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Abstract 

Understanding factors affecting social interactions among animals is important for applied animal 

behavior research. Thus, there is a need to elicit statistical models to analyze data collected from pairwise 

behavioral interactions. In this study, we propose treating social interaction data as dyadic observations 

and propose a statistical model for their analysis. We performed posterior predictive checks of the model 

through different validation strategies: stratified 5-fold random cross-validation, block-by-social-group 

cross-validation, and block-by-focal-animals validation. The proposed model was applied to a pig 

behavior dataset collected from 797 growing pigs freshly remixed into 59 social groups that resulted in 

10,032 records of directional dyadic interactions. The response variable was the duration in seconds that 

each animal spent delivering attacks on another group mate. Generalized linear mixed models were fitted. 

Fixed effects included sex, individual weight, prior nursery mate experience, and prior littermate 

experience of the two pigs in the dyad. Random effects included aggression giver, aggression receiver, 

dyad, and social group. A Bayesian framework was utilized for parameter estimation and posterior 

predictive model checking. Prior nursery mate experience was the only significant fixed effect. In 

addition, a weak but significant correlation between the random giver effect and the random receiver 

effect was obtained when analyzing the attacking duration. The predictive performance of the model 

varied depending on the validation strategy, with substantially lower performance from the block-by-

social-group strategy than other validation strategies. Collectively, this paper demonstrates a statistical 

model to analyze interactive animal behaviors, particularly dyadic interactions. 

Keywords: interactive behavior, dyadic data analysis, pig aggressiveness, generalized linear mixed 

model, validation strategies 
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1. Introduction 

The study of social interactions is of paramount importance in applied animal behavior research 

(Rodenburg et al., 2010; Silk et al., 2018). Researchers are interested in elucidating the basis for the 

observed variation in the intensity and frequency of interactions among pairs of individuals that are part 

of a social group. Some of the applications of such study include mate choice (Andersson and Simmons, 

2006; Bierbach et al., 2013), aggression and other damaging behaviors (Angarita et al., 2019; Oczak et 

al., 2013; Peden et al., 2018), and competition for access to feeding space (Angarita et al., 2021; Lu et al., 

2017), etc. Thus, given data on pairwise behavioral interactions recorded from an experimental or 

observational study, it is necessary to quantify the effects of various individual- and group-level factors 

on social interactions.  

Data from pairwise social interactions are considered dyadic (Kenny et al., 2020). This is, the unit of 

observation is not the individual, but a pair of individuals. In general, dyadic interaction data can be 

arranged in square matrices. It can be further re-arranged in the form of a response vector, which is 

generally accomplished in two different ways (Figure 1): a) The data are summed row-wise/column-wise 

to represent an individual level-observation (total duration that each animal is engaged in a particular 

behavior regardless of whom the animal interacted with), or b) the matrix elements are stacked keeping 

intact their dyadic nature. In the first case, there is loss of information, and it should be avoided if the aim 

is to study the dyadic nature of social interactions. In the second case, however, it is of utmost importance 

that all sources of variations are modeled to properly account for group means, variances and covariances 

between subsets of the data (Figure 2); otherwise, if important factors are ignored, this can adversely 

affect estimates and predictions. 
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Figure 1 Panel a), directional dyadic interaction intensity matrix (elements in the matrix represent 

attacking duration); row sums and column sums are shown in the margins of the matrix. Panel b), a 

truncated long-format table that is re-arranged from the interaction matrix; each row represents a record 

that is the attacking duration in seconds from a giver animal to a receiver animal. 0.00 means observed 

zero while 0 means structural zero that we do not consider as an actual interaction. 

A proper way to model dyadic data is to fit generalized linear mixed models (GLMM) that include fixed 

and random effects to account for means and covariances depending on the actual design of the 

experiment (Kenny et al., 2020). In this study we describe how GLMM can be used to analyze dyadic 

data and illustrate how to use this approach to analyze a pig behavior dataset. First, we defined the type of 

social interaction data and how to properly model variation in the response using GLMM. Second, we 

applied the proposed GLMM to the experimental data and illustrated how to elicit, fit, and check the 

models and how to interpret the results. Finally, we performed posterior predictive checks of the models 

through several validation strategies. The GLMM presented in this paper can be used by applied animal 

behaviorists to analyze other pairwise social interaction data to obtain statistically valid and biologically 

meaningful results, which can be helpful to understand interactive behaviors of animals for practical 

purposes of management or improved welfare. 
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2. Methods and Materials 

2.1 Data from social interactions should be analyzed as dyadic data 

For a social interaction to occur, at least two animals need to be involved. Although behavioral 

interactions may involve more than two animals at a time, in this paper we assume that the data on social 

interactions is obtained through observations of pairwise/dyadic behaviors and that it can be arranged in 

an interaction matrix (Figure 1a). 

The data may be obtained within a single large social group, in which all the potential pairwise 

interactions have been monitored and quantified. Alternatively, the dyadic data can be collected from 

several social groups of variable sizes, within which all potential pairwise interactions have been 

monitored and quantified, but no between-group relations are possible. 

We also assume that in addition to the social interactions per se other variables have been observed. These 

variables may be individual-specific or dyad-specific. Examples of individual-specific variables are those 

related to each individual’s age, sex, size, and past life experiences (e.g., early-life social or nutritional 

stress) and they can be continuous, discrete or categorical in nature. Dyad-level variables are those that 

only pertain to the pair of individuals. For instance, a dyad-level variable can be described as whether 

they have met each other before the interaction is observed. It is important to notice that sometimes 

individual-level variables may be coded as dyad specific, for instance, the difference in live weight 

between two animals can be viewed as a dyadic-level observation, but in fact it arises from a linear 

combination of two individual-level variables. In that case, we prefer to keep individual level 

observations separate. 

2.1.1 Social interaction data 
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Social interaction data can be of different types. From a mathematical point of view, the social 

interactions could be represented by a binary outcome (0/1=it occurred/it did not occur), by a discrete 

outcome (frequency of occurrence of an interaction), by an ordinal outcome (intensity or severity of 

interaction on an arbitrary scale), or by a continuous outcome (intensity of the interaction on a continuous 

scale, duration of the interaction, etc.). The practical implications of the different types of responses 

pertain to the statistical distribution that is used to model the stochasticity in social interaction data.  

From the point of view of the directionality of the behavior, in most cases, we can assume that the 

behavior is directional i.e., there is a giver and a receiver. For instance, in the study of animal aggression, 

in many cases there is a clear attacker and a victim. In studies of feather pecking in group-caged chickens 

(Savory and Mann, 1997) and tail-biting in group-housed pigs (Angarita et al., 2019; Wurtz et al., 2017), 

there was one animal that was delivering the behavior (we will call this animal the giver animal) and 

another one which was clearly receiving the behavior (the receiver). In the following subsections we lay 

out these concepts with the directional interaction data, and we summarize the model parameterization in 

a generalized form. 

2.1.2 Analysis of dyadic data from directional social interactions 

When the social interactions are directional, the data collected from each social group can be arranged in 

a matrix as represented in Figure 1a. If there are n animals in a certain group, n(n-1) interactions will be 

observed within the group. We assume that there is no measurement error implying that if an interaction 

was recorded then this interaction did indeed happen as recorded, and, perhaps more relevant, that a zero 

entry in the matrix implies that no interaction occurred for this specific dyad. 

In the analysis of dyadic interaction, the model is necessarily componential, where the interaction consists 

of three major components: a main effect of the giver (giver effect), a main effect of the receiver (receiver 



7 
 

effect), and the relation of the two individuals that is independent of the giver and receiver effects, 

referred to as the dyad (Back and Kenny, 2010; Kenny et al., 2006).  

2.2. Experimental data analysis: attacking time in group-housed pigs 

2.2.1 Experiment setup 

In this study, the experimental data was collected from 797 Yorkshire pigs (409 gilts and 388 barrows) 

that were strategically mixed into 59 single-sex social groups and housed in grow-finish pens with 10-15 

pigs per pen. In terms of prior social acquaintances, each social group included pairs or trios of animals 

that had shared a common nursery pen for seven weeks immediately before moving into the grow-finish 

pens. Prior social acquaintances also existed for some animals that had shared the same litter after 

farrowing (10 weeks before mixed into the grow-finish pens; these pigs were previously housed together 

as a litter before weaning). No prior social acquaintance was assumed to exist for animals that were 

housed together for the first time after being mixed into the grow-finish pens. At the beginning of the 

experiment the average weight of the animals was 27.09 kg (SD±4.07). The experiment has been 

described in detail in previous studies (Angarita et al., 2019; Wurtz et al., 2017).  

Pigs were video recorded five hours after mixing and four hours on the following morning (no overnight 

recording was performed). Videos were decoded manually by trained observers who recorded all attacks, 

their duration, and the identity of giver and receiver. After decoding, the total amount of time for each 

dyadic interaction was computed as described by Angarita et al. (2019). The directional aggression 

duration 𝑦𝑖𝑗𝑘 was defined as the total time in seconds that animal 𝑖 spent attacking another group mate 

animal 𝑗 within social group 𝑘 during the 9-hour post-mixing period. The final dataset contained 10,032 

records consisting of total attacking duration for all possible dyads. Among those records, 1,100 pairs of 

animals (2,200 records) shared the same nursery pen prior to being remixed into the grow-finish pens, and 

367 pairs of animals (734 records) were from the same litter. 
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2.2.2 Analysis model 

After extensive model assessment and comparison, a hurdle Bernoulli-lognormal model was adopted. To 

keep things simple, in this paper it was assumed that a positive continuous response could be adequately 

modeled using a lognormal distribution and that a Bernoulli distribution could model the response when it 

is zero. However, the general principles presented here can be easily extended to other types of 

distributions as mentioned in the discussion. Thus, in this application, there are two sub-models (Equation 

1). One sub-model estimates the probability of observing a zero (no attacks) while the other sub-model 

represents the duration of attacks conditional on its occurrence: 

{
𝑦𝑖𝑗𝑘  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃𝑖𝑗𝑘),                   𝑖𝑓 𝑦𝑖𝑗𝑘 = 0

𝑦𝑖𝑗𝑘  ~ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑖𝑗𝑘 , 𝜎2),         𝑖𝑓 𝑦𝑖𝑗𝑘 > 0
                    [1] 

where, 𝑦𝑖𝑗𝑘 is the total duration of the behavioral interactions between animal i and animal j in social 

group k (in 𝑦𝑖𝑗𝑘, the first subindex corresponds to the aggression giver, the second subindex corresponds 

to the aggression receiver, and the third subindex indicates the social group), 𝜃𝑖𝑗𝑘 is the expected 

probability of the total attacking duration being zero for animals i and j in social group k. Further, 𝜇𝑖𝑗𝑘  is 

the mean of natural logarithm of 𝑦𝑖𝑗𝑘, and 𝜎2 is the variance of natural logarithm of 𝑦𝑖𝑗𝑘. 

The transformed 𝜃𝑖𝑗𝑘 and 𝜇𝑖𝑗𝑘  have linear relationships with the explanatory variables (Equation 2): 

{
𝑙𝑜𝑔 (

𝜃𝑖𝑗𝑘

1−𝜃𝑖𝑗𝑘
) = 𝜇′𝑖𝑗𝑘 = 𝐹𝐸′𝑖𝑗𝑘 + 𝑔′

𝑖
+ 𝑟′

𝑗 + 𝑑′𝑖𝑗 + 𝑠𝑔′𝑘 ,    𝑖𝑓 𝑦𝑖𝑗𝑘 = 0

𝜇𝑖𝑗𝑘 = 𝐹𝐸𝑖𝑗𝑘 + 𝑔𝑖 + 𝑟𝑗 + 𝑑𝑖𝑗 + 𝑠𝑔𝑘 ,                                        𝑖𝑓 𝑦𝑖𝑗𝑘 > 0
   [2] 

where 𝜇′𝑖𝑗𝑘 and 𝜇𝑖𝑗𝑘 are expected values (mean) on an underlying linked scale that can be modeled as 

linear combinations of individual-level and dyad-level systematic effects (described below). Note that 

notations with the superscript represent effects to model the probability of presenting no attacks while 

effects without the superscript model the attacking duration if the attack occurred. 𝑑′𝑖𝑗𝑘~𝑁(0, 𝜎′𝑑
2 ) and 
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𝑑𝑖𝑗𝑘~𝑁(0, 𝜎𝑑
2) represent random dyad effects. 𝑠𝑔′𝑘~𝑁(0, 𝜎′𝑠𝑔

2 ) and 𝑠𝑔𝑘~𝑁(0, 𝜎𝑠𝑔
2 ) are random social 

group effects. The parameters 𝑔′𝑖, 𝑔𝑖, 𝑟′𝑗, and 𝑟𝑗 are explained in the following section. Further, the fixed 

effects (overall means) 𝐹𝐸′𝑖𝑗𝑘 and 𝐹𝐸𝑖𝑗𝑘 in Equation 2 are defined as: 

{
𝐹𝐸′𝑖𝑗𝑘 = 𝑠𝑒𝑥′𝑘 + 𝛼′𝑥𝑗𝑘 + 𝛽′𝑤𝑖𝑘 + 𝛿′1𝑧𝑖𝑗𝑘

1 + 𝛿′2𝑧𝑖𝑗𝑘
2 ,   𝑖𝑓 𝑦𝑖𝑗𝑘 = 0

𝐹𝐸𝑖𝑗𝑘 = 𝑠𝑒𝑥𝑘 + 𝛼𝑥𝑗𝑘 + 𝛽𝑤𝑖𝑘 + 𝛿1𝑧𝑖𝑗𝑘
1 + 𝛿2𝑧𝑖𝑗𝑘

2 ,           𝑖𝑓 𝑦𝑖𝑗𝑘 > 0
   [3] 

where 𝑠𝑒𝑥′𝑘 and 𝑠𝑒𝑥𝑘 are sex effects in social group 𝑘, 𝑥𝑗𝑘 is the (within-group) centered weight of the 

receiver animal 𝑗 from social group 𝑘, 𝑤𝑖𝑘 indicates the (within-group) centered weight of the giver 

animal 𝑖 from social group 𝑘, 𝑧𝑖𝑗𝑘
1  represents whether animal 𝑖 and animal 𝑗 from social group 𝑘 shared 

the same nursery group previously (𝑧𝑖𝑗𝑘
1 = 0 if they did not; otherwise, 𝑧𝑖𝑗𝑘

1 = 1), and 𝑧𝑖𝑗𝑘
2  indicates 

whether animal 𝑖 and animal 𝑗 from social group 𝑘 were previously housed together in the same litter 

before weaning (𝑧𝑖𝑗𝑘
2 = 0 if they were not; otherwise, 𝑧𝑖𝑗𝑘

2 = 1). Finally, 𝛼′, 𝛼, 𝛽′, 𝛽, 𝛿′1, 𝛿1, 𝛿′2, and 𝛿2 

denote the corresponding coefficients of the exploratory variables. Without losing generality, we illustrate 

a linear model where the response can be simply decomposed into giver effects, receiver effects, and 

dyad-specific effects in Figure 2.
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Figure 2 Illustration of a dyadic interaction model as an example that partitions the response into giver 

effects, receiver effects, and dyad-specific effects. Blue lines/arrows mean fixed effects, and red 

represents random effects, e stands for the residual term. 

2.2.3 Modeling of (co)variances 

Under the model in Equation 2, effects of the giver and the receiver are modeled for each animal. Those 

two effects covary, assuming: 

(
𝑔′𝑗

𝑟′𝑗
) ~𝑁 ((

0
0

) , (
𝜎′𝑔

2 𝜎′𝑔𝑟

𝜎′𝑔𝑟 𝜎′𝑟
2 ))   [4] 

(
𝑔𝑗

𝑟𝑗
) ~𝑁 ((

0
0

) , (
𝜎𝑔

2 𝜎𝑔𝑟

𝜎𝑔𝑟 𝜎𝑟
2 ))        [5] 

where 𝜎′𝑔𝑟 and 𝜎𝑔𝑟 represent the covariance between the receiver and the giver effects of the same 

animal. Moreover, 𝜎′𝑔𝑟 or 𝜎𝑔𝑟 could take negative values. For example, 𝜎𝑔𝑟 < 0 if an animal spends more 
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time attacking other animals but receives less aggression (in terms of duration) from other animals. 

Contrarily, 𝜎𝑔𝑟 will be positive in those cases where animals that deliver more aggression also receive 

more aggression from other animals. A similar analysis could be done for 𝜎′𝑔𝑟 but related to the 

probability of not delivering attacks. The magnitude and sign of these parameters are of importance to 

behaviorists. 

We also derive the estimated giver-receiver correlation as this is easily interpretable to applied scientists: 

𝜌′𝑔𝑟 =
𝜎′𝑔𝑟

𝜎′𝑔𝜎′𝑟
 , 𝜌𝑔𝑟 =

𝜎𝑔𝑟

𝜎𝑔𝜎𝑟
          [6] 

The relative magnitude of 𝜎′𝑔
2 , 𝜎′𝑟

2, 𝜎𝑔
2, and 𝜎𝑟

2 are also important. A relatively small value for a specific 

source of variation means that the process is mostly driven by other random sources.  

2.2.4 Estimation  

For statistical analysis, the model represented in Equations 1-3 could be fitted using restricted maximum 

likelihood or using Bayesian methods. We chose to use a Bayesian approach  (Box and Tiao, 2011). 

Details for the implementation of model fitting are provided in the appendix. In the companion GitHub 

(https://github.com/jun-jieh/DyadAnalysis) we provide examples for implementation. A total of 4,000 

Markov chain Monte Carlo (MCMC) samples were generated for parameter estimates. The parameter 𝜃 

for a fixed effect given the observed data 𝑦 was considered significant (𝑃<0.05) if 

1 − 𝑚𝑎𝑥 (𝑝(𝜃 < 0|𝑦), 𝑝(𝜃 > 0|𝑦)) < 0.05     [7] 

where 𝑝(𝜃 < 0|𝑦) means that the probability of the parameter 𝜃 is smaller than zero while 𝑝(𝜃 > 0|𝑦) 

represents the probability of 𝜃 being larger than zero, and the function max() returns the maximum value 

of the two elements. In practice, these probabilities are estimated based on the relative frequencies 

obtained from the MCMC samples. 

https://github.com/jun-jieh/DyadAnalysis
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2.2.5 Validation strategies and posterior predictive checks: how well does the model fit the data? 

Posterior predictive checking is an important part of model evaluation. For this checking, new data are 

simulated conditional on the fitted model and their distribution is compared to observed data (Gabry et al., 

2019). Moreover, this posterior predictive checking can be done with internal validation (all the data are 

used for model fitting and for validation) or using external validations (also known as out-of-sample or 

hold-out validations) (Vehtari et al., 2017; Vehtari and Ojanen, 2012), where the data are split into a 

training set (used for model fitting) and a validation set (used for the validation/checking). In the case of 

external validation, the way data are split is very important. Specifically, we split the entire dataset into a 

training set and a validation set using three different strategies: 

1. A stratified 5-fold cross-validation (Vehtari and Ojanen, 2012) was used where in each fold, a 

random subset of each social group (80% of the data) was utilized for model training, while the 

remaining records were for testing purpose. It maintains the same social group ratio throughout 

the five folds as the ratio in the original (entire) dataset. 

2. A block-by-social-group (5-fold) cross-validation was performed. In each fold, all records from 

randomly selected social groups that make up approximately 80% of the entire data were pooled 

and used for training purpose, while the remaining (validation data comprising 20% of the 

observations) set was from the left-out social groups that were not part of the training data. 

3. A block-by-focal-animals validation was proposed and run for five replicates. In this validation 

scenario, we selected seven animals from each group and used all their aggression records as both 

aggression givers and aggression receivers for the training set. The validation set contained only 

interactions between non-focal animals. This resembles a common way in which videos could be 

decoded; only some animals are followed and all their interactions with everyone else are 

decoded. Furthermore, by selecting seven focal animals per group, the resulting training set size 

was 78% of the entire data, while the remaining data (approximately 22% of all records) was used 
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for testing. This led to a similar set size for comparison to the other two model checking 

strategies. 

In each validation strategy, the model was fitted five times (for the five folds or replicates), and as part of 

the Bayesian model fit procedure, 500 MCMC samples were generated from the posterior predictive 

density. The posterior distribution of the generated samples was compared to the distribution of the 

observed dataset, where the response variables were transformed into a logarithm scale. To evaluate the 

predictive performance, Pearson correlation and root mean square error (RMSE) (Chai and Draxler, 2014) 

between the log-transformed (observed) response i.e. log(response+1) and the mean of log-transformed 

predicted response (linear predictors in Equation 2) in the validation set was computed across all 

validation scenarios. In addition, area under the ROC (Receiver Operating Characteristics) curve (Ling et 

al., 2003), also known as AUC, was computed to evaluate performance on the prediction of attack 

presence/absence . 

2.3 Ethical approval 

All animal protocols were approved by the Institutional Animal Care and Use Committee (Animal Use 

Form number 01/14-003-00). 

3. Results 

3.1 Estimation of animal-specific effects, dyad-specific effects, and (co)variance components 

Table 1 shows the posterior distributions of the individual animal effects and dyadic effects. The random 

dyad effect was not estimable (the model including the dyad effect did not converge; see appendix for 

details).The nursery mate experience (animals in a dyad knew each other from sharing the same nursery 

pen prior to being remixed into grow-finish pens) exhibited significant effects, reducing the probability of 

presenting attacks and, if attacks happened, reducing duration of them (𝛿′1 = 0.505, 𝑃 < 0.05; and 𝛿1 =

−0.501, 𝑃 < 0.05; Table 1). The estimates indicated that for the dyads where the pigs had nursery mate 
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experience, we would expect to see 65.7% increase of the odds of presenting no attacks; on the other 

hand, if the dyad did present attacks, pigs with nursery mate experience exhibited a 39.4% decrease in 

attacking duration. This means that if animal 𝑖 and animal 𝑗 were housed in the same nursery pen 

previously and then are remixed into a grow-finish pen, as might be expected under production 

conditions, they are less likely to attack each other and if they do attack each other, the length of attacking 

duration will be significantly shorter than the average attacking time of two animals who had not recently 

been housed together. The remaining animal-specific properties (weight of giver, weight of receiver, and 

sex) and dyad-specific attributes (whether the giver and the receiver were from the same litter) were not 

significant. 

Table 1. Estimated posterior statistics for fixed effects and (co)variance components explained on total 

attacking duration between the giver animal and the receiver animal. Q: quantile. 

The giver-receiver correlation was not significant for the Bernoulli sub-model (when estimating the 

probability of animal 𝑖 not presenting attacks to animal 𝑗; Table 1). On the other hand, a weak but 

significant correlation was obtained in the lognormal sub-model to analyze the attacking duration (𝜌𝑔𝑟 =

0.203, 𝑃 < 0.05). This means that when one pig spends more time delivering aggression this same pig 

will also receive longer attacks. 

3.2 Predictive performance in different validation strategies 

  𝑦𝑖𝑗𝑘 = 0  𝑦𝑖𝑗𝑘 > 0 

Parameter  Mean Q 2.5% Q 50% Q 97.5%  Mean Q 2.5% Q 50% Q 97.5% 

𝑠𝑒𝑥′, 𝑠𝑒𝑥  -0.083 -0.483 -0.085 0.312  -0.039 -0.162 -0.038 0.085 

𝛼′, 𝛼  Receiver weight 0.001 -0.011 0.001 0.013  -0.001 -0.008 -0.001 0.006 

𝛽′, 𝛽 Giver weight -0.008 -0.027 -0.008 0.012  -0.007 -0.017 -0.007 0.003 

𝜹′𝟏, 𝜹𝟏 Nursery mate 0.505 0.392 0.504 0.618  -0.501 -0.573 -0.501 -0.424 

𝛿′2, 𝛿2 Litter mate -0.170 -0.357 -0.171 0.015  -0.023 -0.139 -0.023 0.087 

𝜎′𝑔
2 , 𝜎𝑔

2 Giver variance 1.050 0.737 1.035 1.443  0.063 0.044 0.062 0.089 

𝜎′𝑟
2, 𝜎𝑟

2 Receiver variance 0.023 0.008 0.021 0.045  0.002 0.001 0.002 0.005 

𝜌′𝑔𝑟 , 𝝆𝒈𝒓 Giver-receiver correlation 0.155 -0.015 0.155 0.328  0.203 0.009 0.202 0.397 

𝜎′𝑠𝑔
2 , 𝜎𝑠𝑔

2  Social group variance 0.473 0.282 0.460 0.735  0.020 0.001 0.019 0.052 

𝜎2 Error variance - - - -  1.076 1.031 1.075 1.123 
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We assessed the fitted model through posterior predictive model checks by inspecting two important 

aspects of: 1) how well it predicted the probability of not having an attack, and 2) how well it predicted 

the mean duration of the attacks when they occur. 

Figure 3 presents the posterior predictive distribution of the probability of observing no attacks between 

animals (relative frequency of zeros). The distribution of the proportion of predicted zeros across multiple 

replicates of simulated data (lighter bins in Figure 3) was centered around the proportion of zeros in the 

observed response (dark solid lines in Figure 3). That is, regardless of training-validation data partitions, 

the estimated validation proportion fell well within the posterior predictive density in all validation 

strategies. 

Figure 3 Proportion of zeros of validation set y (dark lines), with proportions of zeros for 500 simulated 

datasets �̃� drawn from the posterior predictive distribution (lighter bins). A), the model that used all data 

points for model fitting to predict the same dataset; B) stratified 5-fold cross-validation; C) Block-by-

social-group cross-validation; D) 5 replicates of block-by-focal-animals validation. 

For each of the validation strategies, Figure 4 shows the distribution for the means of the simulated data 

(light bins) and the observed data (dark solid line). The response variables were transformed into a 

logarithm scale i.e., log(response+1). In general, the simulated data were consistent with the observed 
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data (no systematic lack-of-fit was observed). However, in the internal validation and block-by-focal-

animals validation, the mean duration of attacks was better approximated compared to when the stratified 

5-fold and block-by-social-group cross-validation approaches were used. 

Figure 4 Distribution for the mean value of all observations across replicates. Mean of the validation set y 

(dark solid line) is compared with the means of 500 simulated datasets ỹ drawn from the posterior 

predictive distribution (lighter bins). We compared the logarithm of the observed and the simulated 

variables i.e. log(y+1) and log(�̃� +1). A), the model that used all data points for model fitting to predict 

the same dataset; B) stratified 5-fold cross-validation; C) Block-by-social-group cross-validation; D) 5 

replicates of block-by-focal-animals validation. 

Correlation and RMSE of the log-transformed response and AUC for the prediction of presence/absence 

of attacks in the validation set were computed across all validation scenarios (Table 2). The metrics allow 

for comparison between different validation strategies. Compared to the internal validation (all the data 

were used for model fitting and for validation), the predictive performance of the stratified 5-fold cross-

validation, block-by-social-group cross-validation, and block-by-focal-animals validation showed much 

lower correlation and AUC, and larger RMSE (Table 2). Notably, the predictive performance in block-by-

social-group validation was consistently worse than the remaining ones. 
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Table 2. Metrics for evaluating predictive performance of the model under different validation strategies. 

AUC, area under ROC (Receiver Operating Characteristics) curve; RMSE, root mean square error; CV, 

cross-validation. 

 Pearson correlation AUC RMSE 

In-sample validation 0.595 0.826 1.173 

Stratified 5-fold CV 0.228 (SD±0.014) 0.653 (SD±0.017) 1.391 (SD±0.020) 

Block-by-social-group CV 0.115 (SD±0.023) 0.523 (SD±0.017) 1.422 (SD±0.023) 

Block-by-focal-animals validation 0.286 (SD±0.020) 0.532 (SD±0.013) 1.362 (SD±0.014) 

4. Discussion 

In this study, we have illustrated how to use GLMMs to analyze dyadic data from animal behavior studies 

that record interactions between animals in social groups. Through changing distributional assumptions 

and link functions, this approach can be easily adapted to analyses of categorical, ordinal, count, and 

continuous response types. Instead of modeling an individual animal’s response, the proposed model 

exhibits advantages of analyzing interactive behaviors of pairs of animals in terms of flexibility and 

interpretability. Furthermore, the inclusion of random and fixed effects specific to each giver, receiver, 

and dyad (when possible) contributes to partitioning the observed variance into interpretable components.  

Several approaches have been used in the analysis of animal behavioral interactions. A commonly used 

approach ignores the dyadic nature of the data and sums over rows or columns of an interaction matrix to 

simply obtain total time spent by each individual engaged in the behavior of interest (Figure 1a). 

Following this summation, linear models are used to study several sources of individual-level effects on 

the behavior of interest. We call this a ‘marginal analysis’ as it operates on the margin of the interaction 

matrix. For example, Savory and Mann (1997) studied the effects of genetic strain, age, and feeding 

pattern on aggressive pecking behavior of pullets, where for each individual the proportion of the 

aggressive behavior was computed (i.e., the total time of aggression was summed and divided by the 

length of observation period). Similarly, in two other studies (Turner et al., 2009, 2008), the authors 

recorded and treated the total duration of nonreciprocal aggression delivered and received by each 

individual pig as response variables, and they fitted linear mixed models to estimate additive genetic 
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effects on the marginal response. In addition, Verdon et al. (2018) studied aggressive behavior of sows 

where the unit of analysis was a group of sows. They counted the frequency of aggressive interactions 

from all possible pairs of animals within each group and fitted generalized mixed models to analyze the 

marginal response. A shortcoming of these analyses is that the effect of dyadic factors cannot be 

investigated. The proposed approach of this study allows the inclusion of both animal-level effects 

(marginal effects) as well as dyadic effects relevant to that particular pair of animals. For instance, we can 

add previous group- or littermate experience into the model for each dyad. In addition, genetics/genomics 

information of the giver and the receiver, as well as their genetic relationship, can be further included as 

an extensive form of our proposed model. 

Another common approach analyzes dyadic interactions as independent observations. Oldham et 

al. (2020) fitted a linear mixed model to investigate effects of characteristics of both pigs on the initiating 

pig’s latency to initiate agonistic behavior in a dyadic contest. This study was carefully designed and 

analyzed such that only one observation per animal and per contest (dyad) was available. This allowed the 

use of a simple linear model for the analysis. However, more precisely, dyads refer to relation of two 

individuals embedded in a social context (Kenny et al., 2020), while Oldham et al. (2020) manually 

selected paired pigs for contests instead of selecting dyads from a social context. In dyadic data extracted 

from multiple social groups with more than two individuals per group where each pig is exposed to 

multiple group mates, the assumption of independence between observations does hold i.e., the dyad is 

the fundamental unit of analysis (Kenny et al., 2020), and the proposed approach allows modeling the 

variances and co-variances of social groups, dyads, and individuals in a very straightforward way. For 

instance: we include the giver and receiver effects and account for their correlation. Thus, our proposed 

model is particularly useful for studying social interactions where animals are housed in multiple social 

groups over time. 

In addition to introducing a model for the analysis of dyadic data in studies of social animal behavior, this 

study yields valuable results for understanding factors that affect post-mixing aggression in growing pigs. 
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The results indicate that the giver explained more variation of the dyadic interaction than the receiver 

(Table 1). To the best of our knowledge, only one previous publication has used a GLMM to dissect the 

giver and receiver effects in animal behavior data (Wang et al 2022), however, they did not consider the 

inclusion of dyadic fixed effects or the inclusion of a dyad-level random effect. A related line of research 

used bivariate marginal models to study delivery and reception of non-reciprocal aggression (Turner et 

al., 2009, 2008). Interestingly, both studies found that delivery of aggression was more heritable than 

reception of aggression. This encourages further analyses with the dyadic model to tease apart genetic 

effects from environmental effects. 

One application in human behavioral ecology (Koster et al., 2015) proposed using GLMMs to perform 

dyadic analysis of food sharing between households and reported that the meal giver explained 75% of 

the variance components while the variance ratio of the meal receiver was 6%, which showed results 

quantitatively similar to ours. Given more complete datasets (with more observed variables of the 

interacting individuals), ethologists could further use the proposed dyadic model to dissect factors that 

may influence delivery of the behavior as well as the characteristics of the receiver that attract the 

behavior.  

In the context of post-mixing aggression in finishing pigs, we estimated the correlation between the 

random giver effect and the random receiver effect of the same individuals (Table 1). In a previously 

published marginal analysis of post-mixing aggression in pigs, the correlation between delivering and 

receiving non-reciprocal aggression did not differ significantly from zero (Turner et al., 2008). However, 

our model revealed a weak but significant correlation between the giver and receiver effects on the 

duration of the attacks. This means that animals which attack for longer duration also receive longer 

attacks themselves, and this could be a result of receiver animals defending themselves and striking back 

(i.e., receivers may use attacks as a form of defense) (Oldham et al., 2020). The aggregated data used in 

this study did not allow investigation of the sequences of attacks (as our dyadic data was defined as the 
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total aggression duration from a giver to a receiver), thus further work is needed to analyze heterogeneous 

and repeated measures of dyadic interactions over time. 

Interestingly, our model did not yield a significant effect of the bodyweight of giver or receiver on the 

occurrence or duration of attacks. It is worth mentioning that the goal of this study was not to investigate 

bodyweight effects of the giver and receiver on attacking duration. Our result for the bodyweight effect 

might be due to the limited variation in body size within the social groups of our study as we had 

deliberately mixed together animals of similar body size in the finishing groups. This could result in a 

non-significant effect of the animal weight given limited variation in those covariates. The literature on 

this matter (bodyweight effect) does not offer a definite conclusion regarding the effect of bodyweight on 

aggressive behaviors of pigs. In one study of aggressive contests between pigs (Oldham et al., 2020), 

neither the weight of the contest initiating pig nor the weight difference between the contestants 

significantly influenced the latency to initiate the aggression. This agrees with our findings on 

bodyweight effects. However, in another study of dyadic contests in pigs, the winner pigs were 

significantly heavier than the loser pigs (Camerlink et al., 2019). We need to point out that initiating an 

attack and winning a contest are different. Our result suggests that pigs might not be good at telling 

whether they were going to win or not when they decided to attack. Camerlink et al. (2015) also showed 

that between pairs of size-matched pigs, pigs which were more likely to be attackers were not more likely 

to be winners.  

The variance component of random dyad effect (the effect of giver-receiver relation; see Sections 2.1.2 

and 2.2.2) was not estimable in this study; however, we found that having shared nursery pens 

immediately before being mixed into grow-finish pens (a dyad-level covariate) showed a significant 

effect (𝑃<0.05; Table 1). This finding is confirmed in the literature, for instance, Li and Wang 

(2011) reported that unfamiliar pigs fought for longer durations and fought more frequently than familiar 

pigs, when pigs were remixed into new social groups. However, another dyadic level predictor (whether 
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the two pigs were previously housed together as a litter before weaning; the pigs were housed as a litter 

for approximately three weeks before introduced to nursery pens) was not significantly associated with 

delivery or duration of aggression. This hints at the fact that animals who once shared a social group 

several weeks prior to the mixing, even if they are related, are unlikely to remember each other. It is 

unclear how long pigs remember each other though a possible time range could be three to six weeks 

(Mendl et al., 2010). Since pigs in this study spent approximately seven weeks in nursery pens 

immediately before being remixed into grow-finish pens, it was possible that pigs did not recognize their 

initial littermates when re-introduced to them in grow-finish pens.  

In addition to the models presented in this study, we also evaluated other GLMMs, including log-Poisson, 

zero-inflated log-Poisson, Gaussian, and zero-inflated Gaussian. The posterior predictive checks 

conducted (results not shown) showed that the hurdle-Bernoulli model was the one that fitted the data 

better. The hurdle model did so by dissecting the trait into two components: the tendency of not 

delivering attacks and a second component of the attacking duration. The complexity of the model may 

limit its practical use as there are two correlated traits rather than one per animal that can be used for 

decision making. However, it is worth mentioning that other GLMMs may be adequate for other settings. 

In the companion GitHub (https://github.com/jun-jieh/DyadAnalysis), we provide simpler GLMMs that 

are more general and can be easily adapted. In addition, to check model fitting, the in-sample posterior 

predictive checking (predicting the data used for model fitting) suffices, but for studying the model’s 

ability to predict future data, out-of-sample validation (predicting observations left out of the model 

fitting process) should be used. 

Social interaction data has been recently used as predictors of other traits. For example, Turner et 

al. (2020) constructed play fighting social networks of pigs using dyadic interaction data and extracted 

individual level and network level traits to build prediction models for lesion score counts. In a different 

application, Angarita et al. (2019) proposed using the dyadic matrices of aggression duration between 

https://github.com/jun-jieh/DyadAnalysis
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pigs to parametrize social genetic effects of lesion scores. In these cases, the dyadic data (or its derived 

social network features) were used as a predictor rather than as a response variable. Nevertheless, the 

proposed predictive modeling of dyadic data could be used to add uncertainty to these applications. For 

instance, the internal and external validation (see Section 2.2.5 and Figures 3 and 4) used for model 

checking provides a natural way to resample plausible social interaction matrices that could be then 

subject to social network analysis or included in social genetic effects modeling. Moreover, obtaining the 

summation of all dyadic interaction of an animal as a giver (or receiver) allows for predicting individual-

level aggressiveness (or vulnerability), for instance, the marginal intensity as shown in Figure 1a. Such 

individual level phenotypes can be used for management and as traits in genetic evaluations. Further 

experiments could be designed to validate the early prediction of animal social behavior that can be 

further related to animal welfare and production traits. 

In this study, we considered several ways of splitting data for training (model fitting) and validation. 

Different validation scenarios (see Section 2.2.5) could be related to possible situations in real-life 

applications or relevant prediction problems (Burgueño et al., 2012). The stratified 5-fold cross-validation 

was designed for evaluation when the model was used for predicting unobserved (directional) social 

behaviors between two animals. The block-by-social-group validation mimicked a situation where the 

effects of giver, receiver, and dyad were evaluated in some social groups but not in others. Similarly, the 

block-by-focal-animals validation mimicked a situation when the giver, receiver, and dyad effects were 

modeled given records related to the focal animals but not for non-focal animals. 

The predictive performance of the fitted models varied depending on the validation strategies (Table 2). 

The block-by-social-group cross-validation yielded the lowest correlation. This could be the result of not 

accounting for factors affecting social group composition. In fact, Samarakone and Gonyou (2009) have 

suggested that pigs may shift their aggressive behaviors accordingly to the composition of their social 

groups. Consequently, this could be revisited in further analyses and experimental setups where more 

group-specific variables are recorded and included in the dyadic model. In short, animal behavioral 
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studies may consider introducing group-specific effects into the proposed model and exploring how these 

effects influence interactive behaviors.  

The block-by-focal-animals validation yielded a slightly higher correlation and smaller RMSE compared 

to the stratified 5-fold cross-validation (Table 2). The result suggests that selecting focal animals and 

decoding their interactions with all other animals in the group may be a more efficient way to build 

predictive models of dyadic interactions than randomly selecting snippets of video for decoding. This idea 

has also been suggested by ethologists (Bosholn and Anciães, 2018). Furthermore, a dyadic model could 

be fitted using preliminary data to determine which factors better predict animal interactions, and then 

focal animals could be selected based on the significant factors to cover a large variation in responses. 

Such sampling strategies could be useful for improved manual video decoding efficiency.  

5. Conclusion 

We proposed an approach for the analysis of animals’ social interactions based on modeling dyadic data. 

We illustrated its use through fitting a generalized linear model to total attacking time post-mixing 

between pairs of grow-finish pigs. Taking advantage of the flexibility and interpretability of the proposed 

model, we found that if two pigs had shared a common nursery pen immediately before being remixed 

into new social groups, they tended to spend less time engaging in the agonistic behavior. In addition, the 

positive correlation between the giver and receiver suggested that a pig that spent more time attacking 

was also more likely to be attacked for more time. The proposed model can be extended to incorporate 

additional giver-specific, receiver-specific, and dyad-specific effects. Moreover, we pursued alternative 

cross-validations and found that overlooking group-specific factors worsened the predictive performance 

of the proposed model. We also demonstrated that focusing on a fraction of all animals and decoding all 

their interactions with the remaining animals in the group is an effective way to perform inference and 

predictions on social interactions in the group while limiting the amount of time and effort dedicated to 

decoding video. 
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Appendix 

1. Implementation detail of the Bayesian approach 

In parameter estimation, marginal posterior distributions of the parameters were obtained using Markov 

chain Monte Carlo method through Stan program. We ran four chains of 15,000 iterations, where we set 

the burn-in (warmup) to 5,000 iterations and every 10th samples were saved in each chain. Convergence 

diagnostics and graphical posterior predictive checks were performed using rstan and bayesplot packages 

in R (R Core Team, 2020). In the following parts of the appendix, we first present the prior distributions 

that were used in this study. We then show trace plots and autocorrelation plots of the fitted model. In 

addition, the summary of convergence diagnostics for the model with random dyad effect are included at 

the end. In the companion GitHub (https://github.com/jun-jieh/DyadAnalysis) we provide examples for 

implementations of multiple GLMMs and their model fitting that utilized a Bayesian method through 

rstan package in R (Carpenter et al., 2017; R Core Team, 2020).  

2. Prior distributions of model parameters that are described in Section 2.2 

(
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𝜎~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,100) 

https://github.com/jun-jieh/DyadAnalysis
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𝑠𝑒𝑥′𝑘~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−10,10) 

𝑠𝑒𝑥𝑘~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−10,10) 

𝛼′~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−100,100) 

𝛼~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−100,100) 

𝛽′~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−100,100) 

𝛽~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−100,100) 

𝛿′1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−10,10) 

𝛿1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−10,10) 

𝛿′2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−10,10) 

𝛿2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−10,10) 

 

3.Trace plots of posterior estimates of effects and variance components 
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4. Autocorrelation plots by chain and by parameters 
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5. Trace plots of variance components when the random dyad effect is included in the model 
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6. Autocorrelation plots by chain and by variance components when the random dyad effect is 

included in the model 
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7. Summary of MCMC samples. Q, quantile; n_eff, effective sample size. 

Parameter mean sd Q2.5% Q50% Q97.5% n_eff Rhat 

𝑠𝑒𝑥 -0.038 0.063 -0.159 -0.038 0.088 3711.37 1.002 

𝛿1 -0.502 0.038 -0.574 -0.501 -0.427 4127.503 1.000 

𝛿2 -0.023 0.059 -0.14 -0.023 0.095 3887.644 1.000 

𝛼 -0.001 0.004 -0.009 -0.001 0.006 3316.333 1.000 

𝛽 -0.007 0.005 -0.018 -0.007 0.004 3820.173 1.000 

𝜎 1.006 0.018 0.973 1.005 1.042 35.164 1.102 

𝜎𝑠𝑔 0.134 0.048 0.030 0.135 0.223 954.933 1.000 

𝜎𝑑 0.245 0.066 0.076 0.258 0.340 17.190 1.232 

𝑠𝑒𝑥′ -0.096 0.218 -0.521 -0.094 0.337 3921.573 1.000 

𝛿′1 0.552 0.068 0.420 0.552 0.684 3572.37 1.000 

𝛿′2 -0.189 0.109 -0.402 -0.19 0.027 3438.372 1.001 

𝛼′ 0.001 0.007 -0.012 0.001 0.014 4097.341 1.000 

𝛽′ -0.009 0.011 -0.029 -0.009 0.012 3935.423 1.002 

𝜎′𝑠𝑔 0.749 0.094 0.584 0.744 0.954 3759.123 1.000 

𝜎′𝑑 0.697 0.079 0.548 0.697 0.855 266.248 1.004 

𝜎𝑟 0.047 0.011 0.026 0.047 0.071 1281.134 1.001 

𝜎′𝑟 0.173 0.039 0.103 0.172 0.253 1341.962 0.999 

𝜎𝑔 0.251 0.022 0.212 0.250 0.295 3503.677 0.999 

𝜎′𝑔 1.216 0.113 1.011 1.209 1.450 1264.305 1.001 

𝜌𝑔𝑟 0.147 0.107 -0.066 0.145 0.360 1322.434 1.008 

𝜌′𝑔𝑟  0.068 0.093 -0.12 0.071 0.244 2482.093 0.999 

lp__ -17317.6 1792.383 -19481.7 -17766.3 -11893.2 15.225 1.270 

 

 


