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Abstract 

The recent introduction of the 'relevance vector machine' has effec
tively demonstrated how sparsity may be obtained in generalised 
linear models within a Bayesian framework. Using a particular 
form of Gaussian parameter prior , 'learning' is the maximisation, 
with respect to hyperparameters, of the marginal likelihood of the 
data. This paper studies the properties of that objective func
tion, and demonstrates that conditioned on an individual hyper
parameter, the marginal likelihood has a unique maximum which 
is computable in closed form. It is further shown that if a derived 
'sparsity criterion' is satisfied, this maximum is exactly equivalent 
to 'pruning' the corresponding parameter from the model. 

1 Introduction 

We consider the approximation, from a training sample, of real-valued functions, 
a task variously referred to as prediction, regression, interpolation or function ap

proximation. Given a set of data {xn' tn};;=l the 'target' samples tn = f(xn) + En 

are conventionally considered to be realisations of a deterministic function f, po
tentially corrupted by some additive noise process. This function f will be modelled 

by a linearly-weighted sum of M fixed basis functions {4>m (X)}~ = l: 

M 

f(x) = L wm¢>m(x), (1) 

m=l 

and the objective is to infer values of the parameters/weights {Wm}~=l such that 

f is a 'good' approximation of f. 

While accuracy in function approximation is generally universally valued, there has 
been significant recent interest [2 , 9, 3, 5]) in the notion of sparsity, a consequence 

of learning algorithms which set significant numbers of the parameters Wm to zero. 

A methodology which effectively combines both these measures of merit is that of 
'sparse Bayesian learning', briefly reviewed in Section 2, and which was the ba
sis for the recent introduction of the relevance vector machine (RVM) and related 
models [6 , 1, 7]. This model exhibits some very compelling properties, in particular 
a dramatic degree of sparseness even in the case of highly overcomplete basis sets 



(M »N). The sparse Bayesian learning algorithm essentially involves the max
imisation of a marginalised likelihood function with respect to hyperparameters in 
the model prior. In the RVM, this was achieved through re-estimation equations, 
the behaviour of which was not fully understood. In this paper we present further 
relevant theoretical analysis of the properties of the marginal likelihood which gives 
a much fuller picture of the nature of the model and its associated learning proce
dure. This is detailed in Section 3, and we close with a summary of our findings and 
discussion of their implications in Section 4 (and which, to avoid repetition here, 
the reader may wish to preview at this point). 

2 Sparse Bayesian Learning 

We now very briefly review the methodology of sparse Bayesian learning, more 
comprehensively described elsewhere [6]. To simplify and generalise the exposition, 
we omit to notate any functional dependence on the inputs x and combine quantities 
defined over the training set and basis set within N- and M-vectors respectively. 
Using this representation, we first write the generative model as: 

t = f + €, (2) 

where t = (t1"'" tN )T, f = (11, ... , fN)T and € = (E1"'" EN)T. The approximator 
is then written as: 

f = <I>w, (3) 

where <I> = [«Pl'" «PM] is a general N x M design matrix with column vectors «Pm 
and w = (W1, ... ,WM)T. Recall that in the context of (1), <I>nm = ¢m(xn) and 

f = {f(x1), .. .j(XN)P. 

The sparse Bayesian framework assumes an independent zero-mean Gaussian noise 
model, with variance u 2 , giving a multivariate Gaussian likelihood of the target 
vector t: 

p(tlw, ( 2) = (27r)-N/2 U -N exp { _lit ~:"2 } . (4) 

The prior over the parameters is mean-zero Gaussian: 

M ( a W2) 
p(wlo:) = (27r)-M/21I a~,e exp - m2 m , (5) 

where the key to the model sparsity is the use of M independent hyperparameters 

0: = (a1 " '" aM)T, one per weight (or basis vector), which moderate the strength 
of the prior. Given 0:, the posterior parameter distribution is Gaussian and given 
via Bayes' rule as p(wlt , 0:) = N(wIIL,~) with 

~ = (A + u- 2<I>T<I» - 1 IL = u - 2~<I>Tt, (6) 

and A defined as diag(a1, ... ,aM) . Sparse Bayesian learning can then be formu
lated as a type-II maximum likelihood procedure, in that objective is to maximise 
the marginal likelihood, or equivalently, its logarithm £(0:) with respect to the hy
perparameters 0:: 

£(0:) = logp(tlo: , ( 2) = log i: p(tlw, ( 2) p(wlo:) dw, 

1 
= -"2 [Nlog27r + log ICI + t T C-1t] , 

with C = u2I + <I> A - l<I>T. 

(7) 

(8) 



Once most-probable values aMP have been found1 , in practice they can be plugged 
into (6) to give a posterior mean (most probabletpoint estimate for the parameters 

J.tMP and from that a mean final approximator: fMP = ()J.tMp· 

Empirically, the local maximisation of the marginal likelihood (8) with respect to 
a has been seen to work highly effectively [6, 1, 7]. Accurate predictors may be 
realised, which are typically highly sparse as a result of the maximising values of 
many hyperparameters being infinite. From (6) this leads to a parameter posterior 

infinitely peaked at zero for many weights Wm with the consequence that J.tMP 

correspondingly comprises very few non-zero elements. 

However, the learning procedure in [6] relied upon heuristic re-estimation equations 
for the hyperparameters, the behaviour of which was not well characterised. Also, 
little was known regarding the properties of (8), the validity of the local maximisa
tion thereof and importantly, and perhaps most interestingly, the conditions under 
which a-values would become infinite. We now give, through a judicious re-writing 
of (8), a more detailed analysis of the sparse Bayesian learning procedure. 

3 Properties of the Marginal Likelihood £(0:) 

3.1 A convenient re-writing 

We re-write C from (8) in a convenient form to analyse the dependence on a single 
hyperparameter ai: 

C = (]"21 + 2..: am¢m¢~' = (]"21 + 2..: a~1¢m¢~ + a-;1¢i¢T, 
m m # i 

= C_ i + a-;1¢i¢T, (9) 

where we have defined C-i = (]"21+ Lm#i a;r/¢m¢~ as the covariance matrix with 

the influence of basis vector ¢i removed, equivalent also to ai = 00. 

Using established matrix determinant and inverse identities, (9) allows us to write 
the terms of interest in £( a) as: 

which gives 

£(a) = -~ [Nlog(2n) + log IC-il + tTC=;t 

(¢TC-1 t)2 
-logai + log(ai + ¢TC=;¢i) - . • T-' -1 ], 

a. + ¢i C_i ¢i 

1 (¢TC-1 t)2 
= £(a-i) + -2 [logai -log(ai + ¢TC=;¢i) + • T-' -1 ] , 

ai + ¢i C_i ¢i 

(10) 

(11) 

= £( a-i) + £( ai), (12) 

where £(a-i) is the log marginal likelihood with ai (and thus Wi and ¢i) removed 
from the model and we have now isolated the terms in ai in the function £(ai). 

IThe most-probable noise variance (]"~p can also be directly and successfully estimated 
from the data [6], but for clarity in this paper, we assume without prejudice to our results 
that its value is fixed. 



3.2 First derivatives of £(0:) 

Previous results. In [6], based on earlier results from [4], the gradient of the 
marginal likelihood was computed as: 

(13) 

with fJi the i-th element of JL and ~ ii the i-th diagonal element of~. This then leads 
to re-estimation updates for O::i in terms of fJi and ~ii where, disadvantageously, 
these latter terms are themselves functions of O::i. 

A new, simplified, expression. In fact , by instead differentiating (12) directly, 
(13) can be seen to be equivalent to: 

(14) 

where advantageously, O::i now occurs only explicitly since C- i is independent of O::i. 
For convenience, we combine terms and re-write (14) as: 

o£(o:) _ o::;lS;- (Qr - Si) 

OO::i 2( O::i + Si)2 
(15) 

where, for simplification of this and forthcoming expressions, we have defined: 

(16) 

The term Qi can be interpreted as a 'quality' factor: a measure of how well c/>i 
increases £(0:) by helping to explain the data, while Si is a 'sparsity' factor which 
measures how much the inclusion of c/>i serves to decrease £(0:) through 'inflating' 
C (i. e. adding to the normalising factor). 

3.3 Stationary points of £(0:) 

Equating (15) to zero indicates that stationary points of the marginal likelihood 
occur both at O::i = +00 (note that , being an inverse variance, O::i must be positive) 
and for: 

S2 
. _ t 

O::t - Q; _ Si' (17) 

subject to Qr > Si as a consequence again of O::i > o. 
Since the right-hand-side of (17) is independent of O::i, we may find the stationary 
points of £(O::i) analytically without iterative re-estimation. To find the nature of 
those stationary points, we consider the second derivatives. 

3.4 Second derivatives of £(0:) 

3.4.1 With respect to O::i 

Differentiating (15) a second time with respect to O::i gives: 

-0::;2S;(O::i + Si)2 - 2(O::i + Si) [o::;lS;- (Qr - Si)] 

2(O::i + Si)4 

and we now consider (18) for both finite- and infinite-O::i stationary points. 

(18) 



Finite 0::. In this case, for stationary points given by (17), we note that the second 
term in the numerator in (18) is zero, giving: 

(19) 

We see that (19) is always negative, and therefore £(O::i) has a maximum, which 

must be unique, for Q; - Si > ° and O::i given by (17). 

Infinite 0::. For this case, (18) and indeed, all further derivatives, are uninforma
tively zero at O::i = 00 , but from (15) we can see that as O::i --+ 00, the sign of the 
gradient is given by the sign of - (Q; - Si). 

If Q; - Si > 0, then the gradient at O::i = 00 is negative so as O::i decreases £(O::i) 

must increase to its unique maximum given by (17). It follows that O::i = 00 is thus 

a minimum. Conversely, if Q; - Si < 0, O::i = 00 is the unique maximum of £(O::i) . 

If Q; - Si = 0, then this maximum and that given by (17) coincide. 

We now have a full characterisation of the marginal likelihood as a function of a 
single hyperparameter, which is illustrated in Figure 1. 

u. 10° 
I 
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Figure 1: Example plots of £(ai) against a i (on a log scale) for Q; > Si (left) , 
showing the single maximum at finite ai, and Q; < Si (right), showing the 
maximum at a i = 00. 

3.4.2 With respect to O::j, j i:- i 

To obtain the off-diagonal terms of the second derivative (Hessian) matrix, it is 
convenient to manipulate (15) to express it in terms of C. From (11) we see that 

and (20) 

Utilising these identities in (15) gives: 

(21) 

We now write: 

(22) 



where 6ij is the Kronecker 'delta' function , allowing us to separate out the additional 
(diagonal) term that appears only when i = j. 

Writing, similarly to (9) earlier, C = C_ j + ajl¢j¢j, substituting into (21) and 

differentiating with respect to aj gives: 

while we have 

(24) 

If all hyperparameters ai are individually set to their maximising values, i. e. a = 

aMP such that alI8£(a)/8ai = 0, then even if all 82£(a)/8a; are negative, there 
may still be a non-axial direction in which the likelihood could be increasing. We 
now rule out this possibility by showing that the Hessian is negative semi-definite. 

First, we note from (21) that if 8£(a)/8ai = 0, 'V;i = 0. Then, if v is a generic 
nonzero direction vector: 

< 

(25) 

where we use the Cauchy-Schwarz inequality. If the gradient vanishes, then for all 

i = 1, ... , M either ai = 00, or from (21) , ¢rC-1¢i = (¢rC-1t)2. It follows 
directly from (25) that the Hessian is negative semi-definite, with (25) only zero 
where v is orthogonal to all finite a values. 

4 Summary 

Sparse Bayesian learning proposes the iterative maximisation of the marginal like
lihood function £(a) with respect to the hyperparameters a. Our analysis has 
shown the following: 

1. As a function of an individual hyperparameter ai, £( a) has a unique maximum 
computable in closed-form. (This maximum is , of course, dependent on the 
values of all other hyperparameters.) 



II. If the criterion Qr - Si (defined in Section 3.2) is negative, this maximum 
occurs at O:i = 00, equivalent to the removal of basis function i from the 
model. 

III. The point where all individual marginal likelihood functions £(O:i) are max
imised is a joint maximum (not necessarily unique) over all O:i. 

These results imply the following consequences. 

• From I, we see that if we update , in any arbitrary order, the O:i parameters 
using (17), we are guaranteed to increase the marginal likelihood at each 
step, unless already at a maximum. Furthermore, we would expect these 
updates to be more efficient than those given in [6], which individually only 

increase, not maximise, £ (O:i) . 

• Result III indicates that sequential optimisation of individual O:i cannot 
lead to a stationary point from which a joint maximisation over all 0: may 
have escaped. (i.e. the stationary point is not a saddle point.) 

• The result II confirms the qualitative argument and empirical observation 
that many O:i -+ 00 as a result of the optimisation procedure in [6]. The 
inevitable implication of finite numerical precision prevented the genuine 
sparsity of the model being verified in those earlier simulations. 

• We conclude by noting that the maximising hyperparameter solution (17) 
remains valid if O:i is already infinite. This means that basis functions not 
even in the model can be assessed and their corresponding hyperparameters 
updated if desired. So as well as the facility to increase £(0:) through 
the 'pruning' of basis functions if Qr - Si ::::: 0, new basis functions can 
be introduced if O:i = 00 but Qr - Si > O. This has highly desirable 
computational consequences which we are exploiting to obtain a powerful 
'constructive' approximation algorithm [8]. 
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