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ABSTRACT

The gist of the CS decomposition is that the blocks of a partitioned orthogonal
matrix have related singular value decompositions. In this paper we develop a
perturbation theory for the CS decomposition and use it to analyze (a) the total
least squares problem, (b) the Golub-Klema-Stewart subset selection algorithm,
(c) the algebraic Riccati equation, and (d) the generalized singular value decom-
position.

This research was partially supported by the Office of Naval Research contract N00014-83-K-
0640.



1. Introduction
In a survey article concerned with perturbation theory, Stewart [13] presented the following

decomposition:

Theorem 1.1 (CS Decomposition)

If @ ¢ R™™ is orthogonal and partitioned as follows

@u Q2| & S
Q¢ = Qn Q=] » ktp=m , E2p

E p

then there exisi orthogonal U, and V; in R™* and orthogonal U, and V, in R™ such that

U, 0] [Qu Qi V; 0 [Co S]
0 U] |@a @z]j0 Vo] = |- C

where
S = diag(ey,...,8) s, = &in(0,)
C = digg(cy, ...,¢,) ¢, = cos(6,)
Co = diag(cy,...,¢c,,1,..,1)
\—TJ
k-p
and % 26,2 --- 286, 2 0. Note that U,’Q,rj V; displays the singular values of Q,,. We refer

to the quantities c,,..,c, as the p-singular values of Q. Thus, the p-singular values are the singu-
lar values of the p X p trailing principal submatrix of @. The assumption p < k is made for

clarity and is in no way restrictive.

The aim of this paper is to highlight the useful role that the CS decomposition (CSD) plays
in the analysis and solution of several important matrix ptoblemﬁ. This is not a new endeavor.
Davis and Kahan [4] and Stewart [13] make use of the CSD in detailed papers about invariant

subspace perturbation.
We briefly suggest how the CSD can be proved. For clarity assume p = k =3 . Let
UTQ,V, = disg(cy,cycs) be the singular value decomposition (SVD) of @, with

0< ¢; <¢;< cg.Note that cg5= ||Q,;||2< ||@]]l2==1. Let U, be an orthogonal matrix
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such that the first column of UJ(Q, V) is a nonpositive multiple of e;, the first column of /.
Similarly, let V, be orthogonal so that the first row of (U," Q12) V3 is a nonnegative multiple of

el. It follows that

p

v

c;y 0 0 a0O0
0 ¢c 0 b z=2
- I ) 0 0 cgdzz
disg(U{,UZ) Q disg(Vy,V)) = | . . foh (11)
0 z z kzz=2
0 z 2z 5 z 3z

where ¢ 2> 0,r > 0, and “z” denotes an arbitrary scalar whose exact value does not concern
us.

Since this transformed matrix is orthogonal, both row 1 and column 1 have unit 2-norm.
Thus, ¢ = \fl——c;f =¢,and r =—\/1-¢{ =-8,. If 5, 5£0, then by looking at the inner
product of column 1 with columns 2 through 6, we conclude that ¥ == ¢ = g = A = 0 and
f = e¢,. Likewise, the orthogonality of row 1 with rows 2, 3, 5, and 6 implies
b = d = k = j = 0. With these observations, we are left with a 2X 2 subproblem in (1.1). An
obvious induction completes the proof for the case &, £ 0. On the other hand, if ¢, = 0, then
1=c¢, < ¢2 £ ¢3 < 1. Thus, @, is orthogonal and so @ = 0. It follows that Q,, is also zero

and thus

llo
e =l]o @

In this case, the CSD amounts to a pair of decoupled SVD's, one of @;; and the other of Q.

In following we collect some well-known properties of the CSD, present some perturbation
theory, and show how various problems in matrix computations are better understood and better
-solved through the CSD. This work is an embellishment of a technical report written several
years ago by the author [17] and was prompted by current research in the parallel matrix compu-

tation area [2,3].
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2. The CSD, Direct Rotations, and Angles Between Subspaces

In this section we relate the CSD to certain well-known relationships that exist between sub-
spaces. As we mentioned, David and Kahan [4] use CSD ideas in their study of invariant sub-
space perturbations. In their analysis of this problem it is necessary to be able to rotate a given
p-dimensional subspace A into another p-dimensional subspace B in the most economical
fashion. More precisely, if

Z =|2,,2,] W =W, W,]

n-p p n-p p

are n-by-n orthogonal matrices with A = Range(Z,) and B = Range (W,), then an orthogonal
T s is sought that minimizes ||T - I, | |5 subject to the constraint TZ=W. Here, || - ||, is

the Frobenius norm, i.e., ||C ||} = trace(CTC).

It is clear that any orthogonal T ¢ R™" that satisfies T7Z=W must have the form

T = WZT

where

W = [W,V;, W) viv, = I,

Z = |2,U,, 2) viv, = 1,
Since

T(y gT T 0 -ZiW,
Z (2223 - WgWg )W == erwl 0

we have

112525 - WaWT |13 = ||12TWe|1} + ||Zw, ||}
and so

NT-LE = |27T2-1, ||} = ||127W-1,||}
= |JUT(ZTWIVy- L, ||} + [WUT(ZTW)IF + |WZIWIVLIIF + (123W,- 1, ||}
= |IUTZTW)Vy -1, |1} + 112.2] - W.W] |1} + ||12Iw.-1, |1} .
Recall that our object is to make this quantity as small as possible by judiciously choosing the
orthogonal matrices U, and V). It is not hard to show that this is accomplished if UJ(Z] LA LA

is diagonal with non-negative entries. Moreover, if
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U, o) [zfw, zIw,][v, o Co S
0 Uyj 2Tw, zIw,]|lo V.| = |-s ¢
is the CSD of Q = ZTW, then

Tow = WZT = |W,V,, W))[2,U,, Z)T = W diag(V,U] , 1)27

; V,Ulz] Co S
= Z(Z"W) zr | = [2:U1, 2,U]) ] ¢ ol21U,, 2,V)T
and

2

Co S » 0
”Tmln",-“tz‘ = scl” o Ungg s

= |IC-L I3+ 2(IS|IF + |IC - UIV,| 12 .

The p-singular values ¢, = coe(6;) of ZT W provide a measure of how different the subspaces A
and B are. The 6, are referred to as the principal sngles between A and B and a stable efflicient
algorithm for their computation is given in Bjorck and Golub [1]. Wedin [20] has developed a

perturbation theory for the principal angles. T, is referred to as a direct rotation from A to B.

3. Some Perturbaton Theorems

If an orthogonal matrix Q is perturbed, how are its p -singular values eflected? The follow-
ing theorem, versions of which are discussed in Paige [9], Sun Ji-Guang [15}, and Van Loan [17],
-answers this question.
Theorem 3.1

- -Suppose Q and Q are m Xm orthogonal matrices baving p-singular values {cos(6,)} %y
and {cos(0,)} mq respectively. If ¢, = cos(6;) , o, = sin(6;) , & = cos(d,) , and 4, = sin(,),

then

s.g o L 42(1_”.(9,- -4 = zg{(c.--e.)* + (-4P) < 11Q-QIIF

Proof.



$ = disg(l,eg ... ' 8)
Co = diag(0,cy, . . ., ¢,,1,...,1)
then

l'Q’éII’ = min “Q"z||’ = 2\/1"1 S 2C) .
ZeQl)"

Proof.
If ZeQ, , then Z has p-singular values {cos(%),cos(#tg), ...,co8(%,)} and so from
Theorem 3.1 we have
Q- Z1IF > 8 sin¥(6, - %/2)/2) + 8 ¥ sin¥(6, - v,)/2) > 4(1 - #in(6,))
R fo=2
By setting Z = @ the lower bound is achieved. The rest of the theorem follows from elementary

trigonometry 0O .



If the CSD’s of Q and Q are given by

U, 0] [Qu @w][va o] [, 5]
0 U] [@u Q2|0 V2] = |-s C]
P‘ T FA R 9 F‘ 9 - K
U, 0 n @u|lV, 0 Co S
0 024 Qa Qz|lo V. -§ C|
respectively, then
HQ - QIIF = NGV - O:iCVT |1} + ||USVE - 0,8V |1 (3.1)

a

+ |USVE — 08V |1 + ||Uo0V] - 0,601 |3
Now the Wielandt-Hoflman theorem for singular values states that if matrices R and £ have the
sé.me number of rows and columns and have singular values o; and &, respectively, then
Y -6 < |IR-R|} :
where it is assumed that both sets of singular values are ordered from largest to smallest. See
Golub and Van Loan [7,p.287] or Wedin [21]. The theorem follows by applying this result to each

of the four terms on the right hand side in (3.1) and using some elementary trigonometry OJ .

In the next section it is necessary to know how far a given m X m orthogonal matrix is to

the set 01 defined by

- { Zn 21| m-p r }
) = (|2 = Zn 2| » | 22 =1, , det(Z2x) = 0],
m-p p

i.e., the set of all m X m orthogonal matrices whose trailing p Xp principal submatrix is singular.

Theorem 3.2

If Q is an m X m orthogonal matrix with CSD given by Theorem 1.1, and if @ is defined

by
U, ol[é, §l[vy o
¢ = 0 U.}l-§ ¢éllo v,

C = diag(0,c,, . .. 16)

with
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4. Some Applications of the CSD

(a) Total Least Squares

Given Ac¢R™ B e¢R™ (m > n+p) and nonsingular weighting matrices

D = diag(d,, . .., d,) and T = diag(t,,...1,4,), the total least squares (TLS) problem involves
minimizing
|| DIE , R|T ||r Ee¢eR™ , R ¢R™
subject to the constraint
Range(B + R) Range(A + E) .
Ifa minimizing £ and R can be found, then any X ¢ R™ satisfying

(A+ E)X = B+ R

is a TLS solution. Suppose

UTFV = disg(oy, . ..,0u4,)

is the SVD of F = D|A ,B|T with

012 20, > 044 2 20,4, -

V Vll Vu n
= Va Vx| p

LA 4
and Vz is nonsingular, then it can be shown that the TLS problem has a unique solution given
by
XTLS = - d:ag(tl, P ,l,.)VuV-}g’diag(t;}.,, co e ,‘.-1,) .
See Golub and Van Loan [6] for details.

Numerical difficulties arise in the TLS problem if V is close to singular. Consequently, we
are interested in how close the TLS problem {A,B,S,T} is to a TLS problem (A ,I},S,T} whose

V2, matrix is singular.



Theorem 4.1

Let A,B,C,and T be as above and suppose F =D|A,B]T has SVD
UTFV = diag(oy, . . .,0.4,) With 0, > 0,4 1. I {cos(6,)} =g are the p-singular values of V,

then there exists a TLS problem {4,B,D,T} with no solution satisfying

[ID[A-A,B-B|T||r
11D A, B] T ||r

< 2cos(6,) .

Proof.
Let V be the matrix in 2 +? closest to V. (See Theorem 3.2.) Now
UT(FWT)W = UTFV = disg(oy, . ..,0.4,)
and so by defining [ﬁ ,B] from
D|AB]T = D[A,B)TVVT = FVVT
we see that the TLS problem {.i ,ﬁ,D,T} has no solution. The theorem follows since
 HP[A-A,B-B|T||lr < |ID[ABIT [|r |M-VVT||s
sad ||I - VVT ||p < 2cos(6y) DO.

Thus, the smallest p-singular value of V is a measure TLS sensitivity.

(b) Golub-Klema-Stewart Subset Solution
Consider the problem min ||Az - b ||, where 5 ¢ R™ and A ¢ R™ has SVD
UTAV = diag(oy, . . . ,0,) (4.1)
with 0, 2>..20, ,U=u,,...,u.] and V=|v,,...,0,]. o, >> 0,,, <0 then A is
close to a rank r matrix. One way of ‘“coping’’ with the ill-conditioning is to solve the nearest

rank r LS problem, i.e., min||A,z - b ||; where A, = Y] o,u,v,T. This least squares problem
suml
has minimum norm solution z, = ¥} (u,”8 /o,)v; . A shortcoming of this approach, however, is
=1
that the predictor Az, generally involves all n columns of A . Since rank degeneracy implies

redundancy in the underlying linear model, it may be desirable to approximate b with r suitably
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chosen independent columns of A. This is the problem of subset selection.

Suppose P ¢ R™ is a permutation matrix and that y ¢ R* minimizes ||B,y - § ||, where

AP = lBlszl .

r n-r

Vll sz r

r - - -~
PV =10 | s

r n-r

o]

Ord1 417
e =ry lle € 222173 11z 181 - (42)
7

where V is from the SVD (4.1) and

then it can be shown that

See Golub and Van Loan [7,p.414f1]. Here, r, denotes the residual of z, i.e., r = b — Az. Since
Hre - ':,“z = ||Az - U,U]b 1%

it can be argued that 2, vis-a-vis P, should be chosen to make the upper bound in (4.2) as small
as possible since U,UJb is that component of b which can be stably approximated by the

columns of A.

A heuristic method for doing this is proposed by Golub, Klema, and Stewart [5]. Suppose
Q-R with column pivoting is applied to [V, , V1| :
[Vii, VAIP = Z |R,R,).
Here, Z ¢ R™ is orthogonal, R = [R,,Rj] ¢ R™ is upper triangular, and P is a permutation.
The eflect of the permutation is to make R; ¢ R™ well-conditioned. This is desirable since
Vi = R{Z andso || Vi || = |IR{* ||z
It is typical that n-r << r. However, from the CSD we know that

||f’{,‘ = |IV2 llz - Thus, we can determine P much more efficiently from the “skinny”’
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QR-with-column-pivoting problem
V&, VEIP = Z[Ry,R) r
n-r r
Upon completion, we set P = [P;, P;| where P = [P, Pj .
Thus, this method of subset selection is made much more efficient through exploitation of

the CSD.

(c) The Algebraic Riccati Equation

Suppose A,B,C ¢e R™ with A and C each symmetric and non-negative definite. Well-

known conditions of stabilizability and detectability [23] guarantee that if

“- o]

then there exist T,Y,Z ¢R™® such that

- bl

where Z is nonsingular and T''s eigenvalues are precisely those eigenvalues of M that are situated
in the open right half-plane. Furthermore, it can be shown that X = YZ is the typically

sought, unique, non-negative definite, symmetric solution to the algebraic Riccati equation

A+ BX+ XBT-XCX = 0 . (4.3)
The matrix M is said to have Hamiltonian structure and in [11] conditions are given that

ensure the existence of an orthogonal

Q@ -@,
¢ = Q: Q: ' (44)

o oo 31-F 7]

where T is upper quasi-triangular. @ can be chosen so that T’s eigenvalues are in the right half

such that

plane. It follows that X = Q,Q.*
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The orthogonal matrix Q in (4.4) is said to have symplectic form. Orthogonal symplectic
similarity preserves Hamiltonian structure. Moreover, the CSD of a partitioned orthogonal sym-

plectic matrix has a very special form.

Theorem 4.2

If

Q, -Q:
Q = Ql le chnm

2

is orthogonal, then there exist n X n orthogonal matrices U and V such that

el ek e - B4

where
L = diag(oy,...,0,) 0,2 .20,
A = diag(sy, ...,5,)
Proof.
See [8] O.

Note that in this specialized CSD we allow A to have negative diagonal entries. If L is nonsingu-

lar, then the sought after solution to (4.3) is given by

X = @Q,Q3' = Udiog(o,/5,)UT
It turns out, that in typical control theory applications, the §; are positive. Moreover,it is shown

in [11] that perturbations of A,B, and C of order |5, | can result in a Riccati equation
A+ BX + XBT - XCX =0

that has no symmetric positive definite solution. The reciprocal of §, therefore serves to measure

the “‘condition’’ of the solution X .

(d) The Generalized Singular Value Decomposition

. Suppose A e R™ (m > n) and B ¢ R™ are given and that
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Qn
- .

is its Q-R decomposition with @,; e R™®, @, ¢ R™® | and R ¢ R™. Assume that R is non-
singular, i.e., that the null spaces of A and B intersect trivially. Paige and Saunders [10] have

shown that there exists orthogonal matrices U; e R™™ U, e R™ and V ¢ R™ and

UlQ,\v = diag(cy,...,c,) (4.6)
UJQsV = diag(ey, ...,s,) ¢ = min{p,n}
where
0<ce1S " SeSep= =g,
and
128,22 -+ 28 20.

Combining (4.5) and (4.6) we find that

A = U,cxT B = U,SXxT (4.7)

where
XT = VIR . _
We refer to (4.7) as the generalized singular value decomposition of A and B. This factorization

has numerous applications, see [7,16,18].

To prove (4.6), Paige and Saunders [10] establish a CSD for nonsquare partitionings of an
orthogonal matrix, i.e.,

Qu Quz| m
Q= lox 0z » mrprp=nty

We refer the reader to their paper for more details and mention that our perturbation results in

§3 have easily established “nonsquare’’ versions.
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