
Analysis of some Global Optimization

Algorithms for Space Trajectory Design

M. Vasile∗ and E. Minisci†

University of Glasgow, Glasgow, G12 8QQ, United Kingdom

M. Locatelli‡

Università degli Studi di Parma, Parma, 43124, Italy

In this paper, we analyze the performance of some global search algo-

rithms on a number of space trajectory design problems. A rigorous testing

procedure is introduced to measure the ability of an algorithm to identify

the set of ε-optimal solutions.

From the analysis of the test results, a novel algorithm is derived. The

development of the novel algorithm starts from the redefinition of some

evolutionary heuristics in the form of a discrete dynamical system. The

convergence properties of this discrete dynamical system are used to derive

a hybrid evolutionary algorithm that displays very good performance on

the particular class of problems presented in this paper.

Nomenclature

A Search algorithm

Ag Archive

CR Crossover probability

c Dissipation constant

c1, c2 Weighting parameters in Particle Swarm Optimization

D Search space

derr Confidence interval

∗Senior Lecturer, Aerospace Engineering, James Watt South Building, AIAA Member.
†Research Fellow, Aerospace Engineering, James Watt South Building.
‡Associate Professor, Dipartimento di Ingegneria Informatica, via G. P. Usberti, 181/A.

1 of 28

e Mask vector for the selection of solution vector components

f Objective function

F Amplification control factor in Differential Evolution

js Number of successful runs

J Transition matrix or mapping function in the search process

Mp Mutation probability

N Total number of function evaluations

NL Number of transfer legs

NP Number of planets

Np Normal distribution function

Nρ Neighborhood of a solution in the search space

n Total number of repeated runs

npop Size of the population P

nfeval Function evaluation counter

P Population

p Optimization problem

ps Success rate

r1, r2 Random numbers in Particle Swarm Optimization

rp Normalized radius of the pericenter

S Selection function

T Transfer time, day

t0 Departure time, MJD2000

u Control vector in the search process

v Variation of the solution vector or velocity in the search space

w Weighting factor

x Solution vector

xc Candidate point

xl Local minimum

α Position of a deep space manoeuvre as percentage of the transfer time

γ Attitude angle of the gravity assist hyperbola, km/s

∆ Variation of the objective function

∆v Variation in velocity, km/s

δ Escape declination, rad

δr Reduction in the objective value

ε Modulus of the difference between two solutions

θ Escape right ascension, rad

θp True proportion of success

2 of 28

ν Velocity limiting factor

ρ Size of the neighborhood Nρ

Subscript

h Subseries index counter

i, j Variable numbers

l Local search algorithm or local minimum

k Search process iteration number

Superscript

T Transpose

I. Introduction

In the last decade many authors have used global optimization techniques to find optimal

solutions to space trajectory design problems. Many different methods have been proposed

and tested on a variety of cases from pure Genetic Algorithms1–4 to Evolutionary Strategies

to Differential Evolution5 to hybrid methods.8 The general intent is to improve over the

pure grid or enumerative search. Sometimes the actual advantage of using a global method

is difficult to appreciate, in particular when stochastic techniques are used. On one hand,

a stochastic search provides a non-zero probability to find an optimal solution even with a

small number of function evaluations while on the other hand, the repeatability of the result

and therefore the reliability of the method can be questionable.

The first actual assessment of the suitability of global optimization methods to the solution

of space trajectory design problems can be found in two recent studies.6,7 The first study7

presented a small set of test problems mainly focusing on multiple gravity assist trajectories,

while the other6 included results for low-thrust transfers using a wide range of global opti-

mizers. One of the interesting outcomes of both studies was that Differential Evolution13

(DE), belonging to a subclass of Evolutionary Algorithms, performed particularly well on

most of the problems, compared to other methods. It should be noted that the application

of global methods to space trajectory problems often considers the problem as a black-box

with limited exploitation of problem characteristics. Ad hoc techniques however can exploit

problem characteristics,7 providing a sensible improvement over the direct application of

general purpose methods.

In this paper, a number of global search methods are tested on a selected set of space

trajectory problems. A rigorous testing procedure is proposed to identify the ability of an

algorithm to identify the set of ε-optimal solutions (i.e. the set of solutions in the criteria

space at distance ε from the expected global optimum).

3 of 28

The analysis of the results led to the identification of common patterns in the relationship

between solution method and problem features. From this, a hybrid algorithm was derived

that blends together some evolutionary heuristics with the basic search strategy of Monotonic

Basin Hopping16,17 (MBH). The new hybrid algorithm significantly improves the performance

of both standard DE and MBH on the class of problems presented in the paper.

II. Problem Description

We consider a benchmark comprised of four different test cases of increasing complexity: a

direct bi-impulsive transfer from the Earth to an asteroid, a transfer to Mars via a gravity

assist maneuver around Venus, and a multi-gravity assist transfer to Saturn both without,

and with mid-course manoeuvres. In all of these cases, the objective is to minimize the total

change in the velocity of the spacecraft due to all propelled maneuvers, or total ∆v.

A. Bi-impulsive Earth-Apophis Transfer

A simple but significant test case is to find the best launch date t0 and time of flight T to

transfer a spacecraft from the Earth to the asteroid Apophis (99942 MN4). The transfer is

computed as the solution of a Lambert’s problem.11 The objective function for this problem

is the sum of the change in departure velocity ∆v0 and arrival velocity ∆vf :

f(x) = ∆v0 +∆vf (1)

with the solution vector:

x = [t0, T]
T (2)

The search space D is a box defining the limits of the two components in the solution vector.

In particular, the launch date from the Earth was taken over the interval [3653, 10958]

MJD2000 (where MJD2000 measures the number of elapsed days since 01 January 2000),

and the time of flight was taken over the interval [50, 900] days.

The known best solution in D is fbest = 4.3746 km/s, with xbest = [10027.6216, 305.12163]T .

B. Earth-Venus-Mars Transfer with DSM’s

The second test case consists of a transfer from Earth to Mars with a gravity assist manoeuvre

at Venus and a deep-space manoeuvre (DSM) after Venus. This is the simplest instance of a

multi-gravity assist trajectory with deep-space manoeuvres (MGA-DSM). The MGA model

is taken from Vasile et al.9

Given NP planets and the number of legs of the trajectory NL = NP − 1, the model yields

4 of 28

the total ∆v to reach the destination given the solution vector:

x = [v0, θ, δ, t0, α1, T1, γ1, rp,1, α2, T2, ..., γi, rp,i, Ti−1, αi−1, ..., γNL−1, rp,NL−1, αNL
, TNL

] (3)

where t0 is the departure date, v0 is the asymptotic escape velocity, and θ and δ are:

θ =
θ

2π
δ =

cos(δ + π/2) + 1

2

The angles δ and θ are, respectively, the declination and right ascension of the escape velocity

with respect to a local reference. The local reference frame here has the x axis aligned with

the velocity vector of the planet, the z axis normal to orbital plane of the planet and the y

axis completing the coordinate frame. The variable Ti is the transfer time from one planet to

another, where αi is the fraction of the transfer time at which a deep space manoeuvre can

occur. The angle γi represents the attitude of the planetocentric hyperbola of the ith gravity

assist manoeuvre and rp,i, the ratio between the radius of its pericenter and the radius of

the planet.

With the model of Vasile et al.,9 the design of the multi-gravity assist transfer can be

transcribed into a general nonlinear programming problem, with simple box constraints, of

the form:

min
x∈D

f(x) (4)

For the tests in this paper, the objective function f(x) is:

f(x) = v0 +

Np∑
i=1

∆vi +∆vf (5)

where ∆vi is the velocity change due to the DSM in the ith leg, and ∆vf is the maneuver

needed to inject the spacecraft into the final orbit.

For a transfer to Mars via Venus, the solution vector in Eq. (3) has six parameters, or

dimensions. The initial velocity v0 with respect to the Earth is not a free parameter, but is

computed as the result of the Lambert’s problem for the Earth-Venus leg. Therefore we can

define the following reduced solution vector:

x = [t0, T1, γ1, rp,1, α2, T2] (6)

Since the initial velocity is not a free parameter, v0 is defined as the modulus of the vector

difference between the velocity of the Earth and the velocity of the spacecraft at time t0.

The final ∆vf is the ∆v needed to inject the spacecraft into an ideal operative orbit around

Mars, with a pericenter radius of 3950 km and an eccentricity of 0.98. This choice does

5 of 28

not alter the nature of the problem but scales down the contribution of the last impulsive

manoeuvre.

The search space D is defined by the following intervals: t0 ∈ [3650, 9129] MJD2000,

T1 ∈ [50, 400] d, γ1 ∈ [−π, π], rp,1 ∈ [1, 5], α2 ∈ [0.01, 0.9], T2 ∈ [50, 700] d. The

best known solution for this problem in the given search space D is fbest = 2.9811 km/s,

xbest = [4472.0133, 172.2893, 2.9784, 1, 0.5094, 697.6100]T .

C. Earth-Saturn Transfer

The third test is a multi gravity assist trajectory from the Earth to Saturn following the

sequence Earth-Venus-Venus-Earth-Jupiter-Saturn (EVVEJS). Gravity assist maneuvers are

modeled through a linked-conic approximation with powered maneuvers,7 i.e., the mismatch

in the outgoing velocity is compensated through a ∆v maneuver at the pericenter of the

gravity assist hyperbola for each planet. No deep space maneuvers are allowed, with each

planet-to-planet transfer computed as the solution of a Lambert’s problem. Therefore, the

whole trajectory is completely defined by the departure time t0 and the transfer time for

each leg Ti, with i = 1, ..., NP − 1.

The normalized radius of the pericenter rp,i of each swing-by hyperbola is derived a posteriori

once each powered swing-by manoeuvre is computed. Thus, a constraint on each pericenter

radius has to be introduced during the search for an optimal solution. In order to take into

account this constraint, the objective function is augmented with the weighted violation of

the constraints:

f(x) = ∆v0 +

Np−2∑
i=1

∆vi +∆vf +

Np−2∑
i=1

wi(rp,i − rpmin,i)
2 (7)

for a solution vector:

x = [t0, T1, T2, T3, T4, T5]
T (8)

The final ∆vf is the ∆v needed to inject the spacecraft into an ideal operative orbit around

Mars with a pericenter radius of 108950 km and an eccentricity of 0.98. The weighting

functions wi are defined as follows:

wi = 0.005[1− sign(rp,i − rpmin,i)], i = 1, ..., 3

w4 = 0.0005[1− sign(rp,4 − rpmin,4)]
(9)

with the minimum normalized pericenter radii rpmin,1 = 1.0496, rpmin,2 = 1.0496, rpmin,3 =

1.0627 and rpmin,4 = 9.3925. For this case the dimensionality of the problem is six, with the

search space D defined by the following intervals: t0 ∈ [−1000, 0]MJD2000, T1 ∈ [30, 400]d,

6 of 28

T2 ∈ [100, 470]d, T3 ∈ [30, 400]d, T4 ∈ [400, 2000]d, T5 ∈ [1000, 6000]d. The best known solu-

tion is fbest = 4.9307 km/s, with xbest = [−789.753, 158.2993, 449.3859, 54.7060, 1024.5896, 4552.7054]T .

D. Earth-Saturn Transfer with DSM’s

The fourth test case is also a multi gravity assist trajectory from the Earth to Saturn fol-

lowing the sequence Earth-Venus-Venus-Earth-Jupiter-Saturn (EVVEJS), but with a deep

space manoeuvre allowed during the transfer from one planet to another. Although from a

trajectory design point of view, this problem is similar to the third test case, the model is

substantially different and therefore represents a different problem from a global optimiza-

tion point of view. Since the transcription of the same problem into different mathematical

models can affect the search for the global optimum, it is interesting to analyze the behavior

of the same set of global optimization algorithms applied to two different transcriptions of

the same trajectory design problem.

The trajectory model is essentially the same as that presented for the second test case save

that ∆vf here, is the modulus of the vector difference between the velocity of the spacecraft

and the velocity of Saturn at arrival. For this case the dimensionality of the problem is

22, with the search space D defined by the following intervals: t0 ∈ [−1000, 0]MJD2000,

v0 ∈ [3, 5]km/s, θ̄ ∈ [0, 1], δ̄ ∈ [0, 1], T1 ∈ [100, 400]d, T2 ∈ [100, 500]d, T3 ∈ [30, 300]d,

T4 ∈ [400, 1600]d, T5 ∈ [800, 2200]d, α1 ∈ [0.01, 0.9], α2 ∈ [0.01, 0.9], α3 ∈ [0.01, 0.9],

α4 ∈ [0.01, 0.9], α5 ∈ [0.01, 0.9], rp,1 ∈ [1.05, 6], rp,2 ∈ [1.05, 6], rp,3 ∈ [1.15, 6.5], rp,4 ∈
[1.7, 291], γ1 ∈ [0, 2π], γ2 ∈ [0, 2π], γ3 ∈ [0, 2π], γ4 ∈ [0, 2π],. The best known solution is

fbest = 8.3889 km/s, xbest=[-780.9179, 3.2753, 0.7825, 0.3787, 169.1319, 424.1324, 53.2965,

589.7383, 2199.9865, 0.7958, 0.5301, 0.1260, 0.0106, 0.0382, 1.3556, 1.0500, 1.3070, 71.3749,

3.1584, 3.5304, 3.1256, 3.0842]T .

Note that prior to running each test, we normalized the search space for each of the trajectory

models so that D is a unit hypercube with each component of the solution vector belonging

to the interval [0,1].

III. Optimization Algorithm Description

We tested five stochastic global search algorithms: Differential Evolution (DE) and Genetic

Algorithms (GA) that belong to the generic class of Evolutionary Algorithms (EA), Particle

Swarm Optimization (PSO) that belongs to the class of agent-based algorithms, and Multi-

start (MS) and Monotonic Basin Hopping (MBH) that are based on multiple local searches

with a gradient method.

7 of 28

1. Genetic Algorithms

Genetic Algorithms14 (GA) are stochastic search methods that take their inspiration from

natural selection and ‘survival of the fittest’ in the biological world. Each iteration of a

GA involves a competitive selection that eliminates poor solutions. The solutions with a

high level of fitness are recombined with other solutions by swapping parts of one solution

with those from another. Solutions are also mutated by making a small change to a single

element, or a small number of elements, of the solution. Recombination and mutation are

used to generate new solutions that are biased towards regions of the search space for which

good solutions have already been discovered.

In the following tests, we use the Matlab Genetic Algorithm Toolbox GATBX.24 Only the

influence of the population size was considered; specifically 100, 200 and 400 individuals

for the bi-impulse test case and 200, 400 and 600 individuals for the other three cases.

Single values were used for the crossover and mutation probability, Cr = 0.5 and Mp =

1/d respectively, where d denotes the dimension of the problem. In the following, GA are

identified by the population size, for example GA100 stands for Genetic Algorithms with

100 individuals. The crossover and mutation probabilities are the default values suggested

for the use of the toolbox.

2. Differential Evolution

The main idea behind Differential Evolution13 (DE) is to generate the variation vector vi,k+1

of a solution vector xi,k+1 by taking the weighted difference between two additional solution

vectors, randomly chosen within a population of solutions, and to add that difference to the

vector difference between xi,k and a third solution vector:

vi,k+1 = e [(xi3,k − xi,k) + F (xi2,k − xi1,k)] (10)

where i1 and i2 are integer numbers randomly chosen within the interval [1, npop] ⊂ N of

indices of the population, and e is a mask containing a random set of 0’s and 1’s according

to:

e(j) =





1 ⇒ r ≤ CR

0 ⇒ r > CR

(11)

where j = 1, ..., n. The value for r is taken from a random uniform distribution r ∈ U [0, 1]

and CR a constant. The index i3 can be chosen at random (exploration strategy) or can be

the index of the best solution vector xbest (convergence strategy). Selecting the best solution

vector versus a random one significantly changes the convergence speed of the algorithm.

The selection process is generally deterministic and simply preserves the variation of xi,k

8 of 28

only if f(xi,k + vi,k+1) < f(xi,k).

We considered six different settings for the DE resulting from combining: three sets of

populations [5 d, 10 d, 20 d] where d is the dimensionality of the problem, and two strategies

(convergence and explore). The step-size and crossover probability, F = 0.75 and CR = 0.8

respectively, were taken based on those in common use. In the following, the six settings

will be denoted by DE5c, DE10c, DE20c for the ones using the convergence strategy and by

DE5e, DE10e, DE20e for the ones using the exploration strategy.

3. Particle Swarm Optimization

Particle swarm optimization12 (PSO) is a population based stochastic optimization technique

developed by Eberhart and Kennedy in 1995, and was inspired by the social behavior of bird

flocking or fish schooling. In PSO the potential solutions, called particles, ‘fly’ through the

problem space by following the current optimum particles. Each particle keeps track of its

coordinates in the problem space, which are associated with the best solution it has achieved

so far. The particle swarm optimization concept consists of changing the velocity of each

particle i at each iteration according to the close-loop control mechanism:

vi,k+1 = wvi,k + ui,k (12)

where w is a weighting function, that in this implementation is proportional to the number

of iterations k,

w = [0.4 + 0.8(kmax − k)/(kmax − 1)] (13)

The control ui,k has the form:

ui,k = c1r1(xgi,k − xi,k) + c2r2(xgo,k − xi,k) (14)

where xgi,k is the position of the best solution found by particle i (individualistic component)

and xgo,k is the position of the best particle in the swarm (social component), with random

numbers r1, r2 and coefficients c1, c2 used to weight the social and individualistic components.

The position of a particle in the search space is then:

xi,k+1 = xi,k + νvi,k+1 (15)

with

ν = min ([vmax, vi,k+1]) /vi,k+1 (16)

Eq. (16) represents a limit sphere around the point xi,k at stage k of the search process. The

search is continued until a stopping criterion is satisfied.

9 of 28

The process has two stochastic components given by the two random numbers r1 and r2.

The term c1r1(xgi,k − xi,k) is an elastic component that tends to recall the particle back to

its old position. The term c2r1(xgo,k − xi,k) instead is driving the whole population toward

convergence. There is no selection mechanism.

For the PSO algorithm, nine different settings were considered, resulting from the combina-

tion of: three sets of population [5 d, 10 d, 20 d], three values for the maximum velocity bound

vmax ∈ [0.5, 0.7, 0.9], and single values for weights c1 = 1 and c2 = 2. In the following, the

three population sets will be denoted by PSO5, PSO10, PSO20, with two additional digits

appended to identify the value of the vmax, for example PSO505 is the PSO algorithm with

5d particles and a limit on the max velocity vmax = 0.5.

4. Multi-Start

The simple idea behind multi-start (MS) algorithms is to pick a number of points in the

search space and start a local search from each one of them. The local search can be

performed with a gradient method. For the following tests, points were selected randomly

following a Latin Hypercube distribution.

5. Monotonic Basin Hopping

Monotonic Basin Hopping (MBH) was first applied to molecular conformation problems,16,17

and later extended to more general global optimization problems.18,19 In its basic version

it is quite similar to MS in that it is based on multiple local searches. The only difference

is the distribution of the starting points for local searches: while in MS these are randomly

generated over the whole feasible region, in MBH they are generated in a neighborhood Nρ(x)

of the current best local minimizer x. The parameter ρ controls the size of the neighborhood;

its choice is essential to the performance of the algorithm. Too low a value causes the points

to be generated only within the basin of attraction of the current local minimizer; too large

a value would causes MBH to behave like MS. A careful choice of ρ can lead to results which

strongly outperform those of MS in spite of the strong similarity between the two algorithms.

In this work, Nρ(x) is a hypercube with edge length 2ρ centered at x. All test cases were

performed with ρ = 0.1.

The MBH scheme used to compute the results in this paper is summarized in Algorithm 1.

IV. Testing Procedure

In this section we describe a rigorous testing procedure that can be used to assess the

performance of a given algorithm.

10 of 28

Algorithm 1 MBH

1: Select a point y in the solution space D;
2: Run a local optimizer Al from y and let x be the detected local minimum.
3: Set nfeval = nfeval+eval, where eval denotes the number of function evaluations required

by the local search.
4: Select a candidate point xc ∈ Nρ(x)
5: Run a local optimizer Al from xc and let xl be the local minimum found by Al

6: Update nfeval = nfeval + eval
7: if f(xl) < f(x) then
8: x ← xl

9: end if
10: Termination Unless nfeval ≥ nfevalmax, goto Step 4

In theory, given a limited computational effort, we would like to know the probability that

an optimization algorithm A finds the global optimum of a given problem p. However, such a

probability does not necessarily converge to 1, even for an infinite computational effort, if the

algorithm is not globally convergent. Furthermore, the global optimum might be unknown.

Thus, in practice, what we would like to know is the probability that, for a given compu-

tational effort, an algorithm finds solutions with a value of the objective function below an

arbitrary threshold. In the specific case of space trajectory design, the threshold can be de-

rived from the mission requirements, e.g., do not exceed a given total ∆v. Finding the set of

solutions below a given threshold is practically more useful than finding the global optimum,

as the set defines one or more launch windows rather than a single launch opportunity.

If the number of function evaluations is used to quantify the computational effort, and an

algorithm can generate, at each iteration, a solution with strictly positive probability within:

Dε = {x ∈ D|f(x) < f(xglobal) + ε} (17)

for any ε > 0, then, for the number of function evaluations that goes to infinity, the algorithm

converges to the global optimum with probability 1 (e.g., see the works of Rudolph 22 and

Pinter 23 on the convergence of stochastic algorithms).

We can now define a procedure, summarized in Algorithm 2, to assess the ability of an

algorithm to generate solutions in Dε.

Given an algorithm A and a problem p, apply A to p, n times for a fixed number of function

evaluations Nk; register the quantity φ(Nk, i), which is the minimum function value found

by the ith run of algorithm A applied to p for the number of function evaluations Nk;

register the number of times, js,k, the quantity φ(Nk, i) is below the threshold tolf ; repeat

for Nk = N1, ..., Nmax.

In the following tests, the threshold tolf is defined as tolf = f(xbest) + ε where xbest is the

11 of 28

Algorithm 2 Testing Procedure

1: define the set {N1, N2, ..., Nk, ..., Nmax}
2: for all Nk ∈ {N1, ..., Nmax} do
3: apply A to p for n times
4: set js,k = 0
5: for all i ∈ {1, ..., n} do
6: compute φ(Nk, i)
7: if (φ(Nk, i) < tolf) then js,k = js,k + 1
8: end if
9: end for
10: end for

best known solution to a given problem. If during the tests a better solution is found, xbest

is updated. Therefore, if an algorithm is globally convergent, xbest will eventually become

the global optimum for Nmax → ∞. If an algorithm is not globally convergent, we assess its

ability to generate solutions with a function value at an arbitrary distance tolf − f(xglobal)

from the global optimum.

The procedure described in Algorithm 2 only considers the computational cost to evaluate

f , not the intrinsic computational cost of A. The intrinsic cost of A is related to its com-

plexity and the number of pieces of information A is handling, and varies from algorithm to

algorithm. Here we assume that the computational effort of the algorithms is dominated by

the function evaluation and, therefore, we do not take into account the intrinsic cost.

The quantity js is the number of successes, and is used to define the success rate ps = js/n.

Properly defining the value of n is a key point, for example too low a value of n means there

are an insufficient number of samples to allow for proper statistics. A proper value for n

should produce little or no fluctuations on the estimated value of ps, i.e., by increasing n the

value of ps should remain constant, or with only a small variation. The fluctuation of the

success rate can be represented by a binomial probability density function (pdf), independent

of the number of function evaluations, problem or type of optimization algorithm. This last

characteristic implies that the test can be designed fixing a priori the number of runs n on

the basis of the acceptable error on the estimation of the success rate. A typical starting

point to determine the sample size for a binomial distribution is to assume that: the sample

proportion ps of successes (the success rate for a given n in our case) can be approximated

with a normal distribution, i.e. ps ∼ Np{θp, θp(1 − θp)/n}, where θp is the unknown true

proportion of successes, and that the probability of ps to be at distance derr from θp is at

least 1− αb. This leads to the expression:10

n ≥ θp(1− θp)χ
2
(1),αb

/d2err (18)

12 of 28

where χ2
(1),αb

is the χ2 distribution function with 1 degree of freedom and computed at αb.

From Eq. (18) it is possible to derive the conservative rule:

n ≥ 0.25χ2
(1),αb

/d2err (19)

obtained if θp = 0.5. For our tests we required an error derr = 0.05 with a 95% confidence

(αb = 0.05), which, according to Eq. (19), yields n ≥ 176. This was extended to 200 for all

the tests in order to have a higher confidence in the result.

Fig. 1 shows the variation of the success rate as a function of n for the case of PSO applied

to the solution of the bi-impulsive case. For n ≤ 50, the success rate is oscillating and the

confidence in the estimated value is poor. Increasing the number of runs to 200 gives a more

stable value within the required confidence interval.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Number of runs

S
uc

ce
ss

 R
at

e

PSO509, 3000 function evaluations, bi−impulsive case

(a)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Number of runs

S
uc

ce
ss

 R
at

e

PSO509, 5000 function evaluations, bi−impulsive case

(b)

Figure 1. The influence of sample size. The success rate is shown as function of the number of
runs for the PSO applied to the solution of the bi-impulsive case: a) 3000 function evaluations,
b) 5000 function evaluations.

A recent example of the use of the success rate can be found in the work of Olds and Kluewer,5

where the authors use the success rate to assess the performance of Differential Evolution.

They propose using 1000 runs in order to have an acceptable sample. According to the theory

presented in this section, the confidence interval for 1000 runs would be derr = 0.020857,

which is confirmed by the good reproducibility of the results, testified by Olds and Kluewer.

13 of 28

A. Test Results

The results of the tests are summarized in Table 1, where the success rate (in percentage)

is given for each of the 20 settings of the five stochastic solvers. The test cases are num-

bered: 1) bi-impulsive Earth-Apophis case (EA), 2) Earth-Venus-Mars transfer (EVM), 3)

Earth-Venus-Venus-Earth-Jupiter-Saturn case with no DSM’s (EVVEJS), 4) Earth-Venus-

Venus-Earth-Jupiter-Saturn case with DSM’s (EVVEJSDSM). The results in the table were

computed for the maximum number of function evaluations for each of the tested cases.

In particular, n = 5000 for the bi-impulsive case, 105 for the EVM case, 4 × 105 for the

EVVEJS case with no DSM’s and 1.25×106 for the EVVEJS case with DSM’s. To compute

the success rate, the following tolf values were used: 4.3756 km/s for EA, 3 km/s for EVM,

5 km/s for EVVEJS and 8.5 km/s for EVVEJSDSM.

For both the EA and EVM cases, the algorithms DE10e and DE20e perform better than the

other evolutionary algorithms, while algorithms GA100/200-GA200/400-GA400/600 appear

to be the worst performing ones. Due to the binomial nature of the success and the adopted

sample size, it is not possible to discriminate between algorithms for which difference in

success rate is smaller than the expected error derr. For example, algorithm DE20c and

DE5c are considered to be equivalent to the algorithms PSO1007, PSO509. For the same

reason, we can say that among the PSOs tested, PSO1007 and PSO509 perform better than

PSO1005, while the remaining PSO algorithms all function at the same level.

Table 1. Success rate (in %) for the 20 algorithms on the four test cases.

Problem DE5c DE10c DE20c DE5e DE10e DE20e PSO505 PSO1005 PSO2005 PSO507

1 14 30 35 45 77 85.5 35.5 34.5 41 39.5

2 5 5 5 15 25 37 4 3.5 8 4.5

3 2 0.5 1.5 0 0 0 0 0.5 0 0

4 1.5 1 0.5 0 0 0 0 0 0 0

PSO1007 PSO2007 PSO509 PSO1009 PSO2009 GA100/200 GA200/400 GA400/600 MS MBH

1 42.5 41 43.5 38.5 42 16 24 10.5 93 46.5

2 6 5.5 3.5 7 7.5 0.5 1 3.5 62.5 69.5

3 0 0 0 0 0 0 0 0.5 7 46.5

4 0 0 0 0 0 0 0 0 0.5 24

MS and MBH show remarkable performance in all the test cases, with the simple MS winning

over all others in the EA case. For the EVVEJS case, all the algorithms but MBH appear

practically unsuccessful. MBH is the only algorithm that can be practically used for this

problem, with a success rate of 46.5%. The same happens for EVVEJSDSM case, when

MBH is able to find the values below the threshold with a success rate of 24%.

In order to solve for uncertainty conditions, e.g., when the success rate appears uniformly

14 of 28

null, relaxing the tolf value can be useful, as seen in Table 2.

Table 2. Successes rate (in %) for the 20 algorithms on the EVVEJSDSM test-case, with the
threshold varying from 8.5 to 9.0 km/s

tolf DE5c DE10c DE20c DE5e DE10e DE20e PSO505 PSO1005 PSO2005 PSO507

8.5 km/s 1.5 1 0.5 0 0 0 0 0 0 0

8.6 km/s 2.5 1 2.5 0 0 0 0 0 0 0

8.7 km/s 7 5 6.5 0 0 0 0 0 0 0

8.8 km/s 8 6 2 6.5 0 0 0 0 0 0

8.9 km/s 8 6 5 7 0 0 0 0 0 0

9.0 km/s 8 6 6 7 0 0 0 0 0 0

PSO1007 PSO2007 PSO509 PSO1009 PSO2009 GA100/200 GA200/400 GA300/600 MS MBH

8.5 km/s 0 0 0 0 0 0 0 0 0.5 24

8.6 km/s 0 0 0 0 0 0 0 0 1.5 31.5

8.7 km/s 0 0 0 0 0 0 0 0 7 45

8.8 km/s 0 0 0 0 0 0 0 0 11 47

8.9 km/s 0 0 0 0 0 0 0 0 14 47.5

9.0 km/s 0 0 0 0 0 0 0 0 15.5 48.5

For the EVVEJSDSM case, raising the success threshold from 8.5 to 9 (see Table 2) identifies

MBH and MS as the only algorithms practically able to find good solutions for this problem.

However the results do not give any useful information in order to discriminate among the

other algorithms. The DE’s (particularly the DEc series) are able to find solutions with an

objective value below 9 as well, but the success rate is so low that they cannot be considered

useful to solve this problem.

B. Analysis of the Results

The collection of results from the tests can be used to deduce some properties of the problems

within the benchmark and to predict the behavior of the solution algorithms. An under-

standing of the characteristics of the benchmark is required to generalize the result of the

tests. In fact, any consideration on the performance of an algorithm is applicable only to

problems with similar characteristics.

All local minima found in all the tests by the applied global methods were grouped according

to the value of their objective function. Specifically, the range of values of the objective

function for each test was divided in a finite number of levels, with each group of minima

associated to a particular level.

Fig. 2 represents the distribution of the best function values returned by an optimization

algorithm over 200 runs in a typical case: PSO applied to the EVM problem. The same

figure represents also a Gaussian distribution with the mean and variance values equal to the

15 of 28

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f

pd
f

PSO1009, 100000 function evluations, EVM case

Discrete

Gaussian

Figure 2. Probability density function for PSO applied to the solution of the EVM case:
discrete vs. Gaussian (dashed) distribution.

mean and variance value of all the best function values. As it can be seen, the distribution

is not Gaussian. Therefore, the average value can be far away from the results returned

with a higher frequency from a given algorithm. In the same way, the variance is not a

good indicator of the quality of the algorithm because a high variance together with a high

mean value can correspond to the case in which 50% of the results are close to the global

optimum with the other 50% far from it. Statistical tests, such as the t-test, that assume a

Gaussian distribution of the sample can not be applied to correctly predict the behavior of

an algorithm.

As a second step, we computed the average value of the relative distance of each local

minimum with respect to all other local minima within the same level dil (or intra-level

distance), and the average value of the relative distance of each local minimum with respect

to all other local minima in the lower level dtl (or trans-level distance). The dtl for the lowest

level is the average distance with respect to the best known solution.

The values dil and dtl give an immediate representation of the diversity of the local minima

and the probability of a transition from one level to another. More precisely, a cluster

of minima with a large intra-level distance and a small trans-level distance suggests an

easy transition to lower values of the objective function and a possible underlying funnel

structure.17 In particular in the case of funnel structures, the values of dtl and dil should

progressively go to zero. A dil that does not go to zero or clusters with different values of dtl,

are the cue to a possible underlying multi-funnel structure. Fig. 3 provide two illustrative

examples. Fig. 3(a) represents a single funnel structure with five local minima xl,i where

16 of 28

(a) (b)

Figure 3. One dimensional example of a) single funnel structure and b) bi-funnel structure.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d
tl

d il

level−1; f <4.4
level−2; f <5
level−3; f <7.5
level−4; f <10
level−5; f <15

(a)

0 0.5 1 1.5 2
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

d
tl

d il

level−1; f <3.5
level−2; f <4
level−3; f <4.5
level−4; f <5
level−5; f <5.5
level−6; f <7.5

(b)

Figure 4. Relative distance of the local minima for a) the bi-impulsive and b) the EVM case.

i = 1, ..., 5, and three levels. The intra-level distance at level 2, given by the distance

d24 = xl,2−xl,4, is lower than d15 = xl,1−xl,5, the intra-level distance at level 1. The same is

true for the trans-level distance at level 2, d23, which is lower than the trans-level distance at

level 1, (d12 + d14)/2, for minimum xl,1. Fig. 3(b), instead, represents a bi-funnel structure.

17 of 28

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

d
tl

d il

level−1; f <5
level−2; f <5.5
level−3; f <7.5
level−4; f <10
level−5; f <15
level−6; f <20

(a)

0 0.5 1 1.5 2 2.5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

d
tl

d il

level−1; f <8.6
level−2; f <9
level−3; f <9.5
level−4; f <10
level−5; f <15
level−6; f <20

(b)

Figure 5. Relative distance of the local minima for the EVVEJS: a) without DSM’s and b)
with DSM’s.

In this case, the minima around xl,6 have an average intra-level distance lower than xl,2 but

a trans-level distance d63 much larger than d23. Thus, the two minima xl,2 and xl,6 will

appear on the dtl-dil graph with different values of dil and dtl. If the threshold of level 3 was

increased above the objective value of xl,6, then all minima of level 2 would have similar dtl,

but the dil at level 3 would not go to zero.

This analysis method is an extension of the work of Reeves and Yamada,21 and is used

to concisely visualize the distribution of the local minima. The definition of the levels

depends on the groups of minima of interest, and can be derived from mission constraints

or by an arbitrary subdivision of the range of values of the objective function. Different

subdivisions reveal different characteristics of the search space but give only equivalent cues

on the transition probability.

Fig. 4(a) reveals that for the bi-impulsive case the minima are quite spread out. The EVM

case in Fig. 4(b), instead, appears to have an almost continuous distribution of minima,

although the minima of one level appear to be quite distant from the minima of the lower

levels.

Fig. 5(a) seems to suggest that the problem has a structure similar to the one in Fig. 3(b),

with the minima at level 5 belonging to two distinct clusters with substantially different dtl

and dil. The clusters, corresponding to levels 1, 2 and 3, have values of dtl and dil both lower

than 0.2, which suggests an easy transition from one level to an another. Thus, below an

18 of 28

objective function of 7.5 km/s there seems to be an underlying single funnel structure. Note

that an easy transition among levels favors the search mechanism of MBH as demonstrated

by the test results.

Fig. 5(b) shows that both dtl and dil progressively tend towards zero, up to a certain point,

after which dtl goes to zero while dil remains almost unchanged. The figure suggests that,

in the EVVESJ case with DSM, there is a single funnel structure for function values above

8.6 km/s, while below the minima are scattered and distant from each other.

V. A Dynamical System Perspective

The results in the previous sections suggest that the heuristics implemented in MBH are

particularly effective on the set of tested problems compared to the evolutionary heuristics.

MBH seems to exploit the funnel structures revealed by the dtl-dil graph. Therefore it is

expected that on similar structures, the tested evolutionary algorithms will perform better

if hybridized with the heuristics in MBH.

MBH is based on a Newton (or quasi-Newton) method for local minimization and on a

restart of the search within a neighborhood Nρ of a local minimum. We can view such local

optimization methods as dynamical systems, where the evolution of the systems at each iter-

ation is controlled by some map. Under suitable assumptions, the systems converge to a fixed

point. For instance, if f is convex and C2 is in a small enough domain Dk containing a local

minimum which satisfies some regularity conditions, Newton’s map converges quadratically

to a single fixed point (the local minimum) in Dk.

Both DE and PSO can be rewritten in a compact form as a discrete dynamical system:

vi,k+1 = (1− c)vi,k + ui,k

xi,k+1 = xi,k + νS(xi,k + vi,k+1)vi,k+1

(20)

where the control ui,k defines the next point that will be sampled for each one of the existing

points in the solution space, the vectors xi,k and vi,k define the current state of a point in the

solution space at stage k of the search process, and c is a viscosity, or dissipative coefficient,

for the process. The value ν is given in Eq. (16).

In addition to Eq. (20), each optimization algorithm has heuristics responsible for selecting

the new candidate points generated with ui,k. The binary selection operator is expressed

through the function S(xi,k+vi,k+1) which can be either 1 if the candidate point is accepted

or 0 if it is not accepted.

Differential Evolution, in its basic form, has ui,k defined by Eq. (10), viscosity c = 1 and

19 of 28

vmax = +∞. Therefore, we have the reduced map:

xi,k+1 = xi,k + S(xi,k + ui,k)ui,k (21)

or in matrix form for the entire population, xk+1 = Jkxk.

Map (20) allows for a number of considerations on the evolution of the search process and

therefore on the properties of the global optimization algorithm. In particular, the map can

either: diverge to infinity, in this case the discrete dynamical system is unstable, the global

optimization algorithm is not convergent; converge to a fixed point in D, in this case we

can define a stopping criterion together with a restart procedure; converge to a limit cycle

in which the same points in D are re-sampled periodically, even in this case we can define

a stopping criterion and a restart procedure; or converge to a strange (chaotic) attractor, in

this case a stopping criterion cannot be clearly defined because different points are sampled

at different iterations.

Now, we can try to combine the properties of map (21) with MBH. In particular, the aim is

to improve the performance of some of the tested evolutionary algorithms and at the same

time to: drop the requirement for the continuity and differentiability of f required for MBH;

automatically reduce the size of the region in which a candidate point is generated (the

basic version of MBH has a constant size of Nρ) and perform not only a local exploration

of the neighborhood, but also a global one. In order to hybridize map (21) with MBH we

need to demonstrate that it converges to a fixed point in Dk. We start by observing that if

S(xk + uk) = 1 ⇔ f(xk + uk) < f(xk), then the global minimizer xg ∈ D, if unique, is a

fixed point for map (21) since every other point x ∈ D is such that f(x) > f(xg).

Then, let us assume that at every iteration k we can find two connected subsets of D, Dk

and D∗
k, such that f(xk) < f(x∗

k),∀xk ∈ Dk, ∀x∗
k ∈ D∗

k \ Dk, and let us also assume that

Pk ⊆ Dk while Pk+1 ⊆ D∗
k (recall that Pk and Pk+1 denote the populations at iteration k and

k + 1 respectively). If xl is the lowest local minimum in Dk, then xl is a fixed point in Dk

for (21). In fact, every point generated by (21) must be in Dk and f(xl) < f(x), ∀x ∈ Dk.

Furthermore, if for every k, Pk ⊆ Dk and Pk+1 ⊆ D∗
k, then the reciprocal distance of the

individuals cannot grow indefinitely because of the selection operator S, and the map cannot

diverge.

Now, if we assume that the function f is strictly quasi-convex20 in Dk (i.e. in a local region

of D), we can prove that map (21) converges to a fixed point in Dk. It is worth underlining

that, although the problem is not convex over the whole search space D, it can be assumed

locally convex or quasi-convex under mild regularity assumptions which, according to our

experiments, appear to be satisfied. The first step to proving the convergence of map (21) is

to note that if f is continuous and strictly quasi-convex on a compact set Dk, the following

20 of 28

minimization problem with F ∈ (0, 1) has a strictly positive minimum value δr(ε):

δr(ε) = min g(x1,x2) = f(x2)− f(Fx1 + (1− F)x2)

s.t. x1,x2 ∈ Dk

‖x1 − x2‖ ≥ ε

f(x1) ≤ f(x2)

(22)

In fact, since f is strictly quasi-convex g(x1, x2) > 0, ∀x1, x2 ∈ Dk. Furthermore, the

feasible region is compact and, therefore, according to Weierstrass’ theorem, the function g

attains its minimum value over the feasible region. If we denote the global minimum point

of the problem by (x∗
1,x

∗
2), then we have

δr(ε) = g(x∗
1,x

∗
2) > 0. (23)

We can now say that, given a function f that is strictly quasi-convex overDk and a population

Pk ∈ Dk, then if F ∈ (0, 1) and S(xk + uk) = 1 ⇔ f(xk + uk) < f(xk), the population Pk

converges to a fixed point in Dk for k → ∞.

We propose two distinct proofs for this statement. The first proof requires the additional

assumption that the population always has an individual xj,k that is strictly better than the

others, i.e. f(xj,k) < f(xi,k) for any i 6= j. In this case at each iteration k, map (21) can

generate, a displacement (xj,k−xi,k) for all members of the population with a strictly positive

probability. This means that at each iteration we have a strictly positive probability that

the whole population collapses into a single point. Then, for k → ∞ the whole population

collapses to a single point with a probability of one.

The second, more general, proof is the following. By contradiction, let us assume that we

do not have convergence to a fixed point. Then, it must hold that:

inf
k
max

{ ‖xi,k − xj,k‖ , i, j ∈ [1, ..., npop]
} ≥ ε > 0 (24)

At every generation k the map can generate, with a strictly positive probability, a displace-

ment F (xi∗,k−xj∗,k), where i
∗ and j∗ identify the individuals with the maximal reciprocal dis-

tance, such that the candidate point is xcand = Fxi∗,k+(1−F)xj∗,k with f(xi∗,k) ≤ f(xj∗,k).

Since the function f is strictly quasi-convex, the candidate point is certainly better than

xj∗,k and, therefore, is accepted by S. Now, in view of Eq. (24) and the solution to problem

(22) we must have that

f(xcand) ≤ f(xj,k)− δr(ε). (25)

Such a reduction will occur with a probability of one infinitely often, and consequently the

21 of 28

function value of at least one individual will be, with a probability of one, reduced by δr(ε)

infinitely often. In this way, however, the value of the objective function of such an individual

would diverge to −∞, which is a contradiction because f is bounded from below over the

compact set Dk.

In particular, the above result shows that at each iteration, when the population of DE lies in

the neighborhood of a local minimum satisfying some regularity assumption (e.g., the Hessian

at the local minimum is definite positive, implying strict convexity in the neighborhood),

then DE will converge to a fixed point. For general functions, we cannot always guarantee

that the population will converge to a fixed point, but we can show that the maximum

difference between objective function values in the population converges to 0, i.e., the points

in the population tend to belong to the same level set. Given a function f and a population

Pk ∈ Dk, then if F ∈ (0, 1) and S(xk + uk) = 1 ⇔ f(xk + uk) < f(xk), the following holds

max
i,j∈[1,...,npop]

∣∣f(xj,k)− f(xi,k)
∣∣ → 0 (26)

as k → ∞. Let S∗
k denote the set of best points in population Pk, i.e.

S∗
k = {xj,k : f(xj,k) ≤ f(xi,k) ∀ i ∈ [1, . . . , npop]} (27)

At each iteration k there is a strictly positive probability that the whole population will be

reduced to S∗
k at the next iteration. In other words, there is a strictly positive probability for

the event that the population, at a given iteration, will be composed of points with the same

objective function value. Therefore, such event will occur infinitely often with a probability

of one. Let us denote with {kh}h=1,... the infinite subsequence of iterations at which the event

is true, and let

∆h = f(xi,kh)− f(xi,kh+1
) (28)

be the difference in objective function values at two consecutive iterations kh and kh+1. Note

that, since at iterations kh for h = 1, . . . the objective function values are equal, any i can

be employed in the above definition.

It holds that for all i, j ∈ [1, . . . , npop]

|f(xj,k)− f(xi,k)| ≤ ∆h ∀ k ∈ [kh, kh+1]. (29)

Therefore, if we are able to prove that ∆h → 0, as h → ∞, then we can also prove that (26)

is true. Let us assume, by contradiction, that ∆h 6→ 0. Then, there will exist a δr > 0 such

that ∆h ≥ δr infinitely many times. But this would lead to function values diverging to −∞
and, consequently, to a contradiction.

22 of 28

As a consequence of these results, a possible stopping criterion for DE would be to stop when

the difference between the function values in the population drops below a given threshold.

However, this could cause premature convergence. Indeed, even if at some iteration the value

∆h drops to 0, this does not necessarily mean that the algorithm will be unable to make

further progress. Therefore, since the most likely situation is convergence to a single point,

we can use the fact that the maximum distance between points in the population drops

below a threshold as the stopping criterion (using, as a safeguard, a maximum number of

allocated generations as an alternative stopping criterion).

5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iterations

D
is

ta
nc

e
fr

om
 o

ri
gi

n

max distance
min distance

(a)

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Iterations

E
ig

en
va

lu
e

(b)

Figure 6. Dissipative properties of Differential Evolution: a) max and min distance of the
individuals in the population from the origin, b) eigenvalues with the number of evolutionary
iterations.

To further verify the contraction property of the dynamics in Eq. (21) we can look at the

eigenvalues of the matrix Jk.

If the function f is strictly quasi-convex in Dk, the population converges to a fixed point in

Dk, which implies that the map (21) is a contraction in Dk and therefore the eigenvalues15

should have norms that, on average, are lower than 1.

This can be illustrated with the following test: Consider a population of 8 individuals and

a Dk enclosing the minimum of a paraboloid with the minimum at the origin. We compute,

for each step k, the distance of the closest and farthest individual from the local minimum

and the eigenvalues of the matrix J. Fig. 6 shows the behavior of the eigenvalues and the

distance from the origin. From the figure we can see that for all iterations, the value of

the norm of all the eigenvalues is in the interval [0, 1], except for one eigenvalue at iteration

12. However, since on average the eigenvalues are lower than 1, the population contracts as

represented in Fig. 6(a).

23 of 28

1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluations

S
uc

ce
ss

 R
at

e

Bi−impulsive

DE5e
DE20e
PSO509
GA200
MS
MBH
IDEA

Figure 7. Successes rate of different optimizers on the bi-impulsive Earth-Apophis case.

2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Function evaluations

Su
cc

es
s

R
at

e

EVM

DE10e
DE20e
PSO2009
GA400
MS
MBH
IDEA

Figure 8. Successes rate of different optimizers on the EVM case.

24 of 28

1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Function evaluations

Su
cc

es
s

R
at

e

EVVEJS

DE20c
PSO1005
GA400
MS
MBH
IDEA

Figure 9. Successes rate of different optimizers on the EVVEJS case.

3 4 5 6 7 8 9 10 11 12 13

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Function evaluations

Su
cc

es
s

R
at

e

EVVEJS DSM

DE5c
PSO1005
GA400
MS
MBH
IDEA

Figure 10. Successes rate of different optimizers on the EVVEJS with DSM’s case.

25 of 28

Algorithm 3 Inflationary Differential Evolution Algorithm (IDEA)

1: Set values for npop, CR and F , set nfeval = 0 and k = 1, set threshold tolconv
2: Initialize xi,k and vi,k for all i ∈ [1, ..., npop]
3: Create the vector of random values r ∈ U [0, 1] and the mask e = r < CR

4: for all i ∈ [1, ..., npop] do
5: Select three individuals xi1 ,xi2 ,xi3

6: Create the vector ui,k = e[(xi3,k − xi,k) + F (xi2,k − xi1,k)]
7: vi,k+1 = (1− c)vi,k + ui,k

8: Compute S and ν
9: xi,k+1 = xi,k + Sνvi,k+1

10: nfeval = nfeval + 1
11: end for
12: k = k + 1
13: ρA = max(‖xi,k − xj,k‖), ∀xi,k,xj,k ∈ Psub ⊆ Pk

14: if ρA < tolconv then
15: Run a local search from xbest till local minimum xl, where xbest = argmini f(xi,k)
16: Define a bubble Dl such that xi,k ∈ Dl, ∀xi,k ∈ Psub and Psub ⊆ Pk

17: Ag = Ag + {xl}
18: Initialize xi,k and vi,k for all i ∈ [1, ..., npop], in the bubble Dl ⊆ D
19: end if
20: Termination Unless nfeval ≥ nfevalmax, goto Step 3

If multiple minima are contained in Dk then it can be experimentally verified that the popu-

lation contracts to a number of clusters initially converging to a number of local minima and

eventually to the lowest among all of the identified local minima. Now, if a cluster contracts

we can define a bubble Dl ⊆ D, containing the cluster, and re-initialize a subpopulation Psub

in Dl when the maximum distance ρA = max(‖xi − xj‖) among the elements in the cluster

collapses below a tolerance value tolconv. Every time a subpopulation is re-initialized, a local

search is run from the best solution xbest of the cluster, with the resulting local minimum xl

saved in an archive Ag. This process leads to the modified DE in Algorithm 3. Note that

the contraction of the population given, for example by the metric ρA, is a stopping criterion

that does not depend explicitly on the value of the objective function, but on the contractive

properties of the map (21).

This new algorithm was tested on the benchmark. For the tests presented in this paper

we did not try to identify the formation of clusters made of subsets of the population, i.e.

Psub = Pk. Instead, the population was restarted inside a single bubble, when the maximum

distance among its individuals was below tolconv. The results are represented in Figs. 7 to 10.

The new modified version of DE (IDEA) is compared against the most effective algorithms

within each class (GA, DE, PSO, MS, MBH), on each one of the test cases. The success rate

is represented for an increasing number of function evaluations and a constant number of

repeated runs (here set to 200). With respect to the original version of DE, the improvement

26 of 28

in the success rate is impressively high for the EVVEJS. On the same case, the improvement

is remarkable also with respect to MBH. In all other cases, the improvement is noticeable

with respect to the standard DE and marginally significant in the case of the EVVEJS case

with DSM’s, with respect to MBH. On average, the new heuristic outperforms all other

tested algorithms.

VI. Conclusion

In this paper we presented an analysis of some global optimization algorithms applied to

the solution of a benchmark of space trajectory design problems. A rigorous procedure was

defined to assess the performance of each of the global methods.

The test results and the analysis of the distribution of the minima revealed a possible un-

derlying structure for the problems in the benchmark. Such a structure seems to favor the

search heuristics implemented in MBH, compared to the other global methods. This ob-

servation led to the development of a new search algorithm based on a dynamical system

interpretation of some evolutionary heuristics. This new algorithm combines the properties

of Differential Evolution with the heuristics of MBH. On all the test cases in the benchmark,

the new algorithm outperformed the other tested global methods and provided a remarkable

improvement with respect to both DE and MBH.

All the problems in this paper are characterized by a limited number of funnel structures and

a locally quasi-convex objective function. It is therefore expected that on similar problems,

the new hybrid will perform equally well.

References

1P.J. Gage, R.D. Braun, I.M. Kroo, Interplanetary trajectory optimization using a genetic algorithm,

Journal of the Astronautical Sciences, 43(1) (1995) 59–75.

2G. Rauwolf, V. Coverstone-Carroll, Near-optimal low-thrust orbit transfers generated by a genetic algo-

rithm, Journal of Spacecraft and Rockets, 33(6) (1996) 859–862.

3Kim, Y.H., and Spencer, D.B., “Optimal Spacecraft Rendezvous Using Genetic Algorithms”, Journal of

Spacecraft and Rockets, Vol. 39, No. 6, Nov.–Dec. 2002, pp. 859–865.

4Abdelkhalik O., Mortari D., “N-Impulse Orbit Transfer Using Genetic Algorithms”, Journal of Spacecraft

and Rockets, Vol. 44, No. 2, March-April 2007, pp. 456–459.

5Olds A. D., Kluever C. A., Cupples M.L. “Interplanetary Mission Design Using Differential Evolution”,

Journal of Spacecraft and Rockets, Vol. 44, No. 5, Sept.–Oct. 2007, pp. 1060–1070.

6Di Lizia P., Radice G., “Advanced Global Optimization Tools for Mission Analysis and Design”, Final

Report of ESA Ariadna ITT AO4532,Call 03/4101, 2004.

7Myatt D. R., Becerra V.M. , Nasuto S.J. , and Bishop J.M., “Advanced Global Optimization Tools for

Mission Analysis and Design”, Final Rept. ESA Ariadna ITT AO4532/18138/04/NL/MV,Call03/4101, 2004.

27 of 28

8Vasile M., Summerer L., De Pascale P., “Design of Earth-Mars Transfer Trajectories using Evolutionary

Branching Techniques”, Acta Astronautica, Vol. 56, pp. 705–720, 2005.

9Vasile M., De Pascale P., Preliminary Design of Multiple Gravity-Assist Trajectories, Journal of Spacecraft

and Rockets, Vol. 43,No.4, July-August, 2006.

10C. J. Adcock. Sample size determination: a review. The Statistician, 46(2):261–283, 1997.

11H. Battin. An Introduction to the Mathematics and Methods of Astrodynamics. AIAA, 1999.

12M. Clerc. Particle Swarm Optimization. ISTE, 2006.

13K.V. Price, R.M. Storn and J.A. Lampinen. Differential Evolution. A Practical Approach to Global Opti-

mization. Natural Computing Series, Springer, 2005.

14M. Mitchell. An introduction to genetic algorithms. MIT Press, 1998.

15Galor O. Introduction to Stability Analysis of Discrete Dynamical Systems. Macroeconomics, EconPapers,

2004.

16Wales D. J., and Doye J. P. K., Global optimization by basin-hopping and the lowest energy structures of

Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A, 101, 5111–5116, (1997).

17Leary R. H., Global optimization on funneling landscapes, J. Global Optim., 18, 367–383, (2000).

18B. Addis, M. Locatelli, F. Schoen, Local optima smoothing for global optimization, Optimization Methods

and Software, 20, 417–437 (2005)

19M.Locatelli, “On the multilevel structure of global optimization problems”, Computational Optimization

and Applications, 30, 5–22 (2005)

20Rockafellar, R. T. Convex analysis. 1970, Princeton University Press.

21Reeves, C.R., Yamada, T., Genetic Algorithms, Path Re-linking and the Flowshop Sequencing Problem,

Evolutionary Computation, Vol. 6, pp. 45–60, 1998.

22Rudolph G., Convergence of Evolutionary Algorithms in General Search Space. Proceedings of the IEEE

International Conference on Evolutionary Computation 1996, Nagoya Japan, 20-22 May 1996, ISBN: 0-7803-

2902-3.

23Pinter J., Convergence properties of stochastic optimization procedures. Optimization, 15:3, 405–427, DOI:

10.1080/02331938408842957.

24Chipperfield A., Fleming P., Pohlheim H., Fonseca C. Genetic Algorithm Toolbox. For Use with Matlab.

User’s Guide, version 1.2, University of Sheffield.

28 of 28

