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Abstract: Starting from the radiative transport equation we derive the

scaling relationships that enable a single Monte Carlo (MC) simulation

to predict the spatially- and temporally-resolved reflectance from ho-

mogeneous semi-infinite media with arbitrary scattering and absorption

coefficients. This derivation shows that a rigorous application of this single

Monte Carlo (sMC) approach requires the rescaling to be done individually

for each photon biography. We examine the accuracy of the sMC method

when processing simulations on an individual photon basis and also demon-

strate the use of adaptive binning and interpolation using non-uniform

rational B-splines (NURBS) to achieve order of magnitude reductions in

the relative error as compared to the use of uniform binning and linear

interpolation. This improved implementation for sMC simulation serves as

a fast and accurate solver to address both forward and inverse problems and

is available for use at http://www.virtualphotonics.org/.

© 2011 Optical Society of America

OCIS codes: (170.3660) Light propagation in tissues; (170.5280) Photon migration;

(170.7050) Turbid media.
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1. Introduction

Real-time optical analysis of turbid media requires rapid radiative transport solvers to predict

and analyze remitted light signals for the non-invasive determination of optical scattering and

absorption characteristics. While analytical techniques are often preferred for their simplicity

and speed, they are often based on the diffusion approximation to the radiative transport equa-

tion (RTE). The limitations of the diffusion approximation are well known and result in accu-

rate radiative transport estimates only when the reduced scattering coefficient, µ ′
s = µs(1−g),

is much larger than the absorption coefficient µa and over spatial scales that are larger than the

transport mean free path, l∗ = (µa +µ ′
s)
−1 [1, 2].

These limitations have motivated extensive efforts to solve the RTE, using either stochastic

solvers such as Monte Carlo [3] or deterministic solvers via analytical [4] or numerical [5] ap-

proaches. RTE solutions provide accurate radiative transport predictions regardless of optical

properties and on spatial scales approaching a single scattering length; ℓs = 1/µs ≈ 10−50 µm

for biological tissues in the red and near-infrared spectral regions. Unfortunately, these RTE

solution approaches are computationally intensive and currently impractical for real-time ap-

plication. For the case of homogeneous turbid media, several groups have proposed methods
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that utilize the results of a single MC simulation to provide rapid transport-rigorous RTE solu-

tions for a class of related radiative transport problems.

Graaff and co-workers first investigated the use of a single MC (sMC) simulation to obtain

results for turbid slabs with different sets of optical properties [10]. They demonstrated that the

trajectories of unabsorbed photons in a single Monte Carlo simulation can be used to estimate

the total reflectance and transmittance of turbid slabs for various single-scattering albedos, a =
µs/(µa + µs) by recording the number of photon interactions within the simulated medium.

Using this approach they predicted the spatially-resolved reflectance for different albedo values

in cases for which the interaction coefficient, µt = µa +µs, was held constant.

Kienle and Patterson (KP) extended the capabilities of sMC simulations to provide the

spatially- and temporally-resolved reflectance R(r, t) for a homogeneous semi-infinite medium

with arbitrary optical properties [11]. This sMC method is based on scaling and re-weighting

a discrete representation of the time-resolved reflectance provided by a reference MC simula-

tion in a non-absorbing semi-infinite medium. In this approach the evaluation of R(r, t) with

arbitrary optical properties, requires the interpolation of the discrete representation of R(r, t) in

both the spatial and temporal dimensions. While powerful, the discrete representation of the

reference R(r, t) and interpolation both introduce errors that are often amplified when the scal-

ing is applied. Most recently, Alerstam and co-workers improved upon the KP sMC method

by applying the scaling relationships on a photon-by-photon basis prior to spatial and temporal

binning [13]. This approach requires storage of the radial exit position and total path length of

each detected photon, which are individually reprocessed to evaluate the photon weights for

media with different optical properties.

The motivation and objectives of this manuscript are two-fold. While sMC is widely used

by the biomedical community [12, 14–17], a theoretical analysis that provides a clear line of

derivation from the RTE to the scaling relations that form the basis of sMC has not been pre-

sented. Thus it is unclear whether differences between results obtained from conventional MC

vs. sMC methods arise from stochastic variations, shortcomings of the scaling relationships

and/or inaccuracies associated with the binning and interpolation used in the sMC implemen-

tation. To address these issues, our first goal is to determine to what extent the sMC scaling

relations are transport-rigorous and to provide any ancillary conditions necessary for their va-

lidity. Second, in order to establish ‘best practices’, we aim to examine the impact of binning

and interpolation strategies on the relative error/variance of the sMC predictions.

2. Theory

The temporally- and spatially-resolved reflectance R(r, t) is sufficient to derive all reflectance

metrics typically used to characterize a turbid system, i.e., steady-state, temporal frequency-

domain, and/or spatial frequency-domain reflectance. While conventional Monte Carlo simu-

lations can be performed without explicit discretization of the phase space, their interpretation

usually requires a mesh to be imposed on the phase space. Thus, the detected photons are placed

into finite bins to visualize the simulation output. For a homogeneous half space occupying

z ≥ 0 and possessing cylindrical symmetry, the spatially- and temporally-resolved reflectance,

R(r, t)|z=0− at a given location (r0, t0) on the tissue surface can be estimated by

R(r0, t0)≈
1

ΔAΔt

∫ t0+Δt

t0

∫ r0+Δr

r0

∫

S2−
L(r,Ω̂, t)

∣∣
z=0−

(
n̂ · Ω̂

)
dΩ̂ 2πr dr dt, (1)

where L(r,Ω̂, t) is the radiance, Ω̂ the unit direction vector, n̂ the outward pointing unit normal

vector, ΔA = π (r0 +Δr)2−πr2
0 the surface area from which the photons are collected, and S

2−

the solid angle interval corresponding to the upward-pointing hemisphere. Many photons will,

in general, exit a given cylindrical ring within the same time interval. Thus, when these photons
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are gathered to obtain the value of R(r0, t0), a discretization error occurs because the quadrature

interval has been represented by the nominal values (r0, t0). This error vanishes as the number

of simulated photons increases without bound and as the integration intervals → 0.

Two scaling relationships are used in the sMC method to obtain spatially- and temporally-

resolved reflectance estimates for a homogeneous half space. The first uses the reflectance of a

‘reference’ medium Rr(r, t) with µa = 0 and µs = µs,r to determine the reflectance R(r, t) from

a second non-absorbing medium with arbitrary scattering coefficient µs [11]:

R(r, t)
∣∣∣
µs �=µs,r ; µa=0

=
µ3

s

µ3
s,r

Rr

(
µs

µs,r
r,

µs

µs,r
t

)
. (2)

The second scaling relationship relates the reflectance from a non-absorbing ‘reference’

medium (µa,r = 0) to a second medium with identical scattering but non-zero absorption µa:

R(r, t)
∣∣∣
µs=µs,r ; µa �=0

= Rr(r, t)exp(−µact) (3)

where c is the velocity of light propagation in the medium. The analysis that follows will estab-

lish a rigorous foundation for these two scaling relationships.

We begin our analysis by considering the source-free RTE for a non-absorbing medium:

1

c

∂L
(
r,Ω̂, t

)

∂ t
+∇L

(
r,Ω̂, t

)
· Ω̂ =−µsL

(
r,Ω̂, t

)
+µs

∫

S2
p(Ω̂

′ → Ω̂)L(r,Ω̂
′
, t)dΩ′ (4)

where L
(
r,Ω̂, t

)
is the radiance at a given location r at at given time t in a given direction Ω̂. c is

the velocity of light propagation in the medium and is equivalent to the ratio between the speed

of light in vacuum and the medium’s refractive index (= c0/n). µs and µa are the scattering and

absorption coefficients, respectively, and p(Ω̂
′ → Ω̂) is the single-scattering phase function, a

probability density function for scattering from Ω̂
′

to Ω̂. For boundary conditions, we assume

a vanishing radiance at remote locations in the medium

L(r → ∞,Ω̂, t)→ 0, (5)

and allow a possible refractive-index mismatch at the surface:

L(r,Ω̂r, t) = RF(n̂ · Ω̂i)L(r,Ω̂i, t), r ∈ S, n̂ · Ω̂i > 0, (6)

where RF is the angular distribution of the Fresnel reflectance for unpolarized light and Ω̂r is

the unit vector in the direction of the reflected ray for an incident direction Ω̂i. Thus RF(n̂ · Ω̂i)
represents the probability for internal reflection for a photon incident on an interface with a

refractive index discontinuity.

We first express the RTE and boundary conditions in dimensionless form using the following

variables: ⎧
⎪⎨
⎪⎩

τ = µsct

ρ = µsr

Λ̃
(
ρ ,Ω̂,τ

)
= L

(
r,Ω̂, t

)
/L0,

(7)

where τ is a dimensionless time, ρ a dimensionless position and Λ̃
(
ρ ,Ω̂,τ

)
a dimensionless

radiance defined as the ratio between the radiance, L
(
r,Ω̂, t

)
, and a characteristic radiance L0.

Substitution of these variables into the RTE yields:

∂ Λ̃
(
ρ ,Ω̂,τ

)

∂τ
+∇Λ̃

(
ρ ,Ω̂,τ

)
· Ω̂ =−Λ̃

(
ρ ,Ω̂,τ

)
+

∫

S2
p(Ω̂

′ → Ω̂)Λ̃(ρ ,Ω̂
′
,τ)dΩ′. (8)
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The two boundary conditions, Eqs. (5) and (6) become

Λ̃(ρ → ∞,Ω̂,τ)→ 0, and (9)

Λ̃(ρ ,Ω̂r,τ) = RF(n̂ · Ω̂i)Λ̃(ρ ,Ω̂i,τ), ρ ∈ S, n̂ · Ω̂i > 0. (10)

Note that the non-dimensionalization does not alter the form of the boundary conditions. Hav-

ing defined the boundary conditions, the diffuse reflectance is given by

R(r, t) =

∫

S2−
L
(
r,Ω̂, t

)∣∣
z=0−

(
n̂ · Ω̂

)
dΩ̂. (11)

By analogy, a dimensionless reflectance is defined as

R̃(ρ ,τ) =
∫

S2−
Λ̃
(
ρ ,Ω̂,τ

)∣∣∣
z=0−

(
n̂ · Ω̂

)
dΩ̂. (12)

To derive the first sMC scaling relation, Eq. (2), we consider the dimensionless analog of

Eq. (1)

R̃(ρ0,τ0) =
1

ΔÃΔτ

∫ τ0+Δτ

τ0

∫ ρ0+Δρ

ρ0

∫

S2−
Λ̃(ρ ,Ω̂,τ)

∣∣∣
z=0−

(
n̂ · Ω̂

)
dΩ̂ 2πρ dρ dτ (13)

where

ΔÃ = π(ρ0 +Δρ)2 −πρ0
2. (14)

Since the ratio between the radiance L
(
r,Ω̂, t

)
and the dimensionless radiance Λ̃

(
ρ ,Ω̂,τ

)
is

defined as L0, one can easily verify that the ratio between R(r, t) and R̃(ρ ,τ) is also equal to

L0. The triple integral in Eq. (1) represents a characteristic energy E0 that is emitted in the

space-time bin considered. This characteristic energy E0 is equal to the product of the number

photons N emitted in the bin multiplied by the energy of each photon, hν . Because we integrate

L(r,Ω̂, t) and Λ̃(ρ ,Ω̂,τ) over equivalent ranges of solid angle, space, and time, we can write

∫ t0+Δt

t0

∫ r0+Δr

r0

∫

S2−
L(r,Ω̂, t)dΩ̂2πr dr dt = E0

∫ τ0+Δτ

τ0

∫ ρ0+Δρ

ρ0

∫

S2−
Λ̃(ρ ,Ω̂,τ)dΩ̂2πρ dρ dτ.

(15)

Using this equivalence, as well as the definitions for R(r0, t0) and R̃(ρ0,τ0) in Eq. (1) and

Eq. (13), we find that L0 is the ratio between the reflectance and the dimensionless reflectance

L0 =
R(r0, t0)

R̃(ρ0,τ0)
= Nhν

ΔÃΔτ

ΔAΔt
= E0cµ3

s . (16)

With this definition for L0, the reflectance can be written in terms of the dimensionless re-

flectance as

R(r, t) = cµ3
s E0R̃(ρ ,τ) = cµ3

s E0

∫

S2−
Λ̃
(
ρ ,Ω̂,τ

)∣∣∣
z=0−

(
n̂ · Ω̂

)
dΩ̂. (17)

This equation shows that the diffuse reflectance for a specific value of the scattering coefficient

is uniquely related to the dimensionless reflectance multiplied by a reference radiance L0.

Thus Eq. (2) can be formulated by considering a reference reflectance Rr(r, t) for a non-

absorbing medium with scattering coefficient µs = µs,r. Using Eq. (17), to express the reference

reflectance within the KP sMC method in terms of the dimensionless reflectance, we get:

Rr(r, t) = cµ3
s,rE0 R̃r(ρ ,τ) = cµ3

s,rE0 R̃r(µs,rr,cµs,rt), (18)
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while the diffuse reflectance for an arbitrary value of µs becomes

R(r, t) = cµ3
s E0R̃(ρ ,τ) = cµ3

s E0R̃

(
µs

µs,r
ρr,

µs

µs,r
τr

)
(19)

where ρr = µs,rr and τr = µs,rct. By rewriting the dimensionless reflectance in the last equation

as

R̃

(
µs

µs,r
ρr,

µs

µs,r
τr

)
= Rr

(
µs

µs,r
r,

µs

µs,r
t

)
1

cµ3
s,rE0

(20)

and substituting back into Eq. (19), we obtain Eq. (2)

R(r, t) =
µ3

s

µ3
s, r

Rr

(
µs

µs, r

r,
µs

µs,r
t

)
, (21)

which demonstrates the consistency of the first sMC scaling relationship with the RTE.

The second scaling relation used within the sMC method, Eq. (3), relates the reflectance from

a non-absorbing reference medium with the reflectance from a second medium possessing iden-

tical scattering properties but finite absorption. To evaluate the impact of absorption, consider

that every photon emitted from the target surface is characterized by a photon exit position ri,

time of flight ti, and weight wi. While photon absorption is an analog phenomena, an effec-

tive technique to reduce the variance of the resulting photon weights is to diminish the photon

weight continuously along its trajectory according to Beer’s law i.e., exp(−µacti) [21]. This

approach, known as continuous absorption weighting, provides a rigorous unbiased stochastic

estimator of the radiative transport process [3]. Consider a reference simulation with zero ab-

sorption and calculate Nr(r0, t0) as the sum of the weights of the photons emitted from the top

surface within a specific radial and temporal bin (r0, t0)

Nr(r0, t0) = ∑wi = ∑w0 (22)

where w0 = 1−Rsp is the initial weight of the photon reduced by the specular reflection given

by the refractive index mismatch between air and tissue. Thus, following Eq. (1), we can express

the reference reflectance for the bin represented by r0 and t0 as

Rr(r0, t0) =
1

ΔAΔt

∫ t0+Δt

t0

∫ r0+Δr

r0

∫

S2−
hνcNr(r0, t0,Ω)|z=0−

(
n̂ · Ω̂

)
dΩ̂ 2πr dr dt, (23)

where Nr(r0, t0,Ω)
[
m−3 sr−1

]
represents the volumetric photon density per unit solid angle at

location r0 and time t0 in the reference MC simulation.

For a MC simulation with µa �= 0 the weight of each photon must be decreased exponentially

according to Beer’s law, i.e., Nr (r0, t0) = ∑wi = ∑w0 exp(−µact0). Thus the reflectance is

R(r0, t0)≈
1

ΔAΔt

∫ t0+Δt

t0

∫ r0+Δr

r0

∫

S2−
hνcNr(r0, t0,Ω)|z=0− exp(−µact0)

(
n̂ · Ω̂

)
dΩ̂ 2πr dr dt

= Rr(r0, t0)exp(−µact0).

(24)

If we consider continuous spatial and temporal variables we obtain the expression

R(r, t) = Rr(r, t)exp(−µact) (25)

which recovers the second sMC scaling relationship Eq. (3). Equation (25) is rigorous only

when applied individually to each emitted photon. That is, the value of t used must correspond

to the photon’s time-of-flight rather than to a nominal time of the temporal bin in which it is

tallied.
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3. Materials and Methods

The flowcharts in Fig. 1 depict three approaches used here to obtain and compare MC estimates

for spatially- and temporally-resolved reflectance from a homogeneous semi-infinite medium.

In the first approach, a conventional Monte Carlo (cMC) simulation is used to provide “gold

standard” reflectance estimates. The second method is based on the single Monte Carlo ap-

proach applied on a photon-by-photon basis (sMCp). The third approach is similar to the KP

method where the reflectance for any value of the optical scattering and absorption, R(r, t), is

obtained by scaling a reference signal, Rr(r, t), obtained from a MC simulation with µs = µs,r

and µa = 0. As this latter method employs interpolation of the reference reflectance prior to

application of the scaling equations, we denote it as sMCi. Below, we describe the detailed

procedure used in each of these methods and also describe alternate binning and interpolation

schemes that we have examined to potentially improve upon the KP sMCi method.

3.1. Monte Carlo Simulations

We modified the well-known MCML MC simulation package developed by Jacques and

Wang [21] to provide time-resolved output. All simulations run for this study inject photons in

a semi-infinite homogeneous medium with n = 1.4 using a collimated ‘pencil’ beam oriented

perpendicular to the top surface. The Henyey-Greenstein phase function with an anisotropy co-

efficient of g = 0.8 is used to model the angular distribution of single-scattering events. When

a photon encounters the z = 0 surface, we select a pseudorandom number uniformly distributed

in [0,1) and compare it to the Fresnel reflectance to determine whether the photon should exit

or be internally reflected. To control the computation time, simulated photons are terminated

before exiting the medium if they experience 3×105 collisions. To achieve good statistics, the

propagation of 108 photons was simulated for each set of optical properties.

3.1.1. Conventional Monte Carlo (cMC)

In cMC simulations, the step size for photon propagation is sampled using the probability den-

sity function s = − ln(ξ )/µs, where µs is the scattering coefficient and ξ is a pseudorandom

Fig. 1. Flow chart representing the processes used to obtain the spatially and temporally

resolved reflectance from the different Monte Carlo approaches examined in this study.
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number uniformly distributed in the interval [0,1). For each photon simulated, the exit posi-

tion ri and total time of flight ti are recorded. The weight of each photon wi is then calculated

using continuous absorption weighting according to Beer’s law for a specific value of µa. To

reduce the computational burden we terminated all photons that traveled to a depth exceeding

1 m. After storing exit position, time, and weight (ri, ti,wi) of each of the reflected photons in a

database, the recorded photon weights were averaged over a set of spatial and temporal bins to

obtain the reflectance signal [13].

3.1.2. Single Monte Carlo on a photon-by-photon basis (sMCp)

The application of sMC on a photon-by-photon basis requires simulation of the photon trajecto-

ries and storage of the photon exit locations and times in a database. We perform a dimension-

less MC simulation with zero absorption, set µs equal to a unitless value of one and sample the

photon step size from s =− ln(ξ ). The maximum depth for photon propagation was adjusted to

match the termination condition of the cMC simulations. The dimensionless position and time

(ρi,τi) of each exiting photon was recorded. Since µa = 0 in this simulation, all the emitted

photons had the same weight wi = 1−Rsp. To obtain the temporally- and spatially-resolved

reflectance for any value of µa and µs we first apply Eq. (7) to determine the exit position and

time, ri and ti, and apply the scaling relationships, Eqs. (2) and (3) to each exiting photon to

determine the proper photon weight. Once the exiting position, time, and weight of each photon

is obtained, the individual photon weights are averaged over a set of spatial and temporal bins

to obtain the reflectance signal as in the cMC simulations.

3.1.3. Interpolated single Monte Carlo (sMCi)

sMCi refers to the method established by Kienle and Patterson which uses a cMC simulation

to form the reference reflectance Rr(r, t) using reference optical properties µ ′
s,r = 1 mm−1 and

µa = 0. The resulting photon database is then processed to obtain the reference reflectance for

a set of nominal positions, Rr(rk, tl). The reference values sampled through the MC simulation

are smoothed by fitting to an analytical function and then interpolated. The reflectance for any

combination of optical properties is obtained by applying the scaling relations Eqs. (2) and (3)

to the interpolated representation of the reflectance.

3.2. Error Analysis

Our objective is to compare both sMCp and sMCi relative to the conventional MC simulations.

The relative error for the spatially- and temporally- resolved reflectance is given by:

εrel(p, i)(rk, tl) =
|RcMC(rk, tl)−RsMC(p, i)(rk, tl)|

RcMC(rk, tl)
. (26)

The cMC values chosen as gold standard are stochastic estimates of the RTE solution. The

relative error estimates are meaningful only if the relative uncertainty associated with the

RcMC(rk, tl) estimates is at least an order of magnitude smaller. This relative uncertainty is

calculated as

σrel(rk, tl) =
σcMC(rk, tl)

RcMC(rk, tl)
. (27)

3.3. Binning

To represent the MC data, the detected photon weights must be tallied in a set of radial and

temporal bins of finite width. For each reflected photon emitted at radial position ri and time

ti, a tally of wi is added to the reflectance R(rk, tl) where k is the index associated with the
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radial ring that contains ri and l is the index for the time interval that includes ti. This process

is necessary to obtain R(rk, tl) using either the cMC or sMCp approaches. For the KP sMCi

approach, the reference MC simulation is first binned to obtain the nominal values R(rk, tl).
The binned reference MC simulation is then processed to obtain Rr(r, t) as illustrated in Fig. 1.

Three different discretization techniques have been examined in this work. The first is com-

monly known as equal width discretization (EWD) [25] and is based on the subdivision of the

physical range into mr equispaced radial bins and mt equispaced time bins resulting in a total

of mr ×mt bins. This binning strategy is most commonly adopted for the evaluation of the re-

flectance signal from the output of a cMC simulation [17]. A slight variation presented in the

literature utilizes multiple sets of uniformly-sized bins [11].

The second approach, known as equal frequency discretization (EFD) [26], divides the sorted

values into mr ×mt intervals of irregular width so that each interval contains approximately

the same number of samples. Instead of fixing the boundary of the bins a priori, the bins are

built dynamically based on the radial and temporal cumulative distribution functions of the

collected photons. Thus each interval contains Nout/(mr×mt) photons where Nout is the number

of photons that exited the phase space and were not terminated during the simulation. This

binning process requires sorting of the photon database according to the radial position. Once

the data set is split into mr bins in space with the same number of photons in each bin, the

photons in each spatial bin are sorted according to the photon time of flight. The reflectance

values are then computed by using EFD along the time dimension. Both EFD and EWD were

used to provide a discrete representation of the reflectance R(rk, tl) from the cMC simulation

output. For all the combinations of optical properties under investigation we save the bin limits

obtained using EFD and use them to obtain R(rk, tl) from the photon database generated with

sMCp.

We developed a third binning strategy based on an adaptive width discretization (AWD)

algorithm to construct the reference reflectance used for the sMCi. In AWD the number of

bins is not imposed a priori and the bin limits are dynamically built to ensure that each bin

has a sufficient sample size of photons to reduce variance while also spacing the bins so that

they accurately capture any rapid spatial and/or temporal dynamics of the reflectance signal. To

accomplish this, we established the following binning criteria: (i) a minimum of nr = 5× 105

photons must occupy each radial bin; (ii) the number of photons occupying each time bin,

nt(r), increases from 2500 to 5000 over the radial distance range; (iii) the interval between two

adjacent radial bins cannot exceed 0.2 mm i.e., (rk+1 − rk)≤ Δrmax = 0.2 mm; (iv) the interval

between two adjacent time bins cannot exceed 20 ps, i.e., (tl+1 − rl) ≤ Δtmax = 20 ps; and (v)

the relative change in the reflectance value between two adjacent time bins cannot exceed 10%

i.e., (Rk+1 −Rk)/Rk ≤ ΔRrel,max = 0.1. While other values for nr,nt(r),Δrmax,Δtmax and ΔRmin

were tested, the values above provided a smaller variance for the reflectance values R(rk, tl) and

reduced noise in the data while accurately capturing sharp features of the reflectance signal.

Independent from any specific binning algorithm, the representation of all the photons col-

lected within a bin with nominal coordinates (rk, tl) introduces a discretization error. Typically

each bin is represented by its midpoint. To reduce this error we used the mean of the radial po-

sition and time of flight of all the photons collected within each bin. While this error reduction

strategy has not been examined carefully, we noted that when large bins are present in EFD or

EWD, the use of the midpoint leads to artifacts in the measured reflectance. Regardless of the

binning approach used, the value of the reflectance calculated over an annular bin of area ΔAk

and time span Δtl is computed as [21]

R(rk, tl) =
1

ΔAk

1

Δtl

1

N

N

∑
i=1

wi, (28)
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where N is the total number of injected photons. The weight wi is set to zero for all the pho-

tons collected outside the bin under consideration. The standard deviation of the reflectance

measured in the specific bin is calculated as [27]:

σ(rk, tl) =
1√

N −1

[
N

∑
i=1

w2
i

ΔA2
kΔt2

l N
−R2(rk, tl)

]1/2

. (29)

3.4. Reference Reflectance

In principle, the use of Eqs. (2) and (3) enables a continuous representation of R(r, t) for any

absorption and scattering coefficient. However when utilizing the results of a cMC simulation

with a finite number of photons, it is possible to measure the reflectance only for a discrete set

of positions. Thus, it is necessary to interpolate between these points to provide a continuous

representation of R(r, t) for an arbitrary set of optical properties. To represent the reflectance

signal over the physical domain of interest, we establish a native set of reflectance values,

Rr(rk, tl) over a time range from 0 to 20 ns and a spatial range from 0 to 100 mm.

The adaptive binning technique described above is used to provide a representation of the

reference simulation output which must subsequently be interpolated. Formation of an interpo-

lating surface requires a support mesh of points. Since the number of the reflectance values and

their temporal locations are different for every radial bin, we resample each reflectance curve

R(rk = constant, tl) over a uniform time vector T to obtain a regular grid that is more suitable

for interpolation. These time points are chosen in a way that reflects the cumulative distribution

function of all the photons, using a decreasing density of sampled points per unit time in the

range [0-20] ns.

3.5. Interpolation and Resampling

The AWD approach had one limitation in that small numbers of photons were typically col-

lected at late times. For this reason the last time coordinate value that satisfied condition (ii),

R(rk, tlast), occurs at a time smaller than 20 ns for radial distances rk < 15 mm. To obtain nom-

inal values for the reflectance in this time range we defined a set of bins 100 ps in width from

this valid time location to 20 ns. For each radial bin that exhibited this problem, the photons

collected within its limits are tallied in these bins. The variance associated with the photon col-

lected in these 100-ps-width bins is still too large to use them directly for the creation of the

reference surface. Thus we fit these points to the following nonlinear function, ft(t), with three

free parameters (a,b,c)

ft(t) =
a

t3/2

[
exp

(
−b

t

)
− exp

(
−c

t

)]
. (30)

This function has the form of a source-image Green’s function without absorption decay within

the standard diffusion approximation [2]. This functional form fits the data very well most

likely because the photons collected at these remote distances and long times have undergone

a very large number of collisions. Figure 2(a) shows the result of this approach to represent the

reference reflectance for rk = 1 mm.

To improve the accuracy in the representation of the initial rise of the reference reflectance

signal we introduce additional time points at earlier times via extrapolation. For every radial bin

we record the arrival time of the first photon t0. The time span from t0 to the nominal position

of the first bin, t1, was split into ten uniform bins in which the photons were tallied to provide

additional reflectance values. The logarithm of the reflectance values sampled with this method

is fitted to a third degree polynomial. For each radial bin, this polynomial is used to extrapolate
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Fig. 2. (a) Results of the fitting approach used to extrapolate points on the tail of the time-

resolved reflectance R(t) for rk = 1 mm. (b) Values of Rr(rk, tl) for rk ∈ [5 − 100] mm

obtained after binning, extrapolating and resampling.

values for the points of T between the arrival time of the first photon, t0, and the time of the

first reflectance value obtained with the binning process, t1.

To resample the reflectance curves at the temporal locations specified by T , we fit a 3rd

degree Non Uniform Rational B-spline (NURBS) [28,29] curve to each R(rk = const, tl) curve.

After calculating the approximating NURBS curve we resample it to obtain Rr(rk = const, tl =
T ). The values of Rr(rk, tl) obtained after resampling is the final set used in the sMCi method

and are shown in Fig. 2(b) for radial distances spanning 5 to 100 mm. The noise reduction

obtained by resampling allowed the use of the reference points Rr(rk, tl) as native points for the

interpolation necessary to calculate R(r, t) for continuous values of r and t for an arbitrary set

of optical properties using Eqs. (2) and (3). We use a 3rd degree NURBS interpolation in both

position and time to represent Rr(rk, tl) as a 2D surface.

4. Results

4.1. cMC Simulations and Effects of Discretization

We first consider the relative standard deviation of the reflectance provided by our “gold stan-

dard” cMC simulations as these are the results against which the sMC approaches will be com-

pared. We calculate the relative standard deviation using Eq. (27) after binning the reflected

photons provided by the cMC simulation using either EFD or EWD. We used a set of 200×200

bins to calculate the reflectance values over spatial and temporal ranges of r ∈ [0,50] mm and

t ∈ [0,5] ns, respectively. We performed cMC simulations for 15 sets of optical properties where

the absorption and reduced scattering coefficients were in the range µa ∈ [10−3,0.3]mm−1 and

µ ′
s ∈ [0.5,2]mm−1

Figure 3(a) provides a colored contour plot of spatial and temporal dependence of the rela-

tive standard deviation of the reflectance estimates σrel(r, t) for the case of µ ′
s = 1mm−1 and

µa = 0.1mm−1. Figure 3 shows that the values of σrel are remarkably uniform over the en-

tire domain. Across all 15 sets of optical properties examined, the mean of the relative standard

deviation across all space and time using EFD was less than 3%. For larger values of the absorp-

tion coefficient, σrel increases for combinations of short distances and late times and for long

distances and early times. This is because the reflectance signal is weaker in these regions and

the span covered by the EFD bins is large at late times in order to collect the required number

of photons. The relative standard deviation at any given position/time pair exceeds 5% only for

µa ≥ 0.1 mm−1. By contrast, in Fig. 3(b) we see that the relative standard deviation obtained

with EWD is not uniform and increases strongly for longer times and larger distances with
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Fig. 3. Relative standard deviation of the reflectance provided by discretizing the results of

a cMC simulation for µa = 0.1mm−1 and µ ′
s = 1mm−1 using (a) 200 × 200 EFD bins, (b)

200 × 200 EWD bins, (c) 250 × 1000 EWD bins.

a mean value larger than 5%. Moreover, for all the sets of optical properties examined, there

were position/time pairs for which the relative standard deviation in the reflectance estimates

exceeded 100%.

A comparison of the uncertainty obtained using the same number of bins using the two

techniques may lead one to underappreciate the improvement obtained with EFD. It is true that

in certain regions, the uncertainty in the cMC estimates obtained when using EWD with a 200

× 200 set of uniform bins is smaller than that obtained using EFD. This is because the uniform

bins have radial and temporal width of Δr = 0.25 mm and Δt = 25 ps. Thus for combinations

of small radial positions and times, the number of photons tallied within these limits is very

large and the statistical noise is reduced. However bins that are 25 ps in width are too large

to capture the initial peak of the reflectance signal. For a more fair comparison we use EWD

with 250 radial intervals of width Δr = 0.2 mm and 1000 time bins of width Δt = 5 ps. These

results are given in Fig. 3(c) and shows that the performance of the EWD at large times and

radial positions is adversely effected when the number of bins is increased. In fact for this

set of 250×1000 bins the mean σrel across all the time and spatial bins exceeds 15% for all

the sets of optical properties examined. Thus while EWD is simple to implement, the relative

standard deviation will exhibit significant variability since the number of photons tallied in

each of the bins varies widely. EFD, on the other hand, reduces the variation in the number

of tallied photons across all bins by imposing finer sampling in the regions of phase space

where number density of reflected photons is large while also imposing coarser discretization

in regions where the reflected signal is sparse. This has the overall effect of not only reducing

the relative standard deviation but also also minimizing its variation over the phase space.

4.2. Comparison of single Monte Carlo Techniques

Now with the relative standard deviation of the “gold-standard” cMC simulations characterized,

we can determine the relative error provided by sMCp and sMCi approaches established in §3

as compared to the reflectance provided by a cMC simulation RcMC(rk, tl) represented by a set

of 200×200 radial/temporal bins formed using EFD.
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Fig. 4. (a) Reflectance signal obtained with EFD for a cMC simulation, (b) relative error of

the reflectance provided by the sMCp method, (c) relative error of the reflectance provided

by the sMCi, for µa = 0.001 mm−1 and µ ′
s = 2 mm−1.

For all the combinations of optical properties under investigation, we process the sMCp data

set to evaluate the values (ri, ti,wi) from (ρi,τi) using the scaling imposed by the value of µs

and modifying the photon weight in media with µa �= 0 by applying Beer’s law using the values

of the photon exit time ti. To calculate RsMCp
(rk, tl) for the same nominal spatial and temporal

locations, we use the bins defined by the cMC simulation for the specific combination of the

optical properties to tally the photon weights and build up the reflectance values. We use the

NURBS surface obtained by the procedure described in §3.4 to calculate RsMCi
(rk, tl). First,

the scaling given by the scattering coefficient is imposed using Eq. (2). Once established, the

effects of non-zero absorption is calculated using Eq. (3).

Figures 4, 5, and 6 show (a) the reflectance determined from the cMC simulations on a

logarithmic scale along with the relative error in the reflectance predictions provided by the (b)

sMCp and (c) sMCi approaches for different combinations of optical properties. The spatial and

temporal ranges shown extend only to 20 mm and 1 ns to provide reasonable resolution over

the region where the largest contribution to the reflectance signal resides. Figure 4(b) shows

that the sMCp method has a relative error of � 3% over the entire spatial and temporal domain

considered. As this is roughly equal to the maximum relative standard deviation of the 200×
200 EFD representation of the cMC, we can conclude that the reflectance estimates obtained

using the cMC and the sMCp methods are equivalent. In fact, for all sets of optical properties

investigated, the mean value of the relative error εrel,sMCp
(rk, tl) over the entire physical range

(r ∈ [0,50] mm and t ∈ [0,5] ns) never exceeds 3% which is smaller than the mean of the

relative standard deviation associated with the cMC measurements. Thus there appears to be

no statistically significant difference between the reflectance estimates given by cMC and sMCp

simulations when using a set of 200×200 radial/temporal bins formed using EFD.

The relative error of the reflectance calculated using the sMCi approach displays two char-

acteristic features regardless of optical properties. Firstly, the relative error in the first temporal

bin can be as large as 100%. It is important to note that this large error is measured only for the

first time bin, a location where the reflectance value is much smaller then the peak value. Sec-

ondly, the relative standard deviation associated with the first time bin at large source detector
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Fig. 5. (a) Reflectance signal obtained with EFD from the cMC simulation, (b) relative

error of the reflectance provided by the sMCp method, (c) relative error of the reflectance

provided by the sMCi method, for µa = 0.01 mm−1 and µ ′
s = 1 mm−1.

separations is generally larger than the average error measured over the entire physical range.

We also see specific features of the relative error depending on optical properties. For ex-

ample, for µa values smaller than 0.1 mm−1 across all µ ′
s values, the mean relative error of

the sMCi approach tallied over the entire temporal and radial range excluding the first tempo-

ral bin is smaller than that obtained with sMCp method. This reflects the advantage gained by

interpolating the reference signal which reduces the impact of statistical noise. For µa values

equal to 0.1 mm−1 and greater, we see that while the mean relative error for the reflectance

values provided by the sMCi approach is larger than that provided by the sMCp approach, the

error itself remains below 5%. From Figs. 4(c) and 5(c) one can see that the error introduced

by using Eq. (30) to extrapolate the reflectance at long times is very small for small µa values.

The values obtained in the latest time bins for short distances are obtained by scaling the ref-

erence reflectance in a range where the nominal reference values were obtained with the fitting

approach, and the relative error remains very small.

For higher µa values, the error measured in the latest time bins at small radial locations

increases as shown in Fig. 6(c). the error exceeds 50% for µa ≥ 0.1 mm−1 and approaches

100% for µa = 0.3 mm−1 over the physical range shown. This large error is due to the fact

that Eq. (3) is approximate when applied to binned data where a median value of t is used to

rescale the weights of all photons captured in a discrete time bin. It is important to note that the

relative standard deviation of these bins is also large. While these relative error values are large,

one must recognize that the reflectance values span a significantly larger dynamic range for µa

values of 0.1 mm−1 and larger. Specifically, within the radial and temporal range considered,

the reflectance values span at least 8 orders of magnitude. When viewed in this context, we see

that these large relative errors occur in regions where the reflectance is already very small.

Since the reference signal represented by the NURBS surface extends to temporal and spa-

tial values of 20 ns and 100 mm, respectively, it is possible to overcome the dynamic range

limitation previously reported. The accuracy of the results given by the sMCi method for large

distances and long times decreases with increasing absorption. For µa = 0.001 mm−1 if we ex-

clude the first temporal bin, the relative error does not exceed 10% across all the values of the

reduced scattering coefficient examined. For increasing µa values, the relative error increases
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Fig. 6. (a) Reflectance signal obtained with EFD from the cMC simulation, (b) relative

error of the reflectance provided by the sMCp method, (c) relative error of the reflectance

provided by the sMCi method, for µa = 0.1 mm−1 and µ ′
s = 1.5 mm−1.

for large distances and late times. Larger µ ′
s values increase the temporal range over which

the error remains low, but decrease the spatial range where the model is accurate. This may

be due to the fact that a larger scattering coefficient increases the number of collisions that a

photon undergoes before exiting the tissue thus it increases the signal at later times, while it

concentrates the light distribution over a smaller radial range.

As reported by Kienle and Patterson, interpolation errors are largest for short times and small

distances and well as for µ ′
s values far removed from the reference µ ′

s value. This arises due

to shortcomings of discretization methods that tend to be inaccurate in regions where rapid

spatial/temporal variations of the reflectance signal exist. Figure 7 compares the the relative

error measured for times ≤0.1 ns and source detector locations ≤15 mm for µa = 0.1 mm−1 and

µ ′
s = 0.5 mm−1 using (a) the NURBS surface built upon the reference nominal data or (b) linear

interpolation of the reflectance binned in uniform bins with Δt = 5 ps and Δr = 0.2 mm. This

result shows that the NURBS sMCi approach typically reduces the relative error by an order of

magnitude and provides accuracy comparable to that obtained using the sMCp approach. This

provides a reflectance signal with excellent accuracy even when the optical properties chosen

represent a large perturbation from the reference reflectance.

5. Conclusion

We have demonstrated how the scaling relations used for the single Monte Carlo (sMC) method

can be derived from the radiative transport equation. While the scaling associated with the scat-

tering coefficient is rigorous, the application of Beer’s law to model the effect of absorption is

only approximate when applied to binned data. As a result, the accuracy of the sMC approach

degrades for larger µa values and/or when the discretization intervals are large. We show that

when sMC is applied on a photon by photon basis it yields reflectance estimates that are statis-

tically equivalent to those obtained using conventional MC simulations.

However a more practical implementation of the sMC requires the development of improved

spatial and temporal binning and interpolation approaches. The challenge in such methods is

to construct a reference reflectance in a fashion that minimizes the discretization error and
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Fig. 7. (a) Log10 of the relative error of the sMCi approach using NURBS interpolation

on the reference values, (b) log10 of the relative error of the sMCi approach based on

linear interpolation of the uniformly binned reflectance as done by Kienle and Patterson for

µa = 0.1 mm−1 and µ ′
s = 0.5 mm−1

error propagation due to interpolation. We demonstrate the advantages of the equal frequency

discretization approach as compared to equal width discretization, which provides a low, and

nearly uniform, relative error over the entire measurement domain. Even better performance

can be realized using a novel adaptive binning strategy that accommodates the large dynamic

range of the reflectance values while also reducing interpolation errors. The regularization of the

number of photons collected in each bin leads to an almost uniform relative standard deviation

across all the measured reflectance values over a wide physical range. Moreover the windowing

mechanism implemented in the adaptive strategy provides a more dense network of nominal

values that can be robustly interpolated.

Our implementation of NURBS interpolation provides a fast and stable algorithm that re-

quires a small amount of information as compared to other fitting methods. The results shown

here indicate that the sMCi method can be used to derive R(r, t) for a wide range of optical

properties and source detector separations. Given its speed, the sMCi method can potentially

be used as an inverse solver engine for the recovery of optical properties from experimental

data as it provides transport-rigorous estimates, is based on very fast and stable algorithms and

requires little data storage. The sMCi forward solver based on adaptive binning and NURBS

interpolation (NURBS Forward Solver) is available for use in the Virtual Tissue Simulator at

http://www.virtualphotonics.org/.
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