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ABSTRACT

This reporE is a tutorial exposition of the class of
inertial navigation systems which instrument an inertially
nonrotating coordinate frame. A detailed discussion of the
possible types of system mechanizations is followed by a
discussion and error analysis of self-contained alignment
schemes. Stabilization of the vertical error is investigated.

Perturbation methods are used to derive linear error
equations which apply to a high performance vehicle such as
the Supersonic Transport. The error sources treated consist
of:

1. Altimeter uncertainty

2. Deflection of the vertical

3. Accelerometer uncertainty and scale factor error

4. Gyro drift

5. Initial misalignment error

6. Initial condition errors

The error equations are solved for the case of constant

gyro drift and altimeter uncertainty.
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SPACE STABILIZED SYSTEM

Introduction

The space stabilized inertial navigator is a semi-analytic
system instrumenting the inertial frame, which in practical
systems can be taken to be earth centered and nonrotating
with respect to inertial space.

The three types of system mechanizations, geometric, semi-
analytic, and strapdown all mechanize the same equations
and basically exhibit the same modes of cscillation if
excited. They have in common the property that they:

Measure £ (specific force)

Instrument a reference frame
Have some knowledge of gravity

.

& W

Integrate in some fashion the specific force

components.

The choice of which mechanization to use, is strongly in-
fluenced by the availability of the equipment with which
to implement the design.

The geometric system was the first practical system be-
cause the navigational information was available in analog
fashion directly from the gimbals. The local vertical
system, or semi-analytic system which instruments the
geographic frame appears next. The necessary computations
were originally performed by an analog computer and cal-
culations involved in computing G, the gravitational field,

were “transformed  away® by aligning the dcceldrométer axes

in the local horizontal plane.

The development of high speed digital computers, which
could be packaged in a reasonably sized space, has opened
the door to the other type of semi-analytic system which




is the topic of this paper. Further down the road is the
analytic or strapdown system with its very large capacity
computer. The strapdown system, because it imposes a very
large dynamic range on the instruments, does not yet challenge
the two types of semi-analytic sys%éms-from’an accuracy
standpoint. Rapid advances in component development may soon

overcome this limitation.

An inertial frame of reference is one in which Newton's Laws,
expressed in their simplest form, can be used to describe the
dynamic behavior of a body. Any frame which is nonrotating

and unaccelerated with respect to the "fixed" stars qualifies

as an inertial frame

Consider the vector output of an ideal set of accelerations
whose sensitive axes are mutually orthogonal. From Newton's

Second Law the output from such an instrument package is given
by the difference between the inertially referenced accelera-

tion and the net gravitational accelerations at the instru-
ment's location:

£2 = (R - 160 ° (1)
k
where:
_2 n Coordinate transformation matrix relating the iner-
. tial axes to accelerometer axes.
R ~ Inertially referenced acceleration.
gk n Gravitational acceleration at instrument location
due to the kth body in the universe.
£ ~ Non field specific forces exerted on the instruments.

and the sub/superscripts denote
a ~ Indicates resolution or coordinatization in accelero-

meter axes.

i ~ indicates coordinatization-in-inesrtial axes.
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Because the inertially referenced position vector, R, involves
galactic distances, it is convenient to refer the accelero-
meter outputs to an earth centered frame which is nonrotating
relative to the fixed stars. Note that the origin of this
frame, which is located at the earth's center of gravity, is
in free fall and that the output of the accelerometer triad
would be zero at this point. The vector substitution

R=xr+p
where:
R A Vector from hypothetical inertial frame origin
to instrument location.
Vector from earth centered frame origin to instru-

12
4

ment location.
p v Vector from hypothetical inertial frame origin to
" the earth's center of gravity.

is made in Eg (1) yielding:
a - a e .o _ i
f =Cix+o igk) (2)
Since the earth is in free fall, however,

p - IGL = 0
- k= ’
where:

Gy v Gravitational acceleration at earth's center of
mass due to all of the k bodies excluding that
of the earth itself.

Thus:
£2 = Pz + 1(6) -~ G, (3)
ErEET BT %

Since G! excludes the effect of the earth,

'
-k

r-G+I (G- Gy e ] (4)

. @
"



where:
k® ~ summation over all bodies of universe except the
earth.
Q v gravitational acceleration at the instrument loca‘:ion
due to the earth alone.
Equatich (4) shows tl.at the effect of all of the other bodies
in the universe on the instrument output appears as a term wihich
is the difference between the gravitational acceleration at
the center of the earth and that at the instrument location.
Fortunately, these difference terms are on the order of 10-7-2
for the bodies in the. universe causing the largest effect, name-
ly the moon and the sun. Thus, for instruments whose resolu-

7 carth G's, which is the case

tion does not extend down to 10
for practical instruments, the output of the accelerometer triad

can be approximated as:
(5)

Equaftion (5) points out the important fact that the vector out-
put of an accelerometer triad will be proportional to the non-
field specific force, coordinatized in the particular frame
that happens to be mechanized.

Since the manipulation of £, the specific force, is crucial
in distinguishing between the various system mechanizations,
it will be well to review its form in the various coordinate
frames that will be used. Figure (1) illustrates the coordi-
nate frames. If the instrumented frame is nonrotating rela-
tive to inertial space, g; is a constant matrix and

Since it is seen from Fig. 1 that, in x-y-z inertial coordinates,

I'r cos Lg cos ﬂ
51 = lr cos Lg sin A
r sin L
‘ g

Ao -



where:

Lg = geocentric latitude

A = celestial longitude
it is evident that two integrations of the gravity-compensated
accelerometer signals will yield the position vector, r, in the
inertial frame. If, however, the geographic frame is instrumented,
a more complicated expression results:
The local geographic frame is also shown in Fig. 1.

zZ_,2 (x,y,2z) VINERTIAL

i
INERTIALLY FIXED L (xg,yg,zg)WGEOCENTRIC
REFERENCE E,S
MERIDIAN sl g
\\\ (Xe.ye,ze)NEARTH
) (N,E, %) vGEOGRAPHIC
GREENWICH
MERIDIAN \\\\

\ Y
L 1
™~ LOCAL
N MERIDIAN
&
\\\;%LN_______,__awf”Q; EARTH FRAME MERIDIAN
-~

Fig. 1 ~ Coordinate Frame Geometry

Now the relationship between the inertial and geographic frames
is given by: . .
rt=c "

Differentiating with respect to time:

i} - _; Lp + E} o= ety C? Ci EF)
But it can be shown that:_
- " % 0 —w, Wp
€i Ch = &in = w, 0 -uy
i TWg Wy 0 i

3
L - -

where the elements of the skew-symmetric matrix, an, are composed
of elements of the angular velocity of the geographic frame rela-
tive to the inertial frame, coordinatized in geographic axes.
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Thus:
*i i,'n n
= Q)
X c,(xr" +8a, r

)

Differentiating again yields:

n 'n AN n n n n
+ 29, + Q) + Q, Q. r
—-Nn - 2...1n £ -1n £ -1in _—ll - )

Thus for case of geographic frame representation:

Hh
4]
n
Hh

)]
]
s
-+
N
jo
2]
+
2

For a body mounted or strapdown system, this above equation
is valid with b replacing n. The vector EP is generally a
complicated function of time, and thus the transformation
is usually made to either the inertial or seogyranhic frames

before proceeding.

If, for instance, the accelerometer triad were mounted along
the axes of a local geocentric frame:

. - ™~ . . -
0 0 Asin L ~L
g g
9 = 01, ed = -isin L 0 -icos L ’
' —1g g g
-r L icos L 0
- he e g - ol
and

T 2L +rl +r jz sin L cos L ¥
g g g g

cd ri=|-201 4 sinL_ + 2ff{ cos L_ + r) cos L
g g g g

-r +r Lg +r 12 cos? L

g9 -

Thus, the expression for specific force in geocentric axes

would be given by:



II.

Description of Systen

All space stabilized systems have at least one feature in cowr
mon, they instrument the inertial frame. Thus, the components

of the specific force vector are available, but coordinatizeil
in the instrumented inertial frame. The specific force is
given by Eq (5) as

£2 o 3 il gl

z =3\ 2
One of the more obvious procedures one might txy in order to
mechanize a navigation system would consist of immediately
transforming these specific force components into the local
geographic frame and proceeding exactly as one would with a
local vettical system, but with the platform torquing replaced

by mathematical updating of the 92 matrix. The following sketch

illustrates this mechanization.
ATCLIEDRCMETER

n COMPENSATIQN

£ £t £ )
ACCELEROMETER | = [ i |= [on| T *i+ ——1
TRIAD T{Za [T | T[T T |COMPUTER —
A | 13 N
P ALIGNMENT | , -
| P MATRIX é
3 AXIS
SPACE L ~ GEOGRAPHIC LATITUDE

% ~ TERRESTRIAL LONGITUDE

2 = X + Réz-vwieF

Fig. 2 Computation in gecgraphic:. coordinates.

Analysis would proceed in a manner similar to that of the
local vertical system developed in Ref. (1l). Although the
above procedure is the most obvious, it might be unnecessari-
ly complex since Coriolis computations are involved in com-
puting the system position. A simpler design can be conceived
if one notes,



as was done in the introduction, that the geocentric position
vector, coordinatized in inertial coordinates, is given by:

T jl i? cos L_cos A1
. xi g
t = r, | = lreos L, sin) (6)
fr !r sin L i
L2 i g

Thus, it is seen that if position is computed in inertial co-
ordinates, then position information in latitude and longitude

is readily avaialble.

Of course, if one needs ground speed information, Coriolis
must be brought into the calculations, but at the velocity
level. The functional block diagram for this system is shown

in Fig. 3.
a =gt rt L
£ P e —C _ WNAVIGATION
‘:\CCELEROMETER co f—=——{f7[ (dt art lcOMPUTER | &
TRIAD —a + 00 =
|

s e ot

P4

I

— ' — |GRAVITATION
3 AXIS ! COMPUTER |

SPACE
INTEGRATOR

;cN-COMPUTED POSITION
Fig. 3 Computation in inertial coordinates.

Because navigational information is obtained at the posi-
tion level, no Coriolis compensation is necessary. However,
the penalty is paid of having to compute the gravitational

field vector explicitly.
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A third variation would be :yailable if the accelerometer
outputs were proportional to velocity rather than accelera-
tion. This is the case for an important class of accelero-
meters called P.I.G.A.'s (pendulous integrating gyro accelero-

meters).

The functional block diagram for this system is shown in Fig. 4.

. 1
[gPar 3 v < L
C S -| (£ (y a7 —[NavIcATION
S 0 l COMPUTER __|-%
| (£ ()at-| GRAVITATION
F | COMPUTER

Fig. 4 Computation in inertial coordinates using
velocity data.

Except for possible differences in performance between inte-
grating and non-integrating accelerometers, the systems shown
in Figs. 3 and 4 behave identically. As will be shown in the
error analysis, if the computation is performed in geographic
coordinates{Fig. 2), certain aspects of the error response
are significantly different. Other variations and schemes

are, of course, also conceivable.
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III. Alignment

The alignment procedures for the space stabilized system are
somewhat different from that of the local vertical system.
The problem boils down to finding the transformation between
the accelerometer frame and the inertial frame. This trans-
formation is ideally time invariant (zero gyro drift). We
can visualize the transformation as taking place in three
steps:

1. The first transformation is from accelerometer
axes to platform axes. gg
2. The second transformation goes foom platform axes
to local geographic axes. ch
3. The final transformation is from geographic axes
to inertial axes. gi
which can be visualized as follows:

Ea_____ £P g . gl

— — —

Cn ————le 1

e e w2y

|
Ca | Co o

b%

Once determined, the matrix product never changes, since th2
accelerometer and inertial axes are assumed to be nonrotatiag.
The concern herein will be directed toward exposition of
means of self alignment. A summary and error analy$is of
other alignment methods is found in Ref. 2.

A. Analytic Alignment

It is possible to align mathematically (analytic gyrocompassing)
via simple measurement of two vectors; namely, the vehicle angu-
tar rate vector, &,.and the specific force vector,f.
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Vehicle angular rate can be measured by monitoring the girhal
angle sighnal jenerators  and specific force is, of course,
measured by the accelerometers. Thus, because of the in«
variance of vector lengths through linear coordinate trans-
formations,

1£3] = |£2] and |wb| = |w?

or in matrix notation, the square of the length is given by:

(fa)T;a

L.

() Ted

i, T i
L

() (w?) Tw?

The above two equations implicitly contain the six direction
cosines which specify the transformation. For symmetry we
can define a third vector v = f x w.

We then have relationships:

(fl)T£1 - (fa)TEé
(wl)Tgl - (wa)Twa
(vl)Tgi (Va)Tﬁé
But i .
E} - _; Qé ; £1 = ~; Eé X 2} - ~; Xé
Therefore .
i, T.1i a,T. _a
[(EH g, - (£ 71E =0

[(vi)’l‘gi - (XG)T]!a = 0




Thus,

It
—
(1)
~

Without any loss of generality the left hand matrix can be
partitioned yielding:

;(gi)'r’ 'Zga)'r"
(ﬂi)T gi - (Qé)T
(Xi)T? (Eé)T

Premultiplying by the inverse of the left hand bracketed term

yields, - - - -
(E})T -1 Xﬁé)T
el = lwh” W) T (7)
ohTi T

-

Now (gi)T, (__i)T and (_gi)T are known a priori while (gé)T,
(_é)T, and (gé)T are measured gquantities. Thus, the alignment
matrix is uniquely defined provided the inverse indicated
above exists. The inverse will exist providing that no two
rows are equal or in constant ratio. This constraint rules
out the use of the analytic alignment procedure at the earth's

poles since Eie and g are in constant ratio &t that point.
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Kasper (Ref. 2) shows that for fixed base alignment, the analytic
scheme can compare favorably with the existing optical alignment
methods. Because the presence of angular vibrations and accelera-
tions that one would encounter in a practical alignment applica-
tion would yield an instantaneous alignment matrix which could
differ considerably from the average alignment matrix, a scheme
which would average the present determination of the matrix with
past determinations is called for. If the statistics of the base
motion are known, thzn an optimum filtering scheme can be devised
to determine the alignment matrix. This filtering could never-
theless result in an initial misalignment error when the system
is switched to the navigation mode. Nevertheless, the analytic
scheme provides a rapid means of obtaining a crude alignment
matrix.

An error analysis for this alignment scheme which takes into
account the effects of instrument uncertainties and base motion
uncertainties is not readily amenable to analytic methods. An
analysis amenable to computer solution is developed as follows:
Equation (7) is written in this form:

= 1]
C,=MN (8')

where

m={HT, HT, oHT L v = (DT, T, o”HT)
The elements of this M matrix depend on the computational frame
only (in this case, the inertial frame) and are thus free of
error. The elements of the N matrix, on the other hand, contain
the measurement and instrument uncertainties. Thus, Eq (8')

is rewritten:

Chr = M(N + &N)
where
a' v the computed accelerometer frame r;f 5F IYq i
X Yy A

6N N the 3x3 measurement uncertainty matrix ~ 8w Sw_  Sw

Sv Sv sv




-14-

Thus:
CLo =MNII+ (N1 u NI
=ciir + 81 s
—-a — ——
_ A1 _a
h .c_a .c.:.a' (8)

The matrix Eﬁl 6N will necessarily be of the skew symmetric form
if the lengths of the measured vectors and the angles between them

are required to be ) ~H, uy" constant,
-1 - -
N éN = M, 0 My
“Hy My 0 R

where the Mycr k = x, vy, z misalignment angles are readily calcula-
ble functions of the measurement uncertainties.

Physical Gyrocompass Alignment

The coordinate transformation between local geographic axes and
platform axes can be found by physical gyrocompassing, in which
case the g; transformation matrix is physically driven to be the
unit matrix. The physical instrumentation is motivated by the
following observations:

l. An ideal uncommanded space integrator (servo-driven gyro
stabilized platform) will remain nonrotating with respect
to inertial space.

2. If the gyro input axes are physically aligned with geographic
axes (north, east, and down), then the system will remain
aligned if the gyros are torgued at a rate proportional to
Earth rate.
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If the platform is level (north and east gyro axes lying
in the local horizontal plane) but not quite stabilized
in azimuth, the platform will rotate about the east axis

with a rate:

where

Since the signal from the east level sensor is proportional

w.

£, = g, W. ©cos L
Z 1le

Ll

€p v angular rate about east axis

€y v azimuth misalignment

v~ earth rat
ie e

to the above azimuth misalignment, then that signal can
theoretically be used to drive the azimuth error to zero.

Conceptually then, cne could mechanize a gyroccmpass by:

Supplying earth rate commands to the space integrator.

Providing tight level control.
Providing azimuth nulling via the east level sensor.

Consider the following form for an accelerometer

coupled gyrocompass.

PHYSICAL COUPLING- -,
PEEE——— §
NORTH i - INSTRUMENTED
Ky GYRO NORTH
A7ZIMUTH INSTRUMENTED
Ka GYRO T ”  AZIMUTH
PHYSICAL
- = - -COUPLING
X EAS £ INSTRUMENTED

E pr i
GYR( i EAST
}

'~ - — —-pHYSICAL COUPLING - -
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Gyrocompassing schemes of the above type are capable of very
high accuracies.

To analyze the effect of component uncertainties on system
performance, assume that the platform axes are almost coincident
with the local geographic axes. If we define error angles

Eys Epr and g, resulting from positive rotations of the platform
axes relative to geographic axes, then the transformation between
geographic and platform axes is given by:

1l -ez eE
n o= - =
’ Civ T| &g 1 €n (I + E)
| —eE eN 1
where — -

N skew symmetric matrix of misalignment angles
v identity matrix
' & instrumented geographic axes

=R sl &>

v~ true navigational axes.

Now the angqular velocity of the platform axes with respect to
inertial space is given by:
Yin' T 8 T Lnpe

Coordinatizing in platform axes:

n' _ ,.n'n n'
Yin' = &5 Yin t Ynpe
- -— - ‘-2 e -
Wy w; o COS L ! €y
) Wy s -w;, sin L €,

where L is geographic latitude.
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- r - . L ] -
mN mie cos L + EE CFPR sin L + EN !
s = - - i .
wE EZ wie cos L eN wie sin L + EE‘

' - ; - {
wz eE wie cos L wie sin L + ez 3

—— - - -

The above expression must be equal to the commanded angular
velocity which consists of the processed level sensor outputs
and earth rate cormmands. Thus, the commanded angular velocity
is given by:

ch Wie cos L - KN EN + &wn
wg | = | K &g * Sug

c
wzd _—mie sinL - KA EE + GwzS

where égn n error in the command signal. ~ {GmN,GwE, Swz}

Note that it is being assumed that the earth rate terms are
being supplied exactly. Note also that the signs nf’KN;K

2 e
and Kn have beén.chosen to drive the ¢ term to zero. Equating:

e .*; '._ - N "‘;
EN‘-{ KN € €Ep Wi SIN L + GwN !
€xl™ --KE € + ey W, Sin L + €, W cos L + GwE
© ‘ | -

{;Zf §_KA € = & Wije ©OS L + duw,

Taking the Laplace transformation and arranging in matrix

form:

S + Ky w;, sin L 0 en eN(O) + Eﬁﬁ
-w, sin L S + KE -w,, €os L € | = eE(O) + EEE
_ 0 Ky, + w;, COs L S N_Lezm .eZ(O) + Gwzm
or ME=U (9)
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where S denotes the Laplace operator and the super bar denotes a

Laplace transformed variable.

Now the error angular velocify command rate is caused by gyro and

level sensor uncertainties.

N, E, and 2 gyros:

Call the ayro drift uncertainties for
(u)wN, (u)wp, and (u)wZ respectively; and the

level sensor uncertainties for the north and cast level sensors

(u)sN and (u)eE respectively.

Then:
o~ - -
UN eN(O)
UE = eE(O)
UZ eZ(O)

o

(u)Gﬁ
= (u)Eé

(u)BZ

—tned

KE(u)Eﬁ

gKA(u)EE

The signal flow diagram for this system is drawn:

QKN(u)EN

e

(u)e,, -

e W,

(ajeg ->%?

t3

5

(0)

N

o e b

€ (0)

eE(O)

eZ(O)

-

v

m|

s

)
\ 4
m|

\}

\ 7
™|

+/

eE(O)
s

Fig.

5 Signal Flow Diagram v Acceleration Coupled

Gyrocompass
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~. 1ce the determinant associated with the above characteristics
matrix is given by:
2

2
+ (KE + KN)S + (KE KN + KA w; o COS L + Wi o )S

A =g

+ KN Wie cos L(KA + Wi cos L),

the matrix equation (9) is readily solved usihg Cramer's rule.
The equations are first solved for the steady state errors assum-
ing constant drift rates and level sensor bias by invoking the
final value theorem:

lim £(t) = lim SF (s)
tro $-+0
Solution yields:

1 Wi sin L
Nss= R; [(u)wN - KN(u)eN] - K (K, + u,_ cos D) [(Ww, - KA(u)eE]

€

(u)wZ - KA(u)eE tig::
€. =
Ess KA + wie cos L
€, _ tan L _ -1 -
Zog= - K [(w)w =Ky (u)eg] by co8 T [ (W) wp-Kp (u)e,]

2 .. 2
KE KN + wie sin L

+
KN w; o, COS L (KA + w; o €OS L)

[(u)wZ - KA(u)eE] (10c)

These equations are summarized in the following chart:
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The constants Kyqr KE' and K, are chosen to satisfy a specified
error budget and to provide adequate response time. A reasonable

design emerges from Figure 6 if the gains are chosen as follows:

Kp >> Kygv Ky >> Ko Ky >> w54

Routh's criteria shows that, in addition, there is no stability
problem for this system. Note, however, that level sensor
dynamics, electronic component dynamics, and gyro dynamics have
been neglected. The combination of high gain in the north loop
and close coupling in the east-azimuth loop tends to decouple
the north loop which basically operates in a leveling mode.

Figure 6 points out the important fact that the sensitivity
ez/(u)sE is independent of system gain. Its magnitude of

......

/ meru drift

shows that east gyro uncertainty is the limiting factor in gyro-
compass performance. Because of the magnitude of this error
coefficient, special calibration techniques, known as wheel
speed modulation and east-west averaging, have been developed

and are discussed in Refs. 3 and 4.
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Gravitational Field Computation

Since it is necessary to compute gravity explicitly. in the space
stabilized navigation system, it is well to investigate the

form of the expression. This derivation, which was adapted from
Ref. 5, is fairly complex and will only be sketched in a brief

form.

The gravitational force field, G(x,y,2z) is a vector field which
is derivable from a scalar function called a scalar potential,
V(x,y¥,2). The potential at the point P(r,¢,A) which is external
to the mass due to the distributed mass of density D(p,B,0) is

given by the equation:
P(xr,¢,7)

i dm
v JA) = G
\\t\ (r,¢,1) fffri;il
N
Y \\ where
8 ) G ~ Gravitational Constant

dm v Differential Mass
~ p? sin B dp dB8 d6

&
| Ha—

The distance between r and dm, |r - p|, is shown by the law of

cosines to be given by:

lr = p| = (r? + p? - 2rp cos y)l/z

The right hand side of which is recognized as the Legendre generat-
ing function. If the potential is evaluated outside of the mass
dm, i.e., r > p, |r - g[-l can be expanded in power series:

- - 2 -
[x - p] 1o ylaa+ 8- % cos ) 1/2
r2
D S O P -] 3pi_ 22 2
=r [1 5(;; 2 5 COs Y) + 8(r2 2 > cos Y)

2
-%6—(2;—2%008 Y)3+.-oac]
r
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- 2 4 2
-1 L p ) 3 ;0 P P
=r 1l +>cosy -5~ (>, -4 -, cos Yy + 4 —, cos” v
£ 2 2" 8 (T4 , -2 )
6 4 3
5 p p 3
- (-~ -6 =~. cos vy + 12 - cos” y - 8 —, cos y) P
16 (r6 r 4 r3
-1 1 0° 2 103 2
1 + £ cos Y + 5 —2(3 cos” y - 1) + 3 33 cos v (5 cos“y - 3)
r

- o)t =2tz 2 (cos v) (DK

k=0
Thus

Vir,¢,r) =

&

JI] 5 Pyleos Y1 (&) am

Now P (cos y) can be expanded in terms of ¢,8,6, and ) in
accoraance with the addition theorem for spherical harmonics,

which yields a potential function of the form:

B

14

-0 rk+l

V(r,¢,k) =.
K

P, (cos ¢) + £[/D(p,8,8)cos ne a8, [D(p,8,0)

™t 8

sin né dé]

where n = 1,2,¢...,

a, =6 [[] oF P, (cos 8) dm

If symmetry exists about the polar axis, z, which is the situa-
tion for the reference ellipsoid model,

Di{p,8,8) = Dln;B)



and the periodic functions in 6 drop out of the potential
function, which can now Be written:

By
T Py foos @)
T B

N~ 8

rd .

V(r,¢,r) = g fff dm + Ezcos ¢ f[f pcos B dm +
r k-

The first integral in the above expression is just the total
attracting mass, while the quantity p cos B8 in the second

expresiion is recognized as the distance from the equatorial
plane to dm. Consequently, if the center of attracting mass

coincides with the center of coordinates, as it does for the

reference ellipsoid, then
J[[ o cos Bdam=0

and

A further manipulation is made by multiplying numerator and
denominator by rz

rk r k
* - '_T - =i.._?_) 1
. »® ‘
I'E rk+i W/ rk r
e : e
k
vz, = - ; {fﬁ) J, P, (cos ¢)])
. . I r k=2 ,‘r J k k
where
J,_ = - i
k
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The coefficients J, are determined experimentally by observing
satellite orbital deviations, for instance. Note that since

Pz(cos ) = %(3 cos2 ¢ - 1) %(3 cos 2¢ + 1)

P3(cos $) = %(5 cos3 ¢ - 3 cos ¢) = %(5 cos 3¢ + 3 cos ¢)
P4(cos o) = %(35 cos4 $ - 3 cos2 ¢ + 3) = %3(35 cos 4 ¢

+ 20 cos 2¢ + 9),

the even harmonics are symmetric about the pole giving rise to
the oblate terms, while the odd harmonics are anti-symmetric
giving rise to the so-called pear-shape terms. Writing out the

expression for three terms:

, Tt 2 J3 reB 3
V(r,¢) = Gm[; - = ——3-(3 cos” ¢ - 1) ~ > — 7 (5 cos™ ¢ = 3 cos¢)
r r
4
J, ¥
- A e (35 cos4 ¢ - 30 cos2 o + 3) - ....]
8 r5

It is instructive to take the gradient in spherical coordinates:

where

-9 13 . 1 3.
Vsl *rp Y *rsinsax

One finds the following maximum values associated with the

various terms:
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i+

G_=-g G, = 1.5 mg G, =0

rs ¢O A

-+

Gr =+ 3 mg G¢ = - 5 ug

o P

+

Gr = - 10 ug

p

The gravitation vector, G, can be feSO%ved into the geocentric
inertial frame by noting that cos ¢ = ;E and operating with:

I I
Ve igtgi, vz d

Y Y z

The following is obtained:

r r r
_ _ Gm 3 e, 2 _ 2,2,, X = -5
== L +33 )7 05y e <1307y (Ua)

) o r r
. .Gn 35 JFo2 1 o505, -5
Gy = rz [1 + > J2 {—) {1 5(r ) ]]r , € < 1.3x10 g (11lb)
r r r
- _ Gm 3 e, 2 . e( 2y2141_2 = -5
Gz - (1 + 3 J2 (—) [3 5(r ) ]]r s, €< 2x 10 “g (llc)
where 3
Gm =~ 1.4 x 1016 ft
sec
and

3 - -3
5 J, = 1.6 x 10
The values for e following Egqs (11) represent the maximum value
of the error that is incurred in neglecting the higher order
terms. Note that these expressions do not include the higher
order oblate and pear shaped terms. In light of the fact that

these terms have typical mean
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i
values of about 7 ug (4.85 ug corresponds to a 1 sec uncer-

tainty in the vertical); the error incurred in the above
expression for G is peyon: i rewonlution of most instru-
ments.

It is important not to use the expression

= (rT r)1/2

in calculating r in the gravity expressions. As will be
shown in Section V, such a procedure will result in un-
stable behavior. Instead, r is calculated as the sum of
the elliptic geocentric radius and externally supplied

altitude, ha'

r=1r + h
o] a

where
r =r [1-%(1-cos2L) + 2r e?(1 - cos 4L)]
o e 2 16
_ es s _ semimajor axis - semiminor axis
and e = earth ellipticity SemimajOr axis

1

97

e

The above expression for r, is accurate to better than one
foot, an accuracy somewhat in excess of what is needed.
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Instability along the Vertical and its Avoidance

A. Unstable Mechanization

- This section serves to point out the necessity of ex-
ternally supplied altitude information in the navigation
computation. If this navigation computation is done in
geocentric inértial coordinates (see Fig. 3) and if it is
further assumed that specific force can be measured and
transformed to the computed inertial frame without error, then
the differential equation describing the system behavior is
given by:

£+G6(r) =r (12)

r
=c'=¢ =c

where all vectors are assumed to be coordinatized in the
inertial frame and:

£ ~ true specific force
gc n computed gravitational field vector
r, "~ computed position vector.

Now if no altitude information is available, the gravi-
tational field vector is computed from:

E
-5, =- ;5 r, (13)
C

Equation (13) is the vector form of Eq (ll) with the higher
order terms neglected. Since it is assumed that specific
s gcan be measured and transformed to the computed iner-
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tial frame without error,
f=t-¢6 (14)
where
v actual system position vector

r
G ~ actual gravitaticnal field vector

Substituting (13) and (14) into (12) yields:

. E _
£F-G-~- ;3 r, = £, (15)
c
Next define the variational parameter
Sr=r =~-r (16)
anas— —c -

which can be interpreted as the system position error, i.e.,
the difference between the computed position vector and the
actual position vector.

If (16) is substituted into (15) the following is obtained:

. E(xr + 8x) . .
oG- e = 4 8F
[(r + 6r)°(xr + 6x)]
But
[z +8n)+(x + 6001 % = (22 4+ 2 5x-x + 6:2)73/2
-2l 2 8rex1-3/2
g r 3 1 + ——254:‘
- r -
-2 Srex
X33 ~—q~!
L r<
x Thus: §£o£ E

E1
]
)
5!
!
ern
Lal
+
W
:Hmra
N
g
L]
le
’a




Since

where

Now:

or

G=-

r , th

Hulm

Sr + w2 §r =
— s-——

N

>

HIIH Hu|t=:|
]

= ¢l

———

b

i, x (i, x 8x)

i, 80 = br

- 30 -
en:

2 e
3wy (A.6x)i (17)

= v square of the system natural frequency

which can be associated with the Schuler
frequency.

= i (i+8r) - Sr(i i)

-2a4 (18)

where A is the 3 x 3 singular matrix:

2 2 -
+ - -
rY rz ryrx rzrx
A = lf -r r2 + r2 - Tr.r
- r X'y P4 2 2y
-r.r - rr -22;+ r
i z vz X v

Thus Eq (17) becomes:

or

nN

dr - 3

Sr + w

——

nN

§r - w

(2I - 3

2 =
w (8x - A §x) = 0

A) 8r = 0 (19)

where I is the identity matrix.
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Introducing the operator notation p = %E' Eq (19) can be
written as:
Bér=20 (20)
where:
2 r r rr T
2 2 _ 2r - 2 X'y _ 2 X'z
p + ws 3&8 __15_ 3w r2 3 8 —r—z—
r
r r2 rr
B = - 3m2 _§7X P+ w2 - 3w2 XL - 3w2 z
- r S s 2 r
2 Tx¥2 2 Tytz 2 2 r2
- 3w 3 - 3wf X p° + w: - 30 2
s 2 2
r r r

Because the elements of B are time varying, a closed form
solution of (20) is not readily obtained. It is possible,
however, to observe that the system is unstable by exami-
ning the determinant of the coefficient matrix:

" 2 2,2, 2 2
IBl= (% + w )" (p" - 2u()
We see that the system characteristic equation has poles
in the right half plane, giving rise to egponential growth.
To estimate the magnitude of error growth, consider the
system to be operating &t the equator with:

5' = {r,0,0}

Then (20) becomes:

n3
+
o
o
H
u

o
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and the x channel behavior is characterized by:
2 2 _
(p” - 2ws)6rx = 0
Taking the Laplace transformation:
(s2 - 20%)6F, = s 6r_(0) + 6x_(0)
s X X x
yieiding a time response of:
- fren 1 : I °
er er(O) cosh j2 wst + 55; 51th2 wst er(O)

after t = 2% , coshdi.w t = cosh 2/2'n .
wg s

Thus érx = cosh (B.9) = 3666 .

er(O)
Thus it is seen that the poriticn errer due te, grows by
a factor of 3666 in one Schuler period. Clearly, this
type of behavior cannot be tolerated, and schemes have
been developed to circumvent this instability.




Stabilization via use of an Altimeter

The most obvious solution to the divergence demonstration
in the previous section is to avoid using the inertially
computed position vector in calculating the gravity mag-
nitude. This is accomplished either by calculating the
gravitational magnitude at a mominal estimated altitude or
by using continuous, externally obtained, altitude in-
formation in the calculation. 1In either case, Eg (13)
takes the form:

x . E r (21)

3 =
(z, + h))

where
r, v Local geocentric earth radius magnitude
ha ~ Estimated height above the reference earth
model's surface.

Substituting Eq (21) into (1&), and defining as above:

and in addition, the altitude estimation error:

= - 22
§h ha h (22)
where
h ~ True altitude above the reference surface

yields, after series expansion where appropriate:

2

_ 2 o
2 6r =+ 3w 6h i, (23)

§E + w
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Equation (23) reveals that the navigation system has been
stabilized by the calculation of G, in the manner indicated

by Eq (21)

C. Extraction of Altitude Information for Stable System

Define the inertially computed altitude as:

but:

r = ‘Ec'Ec)l/z L+ 8x) - (x + 65)1Y/2

= (2 + 2 sr-x + sr2)1/2

2 de°zr 5r2.1/2

= r(l + )
2 r2
Srei
8 2% 2r
= r(l + = )
Substituting into th:
6hc =r + §£ .ir - (r0 + h)
but X
ro + h r
thus
§h = 6r-i (24)
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The computed rate error is found by differentiating the
above equation with respect to time. It is noted that the
inertially derived altitude error depends directly on 6r
and not on h. Thus, short term filtering is obtained as
illustrated in the following sketch:

B r ' ! §h
.__5_11____.‘ navigarIoy _SZ ALTITUDB‘ c
ALTIMETER | SYSTEM COMPUTATIONI
ERROR LOW
PASS
FILTER

To determine how effective this short term filtering is,

Eq (23) is solved for both a constant bias in altimeter
error, 6h = constant, and a ramp error in altimeter error,
§ﬂ = constant. The ramp error would correspond to the situ-
ation where an aircraft is ascending since the altimeter
error will normally increase with altitude. The bias error
would be the likely situation during the aircraft cruise
regime.
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In Eq (23), the unit vector in the direction of the geo-
centric radius, coordinatized in inertial coordinates is
given by:

p— < otasm

cos L_ cos A
g

cos L_ sin X
g

sin L
g

If we define our reference frames such that the local meri-
dian is coincident with both the inertially fixed reference
then

Thus for the case

meridian and the earth frame meridian at t = 0,
A(t=0) L(t=0) - 20 1).
of constant velocity motion at constant latitude, L = io;

0 (see Fig.
= constant for t > 0, and the celestial longitude is given
by:

For the bias altimeter error, 6h

of Eq (23) yields:

dho constant, solution

w_  cos L .
3 ~ > [cos(zo + mie)t - cos wst]
w, = (20 + wie)
w,_ cos L. . (io wie)
5 - 5 [sin(L  + 0y )t - sin w t]}| 3%k
ws - (20 + wie)' 5

|

% sin Lg(l - cos wst)

(25)



]
tre
~2

¥

Substitution of Eg (25) into Eq (24) and noting that

o 2
2 . 2 2l (L, + 03071y 2
wg = By +w )" = w1 - 2 !_ Wg r
L S A
- yields:
. (L +w, )
38h {1-[sin2L +c052L cos(f +w, )tlcos w_t- 0 _1ie coszL
o) g g o ie s wg g

sin (20+wie)t sin wst}

How for periods of time on the order of 1/2 hour the small
angle assumption can be invoked in the above trigonomet:ic
functions without incurring an erior of more than about

ten percdnt. Thus:

2.2

v 3
§h, = 5 wit® sh (26)

c
It is seen that the coefficient in the above expression
reaches unity at t 211 min., showing that the inertially
deribed indication of altitude is more accurate than the
altimeter indication for t < 1l min. As time increases,
however, 6hc increases to a value which is about six times
the altimeter error. For this case the inertially derived
altitude rate, Sﬁc, is of course always greater than the

altimeter estimate of h.

For the ramp altimeter error, &h = Gﬁot, solution of Eg (23),
noting as before that

vields:
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- . 1 .
cos Lg[t cos (20+wie)t as sin wst]

§r = cos Lg{t 51n(2°+wie)t + — [cos mst-cos(2°+wie)t]} 38h

1 .
(t - = sin wst)

in L
t S g W K

-

Substituting the above expression into Eq (24) yields:

_oasf geo 1 2 . L2 :
th = 36ho{t wB[cos Lg cos(20+wie)t + sin L9151n wst

(io+w. ) 2

ie N
+w.
+ 2 cos Lg 51n(£o wle)t[cos wst

w
S

- cos(£°+wiet]}

Making the small angle assumptions as before gives:

1 2 3 .»
th = 5 g t Gho (27)
Now the inertially derived altitude error will be less than

the altimeter error until

or for periods of time less than about t = 19 minutes. ‘he
inertially derived altitude rate error is given by the tiwe

rate of change of Eg (27):

sh_ = 2wl €2 shy

Lo -

Thus, the inertially derived altitude rate is more accurate

thari the altimeter estimate of h for t <11 minutes.
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VI. Error Analysis

In this section, the error equations will be derived for the
following error sources:

1. Altimeter uncertainty

2. Deflection of the vertical

3. Accelerometer uncertainty and scale factor error
4. Gyro drift

5. Initial misalignment error

6. Initial condition errors

The conspicuous absence of torcuing uncertainty as an error source
in the space stabilized mechanization is due to the fact that,
except for the low level gyro compensation torques, the gyro-
scopes are free of the Earth and vehicle rate torgquing commands
present in local vertical mechanizations. Reference 6 documents
the analysis showing that torquing uncertainty is not an impor-
tnat source of error for the space stabilized system.

The analysis which follows utilizes perturbation methods to
linearize the nonlinear system differential equations. Pertur-
bation analysis of this type involves the substitution

=(£.+6

—a——

2

where

computed dependent variable
errorless dependent variable

|C€>’ e &8
"

error in computed dependent variable

When the above substitution is made, linear differential
equations involving only the error quantities emerge. These
error equations, which are simpler in form than the original
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differential equations, are analytically tractable. It is
within the framework of this philosophy that products of the
error variables with other "small" quantities such as the
earth's ellipticity and higher order terms in the gravitational
field equations will be negligibly small and consequently
will not appear in final error equations. It is the tnz
author's opinion that this method is to be preferred over
straight computer simulation because of the insight gained
into the system behavior by examining only the error response.
Computer simulation of the nonlinear system equations for
selected error sources has confirmed the validity of the
linearized approach.

Error Source Evaluation

To analyze the effect of these various error sources, one
proceeds with an evaluation of the basic equation:

n_) (28)

where the computation is being performed in computed geocen-
tric inertial coordinates (i') and:

Eé = computed position vector
I
gé = computed specific force
s $
Qé = computed gravitational field vector

ha = estimated height above reference earth model's
surface.
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In Bq (28) the following substitution is made:

it _ i i
I, =x +4r (29)
Note that within the framework of first order analysis the
error vector, §r, can be looked at as being coordinatized

in either the inertial or computed inertial frames since:

where I is the identity matrix and § is a skew symmetric
matrix, which, when multiplied by the error vector consti-
tute second order terms. The convention will be adopted to
treat the error quantities as being coordinatized in the
inertial frame as is dome in Eq (29).

1. Altimeter Uncertainty

The computed gravitational field equations are given by
Egs (11) as:

i ;, Yo T rzb 29
L+ Jkro ¥ h&; 1- 5(r° ¥ ha) | rxc
L S e - c N
- r 257
[} . v 3 Y. ‘2 - . Z
i’ . E e \ ( c
G. (r_,h_ ) = -= M + Tz | - 5-———-———) b o (30)
¢ ¢ a8 (ro + pa) (fo'+ bt L \Fo * B/ 1Ty,
c i _ c c
. 2 [ f rzc 21
1+ J% +——-_h:¥ 3 - 5(——————% 7 ha) rzc
O, - c
where - -
_ 3
J = 3 J2
£ = Gm
Yo = calculated radius of elliptic earth model

© 2
_ Tgp
o 43
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$gbstituting hhe above expression for r, » Eq (29), and
Eq (22) into (30) there results after sofie manipulation:

i! _ A1 2 i 2 i
gc (gc,ha) = ge wy Sr™ + 3ws sh lr (31)
where
gé = gravitational field vector representing the ellip-
tical earth model
WL2a —E
s (ro + h)~ , the square of the Schuler frequency
_; = unit vector in the direction of the geocentric
position vector.
h=h_=-nh
a

2, Deflection of the Vertical

If it were possible to specify completely the analytic form
of the gravitational field equations, the deflection of the
vertical would not affect the operation of the system in the
sense of mode excitation. Since the reference maps of the
earth use a projection based on a reference ellipsoid, the
system readout would not have the desired correspondence with
the map coordinates. The approach that is taken in this
analysis is to take as the grmvity model the best estimate
of the reference ellipsoid, accepting as error sources the
deflection of the vertical terms. If, in the future, it
becomes possible to define the true gravitational field
more precisely and to measure it more precisely with the
accelerometers, a system could be built which is insensitive
to deflections of the vertical. For the present, if the
components of the deflection of the vertical are defined as:

meridian deflection of the vertical (positive about east)

prime deflection of the vertical(positive about north).
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which are shown on the accompanying sketch, it is seen that

NORTH EAST
“eg
n
g = -ng (32)
’ g 1
e
(
Since g? X EP) , (33)
o 2 . -
r w, sin L cos L
ie g
n _ n n n n, _
G =g + Wie ¥ (mle X r) g + 0
r mz cos L cos L
ie g
where Lg is the geocentric latitude
L is the geographic latitude
Thus:
- 2 L . ~ -
r wi, sin cos g Eg
" = 0 b {-ng | = 6D+ " (34)
+ r w2 cos L cos L 0
g ie g
where

ge is the gravitational field vector associated with
the reference ellipsoid

and




-44-

If (54) is transformed into the inertial frame, an ex-
pression for the gravitational field vector results which
includes the deflection of the vertiaal terms:

G =G, +C a (35)

3. Accelerometer Uncertainty and Scale Factor Error

Because imperfections exist in the accelerometer, the out-
put of the accelerometer triad is:
a a a a.a
= +

fo=£ +8£ + A°E (36)
where
is the measured specific force
is the specific force
is the accelerometer uncertainty
is the diagonal scale factor error matrix:

e
i
o
3]

o

where ay is the scale factor uncertainty associated with
the kEE accelerometer, expressed as the ratio of two
numbers.

4. Gyro Drift

If the platform is rotating due to the effect of gyro drift,
the accelerometers will resolve the specific force data
into a drifting accelerometer frame rather than into the
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desired nonrotating frame. The coordinate transformation
relating the inertial frame to the accelerometer frame is:

a

- 2 AP P
C. =C_ C Ccio

where:

p
Qio ~ transformation between inertial axes and

platform axes at t = 0.

cP

“Po ~ transformation between platform axes at t=0
to platform axes (due to ~vro drift).

gp n transformation between platform axes and
accelerometer axes.

Since we will not be considering the effect of errors in the
calibration matrix g;, it is notaticnally convenient to
consider the gyro drift as occurring in accelercmeter axes.
That is:
c® = ¢, ¢ (37)

where:

a Vv accelerometer frame.

a' v ideal (nonrotating) accelerometer frame.

The effect of gyro drift, i.e. g:,, can be written as a
rotation matrix. If the drift is low, then:
c?, = (1 + d%
where:
Qa n skew symmetric matrix associated with the platform
drift angle, coordinatized in accelerometer axes.
Thus, the expression for specific force in accelerometer

axes is given by:

&3
o (38)




.
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where Qé has the form:

> a4, -4
a— -
p%= a, o d,
d, -4, 0

and the angles d k = %, vy, z can be associated with the

kl
drift about the positive axes defined by the input axes of

the kEE gyro.

It should be pointed out that gyro torquing uncertainty
errors cannot be distinguished from the effects of gyro
drift. Since gyro torguing in a space stabilized system

is only used to provide low level compensation forques, the

torquing induced errors are negligible.

5. Initial Misalignment Error

As pointed out previously, the alignment matrix resolves
the accelerometer outputs into the computational frame which

is hopefully coincident with the geocentric inertial frame.
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In the notation of this section, the transformation is
< -
written, g;,. If the matrix is not determined precisely.

then:
. L
ct, =ci ci, = _I__z_‘)_c_ (39)

where Z is the skew symmetric matrix associated with the
misalignment error:

o ¢, -,

1

%= "z, 0 x
|y T 0

where N k = x, v, z results from a small angle rotation
about the k—E positive inertial axis.

6. Initial Condition Errors

The initial condition errors are the initial position
and velocity erxors coordinatized in the computed beo-
centric inertial frame:

i

sx (@ = [sx,(0), sz, (0), 6r,(0)] (40)

sx(0)

1i'

6V, (0), v (0), avz(O)} (41)
These errors will be incorporated into the differential
equations in the derivation which follows.
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B. Derivation of System Equations

l. Geocentric Inertial Computation Frame

The synthesis of the derived error source equations into one
vector differential equation for the configurations of

Figs. 3 and 4 can be visualized with the aid of the following
vector-matrix signal flow diagram: '

8v(0) 8z (0)

s£2 ACCELEROMETER ‘
- OUTPUT | i
i e o _La, i a _ i’ Cit e i’
¢ H f H f X r
L ja.a| £ aj +2+ =c i ' i]=C .- =C <
TTEarG [T R el G G iT' =1 COMPUTATION >
GYRO SCALE ALIGNMENT ; ol '
DRIFT FACTOR t o]

Fig. 7 Signal Flow Diagram.

Starting with Eq. (28), and following the signal path shown

in the diagram, it is seen that:

=g cpofeg® @+t ol o} £
But from (39), Ci = (I + z%)
and from (38), Ca, = (I + D%)
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Thus if products of error quantities are neglected,

X it : i
£, =, - G =C,. 8f

- i i aa'.i, ,a.a',1
+ I+ 2 + ¢, DAci+e," A% 17 ()

Substitution of Egs (29), (31), and (35) into (43) yields:

=i 2 .i_ i _ i _ i n 2 i i a
.§_I; + ws §.£ - g. r .L'..n ] + 3&\5 ¢h }.r + ga' §_£
+ (L + 2" + ¢, @ + ahcfle”

Noticing that: gl

Gfl + w

—(gl -~ il), the error differential eqia-

tion is obtained.

i g2 i i on, i oaed, il L ab @,pd3y0d' sl
§__ —30“5 éh .].'..r S:_ng. +..C.a' _6._f. +.§£ +_(_:_a|(9 +A )gi_f.

2
s
(44)
One sees by inspection that the system will behave as a
forced second order Schuler tuned oscillator. The similari-
ty transformation is involved in the gyro drift and accelzro-
meter scale factor terms since the elements of the D and A
matrices are coordinatized in platform (accelerometer) axss.
Note that since no assumptions have been made concerning
the motion of the system, Eq (44) is valid for arbitrary
vehicle motion.

Thg solution of Eq (44) will be an analytic expression for
ggl. It is obviously still necessary to express the lati-
tude, longitude, and earth referenced velocity errors in
terms of §£i.

Geocentric latitude is computed from the relationship:

N z
sin L _ c
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9. v computed geocentric latitude

r ~ computed position vector magnitude

Next define the error quantities:

9o = Lg + 6Lg

N
h

+
rz Grz
r =r + 8r

where

SL_ " error in computed geocentric latitude.

g

§r n error in computed position vector magnitude.

If the error quantities are substituted into the expression
for sin Lgc, there results after expansion and neglecting of

higher order terms:

= Sec L - i
6L = — (§r, - sin L 6r)
where
L = Lg 4+ D
D - e sin 2L ~ deviation of normal
e v earth®s ellipticity

z " computed position radius polar component
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There are seVeral ways of calculating Xor the computed posi-
tion vector magnitude. If one takes:

rc = [ri + r2 + ri ]l/2
c Yo c

then expansion shows that:
§r = cos L cos A er + cos L sin A Gr" + sin L 6r
4 -

Consequently,

—

8L = =(-gin L cos A 5rx- sin L sin A Gry + cos L Srz)<

T

The quantity in parenthesis is recognized as the north
projection of the position error vector:

Thus:
q; ¢ 8r' (44a)

p——

8L =

-

where
q, = {1,6,0}

If, on the other hand, one chooses to calculate rc from:

where r .2
< g\

b r [1 - e'...._--c.:..l %

e N S

a}
l

n calculated local geocentric earth radius
magnitude.

h n estimated height above the reference earth

model's surface.

r n earth's equatorial radius.
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Expansion shows that:

ér = 6h.
Conseqhently,
Sr
z Sh
ST,* = e - —
¢L r o5 L tan L = (44b)

Comparison of Egs (55a) and (55b) reveals that the latitude
error is free of celestial longitude rate modulation if the
computed earth radius is calculated from:

Unless it is stated to the contrary, however, we will
calculate the latitude error from Eq (55a) which implies:

2 2
r = [r +r + r” ]
c X, Y z,

Celestial longitude is computed from the relationship:

r

Yy

tan A_ = —<
c r,

c

Defining the error quantities

A=A+ 8A, =r +8r , r =r + 6r
c Yo Ve vy X X X

where

82 v error in the computed celestial longitude,

and expanding yields:

I Sy
A = T oos 1 (-sin A érx + cos A Gry)
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But the quantity in paren%hesis is recognized as the east
projection of the position error vector:

Thus:
- 1 T n i
53 = fcos T Iy & 8« (44c)
where:

q, = {0,1,0}

Eerth referenced velocity is found by differentiating the
expression for the geocentric position vector in earth
frame coordinates, and then coordinatizing in geographic

coordinates:
n_.n:e_ n.i i i
vV =Cor =Cilz - 25, 1]
where
0 -wie 0
i__ L2
Qie - “ie 0 0
i 0 0 0

n~ angular velocity of the earth frame with
respect to the inertial frame, coordinatized
in inertial axes.

Thus the computed earth referenced velocity 'is ‘given by:

0 N . PR R R ¢
X T erp PRE SRRt 99
Defining the velocity error, §v, by:

Ve =V + SV
and making use of Egs (48) and (49) to find an expression
for the computed coordinate transformation matrix yieids:

n _ n, i _ i i n_n
= C; (6x Qi857) + 8y (444)



-54-

L 2. Geographic Computation Frame

The derivation of the error equations for the configuration
of Fig. 2 proceeds in a straightforward manner from the ex-
pression for specific force in geographic axes, g?. To ob-
tain this expression, one starts with the expression on pg.6

for gg 5% and Eq (34) which is an expression for g?:

£ = ~n i n

- =i 2
=ch o pi_ g0
-g -1 - =
ince
tcos D 0 sin D
c" = o 1 0
—g .
-sin D 0 cos D
where

D v deviation of the normal,
(ZfL +r£ Jeos D + (rLz-;)sin D + rizcos I, sin L]
g g g g

n 3 e R .e o
= {~2¥rL Asin L. + 2ricos L + ricos L - G
£ g St g g g

.e o . e - *2
-(2rL +rL )sin D + (rL°~-r)cos D + rA"cos L _cos L
( g 9) ( g ) g

- -

It is desirable to write the above expression as a function
of the components of g?. Thus, Eq (34) is substituted, no-
ting that A = % + CI yielding:

(2£ig+r£g)cos D + (ri;—f)sin D + r(iz-wie)sin L cos Lg - &g

£'= (-2rl,_isin L_+ 2ricos L_+ ricos L_ + ng
] S aq g

.e - . . 0D e 02- 2 _
-(2rLg+rLg)51n D + (rLg rjcos D + r(A"-w; )cos L cos Lg g

-

-
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Note carefully that the only approximation made so far has
been the small angle assumptions involved in calculating the
deflection of the vertical terms.

We next express the above relationship as a function of the
geographic latitude, L. This is accomplished by series ex-
pansion with an accuracy consistent with the deflection of
the vertical terms. We will hherefore choose to retain terms
with magnitude greater than 2 x 10’5g. Since the magnitudes
of the various terms in the expression for specific force de-
pend on the motion of the vehicle, let us agree that the fol-
lowing data represent maximum values of vehicle motion:

ri = 0.%qg

rLmax = max
Loax = 100 ft/sec
L = A =1.6 x 1074 rad/sec
max max :
Tmax = 29

These values correspond to those which one would expect to
encounter in an aircraft application such as the supersonic
transport, Obviously, if one has a different application,
such as a ship navigation system, certain of the higher order
terms in the expression for the specific force need not be
retained.

It can be shown that the deviation of the normal can be cal-
culated with an accuracy on the order of 2 Sec via the fol-
lowing equation:



-
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Thus, it is immediatelv seen that the approximations:

cos D = 1

sin D g e sin 2L

sin L = (1 - 2 e cos2 L)sin L
9n, .2

cos Lg= (1 +2 e sin” L)cos L

can be made in the expression for g? without violating the
aforementioned accuracy criteria. Thus:

Zri + rﬁ + (rLg-r)e51n 2L + % r (A -w )51n 2L - Eg ]

.Zri.g):(l—zecos2 L)sin L + 25i(1+2esin2 L)cos L + rzicos L +ng

e 2

* e [id o 2
-(2rL +rL sin 2L + rlL
( - g)e g

-+ rl()\z-w2 Jcos™ L - g

where, in the above,

e

rz r(l + 2 e sin2 L)
~ radius of curvature in comeridian
plane.

We next substitute the relationships:

. =L -D=L-esin 2L

g
ig = (1 - 2 e cos 2L)i
ig = (L-2ecos 2L)T, + 4 e sin 2L L?

Giving‘
- ¢2 -

32,2 L - resin 2L - 3ersin 2L L° - &g

rLL + -r (X ~wy )s1n 2L + 2rI

r2Xcos L - 2r2£isin L + 2r2Acos L + ng
r?
. ., £2_ 2 2 L :2
:g -r - rLLe51n 2L + rl(k wie)cos L+ 3 L

(45)
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where:
r < r(l - 2 e cos 2L)

v radius of curvature in meridian plane.

If compensation is provided for the Coriolis and cross
coupling terms in Eq (45), then,

rLi - &g
g? = r2X cos L + ng (46)
-y - g

and it is evident that L and A can be found by double inte-
gration of the north and east specific force measurements,
respectively. The computation scheme appears in Fig. 8.
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Lc(O)
L
- ™ + + C
Lc,;‘°) ~/§ Oat ~7(L>
fre 1 L, & +w + .
'_ff%%:“ ry fO (Ydt F—3 - h e iin 2L
rL +J{— VNC':
f—————X J—>
g’
- #Cn' -——! CORIOLIS
- COMPENSATION i
- Tc VEc
- \--._-—- ]
wle —ﬁ:k: rlcos Lc--—————f>
{
fEC {+ 1 )\c t + :
: —— e \ i
; }—- T COS Lc — ]0 ()at}— "1 XC(O)
L z
. o( % It d + + AC
7r 20+wie = AC(O) /o ()at |

Fig. 8 Local Geographic Computation Scheme

In Fig. 8, it was noted that the Earth-referenced velocity,
coordinatized in navigational axes is given by (to an accuracy of
better than 0.1 ft/sec for aircraft altitudes):

ry L - h e sin 2L
n .
v o= rzz cos L (47)
- h
N -

The computed specific force is transformed from the geocentric
inertial to computed geographic coordinates via the transformation:

L3
[=}]
~r

C:; =cCc  C. = - sin A, cos Ac 0 {

- cos A - in A -si
cos Lc c cos Lc sin c sin Lc

.

ot
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Substitution of the error quantities

L
C

L + SL and Ac = X + SA

and expansion yields:

n'_ n'.n _ n, .n
Ci =C, G = [L+871¢; : (49)
where
i 0 -6\ sin L SL
gp = iax sin L 0 §A cos L
-8L -8\ cos L 0 ;

Note that we could have just as well proceeded to expand the
above expression in the form:

n _ . n_ i _ =n i
Cqv =C; C4v = CyII + 87]
where
i _ Aign an
.e_ - .(_:n 9. ..(.:..i

Thus the expression for computed specific force coordinatized
in computed geographic axes is found by multiplving Eq (43)
by Eq (49),vielding:

n'_ n a n n i.i n_a .a' n .a .a'yn
-gc - _C.a' .6_£ + [_I_ + 9. + -.qi .z_ .C_n + ga'?. gn Ea — .(.:..n ]_f_ (50)
Equating the appropriate components of Eq (50) to the computed
north and east elements of Eg (45) gives:

(51la)
T n'- . l .2- 2 . e . —-.- . _ . '2
af. = rLch+ 3 rzc()‘c wig)sin 2Lc+2rLcLc r.e sin 2L _-3er_sin 2L L
T nl_ . e 0 . . *
gzgc =r, A _cos Lc-Zrl LCA051n Lc+2r2 Accos Lc (51b)

Lo c c




| Now the computed ex.rezdions for the radii of curvature-are
| given by:

r, = rc(l - 2e cos ZLC)
c .
; r. =r (1 + 2e sin2 L)
') c o]
| c
| But, from page 46b, and Eq (22), .
i r =r_ +h
c “o, ‘a
= r (L -esin®L) +h+ 6h
e c
=r (1-e sin? L) + h + 6h
= r + 6h (51 c)
Thus
rL = r[l - 2e cos 2(L + SL)] + 6h
c
r, = ril + 2e sin(L + 6L)] + éh
c
or
= + 6h (51:¢)
rp = rp C
c
n,
rzc— r, + sh (51.€)

If equations (51¢), (51d) and (5le) gn¢ the error quantities:

Lc = L + 8L and Ac = A + 6A

are substituted into Egs (5la) and (51b), there results:

T (n' T .n 2 _ 2 . o
q; £, =gq; £ ¢ Eg + rLaL + rm“‘ wi )cos 2L 8L + 2L 6h

+ r. A sin 2L 8\ + (L + %(AZ - wie) sin 2L] 8h (52

L

a)
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n'— T n _ N ) - _ e . »
gc = d5 £ ng + r, cos L ) + 2[r2 cos L r, L sin L}S8A

-2 r, A sin L 8L - [rz AsinL+2r, L Acos L+ 2r isinL]&L

L L

+ 2% cosLSh+ [AcosL-21L A sin L]6h (52b)

Certain of tHe terms in Egs (52a) and (52b) are seen to have negli-
gible magnitude (< 2 x 10_59) if the vehicle motion can be
described by the data on page 55 and if, in addition, the follow-
ing error data is postulated:

= - SN -3
GLmax = slmax = 10 min 2.9 x 10 rad
. - ° _ - "6
aLmax = 5Amax = SLmast = 3.6 x 10 rad/sec
- o _ 2 _ -9 2
GLmax = meax = GLmast = 4,5 x 10 rad/sec
ahmax = 2000 f¢t.
Ghmax = Shmaxms = 2.5 ft/sec
Thus:
n'_ T n ** o [ . . . **
f. = a3 £ + Eg+r 6L + 2L 6h + ¥ A sin 2L 68X + L dh (52c)
fn'= T £ - ng + r cos L 5K + Z[i cos L - r L sin Lléi
¢ T 922 g

- 2r X sin L 8L - r{) sin 1L + 2L i cos L]SL

4+ 2} cos L 6h + A cos L éh (524)

Substituting Eq (50) into (52¢) and (52d) and multiplication of
the QP g? product yields:

1

r 6L + (r + g)6L + r A sin 2L 6k + 3 r(A sin 2L - 4iX sin® L)6) =

T .n a T..n ,i .i n ,.a aya'y.n_ o0




_62-
r cos L ) + 2[r cos L - r L sin L] 8% + [{r+g)cos L - r L sin L
+ 2r e sin?L cos L] &) - 2r A sin L 6L ~ r{(A sin L + 21, A cos L)L =

T .n a . n i i n a a,.a',.n : .
ng + g, Cov £ + g,lCy 27 ¢ + . (DF + A%)C) 1£7 - 2) cos L 6h +

A cos L Sh (53b)

The above egquations give the latitude and longitude errors for
arbitrary vehicle motion for the space stabilized system which
computes in geographic coordinates. These coupled linear time
varying equations are not as simple as those obtained for compu-
tation in inertial coordinates (Eq. 44).
For the case of a stationary system:
L=L=A=y=1r=0, A = Wi
and equations (53a) and (53b) simplify to the coupled@ linear

equations:

SL + mz SL + 9o sin 2L &) = -wg £ + %{gg 92' Ggé + gi[gg gi gi + 92'

(@ + 2% 2" 1£™) (54a)

6X + mz 6A - 2w, tan L §L = ws sec L n + sei L {gg 92' Ggé +

gy e 2t ct + ¢l @ + el 1M (54b)
where:

Noting that the characteristic equation for equations (54) is
given by:
m‘ 3 ~
4 2 ie,2 .. 2 2 4 2 2.2
p- + 2ws[1 + 2(5;—) sin® L] p© + wg = (p° + ws)
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Where p = %E' it is seen that the cross coupling between the
latitude and longitude channels is on the order of the Earth's
ellipticity~--a rather weak effect. This coupling arises from the
computation of the Coriolis terms for accelerometer compensation
as can be seen if the equations are derived assuming perfect com-
pensation. As a matter of fact, the above fourth order charac-

10 to be the same as the character-

teristic equation can be shown
istic equation for a Schuler-tuned Foucault pendulum. Thus we
would expect that the error response resulting from the simul-
taneous solution of equations (54) would contain modulation at the
Foucault frequency. That is, at a frequency given by %o sin L,
the vertical projection of Earth rate.

Since equations (54a) and (54b) are Laplace transformable, it is
convenient to express the equations in signal flow diagram form.
Taking the Laplace transformation:

s? 8T ~ s 6L(0) - 8L(0) + wsz ST + w;_ sin 2L[s &X - 81 (0)] =

- 2 1 T.n .ca n n n, .n
w2 T+ 2 aylch, £ + (2" + D" + AHET] (54¢)

s2 8% - s 8A(0) - A (0) + w82 §X - 2 w; tan L[s 6T - 8L(0)] =

2 - sec L T.,.n a n n n, -n
g~ sec L n + —C g, (S, 6£” + (27 + D + A )E] (544)

w

Where it was noted that:

n a a,.a'_ .n n
ga' (_D.. + é )gn D"+ A

Equations (54c) and (54d) can be arranged in the signal flow
diagram shown in Figure (9).
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Solution of Differential Ecuations

1.

Latitude and Longitude Errors for Constant Gyro Drift

Equation (44), which represents the error response
for the space stabilized inertial navigation system
which computes in geocentric inertial coorcdinates, is
a linear, uncoupled vector differential eguation with
constant coefficients. Thus, any one of the familiar
linear analysis techniques can be employed. To il-
lustrate the computations involved, take 2 Situatiog
which will both illustrate tihe solution of the dif-
ferential equation and will serve as a comparison be-
tween the two computational frames.

If gyro drift is taken to be the sole error source,

Eqg (44) becomes

where the elements of ga are given by
4, = wkt. : k=1x,v, 2

Since skew symmetric matrices transform under a simi-
larity transformation to another skew symmetric matrix
whose elements are coordinatized in the new frame, the

above equation can be written:

st + ol srt = ot £t (55)
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For the stationary case, (£ = %5/ A = wjet)

| 0'1 (cos L cos wietﬁ
i_ i _ i - _
£ =c, £ —Enf 0 g§COSL51nwiet
! -9 i sin L '}

- —

sin L ¢os w,._t
ie

r
— —— P n id .
= =. D sin L sin w, _t
9r g r ie
-cos L ,

where D, the deviation of the normal, (not to be confusad with
the drift matrix, D) is defined by

D=L~ Lg (see Fig. 1)
Since the maximum value of the deviation of the normal is on

the order of the earth's ellipticity or 1/297 the product of
the deviation of the normal and the elements of the drift matrix

are second order.
Thus, Eq (55) becomes:

szt + wl sr' = w2 D' £t (56)

iapl d (57)
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This somewhat surprising result emerges because the frequency
content of the forcing function of Eq (56) is at a much lower

frequency than that of the systen mode (in fact fg = i7) ana Si

17,000 for w_ = 1 meru). “je Wy

The latitude error is given by north error component - earth

radius =zatio as:

n
X
8L = gz = (58)

where q4; is the vector {1,0,01}.

Rewriting:
1l T n i _1 T n i i _1 T n_ i i n
6L=29g; G, 8r =29 ¢ D =04d; D C
or
n
- ~T NI
§L = g; b 2 (59)

Longitude error is given by the east error component - equatorial

earth radius projectionra=io as:

' n
s\ = T _,gf;__ (60)
g-2-'r cos L

where 95 is the vector {0,1,0}.

Rewriting:

1o
N
s I
KN
]
1]
Q
r

dA = gg g.
or

r
§A = gg D" = sec L (61)




From Egs. (38), (59

error for the case

8L

-6 8-

), and (61), the latitude and longitude
of constant gyro drift is given by:

dy

n (62)

S - dxn sec L (63)
are the effective drift rates about the

east and north axes.

where dyn and dxn
If one can assume that the gyro input
axes are initially aligned with geocentric inertial axes,

8L = - sin w., t w .t + cos w, _t w t (64)
ie X ie y
S\ = cos wiet tan L th + sin wiet tan L wyt - mzt (65)
where Wy s k = %x,y,2, is the drift rate associated with kth

gyro, Equations (544) =nd (54b) describe the error response
for the case of computation in local geographic .oordinates

for a stationary system. The response to gyro drift is seen

to be:
v 2 . s+ 1 T .n.a . a_.n
SL + we L + W;o Sin 2L 6A = T 9 gaf— ¢, £
N 2 s+ secL T _.n _a .,a _.n
06X + wg 68X - 2w, tan L 6L = =¢ 4, €, D ¢, i
Since the above equations can be rewritten as:
‘o
- 2 . s __ T o.n s 2
SL + wg SL + w;, Sin 2L S\ = 93 n. 02 —,dyn W (66)
u_ws~
0 ]
SA + w2 A - 2w tan L 6L = - g? p? 0 sec L = - dx wz sec L (67)
s ie 2 - 2 n s
w

0
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Solution of Egs. (66) and (67) yields Egqs. (64) and (65) as results
(if Coriolis compensation is assumed to be perfect). Thus, the
error response for gyro drift is seen to be the same, to at least
first order accuracy, for computation in either the geocentric
inertial or local geographic coordinate frames. Equations (64)

and (65) are plotted in Figure 10 for the case of equal drift

rates for each gyroscope. The reader is referred to Ref. (9), for
a more comprehensive treatment of the effects of gyro drift.

Level and Azimuth Errors for Constant Gyro Drift

In a space stabilized system, components of the system geocentric
position vector can be computed in geocentric inertial axes.

From this knowledge and a clock, latitude and longitude are com-
puted. Thus the coordinate transformation relating the geographic
frame to the inertial frame is available via the transformation
of Eq. (48). It can be inferred that knowledge of the vertical

is implicitly contained in this transformation. One is, in fact,
tempted to associate directly the appropriate elements of the

QP matrix of Eq. (49) with the level and azimuth errors. The
inadequacy of this association is illustrated by an example.

To fix ideas, let us say that the platform is being used as a
reference to measure some physical quantity such as specific

force, which would be the case for an airborne gravimeter appli-

(8).

cation From Eq. (50), the computed specific force, coordina-

tized in the computed geographic frame, is given by
i n

_ en n a n n i a
=f£ +C 6+ [0 +C,27C +C (D +A

gn'

a n
£, ) €21 £ (68)

Note that the primed sub and superscripts have been deleted on
the right-hand side of this equation since second order error
quantities are involved.
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There is a direct association between the level and azimuth errors
and the terms of the bracketed expression of Eg (68). It is seen
from Eq (49) that the QP matrix is a function of the latitude and
longitude errors which are, in turn, a function of the error
sources. Thus, to evaluate the bracketed term in Eq (68), it is
necessary to write g? as an explicit function of the error sources.
As can be seen from inspection of Egs (44), (52), or (54), the
solution of the appropriate equations and their substitution into
Eq (68) is not likely to be analytically tractable. Furthermore,
the presence of the diagonal scale factor error matrix, 5?, shows
that the bracketed term is not a skew symmetric matrix.

For the purposes of exposition, suppose that the predominant error
source is gyro drift, which is generally found to be the case for
a properly designed inertial system. In this case, Eq (68) becomes:

‘ 1 ‘i’z —‘PE;

] 3

£ =+ 8"+pM 1= v, 1 v | £° (69)
| -
I WE WN 1 —

The off diagonal elements of [g? + g?] can be directly associated
with the level and azimuth errors.

That is:
WN = north level error = + 8\ cos L + dxn
WE = east level error = - SL + dyn
Wz = azimuth error = - 8)X sin L + dzn

But from Eqs (62) and (63)

WN =z 0 {70a)
WE = 0 {70b)
Wz = 4 dxn tan L + dzn {70¢)
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If one can again assume that the gyro input axes are initially
aligned with geocentric inertial axes, the azimuth error is

given by:
YZ =_gsec L (th cos miet + wyt sin wiet) (71)

Equation (71) is plotted with the latitude and longitude errors

in Fig. in.

It is seen, therefore, that the space stabilized system yields
latitude, longitude, and azimuth errors which are roughly pro-
portional to the physical platform misalignment. The level
errors, however, are seen to be free of this long term growth.
A more detailed analysis would show that the level errors os-
cillate about the vertical with the Schuler period in an anazo=

gous fashion to a physical platform system.
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2.Altimeter Caused Errors

Comparison of Eq (54) with (44) reveals that the altimeter error
response for a system computing in local geographic coordinates
differs considerably from that of a system computing in geocen-
tric inertial coordinates. Taking the case of a stationary sys-
tem, it is seen that the geocentric inettial computational sys-
tem is affected by altimeter uncertainty, while the local geogra-

phic computational system is not.

Treating the altitude uncertainty as the sole source of error,
the differential equation describihg the error response for the
system which computes in inertial axes is given by:

58t + w2 srt = 302 n 1l (72)
s — s =r

If we consider the case of altimeter bias for constant velocity

motion at constant latitude as was done in Section YB, the solu-

tion to Eq (72) is given by Eg (35) as:

‘cos Lg[cos(f’l.o + wie)t - cos wst]
QE? = {cos Lg[sin(io +ow, )t - Yo +Swie) sin w_t| 38h,
fin Lg(l - COS wst) j
where

20 A constant terrestrial longitude rate

Gho A constant altimeter error.
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From Egs. (44a) and (44c), the latitude and longitude errors are
given by:

sz
S

SL
and n
Sr

_ T
§a = 9> ¥ Cos L

Carrying out the required transformation, neglecting the higher
order terms as usual, yields:

éh £ 4w,
= - 3 0 .3 _ ? __0 "ie_. ¢ .
SL = 3 —5 sin 2L{[1 cos(lo+wie)t]cos wst —-zr——51n(2°+wie)t.sn1ugt}
s
(73)
6h ¢ 4w

= Oresnm(s _ _o_"ie : .
A = 3 -§—151n(20+wie)t cos wst ——G———cos(20+wie)t sin wst] (74)

s

The azimuth error is given by the z component of the QF matrix
of Eq. (49). Thus:

wz= - X sin L
6h° . io+wie . .
= - 3 sin L—;—[51n(20+wie)tcxsnnst-——a;——cos(20+wie)t sin wst] (75)

If we calculate the latitude error using Eg. (44b) which implies

= .
re roc + ha’ we get:

Gho 3
SL* = 2 - tan L(1 -~ 3 cos wst) (76)

Equations (73), (74), (75), and (76) are plotted in Figure 1l.
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