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Abstract: The Sentinel satellite fleet of the Copernicus Programme offers new potential to map and

monitor plant traits at fine spatial and temporal resolutions. Among these traits, leaf area index (LAI)

is a crucial indicator of vegetation growth and an essential variable in biodiversity studies. Numerous

studies have shown that the radiative transfer approach has been a successful method to retrieve LAI

from remote-sensing data. However, the suitability and adaptability of this approach largely depend

on the type of remote-sensing data, vegetation cover and the ecosystem studied. Saltmarshes are

important wetland ecosystems threatened by sea level rise among other human- and animal-induced

changes. Therefore, monitoring their vegetation status is crucial for their conservation, yet few LAI

assessments exist for these ecosystems. In this study, the retrieval of LAI in a saltmarsh ecosystem is

examined using Sentinel-2 and RapidEye data through inversion of the PROSAIL radiative transfer

model. Field measurements of LAI and some other plant traits were obtained during two succeeding

field campaigns in July 2015 and 2016 on the saltmarsh of Schiermonnikoog, a barrier island of the

Netherlands. RapidEye (2015) and Sentinel-2 (2016) data were acquired concurrent to the time of

the field campaigns. The broadly employed PROSAIL model was inverted using two look-up tables

(LUTs) generated in the spectral band’s settings of the two sensors and in which each contained

500,000 records. Different solutions from the LUTs, as well as, different Sentinel-2 spectral subsets

were considered to examine the LAI retrieval. Our results showed that generally the LAI retrieved

from Sentinel-2 had higher accuracy compared to RapidEye-retrieved LAI. Utilising the mean of

the first 10 best solutions from the LUTs resulted in higher R2 (0.51 and 0.59) and lower normalised

root means square error (NRMSE) (0.24 and 0.16) for both RapidEye and Sentinel-2 data respectively.

Among different Sentinel-2 spectral subsets, the one comprised of the four near-infrared (NIR)

and shortwave infrared (SWIR) spectral bands resulted in higher estimation accuracy (R2 = 0.44,

NRMSE = 0.21) in comparison to using other studied spectral subsets. The results demonstrated

the feasibility of broadband multispectral sensors, particularly Sentinel-2 for retrieval of LAI in the

saltmarsh ecosystem via inversion of PROSAIL. Our results highlight the importance of proper

parameterisation of radiative transfer models and capacity of Sentinel-2 spectral range and resolution,

with impending high-quality global observation aptitude, for retrieval of plant traits at a global scale.
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1. Introduction

Leaf area index (LAI) is perhaps the most crucial plant biophysical trait which provides valuable

information on vegetation structure and functioning [1,2]. It is an essential input into models

that determine ecosystem productivity and describe energy and mass exchanges in the plant, soil,

and atmosphere [3]. LAI plays a key role in climate modelling, and biodiversity monitoring hence is

recognised as an essential climate variable [4] while proposed as an essential biodiversity variable [5,6].

The strong relationship that exists between LAI and other plant structural and functional parameters

such as the fraction of photosynthetically active radiation (FPAR), specific leaf area (SLA), yield,

nitrogen content, biomass, aboveground net primary productivity (NPP), canopy cover fraction

and stem density [7–16] highlight its crucial contribution towards monitoring vegetation growth,

productivity and generation of relevant biodiversity information. Nevertheless, in situ measurements

of LAI whether using direct (mainly destructive) measurements or indirect methods which are largely

based on optical instruments [1,17–19] and more recently on smartphones [20–22] are costly, scant

and prone to measurement inconsistencies, even though they potentially offer the most accurate

information at plot level.

Remote-sensing data play a prominent role in estimating and mapping the spatial distribution

of LAI. The spectral reflectance of vegetation canopies, neglecting the peripheral factors such as

variable solar illumination and sensor observation angles, soil and atmosphere, are primarily altered

by variation of biochemical and biophysical traits. While biochemical traits at the leaf level generally

suffer from poor signal transmission to the canopy level [23–27], biophysical traits such as LAI has

significant contribution in canopy reflectance spectra [28–30] and its’ magnitude [31]. Until recently,

the scarcity and cost of hyperspectral data and the coarse spectral information of broadband satellites

were the major shortcomings in estimating and mapping LAI accurately from remote-sensing data.

The advent of new satellites such as Sentinel-2 with a revisit time of five days (with combined use of

Sentinel-2A and Sentinel-2B) has opened prospects of obtaining reasonably comprehensive spectral

information for improved estimation of vegetation traits over large spatial extents regularly throughout

the season.

In addition to the visible, near-infrared (NIR), and shortwave infrared (SWIR) bands, Sentinel

2 has a series of spectral bands in the red-edge region. The red-edge bands are the unique features

that distinguish satellites such as Sentinel-2 and RapidEye from other currently available multispectral

satellites. The red-edge spectral region is recognised as important for estimation of vegetation

biochemical and biophysical traits, particularly from hyperspectral data [32–37]. Although LAI

as a biophysical parameter has shown a good correlation with data from the red edge region in

several hyperspectral studies [38–40], nonetheless, some contradictory results have been observed

by others [41–44]. These inconsistent observations in the literature call for further investigation of

the sensitivity of this relationship utilising red edge spectral data of the recently available broadband

satellites such as RapidEye and Sentinel-2.

The retrieval of LAI from remote-sensing measurements using either empirical or inversion of

physical models has pros and cons [3,45]. However, in regional and global studies, where in situ

data is impaired, inversion of physical models involving one or more radiative transfer models

(RTM) is the conceivably superior approach [45]. These models must be inverted in order to retrieve

plant traits from remote-sensing data [46]. A number of algorithms for RTM inversion have been

developed [45], whereas the commonly used method is the look-up table (LUT) [47,48]. The LUT

strategy is prescribed for the handling of complex models [46] and is effective for regional mapping of

vegetation parameters [49]. Among the existing RTMs, PROSAIL [50–53] is the most popular model

which is used for short vegetation canopies due to its feasibility and strength [51,54]. The PROSAIL
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model has been mainly used along with hyperspectral measurements for estimation of LAI in

studies of non-woody vegetation canopies such as croplands [19,55–60] and grasslands [27,30,48,61,62].

Nevertheless, the model has been occasionally used in combination with broadband multispectral

satellite data such as from ALOS AVNIR-2 [63], Landsat [64–66], SPOT [67,68] and ASTER [69],

primarily for crops. Concomitant with the progress in the development of Sentinel-2, several studies

sought to examine the potential of the sensor, by simulating its data for LAI estimation of crops using

inversion of the PROSAIL model [70–76]. However, after Sentinel-2′s launch, only a few studies have

examined the performance of its spectral data for LAI estimation of potato and rice crops [77,78].

Wetlands are among the most diverse natural ecosystems. According to the Ramsar Secretariat,

about 40% of wetlands have been lost over the last 40 years [79]. Monitoring essential biodiversity

variables (EBVs) such as LAI in these areas are hence crucial for their conservation and proper use

which is the common agenda of the Ramsar convention to halt biodiversity loss [79]. The feasibility

of mapping and continual monitoring of some wetlands’ EBVs such as phenology, biomass, leaf dry

mass, species composition and abundance has been studied from remote-sensing data [32,80–83].

At present, little is known about the performance of broadband satellite data for retrieval of LAI

in natural grasslands such as those are in saltmarsh/wetlands with diverse species compositions.

This study aimed to examine the retrieval of LAI in a wetland ecosystem using new multispectral

satellite data and RTM inversion. More specifically, the study compared the utility and performance of

Sentinel-2 and RapidEye spectral data for LAI retrieval through inversion of PROSAIL for the Dutch

barrier island of Schiermonnikoog. The study further elaborated on the potential and sensitivity of

Sentinel-2 broad red edge, NIR and SWIR spectral bands for LAI estimation via model inversion.

Our study benefited from field measurements of LAI and other plant traits that were obtained in two

consecutive field campaigns (i.e., 2015 and 2016) in the context of a European Space Agency funded

Innovators-III project on “remote sensing for essential biodiversity variables” (RS4EBV).

2. Materials and Methods

2.1. Study Area

This study was conducted in the Dutch barrier island of Schiermonnikoog, which is located

between the North Sea and the Wadden Sea at approximately 53◦30′ N, 6◦10′ E and is about 40 km2

in size (Figure 1). The annual mean temperature of the island is 10.2 ± 0.72 ◦C (mean ± standard

deviation (SD)) with an annual rainfall of 824 ± 149.1 mm [84]. The island’s diverse vegetation cover

is linked to features such as dunes, forest, polder, salt marshes, and the mudflats as well as minor

altitudinal differences that influence the frequency and duration of flooding [85]. The main vegetation

cover includes different species of herbs and grasses (Figure 2), while some patches of forest and shrubs

exist on the dunes [86]. The herb and grass canopies are mainly characterised with an electrophile,

or circular (random leaf angles) structures where the soil has relatively uniform characteristics across

different vegetation communities [82].
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Figure 1. True colour composite of the Sentinel 2A image acquired on 30 July 2016 (bands 665, 560 and

490 nm) and the location of the study area (Schiermonnikoog Island, The Netherlands). The blue and

red points demonstrate the distribution of sample plots in 2015 and 2016, respectively.
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Figure 2. Examples of grass composition observed in the Schiermonnikoog Island, The Netherlands.

2.2. Field Measurements

Two successive field campaigns were conducted towards the end of July 2015 (18th–25th) and

July 2016 (25th–30th) to measure LAI and other plant traits. Stratified random sampling was adopted

and (x,y) coordinates were randomly generated in the grassland/saltmarsh area located at the eastern

part of the island. To understand the variation of LAI through the two succeeding years, the sampled
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plots from 2015 and those of 2016 had about one-third of overlaps. In total 50 quadratic plots (30 plots

in 2015 and 20 plots in 2016) with 20 m side length were sampled (Figure 1).

In each sampling plot, several biophysical and biochemical traits were measured within five

randomly selected subplots (1 × 1 m), and their averages were calculated to represent the plots. In each

subplot, 30 leaves were randomly selected and the CCM-300 chlorophyll meter was used to measure

the leaf chlorophyll (Cab). Next, leaf samples were collected in each subplot and stored in zipped

plastic bags and transferred to the laboratory to obtain the leaf dry matter (Cm) and water content

(Cw). The soil reflectance was measured from a subset of subplots using a portable spectroradiometer

(ASD), USA.

LAI and average leaf angle (ALA) were non-destructively measured using a widely used optical

instrument, the LAI-2200C Plant Canopy Analyzer. The instrument can be used under any daytime

sky conditions [87], and makes some assumptions, such as random spatial distribution of leaves,

that affect the measurements accuracy. The degree to which these assumptions are met will affect

the measurements of LAI and ALA. The reader is referred to [87] for the detailed description of the

instrument. In each subplot, six below and two above-canopy radiation measurements were made

with the sun behind the operator and using a view restrictor of 45◦. The LAI of each plot was then

calculated as the average LAI measurements of its subplots.

The LAI-2200 measurements correspond to the plant area index (PAI) [27]. The PAI

includes photosynthetic and non-photosynthetic components [88]. During the measurements,

when non-photosynthetic components (dried leaves) were present within the plot, the LAI readings

were modified considering the percentage of green (and dead) leaves which was estimated by

visual inspection in each plot (LAI = (LAIreadings × fraction of green leaves)), and hereafter these

measurements are referred as LAI values. Table 1 summarises the statistics of the LAI values measured

in summer 2015 and 2016 in the study area.

Table 1. Summary statistics of the field measured leaf area index (LAI) and other variables from the

two field campaigns in Schiermonnikoog island, The Netherlands.

Measured Variables Min Mean Max StDev

LAI (m2 m−2) in 2015 (n = 30) 0.53 2.58 5.2 1.08

LAI (m2 m−2) in 2016 (n = 20). 1.05 3.31 6.3 1.32

Leaf dry mass (Cm) (g cm−2) * 0.005 0.0124 0.018 0.004

Leaf water content (Cw) (g cm−2) * 0.007 0.014 0.022 0.0042

Leaf chlorophyll content (Cab) (µg cm−2) * 13 30.4 49.5 10.2
Average leaf angle (ALA) (degree) * 45.3 56.7 73 8.1

* (n = 50 from 2015 & 2016).

2.3. Satellite Data

2.3.1. Sentinel-2

The Sentinel-2 Level-1C product was obtained from the Copernicus Open Access Hub (https:

//scihub.copernicus.eu/) concurrent to the time of the field campaign (30 July 2016). To acquire

Level-2A top of canopy reflectance (TOC) data, the image was atmospherically corrected using the

Sen2Cor processor. Sentinel-2 offers spectral data in 13 bands from 443 to 2190 nm with three red edge

bands centred at 705 nm, 740 nm, and 783 nm, respectively. For this study, the 60 m resolution bands

suitable for coastal (C, 443 nm), water vapour (WV, 1375 nm) and cirrus detection (CI, 1376) studies

were not utilised. Reflectance spectra of the plots sampled in 2016 were extracted from the TOC data.

The centre coordinates of the sample plots (20 × 20 m) were overlaid on the Sentinel-2 image (20 m),

and the reflectance of the corresponding pixels was extracted for each sample plot (Figure 3).

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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Figure 3. Reflectance of the measured plots in Schiermonnikoog island, The Netherlands. Extracted

from, RapidEye in 2015 (n = 30) and Sentinel-2 in 2016 (n = 20), respectively. The broken lines show the

centre positions of the spectral bands of the sensors.

2.3.2. RapidEye Data

The RapidEye satellite constellation consists of five identical small satellites and is capable of

collecting a large volume of data covering over 6 million square kilometres per day [89]. The five

satellites contain identical sensors and are equally calibrated and travel on the same sun-synchronous

orbit at an altitude of 630 km. RapidEye offers spectral data in five bands from 440 to 850 nm

with a red edge band at the central wavelength at 710 nm. We used the RapidEye image acquired

for Schiermonnikoog on 18 July 2015, concurrent with the time of field campaign. The image was

systematically geo-corrected and ortho-rectified at a spatial resolution of 5 m [90]. To obtain the TOC

reflectance data, ATCOR-2 was used for atmospheric and topographic correction [91]. The corrected

image was used to retrieve the average reflectance of each sampled plot in 2015. As the pixel size was

5 m, a pixel window of 3 by 3 (i.e., 15 × 15 m) centred around the central position of a plot was used

for collecting grass reflectance for each sample plot (20 × 20 m). Figure 3 demonstrates the extracted

reflectance of the sample plots in 2015 and 2016 from RapidEye and Sentinel 2 images, respectively.

2.4. The PROSAIL Radiative Transfer Model

The widely used PROSAIL radiative transfer model [51] was selected to retrieve LAI in the

wetland of Schiermonnikoog. The PROSAIL model is a compound of the SAILH canopy reflectance

model [52,53,92] and the PROSPECT leaf optical properties model [25,50,93]. PROSAIL requires a

limited number of input parameters, which facilitates the model inversion. It has been used for retrieval

of biophysical parameters in a wide range of vegetation canopies [27,48,51,57,58,66,69,72,94,95] with

various degrees of success. The overall suitability of PROSAIL for grassland studies has been

demonstrated by [48,96], and the capacity of the model to simulate spectra of heterogeneous grassland

in forward mode has been demonstrated in our earlier studies [27,30,95]. In the current study,

we performed local sensitivity analysis [97] to understand the impact of each model input parameter,

in particular, LAI, on the simulated canopy reflectance of RapidEye and Sentinel-2. We examined

the effect of each model input parameter on the corresponding spectral reflectance of RapidEye and

Sentinel-2 by systematically varying one parameter value at the time and keeping the rest of the

parameters at their constant mean values. The model parameters that did not affect either RapidEye

or Sentinel-2 simulated reflectance spectra were further fixed to constant values in the subsequent

generation of LUTs.
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The PROSPECT leaf model simulates the leaf hemispherical reflectance and transmittance as a

function of four input parameters: the leaf chlorophyll a + b content Cab (µg cm−2); the dry matter

content Cm (g cm−2); the equivalent water thickness Cw (cm) and the leaf structural parameter N

(unitless). The simulated leaf reflectance and transmittance by PROSPECT are inputs into the SAILH

which is a one-dimensional bidirectional turbid medium radiative transfer model and has been

modified for the hot spot effect in plant canopy reflectance [92]. The SAILH model entails eight

input parameters for simulation of the top-of-canopy bidirectional reflectance. These parameters are

solar zenith angle, sensor viewing angle, relative azimuth angle, the fraction of diffuse incoming

solar radiation, the hot spot size parameter, LAI, average leaf inclination angle, and background soil

reflectance. In order to address the soil brightness variation triggered by moisture and roughness,

a multiplicative soil brightness parameter was used [27,98].

2.5. Parametrization and Look-Up Table (LUT) Inversion

Look-up tables (LUT) provides a feasible approach for the inversion of RTMs [47]. LUT inversion

allows performing a global search and in comparison to other inversion methods such as numerical

optimisation and neural networks avoids unexpected behaviour when the canopy spectral properties

are not well presented by the simulated spectra [99]. The LUT dimensions have a significant role

in the retrieval accuracy of the parameters involved [27,30,100,101]. Therefore, for both 2015 and

2016 datasets used in this study, 500,000 parameter combinations were randomly generated using

uniform distributions [30,57] which were then used in the forward calculation of the PROSAIL model.

Furthermore, the spectral response functions of RapidEye and Sentinel-2 bands were not considered in

the PROSAIL simulations.

Since reflectance data were obtained from RapidEye and Sentinel-2 imagery acquired at a known

date and time, three PROSAIL input parameters related to sun and sensor geometries including sensor

viewing angle (12◦, 8◦), relative azimuth angle (109◦, 126◦), and solar zenith angle (33◦, 36◦) were

fixed based on the image specifications. Moreover, due to the minor influence of the fraction of diffuse

incoming solar radiation (skyl) on canopy reflectance [102] and the lack of onsite measurements, a fixed

value of 0.1 was used for this parameter [27,35,76]. The other input parameters were then generated

randomly using 500,000 parameter sets to realise the LUTs for model inversion. The values of these

model input parameters are described in Table 2.

Table 2. Specific ranges for model input parameters used for generation of RapidEye and Sentinel-2

look-up tables (LUTs) using the PROSAIL model. The parameters values were selected randomly

(uniform distributions) within the specified ranges.

Parameter Abbreviation in Model Unit Minimum Value Maximum Value

Leaf area index LAI m2 m−2 0.3 6.6
Mean leaf

inclination angle
ALA Deg 40 80

Dry matter content Cm g cm−2 0.003 0.02
Leaf structural

parameter
N No dimension 1.5 1.9

Leaf chlorophyll
content

Cab µg cm−2 10 60

Equivalent water
thickness 1 Cw g cm−2 0.005 0.025

Hot spot size
parameter

hot m m−1 0.05 0.1

Soil brightness
parameter

scale No dimension 0.5 1.5

1 The value was kept constant to its mean value (0.01) for generation of the RapidEye LUT.

We interpolated the average bare soil reflectance spectra which was measured during the field

campaign to the spectral bands setting of Sentinel-2 and RapidEye to present the soil optical properties.

To explain the soil roughness and moisture in the island, we also varied the range of the scale
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parameter [98] (Table 2). Field measurements (LAI, ALA, Cab, Cm, and Cw) were used to define

the approximate range of “free” model parameters [95,103]. Limiting the parameter space has been

suggested in many studies [27,48,104] and assists in regularisation of the ill-posed problem of model

inversion [103]. For the hot spot size parameter, a range of 0.05 to 0.1 was selected [48,105]. Furthermore,

a range of 1.5 to 1.9 was used for leaf structural parameter N [27,30], which was in agreement with the

mean value (N = 1.6) used for grassland species by [96].

To find the solution to the inverse problem for given canopy reflectance spectra obtained from

RapidEye and Sentinel-2 images, for each modelled reflectance spectra of the LUTs, the root means

square error (RMSE) between measured (reflectance value from the Rapid-Eye or Sentinel-2) and

modelled spectra (in LUT) is considered as the cost function according to:

RMSE =

√

∑
n
k=1

(

ρimageλ − ρLUTλ

)2

n
(1)

where ρimage is the extracted reflectance from the Sentinel-2 or RapidEye image for the sample plots,

ρLUT is the simulated reflectance from the corresponding LUT, n is the number of spectral bands, and λ

is the corresponding spectral band of Sentinel-2 and RapidEye, respectively.

The set of model input parameters which corresponded to the simulated reflectance from each

LUT that best matched the measured reflectance from Sentinel-2 or RapidEye with the minimum

cost function (smallest RMSE) is regarded as the solution. In other words, the LAI of each plot

was retrieved from the large LUTs when the measured reflectance obtained from the images had

the smallest difference (RMSE) with the RTM simulated reflectance. Consequently, for each plot,

the LUTs were sorted according to the cost function (RMSE) and the set of variables providing the

minimum RMSE were considered as solutions (estimated LAI). However, because of the ill-posed

nature of the inversion, this solution may not always be unique [106]. To address this and to improve

the LAI retrieval, instead of using a single solution, the mean parameters from the best 10, 50 and

100 solutions were considered [30,103]. To increase the robustness of inversions, the proper selection

of features is recommended [3]. Selection of relevant and important bands which are well modelled

by RTM is known to enhance the inversion [95,107,108]. Since RapidEye data had only five spectral

bands, spectral subsetting was explored only for the Sentinel-2 data. We examined whether LAI

estimates from Sentinel-2 data through inversion of PROSAIL would be enhanced by selecting optimal

spectral subsets. Four spectral subsets were selected considering i) the spectral bands with central

wavelengths comparable to those from RapidEye, ii) NIR and SWIR spectral bands, iii) red edge

spectral bands, and iv) excluding spectral bands with high average absolute errors (AAE) (specified

threshold (RMSE ≤ 0.02)) between simulated and measured reflectance of Sentinel-2. More details on

the calculation of AAE can be found in [27,30].

2.6. Model Validation and Mapping

The retrieval of LAI in Schiermmonikoog island through inversion of PROSAIL using Sentinel-2

and RapidEye data was validated using the measured LAI from the field campaigns. To examine the

LAI accuracy, the coefficient of determination (R2), the RMSE, and the normalised RMSE (NRMSE,

RMSE/range) [27] between measured and retrieved LAI were assessed. The LAI map of the island was

then produced using RapidEye and Sentinel-2 images and PROSAIL inversion. The existing vegetation

map of the island [109], was utilised to mask out the peripheral land covers (waterbodies, bare dunes

and buildup area) from Sentinel-2 and RapidEye data. The masked images were then used as input

to the inversion process, and the maps of predicted LAI were retrieved using the minimum RMSE

criterion (best fitting spectra).
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3. Results

3.1. Variations in Leaf Area Index (LAI) Measurements in 2015 and 2016

As can be observed from the summary statistics of the field-measured LAI (Table 1), the LAI

values in 2016 had a larger range in comparison to the measured LAI data from 2015. In 2015, the mean

LAI was 2.58 m2/m2 while the mean LAI for data obtained in 2016 was 3.31 m2/m2. The measured

LAI from both years showed relative high variability, while the sampled LAI in 2015 demonstrated

slightly higher variation (coefficient of variation = 0.42) compared to those in 2016 (coefficient of

variation = 0.40). Similar trends were observed for the measured chlorophyll, where the range was

smaller in 2015 compared to those from 2016. The range of other measured variables from the two

years showed relatively little variation (data not shown).

The results of the sensitivity analysis of PROSAIL for LAI estimation using RapidEye and

Sentinel-2 spectral band settings is presented in Figure 4. As was expected, LAI is exerting a strong

influence on the simulated canopy reflectance for both sensors. Almost all RapidEye spectral bands

demonstrated sensitivity to LAI variation. For Sentinel-2 also, the sensitivity of all spectral bands are

underlined in the figure, although it seems that that LAI’s influence on the visible and NIR spectral

bands is more pronounced. The simulated canopy reflectance of both sensors was largely affected by

all other model input parameters (not shown), except for the leaf water content (Cw) which displayed

no influence on the simulated canopy reflectance spectra of RapidEye and only influenced the NIR

(lightly) and mostly the SWIR spectral bands of Sentinel-2. For this reason, leaf water content was fixed

to a constant value (Cw = 0.01, g cm−2) for the generation of RapidEye LUT only, but not for Sentinel-2.
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Figure 4. Sensitivity analysis highlighting the effect of variation of leaf area index (LAI) on simulated

canopy reflectance of RapidEye and Sentinel-2 using PROSAIL. Reflectance values are at distinct

spectral wavelengths; lines are used to help the interpretation.

3.2. Inversions Based on the Minimum Root Means Square Error (RMSE) Criterion

Using each LUT, the difference (RMSE) between the simulated and measured canopy reflectance

obtained from the corresponding image was calculated, and the results were sorted using the minimum

RMSE criterion. The simulated reflectance from the LUT which yield the smallest RMSE with a

measured reflectance (obtained from the RapidEye and Sentinel-2 images) was regarded as the best fit

or best-simulated canopy reflectance. Accordingly, the set of model input parameters corresponding to

the “best fit” from the LUT were regarded as the solution. Figure 5 demonstrates the canopy reflectance

spectra obtained from Sentinel-2 and RapidEye data and the so-called best-fit reflectance from the

LUTs calculated in this way for two plots in 2015 and two plots in 2016 with different LAI values.
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Figure 5. Measured and modelled canopy reflectance spectra of two sample plots with different LAI

values using RapidEye (2015) and Sentinel-2 (2016) data. Reflectance values belong to distinct spectral

bands; lines are used to help the interpretation.

As Figure 5 illustrates, the measured reflectance from RapidEye and Sentinel-2 are modelled

differently using PROSAIL. For Sentinel-2, the observed mismatch between the two canopy reflectance

is more noticeable for the NIR and green bands while for the RapidEye data this mismatch is more

pronounced in the red band.

To examine these discrepancies between the measured and modelled spectral reflectance from

RapidEye and Sentinel-2 the AAEs were considered [21]. In Figure 6, the AAEs between the reflectance

from RapidEye and Sentinel-2, and their corresponding best-fit spectra (resulting in the lowest RMSE

among the image and simulated canopy reflectance) from the two LUTs are shown. It shows that

generally the dissimilarities between RapidEye and Sentinel-2 measured and modelled reflectance

follow a similar trend. The AAEs calculated for the data from the two sensors demonstrate comparable

drift in the visible region, with the green band showing the highest error in this region. While using

Sentinel-2 data the infrared and the third red edge bands present relatively larger errors.
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Figure 6. The average absolute errors (AAEs) calculated between RapidEye and Sentinel-2 measured

reflectance and their corresponding best-fit reflectance from LUTs. The AAE has been calculated from

RapidEye (n = 30) and Sentinel-2 (n = 20) reflectance and their corresponding best fit reflectance from

the LUTs, respectively. The AAE units are reflectance.

Figure 7 presents scatterplots illustrating the relationship between measured and retrieved LAI

using the smallest RMSE criterion. In general, the retrieved and measured LAI had somehow

reasonable relationships, while this relationship was stronger in 2016 using Sentinel-2 data.

The measured and estimated LAI in 2016 had a higher coefficient of determination (R2 = 0.55) and

lower error (NRMSE = 0.17) in comparison to those from RapidEye in 2015. The deviation of estimated

LAI in 2015 from one to one line was more toward the higher values.

 

RapidEye (2015) Sentinel-2 (2016) 

 

Figure 7. Measured and retrieved LAI using RapidEye (2015, n = 30) and Sentinel-2 (2016, n = 20) data

(smallest root means square error (RMSE) criterion). The black line is the 1:1 relationship and the pink

line presents the relationship between the retrieved and measured LAI.

3.3. Inversion Using Various Solutions

To overcome the ill-posedness of the model inversion and to enhance the LAI retrieval, the use

of multiple solutions were examined. The significance of using multiple solutions instead of a single

solution corresponding to the minimum RMSE has been shown in our earlier studies [24,86]. Hence we

further assessed how the use of the best 10, 50, and 100 solutions from the RapidEye and Sentinel-2 LUTs

would affect the retrieval accuracy of LAI. The relationship between measured and retrieved LAI values

using alternative solutions was then studied in both datasets using the R2, RMSE, and NRMSE values.

The results of these analyses are demonstrated in Table 3. In general, using multiple solutions, higher



Remote Sens. 2019, 11, 671 12 of 22

retrieval accuracies were observed for all alternative solutions from Sentinel-2 data in comparison to

those from RapidEye. As can be realised from the table, using the RapidEye and Sentinel-2 data and

the mean of the first 10 best solutions resulted in higher R2 (0.51 and 0.59) and lower NRMSE (0.24

and 0.16), respectively compared to the use of minimum RMSE. Using the mean of the best 50 and 100

solutions in both datasets decreased the R2 values between measured and estimated LAI with almost

no effect on their NRMSE values.

Table 3. R2, RMSE and normalised RMSE (NRMSE) (m2/m2) values between measured and estimated

LAI in Schiermonnikoog using RapidEye data in 2015 (n = 30) and Sentinel-2 data in 2016 (n = 20) and

LUT inversion (utilising the minimum RMSE criterion, mean of the best 10, best 50 and mean of the

best 100 solution.

RapidEye 2015 (n = 30) Sentinel-2 2016 (n = 20)

Solution R2 RMSE NRMSE R2 RMSE NRMSE

Best fitting spectra 0.50 1.27 0.27 0.55 0.87 0.17
Mean of first 10 0.51 1.10 0.24 0.59 0.84 0.16
Mean of first 50 0.48 1.17 0.25 0.52 0.90 0.17

Mean of first 100 0.48 1.18 0.25 0.52 0.90 0.17

3.4. Inversion Using Spectral Subsets from Sentinel-2

RapidEye had only five spectral bands in which none returned a large AAE. Therefore, we only

examined the effect of spectral subsets on LAI retrieval using Sentinel-2 data. The significance of using

four spectral subsets was assessed using R2, RMSE, and NRMSE between the retrieved and measured

LAI. As such first, the spectral bands which resulted in an AAE larger than 0.02 (see Figure 5) were

selected assuming these are the bands with large errors [27]. These were the NIR (842 nm, 865 nm)

and the red edge (783 nm) bands. Accordingly, the LUT of Sentinel-2 was inverted discounting these

spectral bands (subset A). Next, the spectral bands form Sentinel-2 which were comparable to those

from RapidEye data were considered. These spectral bands (490 nm, 560 nm, 665 nm, 705 nm, and

783 nm) were consequently used in the inversion process (subset B). Third, the combination of NIR

(842 nm, 865 nm) and SWIR (1610 nm 2210 nm) spectral bands were considered and used in the LUT

inversion (subset C). Finally, the three red-edge bands (705 nm, 740 nm, 783 nm) were taken and

employed for the inversion of Sentinel-2′ LUT (subset D). Retaining the four subsets from Sentinel-2

spectral data decreased the LAI accuracy with respect to using all spectral bands (Table 4). However,

when the NIR and SWIR spectral bands were used (subset C), LAI was estimated with moderate

accuracy (R2 = 0.44, NRMSE = 0.21).

Table 4. R2, RMSE, and NRMSE (m2/m2) between measured and retrieved LAI based on selected

spectral subsets from Sentinel-2 (n = 20).

Spectral Subset R2 RMSE NRMSE

Spectral subset A (783 nm, 842 nm and
865 nm are excluded)

0.24 1.38 0.26

Spectral subset B (490 nm, 560 nm,
665 nm, 705 nm, and 783 nm) 1 0.10 2.58 0.49

Spectral subset C (842 nm, 865 nm,
1610 nm, 2210 nm)

0.44 1.14 0.21

Spectral subset D (red edge bands:
705 nm, 740 nm, and 783 nm)

0.26 2.5 0.48

1 These spectral bands have central wavelengths close to those from RapidEye.
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3.5. Mapping LAI for Schiermonnikoog Island

LAI was mapped for the Island using both RapidEye and Sentinel-2 data. Before producing the

maps, masks were produced for saltmarshes, grass and crops using the vegetation map of the Island

modified by [86] and employed to mask out the areas occupied by other land cover types (build-up

area, water bodies and dunes) in the Rapid-Eye and Sentinel-2 imageries. We intentionally included

the agricultural fields in the masked images since the suitability of PROSAIL in mapping LAI of crops

has been earlier confirmed [71,73,78]. The masked RapidEye and Sentinel-2 images were then used

as inputs for the inversion process of the two LUTs. Accordingly, the LAI maps of the island were

then retrieved using the best fitting spectra. Figure 8 shows the LAI maps derived from RapidEye

and Sentinel-2. Their mean and variance agreed with those observed during the field campaigns

(Table 1). Although the spatial distribution of LAI from the two years are comparable, the Sentinel-2

derived map has larger range and shows higher LAI values in comparison to those from RapidEye.

Nevertheless, the map produced from RapidEye data (owing to its fine spatial resolution) presents

more details on the spatial variation of LAI.

 

 

Figure 8. Spatial distribution of LAI in Schiermonnikoog island, the Netherlands. The maps are

produced through inversion of PROSAIL using best fitting spectra from RapidEye (2015) Sentinel-2

(2016) images, respectively.

4. Discussion

In this study, the feasibility of retrieving LAI of saltmarsh vegetation using PROSAIL and high

spatial resolution RapidEye and Sentinel-2 satellite images was demonstrated. Using the minimum

RMSE criterion, we observed a good relationship between the field measured and estimated LAI

values using the RapidEye (R2 =0.50, RMSE = 1.27 m2/m2 and NRMSE = 0.27) and Sentinel-2 data

(R2 = 0.55, RMSE = 0.87 m2/m2 and NRMSE = 0.17) (Figure 7). Furthermore, the errors obtained

decreased when multiple solutions were utilised from both LUTs (Table 3). The measured LAI from the

field campaigns showed moderate variability (coefficient of variation= 0.42 and 0.40 for 2015 and 2016,

respectively), hence moderate retrieval accuracies [110] were obtained for both years. Furthermore,
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the sensible retrieval accuracies of LAI which were obtained using data from the two sensors can

also be explained by the large sizes of the two LUTs (500,000 records) that permitted appropriate

sample selection. The significance of appropriate sample selection in the LUT approach is highlighted

for model optimisation and efficiency as well as for the proper understanding of the ecosystem

conditions [101].

In vegetation canopies, biophysical variables (such as LAI) play a significant role in characterising

the canopy reflectance [24,111]. However, the relationships between these variables and canopy

reflectance are complex, as the reflectance of the canopy is a function of leaf optical properties,

canopy architecture, background soil as well as illumination and viewing geometry [24,108,112,113].

PROSAIL has been successful in explaining these interactions mainly in nonwoody vegetation and for

modelling LAI in various vegetation types [51]. Few studies have demonstrated the suitability of the

model for Mediterranean grassland ecosystems utilising hyperspectral measurements [27,30,48,95,96].

Also recently the PROSAIL model and airborne hyperspectral data have been successfully used in

the wetland for retrieval of leaf mass area [32]. However, results of the current study confirmed that

the PROSAIL model could be used in combination with data from new multispectral sensors such a

Sentinel-2 and RapidEye to study the biophysical properties of grasslands in a saltmarsh ecosystem.

It is known that LAI plays a key role in the magnitude of canopy reflectance [31]. Likewise,

the results of sensitivity analysis confirmed that the canopy spectral reflectance from both RapidEye

and Sentinel-2 sensors were highly sensitive to LAI variations (Figure 4). In general, the variation

of all PROSAIL input parameters influenced the simulated RapidEye (475–805 nm) and Sentinel-2

(490–2190 nm) reflectance except leaf water content (not shown). Therefore, prior knowledge from

field observations of input parameters assisted in model parameterisation. The leaf water content did

not show any influence on the RapidEye simulated reflectance. This was expected as water-sensitive

features mainly exist within the NIR and SWIR spectral regions [111] which are absent in RapidEye

spectral data.

A relatively close match was observed between the measured and simulated reflectance of

RapidEye and Sentinel-2 (Figure 5), particularly for the visible, red-edge and SWIR spectral bands

(from Sentinel-2) where the AAEs were lower than 0.02 (Figure 6). Nevertheless, a spectral mismatch

between the measured and simulated reflectance was noticeable at NIR spectral bands which are

sensitive to LAI, nitrogen content, leaf structure and dry matter [10,11,30,48]. These results are

in agreement with earlier findings by [11,30,48] who observed that the spectral bands in the NIR

spectral region (around 800–850 nm) demonstrate relatively high errors using hyperspectral data. It is

anticipated that the spectral bands from this region (800–850 nm) are prominently sensitive to noise or

are not well modelled by RTM.

The relationship between the field measured and retrieved LAI using the smallest RMSE criterion

was stronger employing the Sentinel-2 data (NRMSE = 0.17, RMSE = 0.87 m2/m2, R2 = 0.55) in

comparison of using the RapidEye data (NRMSE = 0.27, RMSE = 1.27 m2/m2 and R2 = 0.50). These

accuracies are lower than those obtained by [48,95] who utilised hyperspectral data and the PROSAIL

model with a LUT-based inversion for LAI estimation in grasslands (RMSE = 0.63 m2/m2, 0.53 m2/m2

and R2 = 0.89, 0.91). The coefficient of determinations obtained in this study are also lower than

those in our earlier studies where we used hyperspectral data in Mediterranean grassland to retrieve

LAI from PROSAIL inversion (R2 = 0.86) albeit with a higher RMSE (RMSE = 0.89 m2/m2) [27,30].

The obtained errors from Sentinel-2 data are, however, comparable to those from [96] who used various

hyperspectral measurements for LAI estimation in central Europe (RMSE = 0.86 m2/m2, 0.74 m2/m2).

Sentinel-2 data benefits from spectral bands at NIR and SWIR regions which are crucial for LAI

studies [31,44]. Therefore, the lower retrieval accuracy obtained using the RapidEye data partly is

explained by the absence of these spectral bands. Nevertheless, RapidEye data has a very fine spatial

resolution which makes the sensor unique and less prone to mixed pixels challenges. This importance

was confirmed when spectral subset B of Sentinel 2 with central wavelengths similar to those from
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RapidEye were selected (490 nm, 560 nm, 665 nm, 705 nm, and 783 nm) for the inversion and returned

very low retrieval accuracy for LAI in comparison to those from RapidEye (Table 4).

To address and reduce the ill-posedness of model inversion some approaches are investigated

in the literature such as choosing a proper spectral subset [30,101], ecological constraints [11,114],

prior knowledge [100,106] and spatial regularisation [75,115]. In this study, the prior field information

which was acquired during the two field campaigns were used to determine the range of model input

parameters and to limit the implausible combinations. Moreover, the LAI was estimated using the

mean of the first 10, 50 and 100 best solutions from the LUTs. The result of this analysis demonstrated

that utilising the mean of the first 10 best solutions the retrieval accuracy of LAI would increase

from both RapidEye and Sentinel-2 data (R2 = 0.51, 0.59 NRMSE = 0.24, 0.16, respectively) (Table 3).

The obtained results are in agreement with that of [30,48,63] who demonstrated that the use of multiple

solutions results in more robust retrieval accuracy.

In general, biophysical variables such as LAI, canopy architecture (e.g., leaf angle distribution)

and biomass present major contributions to the canopy reflectance, mainly in near-infrared (NIR) and

SWIR regions [10,29,31,35,44,116]. This was confirmed in our study when NIR and SWIR spectral

bands of Sentinel-2 were used as a spectral subset for the inversion (Table 4). Utilising different

Sentinel-2′ spectral subsets showed that the spectral subset C which contained the four spectral bands

of NIR and SWIR (842 nm, 865 nm, 1610 nm, 2210 nm), in comparison to using other spectral subsets

resulted in higher retrieval accuracy for LAI (R2 = 0.44, NRMSE = 0.21). As such, [73] examined the LAI

retrieval of crops using simulated Sentinel-2 data as well as various parametric and non-parametric

models and found that SWIR bands (1610 nm, 2210 nm) in combination with the green band (490 nm)

are important spectral bands for LAI estimation. Furthermore, [78] demonstrated that the red (665 nm)

and NIR (842 nm) spectral bands of Sentinel-2 are important bands for LAI prediction of the potato

crop. The practice of the other three spectral subsets from Sentinel-2 data did not improve the retrieval

accuracy signifying the properly located spectral bands from the sensor.

For the generation of the LAI maps, the smallest RMSE criterion was used in the inversion of

RapidEye and Sentinel-2 LUTs. Overall, the LAI maps obtained from both sensors presented the

variation of LAI in the island well. Although the spatial variation of LAI from the two maps were

somehow comparable, higher LAI values were observed in the derived Sentinel-2 map of 2016 which

was in agreement with the larger range of measured LAI in 2016. As was expected, the map produced

from RapidEye data, due to its higher spatial resolution of 5 m, presented a detailed overview of the

variation of LAI. Nevertheless, a concise study of the maps revealed that due to absence of SWIR

spectral bands in RapidEye sensor, part of the island in 2015 (in the northeast) which was dominated

by sand rather than vegetation cover (low reflectance in red and very high reflectance in NIR) was

identified as region with very high LAI values (LAI > 7). In the presented maps, this area is identified

in the 2015 map as the sand class. Our findings emphasise the importance of multi-spectral satellite

sensors such as Sentinel-2 with spectral bands at NIR and SWIR regions for regional mapping of

vegetation LAI in wetland ecosystems using radiative transfer models. Monitoring vegetation status

and tracking EBVs such as LAI in these systems is vital for their sustainability and proper use and

promote the Ramsar Convention’s common agenda to halt loss of biodiversity.

5. Conclusions

The results obtained in this study revealed the feasibility of the two broadband multispectral

(Sentinel-2 and RapidEye) sensors for retrieval of LAI in the saltmarsh of Schiermonnikoog via

the inversion of PROSAIL. In general, LAI estimated from Sentinel-2 data had higher accuracy in

comparison to those from RapidEye. Although Rapid Eye had a finer spatial resolution than Sentinel-2,

the enhanced spectral range and resolution offered by Sentinel-2, e.g., three red edge bands, trumped

the benefit of higher spatial resolution offered by Rapid Eye which in comparison had only one red

edge band. The highest retrieval accuracies were obtained using all spectral bands of RapidEye

and Sentinel-2 and the mean of the best ten solutions. When spectral subsetting of Sentinel-2 was
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considered, the spectral subset which contained four spectral bands of NIR and SWIR resulted in higher

LAI retrieval accuracy in comparison to other spectral subsets studied and emphasised the importance

of Sentinel-2 data for LAI studies. Our results highlight the suitability of PROSAIL when coupled with

broadband satellite data for regional and global mapping of LAI in saltmarsh/grassland ecosystems.

The LAI retrieval accuracy through model inversion is not only affected by uncertainties in

satellite reflectance data and the RTM inadequacies [2] but also by, uncertainties related to LAI in situ

measurements. In our study, LAI was measured using LAI-2200 instrument which accounts for the

existence of both green and dead leaves. Although in this study we accounted for the percentage of

non-photosynthetic components (dried leaves) of the measured LAI, no corrections for clumping effects

or non-random distribution of leaves were considered. Further improvement of retrieval accuracy is

expected when clumping effects or destructive sampling for LAI measurements are considered.
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