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Analysis of single‑cell RNA sequencing data 
based on autoencoders

Andrea Tangherloni1,2,3,4*, Federico Ricciuti5, Daniela Besozzi5,6, Pietro Liò7*† and Ana Cvejic1,2,3*† 

Background

Single-cell RNA sequencing (scRNA-Seq) was named the “Method of the Year” in 2013, 

and it is currently used to investigate cell-to-cell heterogeneity since it allows for meas-

uring the transcriptome-wide gene expression at single-cell resolution, enabling the 

identification of different cell-types. scRNA-Seq data are prevalent generated in studies 

Abstract 

Background: Single-cell RNA sequencing (scRNA-Seq) experiments are gaining 
ground to study the molecular processes that drive normal development as well as the 
onset of different pathologies. Finding an effective and efficient low-dimensional rep-
resentation of the data is one of the most important steps in the downstream analysis 
of scRNA-Seq data, as it could provide a better identification of known or putatively 
novel cell-types. Another step that still poses a challenge is the integration of different 
scRNA-Seq datasets. Though standard computational pipelines to gain knowledge 
from scRNA-Seq data exist, a further improvement could be achieved by means of 
machine learning approaches.

Results: Autoencoders (AEs) have been effectively used to capture the non-linearities 
among gene interactions of scRNA-Seq data, so that the deployment of AE-based tools 
might represent the way forward in this context. We introduce here scAEspy, a unify-
ing tool that embodies: (1) four of the most advanced AEs, (2) two novel AEs that we 
developed on purpose, (3) different loss functions. We show that scAEspy can be cou-
pled with various batch-effect removal tools to integrate data by different scRNA-Seq 
platforms, in order to better identify the cell-types. We benchmarked scAEspy against 
the most used batch-effect removal tools, showing that our AE-based strategies out-
perform the existing solutions.

Conclusions: scAEspy is a user-friendly tool that enables using the most recent and 
promising AEs to analyse scRNA-Seq data by only setting up two user-defined param-
eters. Thanks to its modularity, scAEspy can be easily extended to accommodate new 
AEs to further improve the downstream analysis of scRNA-Seq data. Considering the 
relevant results we achieved, scAEspy can be considered as a starting point to build a 
more comprehensive toolkit designed to integrate multi single-cell omics.
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that aim at understanding the molecular processes driving normal development and the 

onset of pathologies [1, 2]. This field of research continuously poses new computational 

questions that have to be addressed [3].

One of the most important steps in scRNA-Seq analysis is the clustering of cells into 

groups that correspond to known or putatively novel cell-types, by considering the 

expression of common sets of signature genes. However, this step still remains a chal-

lenging task because applying clustering approaches in high-dimensional spaces can 

generate misleading results, as the distance between most pairs of points is similar [4]. 

As a consequence, finding an effective and efficient low-dimensional representation 

of the data is one of the most crucial steps in the downstream analysis of scRNA-Seq 

data. A common workflow of downstream analysis, depicted in Fig.  1, includes two 

dimensionality reduction steps: (1) Principal Component Analysis (PCA) [5] for an ini-

tial reduction of the dimensions based on the Highly Variable Genes (HVGs), and (2) a 

non-linear dimensionality reduction approach—e.g., t-distributed Stochastic Neighbour 

Embedding (t-SNE) [6] or Uniform Manifold Approximation and Projection (UMAP) 

[7]—on the PCA space for visualisation purposes (e.g., showing the labelled clusters) 

[8, 9]. In addition, when multiple scRNA-Seq datasets have to be combined for further 

analyses, the technical non-negligible batch-effects that may exist among the datasets 

must be taken into account [3, 8, 10–13], making the dimensionality reduction even 

PCA on standardised data

Steps (iv) and (v)

ClusteringMarker genes

Step (vii)

Data visualisation

Quality Control

Step (i) 

Log-transformationNormalisation

Step (ii) 

Step (vi)

Highly variable genes

Step (iii) 

Fig. 1 A common workflow for the downstream analysis of scRNA-Seq data. The workflow includes the 
following seven steps: (i) quality control to remove low-quality cells that may add technical noise, which 
could obscure the real biological signals; (ii) normalisation and log-transformation; (iii) identification of 
the HVGs to reduce the dimensionality of the dataset by including only the most informative genes; (iv) 
standardisation of each gene to zero mean and unit variance; (v) dimensionality reduction generally obtained 
by applying PCA; (vi) clustering of the cells starting from the low-dimensional representation of the data that 
are used to annotate the obtained clusters (i.e., identification of known and putatively novel cell-types); (vii) 
data visualisation on the low-dimensional space generated by applying a non-linear approach (e.g., t-SNE or 
UMAP) on the reduced space calculated in step (v)
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more complicated and fundamental. Indeed, finding a salient batch corrected and a low 

dimensional embedding space can help to better partition and distinguish the various 

cell-types.

Although commonly used approaches for dimensionality reduction achieved good 

performance when applied to scRNA-Seq data [8], novel and more robust dimensional-

ity reduction strategies should be used to account for the sparsity, intrinsic noise, unex-

pected dropout, and burst effects [3, 14], as well as the low amounts of RNA that are 

typically present in single-cells. Ding et al. showed that low-dimensional representa-

tions of the original data learned using latent variable models preserve both the local 

and global neighbour structures of the original data [15]. Autoencoders (AEs) showed 

outstanding performance in this regard due to their ability to capture the strong non-lin-

earities among the gene interactions existing in the high-dimensional expression space.

Autoencoders for denoising and dimensionality reduction

Deep Count AE network (DCA) was one of the first AE-based approach proposed to 

denoise scRNA-Seq datasets [16] by considering the count distribution, overdisper-

sion, and sparsity of the data. DCA relies on a negative binomial noise model, with or 

without zero-inflation, to capture non-linear gene-gene dependencies. Starting from the 

vanilla version of the Variational AE (VAE) [17], several approaches have been proposed. 

Among them, single-cell Variational Inference (scVI) was the first scalable framework 

that allowed for a probabilistic representation and analysis of gene expression datasets 

[18]. scVI was built upon Deep Neural Networks (DNNs) and stochastic optimization 

to consider the information across similar cells and genes to approximate the distribu-

tions underlying the analysed gene expression data. This computational tool allows for 

coupling low-dimensional probabilistic representation of gene expression data with the 

downstream analysis to consider the measurement of uncertainty through a statistical 

model. Svensson et al. integrated a Linearly Decoded VAE (LDVAE) into scVI [19], ena-

bling the identification of relationships among the cell representation coordinates and 

gene weights via a factor mode. Single-cell VAE (scVAE) was introduced to directly 

model the raw counts from RNA-seq data [20]. More importantly, the authors proposed 

a Gaussian-mixture model to better learn biologically plausible groupings of scRNA-Seq 

data on the latent space.

The framework called Decomposition using Hierarchical AE (scDHA) is composed of 

two modules [21]. The first module is a non-negative kernel AE able to provide a non-

negative, part-based denoised representation of the original data. During this step, the 

genes and the components having an insignificant contribution to the denoised repre-

sentation of the data are removed. The second module is a stacked Bayesian self-learning 

network built upon the VAE. This specific module is used to project the denoised data 

into a low-dimensional space used during the downstream analysis. scDHA outper-

formed PCA, t-SNE, and UMAP in terms of silhouette index [22] on the tested datasets.

AEs coupled with disentanglement methods have been used to both improve the data 

representation and obtain better separation of the biological factors of variation in gene 

expression data [23]. In addition, a graph AE, consisting of graph convolutional layers, 

was developed to predict relationships between single-cells. This framework can be 

used to identify the cell-types in the dataset under analysis and discover the driver genes 
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for the differentiation process. Wang et al. proposed a deep VAE for scRNA-Seq data 

named VASC [24], a deep multi-layer generative model that improves the dimension-

ality reduction and visualisation steps in an unsupervised manner. Thanks to its abil-

ity to model dropout events—that can hinder various downstream analysis steps (e.g., 

clustering analysis, differential expression analysis, inference of gene-to-gene relation-

ships) by introducing a high number of zero counts in the expression matrices—and to 

find non-linear hierarchical representations of the data, VASC obtained superior perfor-

mance with respect to four state-of-the-art dimensionality reduction and visualisation 

approaches [24].

Dimensionality Reduction with Adversarial VAE (DR-A) has been recently proposed 

to fulfil the dimensionality reduction step from a data-driven point of view [25]. Com-

pared to the previous approaches, DR-A exploits an adversarial VAE-based framework, 

which is a recent variant of generative adversarial networks. DR-A generally obtained 

more accurate low-dimensional representation of scRNA-Seq data compared to state-

of-the-art approaches (e.g., PCA, scVI, t-SNE, UMAP), leading to better clustering per-

formance. Geddes et al. proposed an AE-based cluster ensemble framework to improve 

the clustering process [26]. As a first step, random subspace projections of the data 

are compressed onto a low-dimensional space by exploiting an AE, obtaining different 

encoded spaces. Then, an ensemble clustering approach is applied across all the encoded 

spaces to generate a more accurate clustering of the cells.

Autoencoders for the imputation of missing data

AutoImpute was proposed to deal with the insufficient quantities of starting RNA in the 

individual cells, a problem that generally leads to significant dropout events. As a conse-

quence, the resulting gene expression matrices are sparse and contain a high number of 

zero counts. AutoImpute is an AE-based imputation method that works on sparse gene 

expression matrices, trying to learn the inherent distribution of the input data to assign 

the missing values [27]. scSVA was also proposed to identify and recover dropout events 

[28], which are imputed by fitting a mixed model of each possible cell-type. In addition, 

it performs an efficient feature extraction step of the high-dimensional scRNA-Seq data, 

obtaining a low-dimensional embedding. In the tests showed by the authors, scSVA was 

able to outperform different state-of-the-art and novel approaches (e.g., PCA, t-SNE, 

UMAP, VASC).

Other two methods based on non-parametric AEs were proposed to address the 

imputation problem [29]. Learning with AuToEncoder (LATE) relies on an AE that is 

directly trained on a gene expression matrix with parameters randomly generated, while 

TRANSfer learning with LATE (TRANSLATE) takes into consideration a reference gene 

expression dataset to estimate the parameters that are then used by LATE on the new 

gene expression matrix. LATE and TRANSLATE were able to obtain outstanding per-

formance on both real and simulated data by recovering non-linear relationships in pairs 

of genes, allowing for a better identification and separation of the cell-types.

GraphSCI combines Graph convolution network and AE, and it is the first approach 

that systematically integrates gene-to-gene relationships with the gene expression 

data into a deep learning framework. GraphSCI is able to impute the dropout events 
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by taking advantage of low-dimensional representations of similar cells and gene-gene 

interactions [30].

Generally, in the existing AEs the input data are usually codified in a specific format, 

making their integration into the existing scRNA-Seq analysis toolkits (e.g., Scanpy [31] 

and Seurat [32]) a difficult task. In addition, the existing tools are implemented in Keras 

(https:// github. com/ fchol let/ keras), TensorFlow [33], or PyTorch [34], and all the three 

libraries are thus required to run them. Finally, the currently available AEs cannot be 

directly exploited to obtain the latent space or to generate synthetic cells. In order to 

overcome the described limitations, we developed scAEspy, which is a unifying, user-

friendly, and standalone tool that relies only on TensorFlow and allows easy access to 

different AEs by setting up only two user-defined parameters. scAEspy can be used on 

High-Performance Computing (HPC) infrastructures to speed-up its execution. It can 

be easily run on clusters of both Central Processing Units (CPUs) and Graphics Process-

ing Units (GPUs). Indeed, it was designed and developed to be executed on multi- and 

many-core infrastructures. In addition, scAEspy gives access to the latent space, gener-

ated by the trained AE, which can be directly used to show the cells in this embedded 

space or as a starting point for other dimensionality reduction approaches (e.g., t-SNE 

and UMAP) as well as downstream analyses (e.g., batch-effect removal).

In this work, we show how scAEspy can be used to deal with the existing batch-effects 

among samples. Indeed, the application of batch-effect removal tools into the latent 

space  (Fig.  2) allowed us to outperform state-of-the-art methods as well as the same 

batch-effect removal tools applied on the PCA space. Finally, scAEspy implements dif-

ferent loss functions, which are fundamental to deal with different sequencing platforms.

Results

We tested PCA and AEs to address the integration of different datasets. Specifically, 

we used all the AEs implemented in our scAEspy tool: VAE [17], an AE only based on 

the Maximum Mean Discrepancy (MMD) distance (called here MMDAE) [35], MMD-

VAE, Gaussian-mixture VAE (GMVAE), and two novel Gaussian-mixture AEs that we 

developed, called GMMMD and GMMMDVAE, respectively. In all the performed tests, 

the constrained versions of the following loss functions were used: Negative Binomial 

(NB), Poisson, zero-inflated NB (ZINB), zero-inflated Poisson (ZIP). We used a num-

ber of Gaussian distributions equal to the number of datasets to integrate for GMVAE, 

GMMMD, and GMMMDVAE. In addition, we tested the following configurations 

of the hidden layer and latent space to understand how the dimension of the AEs might 

potentially affect their performance: (256, 64), (256, 32), (256, 16), (128, 64), (128, 32), 

(128, 16), (64, 32), and (64, 16), where (H, L) represents the number of neurons compos-

ing the hidden layer (H neurons) and latent space (L neurons).

In order to deal with the possible batch-effects, we applied the following approaches, 

as suggested in [8, 11] and being the most used batch-effect removal tools in the lit-

erature: Batch Balanced k-Nearest Neighbours (BBKNN) [36], Harmony [37], ComBat 

[38–40], and the Seurat implementation of the Canonical Correlation Analysis (CCA) 

[13]. Thus, we compared vanilla PCA and AEs, PCA and AEs followed by either BBKNN 

or Harmony  (Fig.  2), ComBat, and CCA. For each batch-effect removal tool, we used 

the different samples that have to be merged as batches.

https://github.com/fchollet/keras
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The proposed strategies were compared on three publicly available datasets, namely: 

Peripheral Blood Mononuclear Cells (PBMCs), Pancreatic Islet Cells (PICs), and Mouse 

Cell Atlas (MCA) by using well-known clustering metrics (i.e., Adjusted Rand Index, 

Adjusted Mutual Information Index, Fowlkes Mallows Index, Homogeneity Score, and 

V-Measure). It is worth mentioning that generally the cell-types are manually identified 

by expert biologists starting from an overclustering or underclustering of the data, pos-

sibly followed by different steps of subclustering of some clusters. Here, we evaluate how 

the different strategies are able to automatically separate the cells by fixing the number 

of clusters equal to the number of cell-types manually identified by the authors of the 

papers.
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Fig. 2 The proposed workflow to integrate different samples. Given E different samples, their gene 
expression matrices are merged. Then, the top k HVGs are selected by considering the different samples. 
Specifically, they are selected within each sample separately and then merged to avoid the selection of 
batch-specific genes. scAEspy is used to reduce the HVG space (k dimensions), and the obtained latent space 
can be (i) used to calculate a t-SNE space, (ii) corrected by Harmony, and (iii) used to infer an uncorrected 
neighbourhood graph. The corrected latent space by Harmony is then used to build a neighbourhood graph, 
which is clustered by using the Leiden algorithm and used to calculate a UMAP space. Otherwise, BBKNN is 
applied to rebuild a uncorrected neighbourhood graph by taking into account the possible batch-effects. 
The corrected neighbourhood graph built by BBKNN is then clustered by using the Leiden algorithm and 
used to calculate a UMAP space. In order to assign the correct label to the obtained clusters, the marker 
genes are calculated by using the Mann–Whitney U test. Finally, the annotated clusters can be visualised in 
both t-SNE and UMAP space
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Datasets

Peripheral blood mononuclear cells

PBMCs from eight patients with systemic lupus erythematosus were collected and pro-

cessed using the 10× Chromium Genomics platform [41]. The dataset is composed of a 

control group (6573 cells) and an interferon-β stimulated group (7466 cells). We con-

sidered the 8 distinct cell-types identified by the authors following a standard workflow 

[41]. The count matrices were downloaded from Seurat’s tutorial “Integrating stimulated 

vs. control PBMC datasets to learn cell-type specific responses” (https:// satij alab. org/ seu-

rat/ v3.0/ immune_ align ment. html).

Pancreatic islet cells

PIC datasets were generated independently using four different platforms: CEL-Seq 

[42] (1004 cells), CEL-Seq2 [43] (2285 cells), Fluidigm C1 [44] (638 cells), and Smart-

Seq2 [45] (2394 cells). For our tests, we considered the 13 different cell-types across the 

datasets identified in [46] by applying PCA on the scaled integrated data matrix. The 

count matrices were downloaded from Seurat’s tutorial “Integration and Label Transfer” 

(https:// satij alab. org/ seurat/ v3.0/ integ ration. html).

Mouse cell atlas

MCA is composed of two different datasets. The former was generated by Han et al. [47] 

using Microwell-Seq (4239 cells) [47], while the latter by the Tabula Muris Consortium 

[48] using Smart-Seq2 (2715 cells). The 11 distinct cell-types with the highest number 

of cells, which were present in both datasets, have been taken into account as in [11]. 

The count matrices were downloaded from the public GitHub repository related to [11] 

(https:// github. com/ Jinmi aoChe nLab/ Batch- effect- remov al- bench marki ng).

Metrics

Adjusted rand index

The Rand Index (RI) is a similarity measure between the results obtained from the appli-

cation of two different clustering methods. The first clustering method is used as ground 

truth (i.e., true clusters), while the second one has to be evaluated (i.e., predicted clus-

ters). The RI is calculated by considering all pairs of samples appearing in the clusters, 

namely, it counts the pairs that are assigned either to the same or different clusters in 

both the predicted and the true clusters. The Adjusted RI (ARI) [49] is the “adjusted for 

chance” version of the RI. Its values vary in the range [−1, 1] : a value close to 0 means a 

random assignment, independently of the number of clusters, while a value equal to 1 

indicates that the clusters obtained with both clustering approaches are identical. Nega-

tive values are obtained if the index is less than the expected index.

Adjusted mutual information index

The Mutual Information Index (MII) [50] represents the mutual information of two 

random variables, which is a similarity measure of the mutual dependence between 

the two variables. Specifically, it is used to quantify the amount of information that can 

be gained by one random variable observing the other variable. The MII is strictly cor-

related with the entropy of a random variable, which quantifies the expected “amount 

https://satijalab.org/seurat/v3.0/immune_alignment.html
https://satijalab.org/seurat/v3.0/immune_alignment.html
https://satijalab.org/seurat/v3.0/integration.html
https://github.com/JinmiaoChenLab/Batch-effect-removal-benchmarking
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of information” that is contained in a random variable. This index is used to measure 

the similarity between two labels of the same data. Similarly to ARI, the Adjusted MII 

(AMII) is “adjusted for chance” and its values vary in the range [0, 1].

Fowlkes mallows index

The Fowlkes Mallows Index (FMI) [51] measures the similarity between the clusters 

obtained by using two different clustering approaches. It is defined as the geometric 

mean between precision and recall. Assuming that the first clustering approach is the 

ground truth, the precision is the percentage of the results that are relevant, while the 

recall refers to the percentage of total relevant results correctly assigned by the second 

clustering approach. The index ranges from 0 to 1.

Homogeneity score

The result of the tested clustering approach satisfies the Homogeneity Score (HS) [52] if 

all of its clusters contain only cells that belong to a single cell-type. Its values range from 

0 to 1, where 1 indicates perfectly homogeneous labelling. Notice that by switching true 

cluster labels with the predicted cluster labels, the Completeness Score is obtained.

Completeness score

The result of the tested clustering approach satisfies the Completeness Score (CS) [52] 

if all the cells that belong to a given cell-type are elements of the same cluster. Its values 

range from 0 to 1, where 1 indicates perfectly complete labelling. Notice that by switch-

ing true cluster labels with the predicted cluster labels, the HS is obtained.

V-measure

The V-Measure (VM) [53] is the harmonic mean between HS and CS; it is equivalent to 

MII when the arithmetic mean is used as aggregation function.

Integration of multiple datasets obtained with the same sequencing platforms

Nowadays, various scRNA-Seq platforms are currently available (e.g., droplet-based and 

plate-based [54–63]) and their integration is often challenging due to the differences in 

biological sample batches as well as to the used experimental platforms. To test whether 

AEs can be effectively applied to combine multiple datasets, generated using the same 

platform but under different experimental conditions, we used the PBMC datasets.

We merged the control and treated datasets by first using vanilla PCA and AEs, and 

then PCA and AEs followed by either BBKNN or Harmony, ComBat, and CCA. After 

the construction of the neighbourhood graphs, we performed a clustering step by 

using the Leiden algorithm [64]. Since in the original paper 8 different cell-types were 

manually identified [41], we selected Leiden’s resolutions that allowed us to obtain 8 

distinct clusters and calculated all the metrics described above. In what follows, the 

calculated values of all metrics are given in percentages (mean ± standard deviation). 

For each metric, the higher the value the better the result.

Our analysis showed that the CCA-based approach, proposed in the Seurat library, 

achieved a mean ARI equal to 73.49% ( ±1.52% ), ComBat reached a mean ARI of 

72.84% ( ±0.78% ), vanilla PCA had a mean ARI of 68.90% ( ±0.86% ), PCA followed 
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by BBKNN was able to obtain a mean ARI of 83.65% ( ±0.81% ), while PCA followed 

by Harmony reached a mean ARI of 82.83% ( ±1.20% ), as shown in Fig.  3a. Among 

all the tested AEs, MMDAE followed by Harmony (using the NB loss function, 256 

neurons for the hidden layer, and 32 neurons for the latent space) achieved the best 

results, with a mean ARI equal to 87.18% ( ±0.49% ). In order to assess whether any of 

the results obtained by the best AE were different from a statistical point of view, we 

applied the Mann–Whitney U test with the Bonferroni correction [65–67]. In all the 

comparisons, MMDAE followed by Harmony had a p-value lower than 0.0001, con-

firming that the achieved results are statistically different compared to those achieved 

by the other approaches.

Regarding the AMII, CCA had a mean value of 66.46% ( ±0.50% ), ComBat achieved 

a mean value of 70.95% ( ±0.82% ), vanilla PCA obtained a mean value of 68.44% 

( ±1.00% ), PCA followed by BBKNN reached a mean value of 75.22% ( ±0.76% ), while 

PCA followed by Harmony reached a mean value of 74.55% ( ±1.19% ). MMDAE fol-

lowed by Harmony had better results, with a mean value equal to 78.61% ( ±0.29% ). 

MMDAE followed by Harmony outperformed the other strategies also in terms of of 

FMS, HS, CS, and VM (see Additional file 2 and Fig. 4).

We also compared the results obtained by the best AE for each of the tested dimen-

sion (H, L) in terms of ARI (Fig. 3b). GMMMD followed by Harmony (using the NB 

loss function) obtained the best results for the dimension (64, 16), GMMMD followed 

by Harmony (using the Poisson loss function) reached the best results for the dimen-

sions (128, 16) and (256, 64), and GMMMD followed by BBKNN (using the NB loss 

function) achieved the best results for the dimension (128,  32). MMDAE followed 

by Harmony (using the NB loss function) was able to reach the best results for the 

dimensions (64,  32), (256,  16), and (256,  32), while MMDAE followed by Harmony 

(using the Poisson loss function) obtained the best result for the dimensions (128, 64). 

Notice that we used two Gaussian distributions because we merged two different 

datasets.

In order to visually assess the quality of the separation of the manually annotated 

cell-type and the found clusters, we plotted them in the UMAP space generated start-

ing from the MMDAE followed by Harmony space (Fig. 3c, d). Finally, we also plotted 

the two samples in the same UMAP space to visually see the quality of the alignment 

between the two samples themselves (Fig.  5a). This plot confirms that the batch-

effects were completely removed.

Our analysis showed that clustering the neighbourhood graph generated from AE 

spaces allowed for a better identification of the existing cell-types when compared to 

other approaches, thus confirming the ARI results.

Integration of multiple datasets obtained with different sequencing platforms

Combining datasets from different studies and scRNA-Seq platforms can be a powerful 

approach to obtain complete information about the biological system under investiga-

tion. However, when datasets generated with different platforms are combined, the high 

variability in the gene expression matrices can obscure the existing biological relation-

ships. For example, the gene expression values are much higher in data acquired with 

plate-based methods (i.e., up to millions) than in those acquired with droplet-based 
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methods (i.e., a few thousands). Thus, combining gene expression data that spread 

across several orders of magnitude is a difficult task that cannot be tackled by using lin-

ear approaches like PCA. To examine how well AEs perform in solving this issue, we 

combined four PIC datasets acquired with CEL-Seq [56], CEL-Seq2 [57], Fluidigm C1 

[63], and Smart-Seq2 protocols [62].

We integrated the datasets by first using vanilla PCA and AEs, and then PCA and 

AEs followed by either BBKNN or Harmony, ComBat, and CCA. Since in the origi-

nal paper 13 cell-types were manually annotated for the PIC datasets [46], we clus-

tered the neighbourhood graphs using the Leiden algorithm considering only the 

resolutions that allowed us to obtain 13 distinct clusters. We then calculated ARI, 

AMII, FMS, HS, CS, and VM metrics. The calculated values of all metrics are given 

a b

c d

Fig. 3 Results obtained on the PBMC datasets. a Boxplot showing the ARI values achieved by CCA, ComBat, 
PCA, MMDAE followed by Harmony with dimension (256, 32), PCA followed by BBKNN, and PCA followed by 
Harmony on the PBMC datasets. b Boxplot showing the ARI values achieved by the best AE for each of the 
tested dimension (H, L) of the hidden layer (H neurons) and latent space (L neurons). c UMAP visualisation 
of the cell-type manually annotated in the original paper. d UMAP visualisation of clusters identified by 
the Leiden algorithm using the resolution corresponding by the best ARI achieved by MMDAE followed 
by Harmony. p-value ≤ 0.0001 (****); 0.0001 < p-value ≤ 0.001 (***); 0.001 < p-value ≤ 0.01 (**); 0.01 < p

-value≤ 0.05 (*); p-value> 0.05 (ns)
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in percentages (mean ± standard deviation); for each metric, the higher the value the 

better the result.

CCA had a very low mean ARI, i.e., 5.45% ( ±0.22% ), ComBat obtained a mean ARI 

of 76.20% ( ±3.06% ), vanilla PCA achieved a mean ARI of 61.38% ( ±0.09% ), PCA fol-

lowed by BBKNN reached a mean ARI of 71.49% ( ±0.58% ), while PCA followed by 

Harmony was able to obtain a mean ARI of 94.00% ( ±0.36% ), see Fig. 6a. GMMMD 

followed by Harmony (using the NB loss function, 256 neurons for the hidden layer, 

and 32 neurons for the latent space) outperformed the other AEs, achieving a mean 

ARI equal to 94.23% ( ±0.12% ). In all the comparisons, except for the one against PCA 

followed by Harmony, GMMMD followed by Harmony had a p-value lower than 

0.0001, confirming that the achieved results are statistically different with respect to 

those obtained by the other approaches.

Similar results were achieved for the AMII metric: CCA reached a mean value equal 

to 16.57% ( ±0.33% ), ComBat obtained a mean value of 76.11% ( ±1.14% ), vanilla PCA 

reached a mean value of 71.70% ( ±0.11% ), PCA followed by BBKNN achieved a mean 

value of 77.55% ( ±0.65% ) and PCA followed by Harmony a mean value of 91.17% 

( ±0.47% ), while GMMMD followed by Harmony was able to reach a mean value equal 

to 89.37% ( ±0.02% ). Considering the other measures, both PCA and GMMMD followed 

by Harmony obtained very similar results, outperforming the other strategies (see Addi-

tional file 3 and Fig. 7).

Considering the best AE for each of the tested dimension (H, L) in terms of ARI (see 

Fig. 6b), GMMMD followed by Harmony (using the NB loss function) resulted the best 

choice for the dimensions (128, 64) and (256, 32), while it obtained the best results for 

the dimension (64, 32) when the Poisson loss function was used. GMVAE followed by 

Harmony (using the Poisson loss function) reached the best results for the dimensions 

(128, 32) and (256, 16). MMDAE followed by Harmony achieved the best results for the 

dimensions (256, 64) and (64, 16), exploiting the NB loss function and Poisson loss func-

tion, respectively. Finally, VAE followed by Harmony obtained the best results with the 

Poisson function for the dimension (128, 16). Note that we exploited four Gaussian dis-

tributions because we merged four different datasets.

The quality of the separation of the manually annotated cell-type and found clus-

ters can be visually evaluated in Fig.  6c, d. We finally visualised the cells (coloured 

by platform) using the UMAP space generated from the GMMMD followed by Har-

mony space (Fig. 5b) to confirm that the batch-effects among the samples sequenced 

with different platforms were correctly removed. Taken together, our analysis shows 

that GMMMD followed by Harmony can efficiently identify the “shared” cell-types 

(See figure on next page.)
Fig. 4 Boxplot showing the values of the calculated metrics using CCA, ComBat, PCA, MMDAE followed by 
Harmony with dimension (256, 32), PCA followed by BBKNN, and PCA followed by Harmony as well as by the 
best AE for each of the tested dimension (H, L), analysing the PBMC datasets. a AMII achieved by the different 
strategies. b AMII achieved by the best AE for each of the tested dimension. c FMS achieved by the different 
strategies. d FMS achieved by the best AE for each of the tested dimension. e HS achieved by the different 
strategies. f HS achieved by the best AE for each of the tested dimension. g CS achieved by the different 
strategies. h CS achieved by the best AE for each of the tested dimension. i VM achieved by the different 
strategies. j VM achieved by the best AE for each of the tested dimension. p-value ≤ 0.0001 (****); 0.0001 < p

-value ≤ 0.001 (***); 0.001 < p-value ≤ 0.01 (**); 0.01 < p-value ≤ 0.05 (*); p-value > 0.05 (ns)
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a b c

Fig. 5 UMAP visualisation showing the sample alignment performed by Harmony into the latent space 
obtained by MMDAE with dimension (256, 32) for the PBMC datasets a, by GMMMD with dimension (256, 32) 
for the PIC datasets b, and by MMDVAE with dimension (256, 64) for the MCA datasets c 

a b

c d

Fig. 6 Results obtained on the PIC datasets. a Boxplot showing the ARI values achieved by CCA, ComBat, 
PCA, GMMMD followed by Harmony with dimension (256, 32), PCA followed by BBKNN, and PCA followed by 
Harmony on the PBMC datasets. b Boxplot showing the ARI values achieved by the best AE for each of the 
tested dimension (H, L) of the hidden layer (H neurons) and latent space (L neurons). c UMAP visualisation 
of the cell-type manually annotated in the original paper. d UMAP visualisation of clusters identified by the 
Leiden algorithm using the resolution corresponding by the best ARI achieved by GMMMD followed by 
Harmony. p-value ≤ 0.0001 (****); 0.0001 < p-value ≤ 0.001 (***); 0.001 < p-value ≤ 0.01 (**); 0.01 < p-value 
≤ 0.05 (*); p-value > 0.05 (ns)
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across the different platforms due to its ability to deal with the high variability in the 

gene expression matrices. We would like to highlight that PCA followed by Harmony 

was capable of achieving good results because the original clusters were obtained by 

applying a similar pipeline [46].

As a final test, we combined  the two MCA datasets acquired with Microwell-Seq 

[47] and Smart-Seq2 protocols [62]. We integrated the datasets in the same way we 

did in the other two tests. We clustered the neighbourhood graphs using the Leiden 

algorithm considering only the resolutions that allowed us to obtain 11 distinct clus-

ters because 11 distinct cell-types were manually annotated for the PIC datasets [47]. 

We then calculated all metrics.

In such a case, MMDVAE followed by Harmony (using the Poisson loss function, 

256 neurons for the hidden layer, and 64 neurons for the latent space) outperformed 

the other AEs as well as the other strategies, obtaining a mean ARI equal to 79.50% 

( ±0.02% ), as shown in Fig.  8a. ComBat achieved the worst mean ARI, i.e., 54.13% 

( ±4.22% ), CCA reached a mean ARI of 57.62% ( ±0.75% ), vanilla PCA obtained a mean 

ARI of 67.29% ( ±11.55% ), PCA followed by BBKNN had a similar mean ARI, that is, 

67.73% ( ±3.98% ), while PCA followed by Harmony achieved a mean ARI of 66.08% 

( ±0.11% ). MMDVAE followed by Harmony had a p-value lower than 0.0001 in all the 

tested comparisons. Considering the other metrics, MMDVAE followed by Harmony 

generally obtained better results compared to the other strategies (see Additional 

file 4, Figs. 8b, and 9).

Comparing the best AE for each of the tested dimension (H, L) in terms of ARI, the 

vanilla GMMMD with the NB loss function obtained the best results for the dimen-

sion (128, 16), while GMMMD followed by Harmony reached the best results for the 

dimensions (256,  32) and (64,  16), exploiting the Poisson loss function and NB loss 

function, respectively. MMDAE followed by BBKNN (using the ZIP loss function) 

achieved the best results for the dimensions (256, 16) and (128, 64), exploiting the NB 

loss function and Poisson loss function, respectively. MMDVAE followed by Harmony 

resulted the best choice for the dimensions (128, 16) and (256, 64) when coupled with 

the NB loss function and Poisson loss function, respectively. Finally, VAE followed by 

Harmony with the Poisson loss function obtained the best results for the dimension 

(64, 32). As for the the integration of the PBMC datasets, we used two Gaussian dis-

tributions because we merged two different datasets.

Figure 8c, d show the UMAP generated from the MMDVAE followed by Harmony 

space coloured by the manually annotated cell-type and found clusters, respec-

tively, while Fig. 5c depicts the cells coloured by platform on the same UMAP space, 

Fig. 7 Boxplot showing the values of the calculated metrics using CCA, ComBat, PCA, GMMMD followed by 
Harmony with dimension (256, 32), PCA followed by BBKNN, and PCA followed by Harmony as well as by the 
best AE for each of the tested dimension (H, L), analysing the PIC datasets. a AMII achieved by the different 
strategies. b AMII achieved by the best AE for each of the tested dimension. c FMS achieved by the different 
strategies. d FMS achieved by the best AE for each of the tested dimension. e HS achieved by the different 
strategies. f HS achieved by the best AE for each of the tested dimension. g CS achieved by the different 
strategies. h CS achieved by the best AE for each of the tested dimension. i VM achieved by the different 
strategies. j VM achieved by the best AE for each of the tested dimension. p-value ≤ 0.0001 (****); 0.0001 < p

-value ≤ 0.001 (***); 0.001 < p-value ≤ 0.01 (**); 0.01 < p-value ≤ 0.05 (*); p-value > 0.05 (ns)

(See figure on next page.)
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confirming that the batch-effects between the two samples were correctly removed. 

In this case, the achieved results show that MMDVAE followed by Harmony was able 

to better identify the “shared” cell-types across the different platforms.

In order to test the computational performance of scAEspy, we considered a VAE 

with a single hidden layer composed of 256 neurons, a latent space of 32 neurons, and 

a b

c d

Fig. 8 Results obtained on the MCA datasets. a Boxplot showing the ARI values achieved by CCA, ComBat, 
PCA, MMDVAE followed by Harmony with dimension (256, 64), PCA followed by BBKNN, and PCA followed by 
Harmony. b Boxplot showing the ARI values achieved by the best AE for each of the tested dimension (H, L) 
of the hidden layer (H neurons) and latent space (L neurons). c UMAP visualisation of the cell-type manually 
annotated in the original paper. d UMAP visualisation of clusters identified by the Leiden algorithm using the 
resolution corresponding by the best ARI achieved by MMDVAE followed by Harmony. p-value ≤ 0.0001 (****); 
0.0001 < p-value ≤ 0.001 (***); 0.001 < p-value ≤ 0.01 (**); 0.01 < p-value ≤ 0.05 (*); p-value > 0.05 (ns)

Fig. 9 Boxplot showing the values of the calculated metrics using CCA, ComBat, PCA, MMDVAE followed by 
Harmony with dimension (256, 64), PCA followed by BBKNN, and PCA followed by Harmony, as well as by the 
best AE for each of the tested dimension (H, L), analysing the MCA datasets. a AMII achieved by the different 
strategies. b AMII achieved by the best AE for each of the tested dimension. c FMS achieved by the different 
strategies. d FMS achieved by the best AE for each of the tested dimension. e HS achieved by the different 
strategies. f HS achieved by the best AE for each of the tested dimension. g CS achieved by the different 
strategies. h CS achieved by the best AE for each of the tested dimension. i VM achieved by the different 
strategies. j VM achieved by the best AE for each of the tested dimension. p-value ≤ 0.0001 (****); 0.0001 < p

-value ≤ 0.001 (***); 0.001 < p-value ≤ 0.01 (**); 0.01 < p-value ≤ 0.05 (*); p-value > 0.05 (ns)

(See figure on next page.)
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the NB loss function. All tests were executed on a laptop equipped with an Intel Core 

i7-1165G7 CPU (clock 2.8 GHz) and 16 GB of RAM, running on Ubuntu 20.04 LTS. 

In all the tested datasets, we used the top 1000 HVGs. The executions lasted 95.02 

seconds, 101.05 seconds, and 223.45 seconds for PIC, MCA, and PBMC, respectively. 

Considering that PIC, MCA, and PBMC are composed of 6321, 6954, and 14039 cells, 

respectively, scAEspy scales linearly with the number of cells.

Discussion

Non-linear approaches for dimensionality reduction can be effectively used to capture 

the non-linearities among gene interactions that may exist in the high-dimensional 

expression space of scRNA-Seq data [15]. Among the different non-linear approaches, 

AEs showed outstanding performance, outperforming other approaches like UMAP and 

t-SNE. Several AE-based methods have been developed so far, but their integration with 

the common single-cell toolkits results in a difficult task because they usually require 

input data codified in a specific format. In addition, three different machine learning 

libraries are required to run them (i.e., Keras, TensorFlow, PyTorch).

Here, we proposed scAEspy, a unifying and user-friendly tool that allows the user 

to use the most recent and promising AEs (i.e., VAE, MMDAE, MMDVAE, and 

GMVAE). We also designed and developed GMMMD and GMMMDVAE, two novel 

AEs that combine MMDAE and MMDVAE with GMVAE to exploit more than one 

Gaussian distribution. We introduced a learnable prior distribution in the latent space 

to model the dimensionality of the subpopulations of cells composing the data, or to 

combine multiple samples.

We integrated AEs with both Harmony and BBKNN to remove the existing batch-

effects among different datasets. Our results showed that exploiting the latent space to 

remove the existing batch-effects permits for better identification of the cell subpopu-

lations. As a batch-effect removal tool, Harmony allowed for achieving better results 

than BBKNN in the majority of the cases. When different droplet-based data have to 

be combined, our GMMMD and the MMDAE, coupled with the constrained NB and 

Poisson loss functions, obtained the best results compared to all the other AEs. In order 

to combine and analyse multiple datasets, generated by using different scRNA-Seq plat-

forms, both GMMMD and MMDVAE, mainly used together with the NB and Pois-

son loss functions, outperformed the other strategies. However, also GMVAE and the 

simple VAE obtained outstanding performance, highlighting that the Kullback-Leibler 

divergence function can become fundamental to handle data spreading various orders 

of magnitude, especially the high values (up to millions) introduced by plate-based 

methods. It is clear that using more than one Gaussian distribution allows for obtain-

ing a better integration of the datasets and separation of the cell-types when more than 

two datasets have to be integrated, as clearly shown by the results reached on the PIC 

datasets.

As a good practice, we suggest filtering the gene expression matrices using the top 

HVGs (i.e., 1000), calculated separately within each batch and merged to avoid the selec-

tion of batch-specific genes. The original counts, corresponding to the top HVGs, should 

be the input data of scAEspy. GMMMD coupled with Harmony should be used to inte-

grate different droplet-based datasets as well as to merge datasets generated by using 
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different scRNA-Seq platforms. Harmony should be applied to the latent space pro-

duced by GMMMD to take into account the possible batches among the datasets. When 

a single dataset has to be analysed, the users should use MMDAE with droplet-based 

data, while MMDVAE should be preferred for data acquired with plate-based methods. 

In all cases, using a single hidden layer composed of 256 neurons, a latent space with 32 

neurons, and the constrained NB or Poisson loss function generally allows for obtaining 

satisfactory results.

Considering the achieved results on the identification of the clusters, scAEspy can be 

used at the basis of methods that aim at automatically identifying the cell-types compos-

ing the scRNA-Seq datasets under analysis [68]. As a matter of fact, scAEspy coupled 

with BBKNN was successfully applied to integrate 15 different foetal human samples, 

enabling the identification of rare blood progenitor cells [69].

Conclusions

In this study, we proposed an AE-based and user-friendly tool, named scAEspy, which 

allows for using the most recent and promising AEs to analyse scRNA-Seq data. The 

user can select the desired AE by only setting up two user-defined parameters. Once the 

selected AE has been trained, it can be used to generate synthetic cells to increase the 

number of data for further downstream analyses (e.g., training classifiers). In scAEspy, 

the latent space is easily accessible and thus allows the user to perform different types of 

analysis, such as the correction of possible batch-effect in a reduced non-linear space or 

the inference of differentiation trajectories. In this case, the latent space can be utilised 

to generate the “pseudotime” that measures transcriptional changes that a cell under-

goes during the dynamic process.

Thanks to its modularity, scAEspy can be extended to accommodate new AEs so that 

the user will be always able to utilise the latest and cutting-edge AEs [70], which can 

improve the downstream analysis of scRNA-Seq data. It is worth noticing that scAEspy 

can be used on HPC infrastructures, both based on CPUs and GPUs, to speed-up the 

computations. This is a crucial point when datasets composed of hundreds of thousands 

of cells are analysed. In such cases, the required running time drastically increases, so 

relying on HPC infrastructures is the best solution to incredibly reduce the prohibitive 

running time.

Future improvements

As an improvement, prior biological knowledge about genes from ontologies can be incor-

porated into scAEspy. Ontologies can introduce useful information into machine learning 

systems that are used to solve biological problems. They allow for integrating data from dif-

ferent omics (e.g., genomics, transcriptomics, proteomics, and metabolomics) as structured 

representations of semantic knowledge, which is commonly used for the representation of 

biological concepts. This approach has been successfully applied to predict the clinical tar-

gets from high-dimensional low-sample data [71]. Specifically, ontology embeddings are 

able to capture the semantic similarities among the genes, which can be exploited to spar-

sify the network connections. In addition, the Gene Ontology (GO) [72] can be exploited to 

interpret the extracted features from the latent spaces generated by the AEs, thus bringing 
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an explanation to the learned representations of the gene expression data. As a possible 

example, g:Profiler [73] focusing on GO terms, Kyoto Encyclopedia of Genes and Genomes 

(KEGG), and Reactome can be used on the learned embeddings to investigate the joint 

effects of different gene sets within specific biological pathways. This approach can help the 

interpretability and explainability of the learned embeddings of the used AEs.

Integration of multi‑omics data

Since AEs showed outstanding performance in the integration of multi-omics of cancer data 

[70], we plan to extend scAEspy to analyse other single-cell omics. For instance, AEs can be 

applied to analyse scATAC-seq, where the identification of the cell-types is still very difficult 

due to technical challenges [10, 74]. scAEspy could be effectively applied to analyse disparate 

types of single-cell data from different points of view. The latent representations of different or 

combined single-cell omics can be used for further and more in-depth analyses. For instance, 

the application of other machine learning techniques (e.g., deep neural networks) to the latent 

representations could facilitate the identification of interesting patterns on gene expression or 

methylation data, as well as relationships among genomics variants. In that regard, scAEspy 

can be the starting point to build a more comprehensive toolkit designed to integrate multi 

single-cell omics as an integration and extension of the work proposed in [70].

Methods

We developed scAEspy so that it can be easily integrated into both Scanpy and Seurat 

pipelines, as it directly works on a gene expression matrix (see Fig.  2). We integrated 

into a single tool the latest and most powerful AEs designed to resolve the problems 

underlying scRNA-Seq data (e.g., sparsity, intrinsic noise, dropout events [3]). Specifi-

cally, scAEspy is comprised of six AEs, based on the VAE [17] and InfoVAE [35] archi-

tectures. The following most advanced AEs are included in scAEspy: VAE, MMDAE, 

MMDVAE, GMVAE, and two novel Gaussian-mixture AEs that we developed, called 

GMMMD and GMMMDVAE. GMMMD is a modification of the MMDAE where more 

than one Gaussian distribution is used to model different modes and only the MMD 

function is used as divergence function. GMMMDVAE is a combination of MMDVAE 

and GMVAE where both the MMD function [75] and the Kullback-Leibler divergence 

function [76] are used. scAEspy allows the user to exploit these six different AEs by set-

ting up two user-defined parameters, α and � , which are needed to balance the MMD 

and the Kullback-Leibler divergence functions. We designed and developed GMMMD 

and GMMMDVAE starting from InfoVAE [35] and scVAE [20]. In addition, a learna-

ble mixture distribution was used for the prior distribution in the latent space, and also 

the marginal conditional distribution was defined to be a learnable mixture distribution 

with the same number of components as the prior distribution. Finally, the user can also 

select the following loss functions: NB, constrained NB, Poisson, constrained Poisson, 

ZINB, constrained ZINB, ZIP, constrained ZIP, and Mean Square Error (MSE).

The tested batch‑effect removal tools

Originally proposed to deal with batch-effects in microarray gene expression data [38], 

ComBat has been successfully applied to analyse scRNA-Seq data [77]. Briefly, given 
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a gene expression matrix, it is firstly standardised so that all genes have similar means 

and variances. Then, starting from the obtained standardised matrix, standard distribu-

tions are fitted using a Bayesian approach to estimate the existing batch-effects in the 

data. Finally, the original expression matrix is corrected using the computed batch-effect 

estimators. In our tests, we used the default parameter settings provided by the Scanpy 

function combat. We then applied PCA on the space obtained by the top k (here, we set 

k = 1000 ) HVGs calculated by using the function provided by Scanpy (v.1.4.5.1), where 

the top HVGs are separately selected within each batch and merged to avoid the selec-

tion of batch-specific genes. We calculated the first 50 components and applied the so-

called “elbow method” to select the number of components for the downstream analysis 

[8]. The “elbow method” was applied taking into consideration the variance explained by 

each PCA component, which can be visualised using the Scanpy function pca_vari-

ance_ratio. Including less informative PCA components might help in the identifica-

tion of rare cell types, but they can also introduce noise that hinders the downstream 

analysis steps; thus, we opted to include only the most informative PCA components. 

Specifically, we used the first 18, 13, and 18 components for PBMC, PIC, and MCA 

datasets, respectively. After that, we calculated the neighbourhood graph by using the 

default parameter settings proposed in Scanpy. We clustered the obtained neighbour-

hood graphs with the Leiden algorithm by selecting the values of the resolution param-

eter such that the number of clusters was equal to the manually annotated clusters. 

Finally, all the metrics for each found resolution have been calculated.

As another batch-effect removal tool, we used the CCA-based approach proposed 

in the Seurat package (v.2.3.4) [13]. We applied both RunCCA  and MultiCCA  Seurat 

functions to integrate two batches and more than two batches, respectively. Firstly, we 

normalised and log-transformed the counts. Then, we calculated the top 1000 HVGs by 

using the function provided by Scanpy (v.1.4.5.1). We also scaled the log-transformed 

data to zero mean and unit variance. In both RunCCA  and MultiCCA  Seurat functions, 

as a first step, the CCA components were exploited to compute the linear combinations 

of the genes with the maximum correlation between the batches. We used the default 

number of CCA components (i.e., 20) provided by the functions RunCCA  and Multi-

CCA  of the Seurat package, as also suggested in [36]. A dynamic time warping (Align-

Subspace Seurat function), which accounts for population density changes, was then 

used to align the calculated vectors and obtain a single low-dimensional subspace where 

the batch-effects are corrected. We calculated the neighbourhood graph, using the 

default parameter settings proposed in Scanpy, starting from the aligned low-dimen-

sional subspace. We clustered the built neighbourhood graphs with the Leiden algorithm 

as explained before. Finally, we calculated all the metrics for each found resolution.

We also applied Harmony [37] to remove the batch-effects. Starting from a reduced space 

(e.g., PCA space or latent space), Harmony exploits an iterative clustering-based procedure 

to remove the multiple-dataset-specific batch-effects. In each iteration, the following four 

steps are applied: (i) the cells are grouped into multiple-dataset clusters by exploiting a vari-

ant of the soft k-means clustering, which is a fast and flexible method developed to cluster 

single-cell data; (ii) a centroid is calculated for each cluster and for each specific dataset; (iii) 

using the calculated centroids, a correction factor is derived for each dataset; (iv) the correc-

tion factors are then used to correct each cell with a cell-specific factor.
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As a further batch-effect removal tool, we applied BBKNN [36]. Polanski et al. [36] 

showed that BBKNN has comparable or better performance in removing batch-effects 

with respect to the CCA-based approach proposed in the Seurat package, Scanorama 

[78], and mnnCorrect [79]. In addition, BBKNN is a lightweight graph alignment 

method that requires minimal changes to the classical workflow. Indeed, it computes the 

k-nearest neighbours in a reduced space (e.g., PCA or latent space), where the nearest 

neighbours are identified in a batch-balanced manner using a user-defined distance (in 

our tests, we used the Euclidean distance). The neighbour information is transformed 

into connectivities to build a graph where all cells across batches are linked together. We 

used both Harmony and BBKNN to correct the PCA and AE spaces.

As a final step, we calculated the UMAP spaces starting from the built neighbourhood 

graphs and using the default parameter settings proposed in Scanpy, except for the ini-

tialisation of the low dimensional embedding (i.e., init_pos equal to random, and ran-

dom_state equal to 10 of the umap function).

The proposed pipeline

We modified the workflow shown in Fig.  1 by replacing PCA with AEs (Fig.  2). We 

merged the gene expression matrices of E different samples ( E = 2 , E = 4 , and E = 2 

for PBMC, PIC, and MCA datasets, respectively). We applied both PCA and AEs on the 

space obtained by the top 1000 HVGs calculated by using the implementation provided 

by Scanpy (v.1.4.5.1).

For what concerns PCA, we firstly normalised and log-transformed the counts, then 

we applied a classic standardisation, that is, the distribution of the expression of each 

gene was scaled to zero mean and unit variance. We calculated the first 50 components; 

after that, we used the “elbow method” to select the first 12, 14, and 19 components for 

the PBMC, PIC, and MCA datasets, respectively. As in the case of the ComBat work-

flow, the “elbow method” was applied considering the variance explained by each PCA 

component.

Regarding AEs, we used the original counts since AEs showed to achieve better results 

when applied using the raw counts [20]. Indeed, using the counts allows for exploiting 

discrete probability distributions, such as Poisson and NB distributions, which obtained 

the best results in our tests. In all the tests presented here, we used a single hidden layer. 

In addition, we set 100 epochs, sigmoid activation functions, and a batch equal to 100 

samples (i.e., cells). In all tests we used the Adam optimizer [80].

After that, we applied three different strategies (Fig.  2): (i) we calculated the neigh-

bourhood graph in both PCA and AE spaces by using the default parameter settings 

proposed in Scanpy. Then, we clustered the obtained neighbourhood graphs with the 

Leiden algorithm as described before. Finally, we calculated all the metrics for each 

found resolution; (ii) we performed a similar analysis where we firstly corrected the 

PCA and AE spaces using Harmony [37] with the default parameter settings proposed in 

https:// github. com/ slowk ow/ harmo nypy; (iii) we performed the same analysis described 

in (i) by replacing the neighbourhood graphs with those generated using BBKNN, using 

the default parameter settings.

https://github.com/slowkow/harmonypy
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It is worth mentioning that in all the tested batch-effect removal tools, we used the dif-

ferent samples that have to be merged as batches. Specifically, the number of batches is 

equal to 2, 4, and 2 for the PBMC, PIC, and MCA datasets, respectively.

The generalised formulation of scAEspy

In this work, we used the notation proposed in [35] to extend MMDVAE with multiple 

Gaussian distributions as well as to introduce a learnable prior distribution in the latent 

space. The idea behind the introduction of learnable coefficients is that they might be 

suitable to model the diversity among the subpopulations of cells composing the data or 

to combine multiple samples or datasets.

We consider p∗(x) as the unknown probability in the input space over which the 

optimisation problem is formulated, z is the latent representation of x with |z| ≤ |x| . 

The encoder is identified by a function eφ : x �→ z , while the decoder by a function 

dθ : z �→ x.

We remind that in VAEs, the input x is not mapped into a single point in the latent space, 

but it is represented by a probability distribution over the latent space. In what follows, we 

denote by q(z) any possible distribution in the latent space and by y ∈ {1, . . . ,K } a categori-

cal random variable, where K corresponds to the number of desired Gaussian distributions. 

As general strict divergence function, we considered the MMD(·) divergence function [75].

The ELBO term proposed in this work, which is the measure maximised during the 

training of AEs, is:

where KL(·) is the Kullback-Leibler divergence [76] between two distributions. All the 

mathematical details required to derive the generalised formula shown in Eq. (1) can be 

found in the Additional file 1.

Equation (1) allows the user to easily exploit VAE, MMDAE, MMDVAE, GMVAE, 

GMMMD, and GMMMMDVAE (see Table 1).

Availability and requirements

scAEspy is written in Python programming language (v.3.6.5) and it relies on Tensor-

Flow (v.1.12.0), an open-source and massively used machine learning library [33]. 

(1)

ELBO = E[log(d(x|z, y))]

− (α + � − 1)MMD(pe(z)||q(z))

− (1 − α)E[KL(pe(z, y|x)||q(z, y))],

Table 1 Setting of α , � , and K to obtain the desired AE

α � K

VAE 0 1 1

MMDAE 1 1 1

MMDVAE 0 2 1

GMVAE 0 1 > 1

GMMMD 1 1 > 1

GMMMDVAE 0 2 > 1
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scAEspy requires the following Python libraries: NumPy, SciKit-Learn, Matplotlib, and 

Seaborn. scAEspy’s open-source code is available on GitLab: https:// gitlab. com/ cvejic- 

group/ scaes py under the GPL-3 license. scAEspy can be easily installed using the Python 

package installer pip, which allows the user to use scAEspy either as a standalone tool 

exploiting the command line interface, or as a Python package that can be integrated 

into Python scripts and Jupyter Notebooks.

The repository contains all the scripts, code and Jupyter Notebooks used to obtain the 

results shown in the paper. In the provided Jupyter Notebooks, we show how easy it is 

to integrate scAEspy and Scanpy, and how the data can be visualised and explored by 

using both scAEspy and Scanpy’s functions. We also provide a detailed description of 

scAEspy’s parameters so that it can be used by both novice and expert researchers for 

downstream analyses.
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