attempts that occur in

previous steps determines the number of potential road growth cells. More

successful urbanization attempts would increase this number, so a higher value for
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the spread parameter would be expected. Because of the dominance of edge growth,

however, it can significantly limit the number of cells available for development.

This may explain why high levels of road growth require that the spread parameter

be low. The value for the road growth parameter itself did not have a significant

impact on producing high levels of road-influenced growth. Rather, the values for

dispersion and breed influenced this growth type.

In terms of the visual results (figure 5), the strongest influence of any parameter

occurred at the coarsest scale (360 m). The dependencies of the growth rules on the

order in which they occur in the growth cycle also became apparent. For example,

new spreading centre growth is applied only to cells that were previously urbanized

by the application of the spontaneous growth rule. The spatial patterns produced by

each of these growth rules are therefore similar. Road-influenced growth created

linear patterns of development along the road network, although the influence of

road growth was not readily apparent at the 45 m resolution.

The resolution of the data used to represent the urban system played a dominant

role in determining each parameter’s functional range, i.e. the range of resolutions

within which each parameter is able to accurately capture urban development

patterns. In all cases, the minimum level of growth potential was similar across

scales, often approaching zero. The maximum level of growth potential varied,

however, so that the growth rules were constrained at fine cell resolutions. The

amount of growth that could be produced through spontaneous growth at a

resolution of 360 m, for example, was more than five times the amount at the 45 m

resolution. This discrepancy was even greater for road-influenced and new spreading

centre growth, while edge growth was least impacted by scale and had the most

influence on the model’s ability to capture certain growth patterns at certain scales.

These findings emphasize the importance of defining the functional range of land-

use-change models, the land-use-change characteristics of the study area, and

relating these factors to the scale of observation. The scale issues encountered in this

study area may not appear in areas where urban patterns are more clustered, when

fine-scale urban features are not mapped, or when local-scale urban change

processes are not important to capture. The functional range of a land-use-change

model may not, therefore, be absolute, but depends on the data used to represent

land-use patterns and the specific objectives of the application.

5.3 Goodness of fit

The conclusion that SLEUTH can be functionally limited to certain scales is

reinforced when the performance of the model at capturing various aspects of urban

form is examined. While the model can accurately capture the rate of growth across

scales, SLEUTH consistently underestimates the number of urban edge pixels and

the number of urban clusters at fine resolutions. In this study area, SLEUTH’s

ability to match these pattern metrics to the control data set was maximized at

coarse scales.

In addition to the scale dependencies discussed above, the results from our

analyses indicate the potential difficulty in evaluating the fit of the model using

multiple fit statistics simultaneously (e.g. with a weighted or unweighted composite

score). In many cases, the parameter sets that produced a high fit score for one

statistic were opposed to those producing a high fit for another, increasing the

difficulty in interpreting the parameter sets when multiple fit scores are combined.

Identifying the aspect of urban form most relevant for a particular application and
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using a single fit statistic that captures that phenomenon of interest may produce

more straightforward and interpretable results.

The utility of the fit statistics must also be considered. In most cases, the fit

statistics consist of least-squared regression scores that describe the strength of the

relationship between modelled and actual urban patterns. The only tabular

information produced by the model, however, is the value for the r2 statistic; no

additional information is generated to describe the linear relationship, such as the

slope or y-intercept, which may indicate a systematic bias of the model to over- or

underestimate growth patterns, or statistical significance. When quantitative results

for the number of simulated urban edge pixels and number of clusters were

compared with the control data (figure 6), for example, the model showed significant

bias, even though the r2 values were high (table 2). Since the compare metric is a

ratio, a high fit score was easier to interpret, but this metric focuses only on the final

control year, while the other fit scores describe how well the model captures trends

through time.

Calibration and validation remain fundamental issues for land-use-change models

(Kok et al. 2001). Our results emphasize the importance of developing fit metrics

that accurately capture the aspects of pattern and process that are central to the

modelling effort. In this case, the use of Pearson correlation coefficients alone did

not provide enough information to measure the true performance of the model,

calling into question the validity of the calibration results. While pattern metrics are

valuable descriptors of urban spatial structure, other measures, such as spatial

autocorrelation, can be useful for calibration (Wu 2002). The scale-dependent

performance of the model reinforces recent findings regarding the importance of

multi-scale validation in land-use-change models (Kok and Veldkamp 2001).

5.4 Summary

Any effort at land-use-change modelling requires that many decisions be made, such

as the resolution of the input data or choice of fit statistic(s) used during the

calibration process. Our results demonstrate how these decisions can impact the

overall performance of an urban land-use-change model, the influence of the growth

rules, and interpretation of results.

To date, research based on the widely available SLEUTH model has focused on

refining the applications-oriented technical issues, such as the development of

parallel processing capability for calibration, scenario development, and the

integration of results into geographical information systems. Whereas the relative

ease of use and ability to visualize results have made SLEUTH one of the better

known spatial predictive urban land-use-change models, our results suggest that

users must consider their specific objectives in the context of the potential scale

dependencies of the model, and the variability in output products that result from

the choice and utilization of fit statistics. Scale dependencies are often not addressed

in land-use-change modelling, despite a growing interest in multi-scale approaches

(Kok et al. 2001). For generalized land-use-change models, such as SLEUTH, which

can theoretically be applied to any landscape, the criteria that emphasize pattern

and process, are crucial considerations.

We suggest that sensitivity analyses be conducted on each application such that

the variability in map output can be assessed and incorporated into the

interpretation of results with an acceptable level of confidence. Key urban processes

or patterns specific to the application should be identified a priori, appropriate fit
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statistics identified, and model performance evaluated across multiple scales to

identify the scales at which a model can capture the phenomena in question.

The scale at which the land-use data are represented can impact the quantification

of land-use patterns and the ability of a model to replicate spatial patterns. Because

there is currently no elegant theory to address scale dependencies in land-use-change

modelling (Obeysekera and Rutchey 1997), we emphasize the importance of

considering scale as an integral issue during each phase of a modelling effort.
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