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Abstract—This paper presents a new hybrid finite-difference
frequency domain — mode-matching method (FDFD-MM) for the
analysis of electromagnetic wave scattering from configuration of
metallic or dielectric cylindrical posts with arbitrary cross-section. In
our approach each scatterer is treated as an effective circular cylinder
represented by impedance matrix defined in its local coordinate
system. In order to obtain the scattering parameters of arbitrary
configuration of objects in global coordinate system an analytical
iterative scattering procedure (ISP) is applied. This work is an
extension of our previously published results, where our consideration
were limited to two dimensional (2D) problems with TM excitation.
In this paper, we extended our analysis to two-and-a-half dimensional
(2.5D) problems. The accuracy of the proposed method is presented
and discussed. To verify our approach some numerical examples
are presented. The obtained results are compared with the results
published in literature and the ones obtained from own measurements
and commercial software.

1. INTRODUCTION

The rapid increase of interest in wireless communication systems
requires developing of new microwave components. One group of these
components are the structures where cylindrical posts of arbitrary
shape are applied to obtain desired scattering parameters [1–12].
Generally, in the analysis of these components open and closed
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problems can be distinguished. In the open problems, the near or
far scattered field pattern of a set of cylindrical objects located in
free space and illuminated with plane wave or Gaussian beam is the
subject of interest. These structures are applied to the reduction
of strut radiation of reflector antennas [1, 2], novel EBG structures
realized as periodical arrays [3, 4] and polarizers [5, 6]. In the closed
problems the result of the analysis are scattering parameters of
waveguide junctions or resonant frequencies of resonators loaded with
cylindrical objects. Rectangular waveguide junctions and circular
cavities consisting of single or multiple cylindrical posts are applied
to filters [7, 8], resonators [9], phase shifters [10], polarizers [11],
multiplexers or power dividers [12].

Since, in considered problems objects with arbitrary shape
are assumed, the most powerful techniques of analysis are hybrid
methods [13–21]. In these method the discrete techniques such as
finite element method (FEM) [13–15], finite-difference time domain
method (FDTD) [16–18] or frequency domain (FDFD) [19] methods
and method of moments (MoM) [18, 20, 21] are used in limited region
surrounding the analyzed structure. In the outer region the fields are
combined with analytical solution of the problem using e.g., integral
equation technique [15, 17] for open structures or general scattering
matrix (GSM) approach for closed problems [13, 20, 21]. As a result,
the hybrid techniques allows one to achieve higher flexibility, increase
the accuracy and reduce the numerical complexity of the analysis.

In this paper a novel hybrid method is proposed which combines
the finite difference frequency domain method with analytical mode-
matching technique (FDFD-MM). In comparison to alternative
methods [13–21] the presented approach allows one to analyze
scattering from arbitrary set of cylindrical objects which can be located
both in free space or in waveguide junctions. At first, in our approach
each single object is considered separately in its local coordinate
system. The proposed hybrid technique is used to determine the
impedance matrix which defines a relation between electric and
magnetic tangential field components on artificial cylindrical surface
surrounding analyzed object. Since, the impedance matrix of each
scatterer is known, the analytical iterative scattering procedure
can be applied to determine the scattering parameters of arbitrary
configuration of objects [22, 23]. Presented analysis is an extension
of our work presented in [24] where the analysis was limited to two
dimensional problems with TM excitation. In this paper the method
is extended to two-and-a-half dimensional (2.5D) problems. The
accuracy of the method is verified and discussed. The presented
numerical results are compared with analytical results published in
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(a) (b)

Figure 1. Single post analysis in local coordinate system, (a) 3D view
of the structure, (b) cross-section of the structure.

literature and the results obtained from own measurements and
commercial software QuickWave 3D [25].

2. FORMULATION OF THE PROBLEM

2.1. Single Object

We start our analysis from a single object in its local coordinate system
(see Fig. 1). In our approach we introduce lateral surface C:

C :

{
ρ = R,
ϕ ∈ [0, 2π],
z ∈ [0, H],

(1)

which surrounds analyzed object and divides the computation domain
into two regions, where analytical (Region II) and discrete FDFD
(Region I) solution of Maxwell equations are used, respectively. In
Region II the z components of electric and magnetic fields are expressed
as follows:

EII
z (ρ, ϕ, z) =

2∑

k=1

N∑

n=0

M∑

m=−M

Ae
knmRk

m(kρnρ)fe
nm(ϕ, z), (2)

HII
z (ρ, ϕ, z) =

2∑

k=1

N∑

n=1

M∑

m=−M

Ah
knmRk

m(kρnρ)fh
nm(ϕ, z), (3)
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where

fe
nm(ϕ, z) = eimϕ cos(kznz), (4)

fh
nm(ϕ, z) = eimϕ sin(kznz) (5)

and: kzn = nπ/H, kρn =
√

(k0)2 − (kzn)2, k0 = 2πf/c, R1
m(·) and

R2
m(·) are Bessel and Hankel function of the second kind and mth

order, respectively and Ae,h
knm are unknown expansion coefficients. The

ϕ components of electric and magnetic fields can be found using the
following relations:

Eϕ =
1

k2
ρn

(
iωµ0

∂Hz

∂ρ
+

1
ρ

∂2Ez

∂ϕ∂z

)
, (6)

Hϕ =
1

k2
ρn

(
−iωε0

∂Ez

∂ρ
+

1
ρ

∂2Hz

∂ϕ∂z

)
. (7)

In the inner region (see Fig. 1) the tangential components of electric
and magnetic fields defined on lateral surface C can be expressed as
follows:

EI
z (R, ϕ, z) =

N∑

n=0

M∑

m=−M

CEz
nmfe

nm(ϕ, z), (8)

HI
z (R, ϕ, z) =

N∑

n=1

M∑

m=−M

DHz
nmfh

nm(ϕ, z), (9)

EI
ϕ(R, ϕ, z) =

N∑

n=1

M∑

m=−M

CEϕ
nmfh

nm(ϕ, z), (10)

HI
ϕ(R, ϕ, z) =

N∑

n=0

M∑

m=−M

DHϕ
nmfe

nm(ϕ, z), (11)

where CEz
nm, CEϕ

nm, DHz
nm and DHϕ

nm are unknown expansion coefficients
of electric and magnetic fields.

Now, by imposing the boundary continuity conditions on surface C
between tangential components of electric and magnetic fields defined
in Regions I and II the following set of equations is obtained:

EII
z (R,ϕ, z) = EI

z (R, ϕ, z),
EII

ϕ (R,ϕ, z) = EI
ϕ(R, ϕ, z),

HII
z (R,ϕ, z) = HI

z (R,ϕ, z),
HII

ϕ (R,ϕ, z) = HI
ϕ(R,ϕ, z),

(12)
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where ϕ ∈ [0, 2π], z ∈ [0,H]. Taking the advantage of orthogonality
of fe

nm and fh
nm set of Eq. (12) can be rewritten in the matrix form as

follows:

ME
1 A1 + ME

2 A2 = C, (13)

MH
1 A1 + MH

2 A2 = D (14)

where all matrices are defined in Appendix A. Let us now introduce
the impedance Z-matrix representation of the object:

C = ZD (15)

which defines the relation between the expansion coefficients C and
D of tangential electric (8), (10) and magnetic (9), (11) fields,
respectively. In order to determine the Z-matrix representation of
the object, the discrete FDFD technique is used (see 2.2). Since, the
Z-matrix of the object is known, it can be utilized to determine a more
convenient representation of the object in a form of T-matrix:

A2 = TA1 (16)

which defines the relation between incident A1 and scattered A2

field coefficients. It must be emphasized that T-matrix depends on
the geometry and material properties of the object but not on the
excitation. This approach allows us to limit our consideration to
Region II where the scatterer is treated as an effective circular cylinder
described by its T-matrix. For such an effective cylinder the scattered
field can be found for any incident wave. Since the T-matrix is
determined, a rotation of the object by any angle ϕ0 can be obtained
as follows:

T(ϕ=ϕ0) = Rt T(ϕ=0) R∗
t (17)

where R = diag(R1, . . . ,R2N+1) and Ri = diag(e−jMϕ0 , . . . , ejMϕ0).

2.2. Z-Matrix

In order to find the Z-matrix relation between tangential electric
and magnetic field components on surface C for arbitrary geometry
of structure, the FDFD technique is applied. In this case Region I
is discretized in ρϕ plane with Yee-mesh, defined in a cylindrical
coordinate system (see Fig. 2) with W = V × K cells where V and
K are numbers of cells in ρ and ϕ direction, respectively. In the z-
direction the analytical form of electric and magnetic field variation
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Figure 2. The discrete field components in the wth cell (w =
1, . . . , W ).

defined by (4) and (5) is assumed. Now, Maxwell equations can be
written in a discrete form [26] as follows:

P1D1(QE + QbEb) = jωµ0S1H, (18)
P2D2H = jωε0εrS2E (19)

where Eb = [Ebϕ(1), . . . , Ebϕ(K), Ebz(1), . . . , Ebz(K)]T are the probes of
tangential field components at surface C determined by (8) and (10) as
follows: Ebϕ(w) = EI

ϕ(R, ϕh(w)), Ebz(w) = EI
z (R, ϕe(w)) and E and H

are the vectors of field component probes in the interior area of surface
C. For brevity’s sake, all the mentioned matrices in above equations
are defined in Appendix B. Simple algebraic manipulations using (18)
and (19) allow one to find the relation for H with respect to Eb

H = −jωε0G−1S−1
1 P1D1QbEb (20)

where G = (S−1
1 P1D1Qε−1

r S−1
2 P2D2 + ω2µ0ε0I). Using the

orthogonality of f
e(h)
nm , and taking each term of (8) and (10) as a

boundry condition with arbitrary values of CEz,ϕ
nm , separately the

unknown DHz,ϕ
knm coefficients of magnetic field components expressed

on contour C as

Hnm
z,ϕ (ρ = R, ϕ) =

M∑

k=−M

DHz,ϕ
knm fh,e

kn (ϕ, z), (21)
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are obtained. Now, utilizing coefficients CEz,ϕ
nm and DHz,ϕ

knm the Z-
matrix (15) can be obtained as follows:

Z =
(
DH

)−1
CE, (22)

where matrices CE and DH are defined in Appendix B.
To improve the accuracy of FDFD solution the approximation

methods of the object shape with arbitrary geometry in Yee mesh
are used. In the case of metallic objects the conformal mesh method
is used [27]. In this method the shape of mesh cells on the surface
of the metal is modified to fit the geometry of the object and
Maxwell equations (18) and (19) are updated accordingly. In the
case of dielectric objects the effective dielectric constant algorithm [28]
modified to cylindrical coordinate system [29] is applied. In this
algorithm for the mesh cells containing boundaries between regions
with two different values of dielectric constants (ε1 6= ε2) the effective
dielectric constants are computed and these values are next used to
update the εr matrix.

2.3. Multiple Object Scattering

In order to find the T-matrix of the arbitrary configuration of objects,
the iterative scattering procedure (ISP) thoroughly described in [22, 23]
can be applied. The ISP is based on the interaction of the individual
posts and allows to find the total scattered field from all the obstacles
on a boundary of fixed cylindrical region. During the iterative process
the interactions between cylindrical objects are considered. In each
iteration the scattered field from each object is treated as an incident
field on the other cylinders. When the steady state is achieved

(a) (b) (c)

incident field

scattered field

Figure 3. Applications of the proposed method: (a) Plane
wave scattering from set of cylindrical objects, (b) loaded circular
cavity resonators, (c) loaded circular cavity resonator coupled with
rectangular waveguides.
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the total scattered field is obtained which can be matched with the
outer arbitrary excitation. The outer region can be assumed as an
open space with an arbitrary incident wave (see Fig. 3(a)). Since
the homogenous along z-axis cylindrical objects are assumed in the
analysism functions (4) and (5) take the following form fe,h

nm(·) =
eimϕeikzϕ, where kz = k0 sin(θ0) and θ0 is the angle of plane wave
incidence (see Fig. 4) and the n-related summation in (2), (3) and (8)–
(11) is no longer needed. For the closed problems the proposed method
can be used to determine resonance frequencies of loaded with set of
cylindrical posts circular cavity resonators (Fig. 3(b)) or scattering

x
a

z

y

y’

z’

E

b

(a)

(b)(c)

φ

θ0

0

Figure 4. Convergence analysis: (a) inhomogeneous rectangular
metallic cylinder illuminated with plane wave, (b) normalized scattered
Ez electric field component pattern for the structure from Fig. 4(a) for
different values of number of modes M and mesh density N , (c) circular
cavity resonator loaded with asymmetrically located elliptic dielectric
cylinder.
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parameters of circular resonators coupled with rectangular waveguides
(Fig. 3(c)) [22, 23].

3. ACCURACY OF THE METHOD

In order to check the convergence of the presented approach two
numerical examples depicted in Fig. 4 will be considered. The first
analyzed structure, schematically presented in Fig. 4(a) is a rectangular
metallic cylinder illuminated with a plane wave with the following
parameters: Direction of incidence θ0 = 30◦ and φ0 = 45◦ and
polarization angle α = 45◦. The scattering patterns of this structure
for different values of mesh density W and number of eigenfunctions M
are presented in Fig. 4(b). The convergence of the proposed method
is verified using the following error criterion

δF =
1
K

K∑

k=0

∣∣FW
z (ϕk)

∣∣− ∣∣FRA
z (ϕk)

∣∣
|FRA

z (ϕk)| · 100%, (23)

where FW
z is a scattering characteristic of the electric field for

the assumed value of W and FRA
z is an asymptotic scattering

characteristic of the z-component of electric field obtained from
Richardson Approximation (RA) [30]. The obtained results collected
in Table 1 show that the accuracy of the method is improved with the
increase of both, the mesh density W and the number of cylindrical
functions M . It can be seen that the choice of the number of cells
W = 80× 240 and the number of eigenfunctions M = 10 allows one to
achieve the accuracy better than 0.1%.

Table 1. Absolute value of percentage error δF of scattering pattern
computation for structure from Fig. 4(a) (a = 1.2λ0, b = 0.4λ0).

Mesh density (W = V ×K)

10× 30 20× 60 40× 120 80× 240

M = 1 1.87 1.38 1.16 1.04

M = 2 3.75 1.83 1.16 0.78

M = 4 1.36 0.20 0.07 0.26

M = 7 1.72 0.51 0.22 0.03

M = 10 1.72 0.54 0.25 0.06
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Table 2. Absolute value of percentage error δF of resonance
frequencies computation for structure from Fig. 4(c) (a = 8 mm,
b = 2 mm, d = 0 mm, R = 20mm, H = 50mm).

Mode M
Mesh density (W = I × J)

Analytical
Err
[%]10× 30 20× 60 40× 120

TM

2 4.5236 4.5033 4.4977

4.4964

0.05

4 4.5234 4.5031 4.4977 0.05

7 4.5234 4.5031 4.4976 0.05

10 4.5234 4.5031 4.4976 0.05

hybrid

2 4.7974 4.8011 4.8022

4.8209

0.39

4 4.8065 4.8122 4.8141 0.14

7 4.8088 4.8152 4.8176 0.07

10 4.809 4.8154 4.8179 0.06

hybrid

2 5.0964 5.1101 5.1159

5.1231

0.14

4 5.0984 5.1121 5.1178 0.10

7 5.099 5.1127 5.1184 0.09

10 5.0991 5.1127 5.1184 0.09

The second example concerns a circular cavity resonator loaded
with elliptical dielectric (εr = 5) post (see Fig. 4(c)). The convergence
of the resonant frequencies of this resonator to the ones obtained from
analytical model [31] is presented in Table 2. As in the previous
case, the improvement of method accuracy is obtained both with the
increasing of mesh density W and number of cylindrical functions M .
The convergence of resonant frequencies obtained from our model to
the analytical ones is observed. For the mesh density W = 40 × 120
and M = 10 the accuracy is higher then 0.1%.

It should be emphasized, that in presented approach the accuracy
of the method strongly depends on the analyzed geometry of an object
and its material properties. Hence, the parameters of analysis for each
investigated object need to be determined individually.
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4. NUMERICAL RESULTS

4.1. Open Structures

In this section the four examples of open structures illuminated with
obliquely incident plane wave are considered. For all the structures
the far scattered field is calculated and compared with commercial
software and literature. The first two analyzed structures are a strip-
loaded circular dielectric cylinders presented in Figs. 5(a) and (b) and
excited with TM and TE plane wave, respectively. In the far field
calculation M = 10 and mesh density W = 60 × 180 were assumed.
The obtained results of analysis for different angles of plane wave
incidence are compared with the results presented in [32]. A good
agreement of presented method with analytical approach is achieved.
In next example, schematically presented in Fig. 6 a configuration of
four dielectric cylinders excited with TM plane wave is considered. In
the analysis M = 10 and mesh density W = 30 × 90 and P = 20
iterations in ISP was used to obtain a good accuracy. The results
for two different angles of post rotation are compared with the ones
obtained from commercial software QuickWave (where 59177 mesh
cells was used in the analysis) and a good agreement is observed.
Moreover, it can be noticed that the inhomogeneous cross-section of
objects allows one to tune the scattered field characteristic. For the
first configuration of posts the characteristic has one main lobe 6(a).
The rotation of the posts causes the formulation of the second main
lobe in ϕ = 90◦ direction (see Fig. 6(b)).
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Figure 5. Far-field pattern of the strip loaded dielectric cylinders: (a)
k0r = 5, εr = 9 and (b) k0r1 = 1, k0r2 = 2, εr1 = 5 and εr2 = 6 for
different angles θ0 of plane wave incidence (φ0 = α = 0).
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The last example concerns an array of five dielectric circular
cylinders loaded with metallic rectangular cylinders and illuminated
with TM plane wave (7). In the calculation of far field for above
structure the following parameters of the method were assumed M =

0.2
0.4
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Figure 6. Normalized amplitude of scattered z component of electric
field for configuration of four rectangle dielectric posts (εri = 3,
ai = 0.4λ0, bi = 0.1λ0) illuminated with plane wave (α = 0, φ0 = 0
and θ0 = 90◦) for two angles of post rotations, (a) ϕi = 0 and (b)
ϕi = −45◦ for i = 1, . . . , 4.
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Figure 7. Normalized amplitude of scattered z component of electric
field for configuration of five dielectric circular cylinders loaded with
rectangle metallic cylinders (εri = 3, ri = 0.11λ0, ϕi = 90◦, ai = 0.2λ0,
bi = 0.04λ0 for i = 1, . . . , 5) for two different angles φ0 of plane wave
illumination (a = 0, θ0 = 90◦) (a) φ0 = 0 and (b) φ0 = 45◦.



Progress In Electromagnetics Research, PIER 97, 2009 117

10, mesh density W = 40 × 120 and P = 20. The results for two
different angles φ0 of plane wave illumination are presented in Fig. 7.
The obtained results are in good agreement with the ones obtained
from QuickWave. From the presented results it can be noticed that the
far field pattern is modified by changing the plane wave illumination
angle. When the plane wave angle of incidence is changed to φ0 = 45◦
the four main lobe appears in scattered field characteristic.

d

Rc

a

a

(a) (b)

Figure 8. Circular cavity resonator loaded with single square
dielectric post: (a) Schematic view, (b) photo of the fabricated
structure.

Table 3. TM/TE-modes resonance frequencies (in GHz) of structure
from Fig. 8 (a = 20 mm, εr = 11.25, Rc = 30 mm, H = 15 mm) or
different values of post shift d mm.

Mode n
Our method Measurement

d = 0
err
[%]d = 15 d = 10 d = 0

TM 0 1.7475 1.6299 1.5553 1.5568 0.10

TM 0 3.2373 3.1275
3.0646 3.0644 0.01

TM 0 3.2969 3.1375

hybrid 1 4.0254 4.0305
4.0302 4.0056 0.61

hybrid 1 4.0556 4.0343

TM 0 4.6021 4.4715 4.4229 4.4181 0.11

TM 0 4.7434 4.7523 4.7494 4.75 0.01

hybrid 1 4.8513 4.8222 4.8164 - -

TM 0 5.1207 5.0591 5.0333 5.0325 0.02

hybrid 1 5.216 5.1927 5.1895 5.17 0.38
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4.2. Resonators

In this section, the presented approach is applied to the analysis
of circular cavity resonators loaded with arbitrary configuration of
dielectric or metallic cylindrical posts. As a result of analysis a
resonant frequencies of structures are determined and compared with
the results obtained from commercial software QuickWave and own
measurements.

As a first example a circular cavity resonator containing a single
dielectric post is considered (see Fig. 8). The calculated resonant
frequencies of this structure for different post location and measured
ones for centrally located square dielectric post are presented in
Table 3. In the analysis the number of modes M = 10 and mesh
density W = 40 × 120 were assumed. It can be noticed that the
relative error of measured frequencies with respect to our method is
lower than 0.6%. Moreover, it can be noticed, that the shift of the

d1

d2
2

1

a

b

RcRc

1

a
d1

d2
1

a

a

b

(a) (b)

(c)

ϕ

ϕ

ϕ

ϕ

Figure 9. Schematic view of circular cavity resonator loaded with two
(a) triangular and (b) rectangular symmetrically located posts and (c)
photo of the fabricated structure.
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post influences the resonant frequencies of the investigated resonator.
When the distance d is decreased to 0 (centrally located post case), as
one expects, the degenerate modes in the structure appears.

The next investigated structure is a resonator with two
symmetrically located triangular posts which is schematically
presented in Fig. 9(a).

The simulated and measured resonance frequencies of this
structure are presented in Table 4. In the analysis of this structure
the number of modes M = 10, mesh density W = 60×180 and P = 20
iterations in ISP were used. It can be noticed, that the measured
results are in a good agreement with the results of simulation. The
accuracy is higher than 0.6%. Moreover, a good agreement between
our method results and the ones obtained from commercial software
QuickWave is observed.

The last investigated structure is circular cavity resonator loaded
with two rectangular posts. In the analysis of this structure the
following parameters were assumed: Number of modes M = 10, mesh

Table 4. TM/TE-modes resonance frequencies (in GHz) for structure
from Fig. 9(a) (a = 11.5mm, R = 30 mm, H = 86mm, d = 15 mm,
ϕ1 = ϕ2 = 0).

n Mode Measurment QW
err
[%]

Our
Method

err
[%]

0
TM 5.685 5.6926 0.13 5.6982 0.23

TM 6.378 6.4102 0.50 6.416 0.60

1

TE 3.182 3.1926 0.33 3.199 0.53

TE 3.33 3.3406 0.32 3.3445 0.44

TE 4.829 4.8447 0.33 4.8387 0.20

TE 4.9 4.9119 0.24 4.925 0.51

TM 5.958 5.9533 0.08 5.9597 0.03

TE 5.972 5.987 0.25 6.0002 0.47

2

TE 4.39 4.3911 0.03 4.395 0.11

TE 4.501 4.4999 0.02 4.505 0.09

TE 5.699 5.7062 0.13 5.7159 0.30

TE 5.76 5.7632 0.06 5.7767 0.29

3
TE 5.88 5.8625 0.30 5.878 0.03

TE 5.94 5.9445 0.08 5.958 0.30
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density W = 40 × 120, and number of iterations P = 20. As in
previous example a good agreement of simulated and measured results
was obtained. The error between simulated and measured data is lower
than 0.5%.
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Figure 10. Resonant frequencies of the resonator loaded with two
symmetrically located rectangular posts in function of posts rotation
ϕ1 and ϕ2 (a = 19.87mm, b = 2.95mm, R = 30 mm, H = 86 mm,
d = 15 mm).
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Figure 11. Circular cavity resonator loaded with asymmetrically
located dielectric post and coupled with rectangular waveguides: (a)
Dimension of the structure: R = 20 mm, H = 16.2mm, a = 1 mm,
b = 7 mm, wa = 22.86mm, wb = 1.2mm, (b) frequency response.
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Additionally, for analyzed structure the influence of rotation of
posts on resonance frequencies was investigated and the obtained
results are presented in Fig. 10. It can be noticed that the rotation
of posts allows one to change resonant frequencies in wide range.
Moreover, for some angles of posts rotation the resonance frequencies of
resonators become equal. The aforementioned properties of arbitrary
cross section posts can be used in realization of tunable resonators and
waveguide filters.

For the analyzed structures presented in Fig. 9, besides the
TE/TM-modes the TEM-modes also appears as a solution of presented
method. The resonance frequencies of these modes calculated from our
method were the same as the ones obtained from analytical formula

f0 =
nc

2H
, where n = 1, 2, . . . , N. (24)

Table 5. TM/TE-modes resonance frequencies (in GHz) for structure
from Fig. 9(b) (a = 19.87mm, b = 2.95mm, R = 30mm, H = 86mm,
d = 15 mm, ϕ1 = ϕ2 = 0).

n Mode Measurment QW
err
[%]

Our
Method

err
[%]

0
TM 5.703 5.711 0.15 5.712 0.16

TM 6.78 6.819 0.57 6.812 0.47

1

TE 3.080 3.089 0.31 3.093 0.44

TE 3.313 3.32 0.23 3.322 0.28

TE 4.158 4.154 0.09 4.164 0.16

TE 5.028 5.048 0.41 5.050 0.46

TE 5.68 5.699 0.34 5.705 0.44

TE 6.238 6.218 0.32 6.228 0.17

TM 5.955 5.971 0.27 5.964 0.16

2

TE 4.316 4.318 0.05 4.322 0.15

TE 4.488 4.486 0.04 4.489 0.03

TE 5.13 5.133 0.06 5.143 0.26

TE 5.868 5.881 0.23 5.884 0.28

3
TE 5.804 5.812 0.13 5.820 0.28

TE 5.955 5.938 0.29 5.945 0.17
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4.3. Waveguide Coupled Resonators

The investigated structure presented in Fig. 11(a) is consisted of
circular cavity resonator loaded with two symmetrically located
rectangular metalic posts and coupled with rectangular waveguides.
The scattering parameters of this structure are presented in Fig. 11(b).
In the scattering parameters calculation the mesh density W = 40 ×
120, number of cylindrical modes M = 10 and N = 2, number of
iteration P = 20 was used in the cylindrical region. The obtained
results are compared with commercial software QuickWave and a good
agreement is achieved. It was observed that inserting the metallic post
in the circular cavity resonator structure results in the shift of the
resonant frequency of TM mode with m = 0 angular field variation
close to the TM mode with m = 1 angular field variation. As a result,
when circular cavity coupled resonator with rectangular waveguides is
considered, a second order filter structure is obtained.

5. CONCLUSION

In this paper the new hybrid method based on a combination of mode-
matching technique and finite difference frequency domain method
is presented. In the analysis of multiple object structures the ISP
procedure is used. The accuracy of method is presented. To verify
the validity of our approach some numerical examples are considered.
The results are compared with the results published in literature and
the ones obtained from commercial software and own measurements.
A good agreement of presented approach with other techniques and
measured data is achieved.
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APPENDIX A.

In Chapter 2.1, the following matrices takes the form:

ME
k = diag

(
ME

k,n

)n=N

n=0
where ME

k,n =

[
ME(TM)

z,k,n 0
ME(TM)

ϕ,k,n ME(TE)

ϕ,k,n

]
,
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and

MEII(TM)

z,k,n = diag(Rk
m(kρnR))

m=M

m=−M , for n = 0, . . . , N

MEII(TM)

ϕ,k,n = diag
(−jmkzn

k2
ρnR

Rk
m(kρnR)

)m=M

m=−M

,

MEII(TE)

ϕ,k,n = diag
(

jωµ0µr

k2
ρn

R
′k
m(kρnR)

)m=M

m=−M

, for n = 1, . . . , N

MHII

k = diag
(
MHII

k,n

)n=N

n=0
where MHII

k,n =

[
MHII(TM)

ϕ,k,n MHII(TE)

ϕ,k,n

0 MHII(TE)

z,k,n

]
,

and

MHII(TM)

z,k,n = diag(Rk
mkρnR)

m=M

m=−M ,

MHII(TM)

ϕ,k,n = diag
(−jωε0εr

k2
ρn

R
′k
m(kρnR)

)m=M

m=−M

for n = 1, . . . , N,

MHII(TE)

ϕ,k,n = diag
(

jmkzn

k2
ρnR

Rk
m(kρnR)

)m=M

m=−M

for n = 0, . . . , N,

APPENDIX B.

In Chapter 2.2 the matrices of space discretization in the ρ and ϕ
direction, respectively, are expressed as follows:

D1 = diag
[
∆ρI(W×W )

, ∆ϕI
(W×W )

, I
(W+1×W+1)

]
,

D2 = diag
[
∆ρI(W×W )

, ∆ϕI
(W×W )

, I
(W×W )

]
,

S1 = diag
[
∆ϕI

(W×W )
, ∆ρI(W×W )

, ∆ρ∆ϕI
(W+1×W+1)

]
,

S2 = diag
[
∆ϕI

(W×W )
, ∆ρI(W×W )

, ∆ρ∆ϕI
(W×W )

]
,

where ∆ρ = R/V , ∆ϕ = 2π/K and the unit matrix of size (n)× (n) is
denoted as: I

(n×n)
. The matrices of the derivatives take the following

form:

P1 =

[ 0 Kz −Re1Pϕ1

−Kz 0 Pρ1

RhPϕ −RhPϕRe 0

]
,



124 Kusiek and Mazur

P2 =

[ 0 Kz RhPϕ2

−Kz 0 −Pρ2

−Re2Pϕ Re2PϕRe 0

]
,

where Kz = [kznIW×W ] and kzn is a wavenumber along z-axis,

[Pρ1]m,n =

{ 1 n = m + 1,
−1 (m ≤ K ∧ n = 1) ∨ (m > K ∧ n = m−K),
0 otherwise,

[Pϕ1]m,n =

{ 1 (n = m + 1) ∨ (m mod K = 0 ∧ n = m−K),
−1 (m mod K 6= 0) ∧ (n = m),
0 otherwise,

for m = 1, . . . , Wand n = 1, . . . ,W + 1,

[Pρ2]m,n =

{ 1 n = m + K,
−1 n = m,
0 otherwise,

[Pϕ2]m,n =





1/(0.5π∆ρ) (m = 1) ∧ (n = 1, . . . , K),
1 (m = 2 . . . N) ∧ (n = m),
−1 (m = 2 . . . N + 1) ∧ (n = m− 1),
0 otherwise,

for m = 1, . . . , W + 1 and n = 1, . . . , W .

The matrices of the projection are expressed as follows:

[Qb]m,n =
{

1 m = n,
0 otherwise,

for m = 1, . . . , W + 1 and n = 1, . . . ,K,

[Q]m,n =
{

1 m−K + 1 = n,
0 otherwise, (B1)

and the matrices of the metric coefficients take the following form:

Re1 = diag
[
ρe(1)

, . . . , ρe(W )

]
,

Re2 = diag
[
0, ρe(1)

, . . . , ρe(W )

]
,

Rh = diag
[
ρh(1)

, . . . , ρh(W )

]
.

The matrices of field expansion coefficients in Eq. (22) takes the
following form:

CE = diag
(
CEz

0 , CEz
1 , CEϕ

1 , . . . , CEz
N , CEϕ

N

)
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where CEz(ϕ)
n = diag

(
C

Ez(ϕ)
n,−M , . . . , C

Ez(ϕ)
n,M

)

and DH =
[
DHϕ

0 , DHϕ
1 , DHz

1 , . . . , DHϕ
N , DHz

N

]

where DHϕ(z)
n =

[
D

Hϕ(z)
n,−M , . . . , D

Hϕ(z)
n,M

]

and D
Hϕ(z)
n,M =

[
D

Hϕ(z)
n,M,−M , . . . , D

Hϕ(z)
n,M,M

]T
.
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