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Abstract We present a detailed analysis of summer

monsoon rainfall over the Indian peninsular using nonlin-

ear spatial correlations. This analysis is carried out

employing the tools of complex networks and a measure of

nonlinear correlation for point processes such as rainfall,

called event synchronization. This study provides valuable

insights into the spatial organization, scales, and structure

of the 90th and 94th percentile rainfall events during the

Indian summer monsoon (June–September). We further-

more analyse the influence of different critical synoptic

atmospheric systems and the impact of the steep Himala-

yan topography on rainfall patterns. The presented method

not only helps us in visualising the structure of the

extreme-event rainfall fields, but also identifies the water

vapor pathways and decadal-scale moisture sinks over the

region. Furthermore a simple scheme based on complex

networks is presented to decipher the spatial intricacies and

temporal evolution of monsoonal rainfall patterns over the

last 6 decades.
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1 Introduction

Indian Summer monsoon (ISM) rainfall over South Asia is

the result of the interaction of several complex atmospheric

processes evolving at many different spatial and temporal

scales (e.g., Webster 1987). Apart from the influences of the

interplay of synoptic scale weather phenomena, the ISM

rainfall patterns are also modulated by the steep topography

of the Himalayas (e.g., Bookhagen and Burbank 2010).

Hence monsoonal rainfall has highly intricate spatiotem-

poral patterns. Here, we will analyse these spatiotemporal

ISM rainfall patterns over South Asia employing nonlinear

correlation measures called event synchronization and

complex networks.

The methodology of complex networks has emerged as

an important mathematical tool in the analysis of complex

systems in the last decade and has been applied to a wide

variety of disciplines within the natural and social sciences

(e.g., Watts and Strogatz 1998; Newman 2003; Albert and

Barabáasi 2002). The spatiotemporal structure of complex

networks, dynamics on them, and phenomena such as

network synchronization has been of large interest to the

nonlinear-dynamics but also to the climate communities

(e.g., Boccaletti et al. 2006; Arenas et al. 2008). In recent

years, the tools of complex network theory has also found

an application in the data driven analysis of the global

climate system (e.g., Donges et al. 2009; Tsonis et al.

2006; Tsonis and Swanson 2008; Yamasaki et al. 2008;

Donges et al. 2011). The correlation structure of climate

variables and their teleconnections have been studied
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employing this mathematical tool. Other applications of

this approach in climate data analysis include the identifi-

cation of community structures in the climate system

(Tsonis et al. 2010) and the linkages of different regional

climate phenomena (Steinhaeuser et al. 2010), leading to

the discovery of a new dynamical mechanism for major

climate shifts (Swanson and Tsonis 2009). A similar

approach based on a shared-nearest neighbor method has

been used to discover climate indices from sea surface

temperature data (Steinbach et al. 2003). Here, we apply a

complex networks approach to a specific regional climatic

phenomena of the ISM and study the spatiotemporal pat-

tern of rainfall.

Although rainfall has a significant impact on society,

agriculture and fresh-water generation in this region

(Bookhagen and Burbank 2010), it is not easy to decipher

its dynamics due to its spatiotemporal complexity and

involved small-scale processes. Furthermore, rainfall is a

point process with large spatial and temporal discontinu-

ities ranging from very weak to strong events within small

temporal and spatial scales (Wulf et al. 2010). Nonlinear

correlations called event synchronization can overcome

these difficulties (e.g., Quiroga et al. 2002). The meth-

odologies of complex networks and event synchroniza-

tion take into account the nonlinearities existing in the

correlation structure of the rainfall field. For the analysis

presented here, we have considered the rainfall events at

the 90th and 94th percentiles and thus focus on the

extreme rainfall events and the associated atmospheric

processes. By further developing the methodology and

building upon previous investigations (Malik et al. 2010),

we also attempt to study the evolution of monsoonal

rainfall pattern over the last decades. The key advantage

of applying complex network theory is that it does not

require details of a several of climatic variables and

indices one may have to analyse to study spatiotemporal

rainfall patterns.

This study provides several critical insights into the

underlying atmospheric processes responsible for the evo-

lution of the ISM and related extreme rainfall events.

Before introducing the methodology and data, we provide a

climatic overview of the region.

2 Climatic setting of the Indian summer monsoon

(ISM)

We do not intend to give a full account of the ISM, its

driving factors and dynamics and instead refer to summa-

ries and references in Webster (1987), Webster et al.

(1998), Gadgil (2003), and Wang (2006). In this section,

we aim to synthesize characteristics that are pertinent to

this study.

The ISM system is one of the active components of the

global climate system in the tropics. It has been argued that

the basic origin of the monsoon lies in the differential

heating of the land and the sea during the summer season,

which results in a positive moisture advection feedback

leading to widespread rainfall over the Indian subcontinent

(Webster 1987; Zickfeld et al. 2005; Levermann et al.

2009). The ISM accounts for a large part of the annual

rainfall budget over much of the Indian subcontinent. For

instance, the Ganges Plain and central parts of the Hima-

laya receive *80 % of their annual rainfall budget during

the ISM (Bookhagen and Burbank 2010). This, in turn

leads to high societal and economic significance of this

climatic phenomena (Webster et al. 1998; Gadgil 2003).

The onset of the ISM occurs on average at June 1st at

the southern tip of the Indian peninsular (Webster 1987).

While the onset of the monsoon is relatively stable through

time, the intra-seasonal variation is high (Fasullo and

Webster 2003). ISM rainfall is result of inherently large

spatial scale processes in the atmosphere. An important

feature of the ISM dynamics is the existence of two well

pronounced rainfall regimes, the active and break phases

(e.g., Webster et al. 1998; Waliser 2006). During the active

phase, the rainfall is spatially widespread over the Indian

subcontinent. In the break phase, rainfall ceases over the

vast majority of land mass, except the foothills of Hima-

laya where it is observed to increase (Krishnmurthy and

Shukla 2000). During the break phases, other meteoro-

logical features are observed that lead to a shifting of the

monsoon trough to the Himalayan foothills and lead to an

absence of low level easterly winds over the north of the

subcontinent (Webster et al. 1998; Waliser 2006). ISM

tends to abruptly fluctuate between these two regimes

several times during a season (e.g., Webster et al. 1998;

Waliser 2006). In addition to these rainfall-modulating

factors there exists synoptic-scale weather systems such as

monsoon depressions and lows. Previous studies also

indicate that rainfall has large spatial extents during mon-

soonal depressions (Stephenson et al. 1999; Sikka 1977) or

mid-tropospheric cyclones (Keshavamurthy 1973).

Large topographic barriers, such as the Himalaya and

western Ghats (Fig. 1), have major influences on rainfall-

generating processes (Roe 2005). In the case of the

Himalaya and adjacent Tibetan Plateau, the topography

also alters the pathways of water-vapour transport. It has

been previously documented that the steep topography of

the Himalaya significantly influences spatiotemporal

rainfall distribution (Bookhagen and Burbank 2006, 2010;

Bookhagen 2010). The large elevated Tibetan plateau

region is thought to heavily influence the energy budget

of this region, also leading to teleconnections with dif-

ferent synoptic-scale weather phenomena (Yanai and Wu

2006).
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3 Data

In this study, we used daily, gridded rainfall data from1951 to

2007 developed as part of the project—Asian Rainfall Highly

Resolved Observational Data Integration Towards the Eva-

luation of Water Resources (APHRODITE) (Yatagai et al.

2009). It is available from the website—http://www.chikyu.

ac.jp/precip. We have extracted the data for the South Asian

region (Fig. 2) with a horizontal resolution of 0.5 degree

(*55km) (APHRO–V1003R1). We refer to this data set as

APHRO–V01003R1. We have also employed the zonal

(u) and meridional (v) wind components and surface rainfall

data from the NCEP/NCAR reanalysis data set from 1951 to

2004 with 2.5 degree resolution, provided by the NOAA and

available at http://www.esrl.noaa.gov/psd/.

4 Methodology

In this section we will first introduce the nonlinear corre-

lation measure of event synchronization; second we will

provide a description of network construction methodology

and third, we list the details of network measures and

terminology used in this work.

4.1 Event synchronization (ES)

We have employed event synchronization (ES) as a non-

linear correlation to measure the strength of synchroniza-

tion of rain events between two different grid points and

their delay behaviour. ES serves also as the basis for

constructing the complex networks. ES has been previously

introduced in Quiroga et al. (2002) and modified by Malik

et al. (2010). Only those rain events and their time indices

are considered, which are above a certain a percentile of all

the wet days during the 4 summer monsoon months of

JJAS (June, July, August and September). An a percentile

threshold for each grid point gives a unique net amount of

rainfall per day as the threshold for each grid point. For

a = 94% and a = 90% the thresholds on net rainfall

amount per day is shown in Fig. 2a, b respectively. Also,

the annual standard deviation of the number of events per

year is plotted in the Fig. 2c, d for both thresholds.

Thresholds used in this study are considered to be extreme

rainfall events (Groisman et al. 1999; Kripalani and

Kulkarni 1999; Goswami et al. 2006).We have chosen

these thresholds, because rainfall at or above this threshold

only occurs during the active phase of the ISM. Hence

these thresholds are extremely useful in studying the spatial

structures of underlying atmospheric processes which are

responsible for the active phase of monsoon. Events with

the above mentioned thresholds are less effected by the

sampling uncertainty, as compared to very high thresholds

and hence provide more robustness to calculation of ES.

This is one of the approaches for characterizing extreme

rainfall events, an alternative approach is to describe

extreme daily rainfall events by suitable statistical models

of extreme value theory (Coles 2001). A detailed analysis

between two approaches in context of the ISM could be

found in for e.g., May (2004a, b).

Let us say an event above a occurs at time tl
i at grid point

i and tm
j at grid point j l = 1, 2, …, si, m = 1, 2, …, sj and

within a time lag ± slm
ij , which is defined as following

s
ij
lm ¼ minftilþ1 $ til; t

i
l $ til$1; t

j
mþ1 $ t jm; t

j
m $ t

j
m$1g=2 ð1Þ

where si and sj are the total number of such events that

occurred at the grid point i and j respectively. The above

definition of time lag ' s
ij
lm helps to separate of independent

events. Which in turn allows to take into account the fact

that different atmospheric processes responsible for

generation of rain events evolve at different time scales.

We need to count the number of times an event occurs at i

after it appears at j and vice versa and, this is achieved by

defining quantities c(i|j) and c(j|i). Where,

cðijjÞ ¼
X

si

l¼1

X

sj

m¼1

Jij ð2Þ

and

Jij ¼
1 if 0\til $ t jm\s

ij
lm

1=2 if til ¼ t jm
0 else;

8

<

:

ð3Þ

Fig. 1 Topographic map (based on ETOPO1 data provided by

NOAA) of the Indian peninsular and the Himalaya. The Himalaya

form a high topographic barrier in the north resulting in orographic

rainfall. Along the west coast of India are the western Ghats forming

an additional orographic barrier. The blue lines show the two

important river system draining the Himalaya, the Indus in the west

and the Tsangpo–Brahamputra–Ganges system in the central and

eastern Himalaya
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Similarly, we can define c(j|i) and from these quantities

we can obtain

Qij ¼
cðijjÞ þ cðjjiÞ

ffiffiffiffiffiffiffi

sisj
p ð4Þ

qij ¼
cðijjÞ $ cðjjiÞ

ffiffiffiffiffiffiffi

sisj
p ð5Þ

Qij is the measure of the strength of event

synchronization between grid points i and j. It is

normalized to 0 B Q B 1. This implies Q = 1 for

complete synchronization. The qij measures the delay

behaviour and -1 B q B 1. And qij = 1 implies that an

event at i always precedes an event at j. The matrix qij open

up several unique possibilities to analyse delay directions.

Qij is a square symmetric matrix and qij is square anti-

symmetric matrix. ES has been very specifically designed

to calculate nonlinear correlations among time series with

events. And better suited than other correlation measure

such as cross-correlation (linear) and mutual information

(nonlinear) for measuring correlations among bivariate

time series with events defined on them. There exist several

other measures for estimating dependencies among events

too. A distinctively different but similarly analytical

rigorous method to measure dependencies between

extremes based on extreme value theory is provided in

Coles et al. (1999). In this approach, it is not required to

pre define events like in ES but it has no option of

analysing delays and their directions.

4.2 Constructing adjacency matrices

To construct the network out of the ES matrices described

above, we treat a grid point over land as the vertex of the

network and any edge between them will be referred to as a

link. In other words, vertex and grid point have the same

meaning in the following discussion. The links between

different grid points exist if the strength of the ES is above

a certain predetermined threshold. Directionality to the

links is introduced using the delay direction from the sign

of q. Let us say a grid point is connected to k other different

grid points. Then we call k the degree of the grid point

where k is an integer between 0 and N - 1, where N is the

total number of grid points. For the purpose of constructing

the network we have used a fixed global link density K. In

the case of undirected networks it is related to the proba-

bility P(k)—the number of grid points having k connec-

tions as 1
N$1

Pk¼kmax

k¼1 PðkÞk ¼ K; where kmax is the

maximum of degree. We will only analyse the minimalist

correlation structure of the ISM rainfall. In order to obtain

it, we have taken the value of K = 0.05, i.e., we assume

that only 5% of the total grid points are connected. These

links represent the 5% strongest correlations. The

underlying assumption is that the extracted minimalist

correlation structure contains the statistically most sig-

nificant and essential features of correlations in the ISM

rainfall field. Thereby, we analyse only the statistically

most significant correlations and, in turn, we will be able

to remove much of the redundant information. From a

meteorological perspective, we thus analyse the most

persistent atmospheric features during an ISM season

responsible for generation of extreme rainfall events. We

calculate a threshold h
Q
ij on Qij by setting K = 0.05. Next

we, then convert Qij into a binary matrix called the

adjacency matrix A where,

Aij ¼
1 if Qij[ h

Q
ij

0 else;

"

ð6Þ

and A is a symmetric matrix such as Q. Similarly, qij can

also be constructed into an adjacency matrix A
q with a

difference that now

Fig. 2 Rainfall thresholds and their annual variability calculated

from 57 years of data (1951–2007). We show the annual daily rainfall

amount for thresholds of a = 94% (a) and a = 90% (b). Note the

generally high daily rainfall amounts in the Ganges plain and at the

orographic barriers of the eastern Swats and the southern Himalaya.

We show the standard deviation from the mean number of rainfall

events per year for a = 94% (c) and a = 90% (d). Areas in blue

indicate high inter-annual variability and are generally spatially

disconnected from the mean annual rainfall pattern
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A
q
ij ¼

1 if qij[ jhqijj
0 else;

"

ð7Þ

We now have sense of direction in Aq, i.e., A
q
ij ¼ 1 means

that the link is from i to j and not vice-versa. Therefore Aq

is not a symmetric matrix. A further adjacency matrix AQq

can be constructed as,

A
Qq
ij ¼ A

q
ijAij ð8Þ

and it has the characteristic of having both, the information

of direction and strength of the link. Again AQq will not be

a symmetric matrix. In Fig. 3 we provide a schematic

representation of steps involved in the construction of a

network, starting from rainfall time series at each grid

point.

4.3 Complex network measures

We use several basic measures from complex network

theory to characterize the rainfall network constructed from

the ES matrices (Boccaletti et al. 2006) (c.f. Fig. 3) The

simplest measure is the degree centrality of grid point

j, CDj, which is given as

CDj ¼

PN
i¼1 Aij

N $ 1
ð9Þ

where N as above is the total number of grid points. CDj

measures the number of grid points linked to a particular

grid point j. A grid point having higher degree centrality is

expected to have higher influence on the functioning of the

network. In the presented study grid points where critical

atmospheric processes responsible for the development

of ISM rainfall take place should show higher degree

centrality. The local clustering coefficient Cj for the grid j

tells us the probability if two different connected grid

points that are also connected to the same third grid point.

In the language of graph theory this relates to how close the

neighbours of a vertex are to a complete graph (also called

clique). Let us say that grid point j has kj links, i.e, its is

connected it with kj other nodes. If each of these grid points

are also connected with each other then we need
kjðkj$1Þ

2

links. If the actual number of links existing is Ej then

Cj ¼
2Ej

kjðkj $ 1Þ
ð10Þ

In our approach, we will use Cj to estimate the spatial

continuity of rainfall fields. An additional sophisticated

centrality measure is the closeness centrality CCj. The

mathematical definition used here measures the network

vulnerability. Grid points with a high value CCj are very

critical for the functioning of the network (Dangalchev

2006). Let us say that the mean geodesic distance, i.e.,

the shortest path between a grid point j to all the other

grid points i connected to it is d(j, i) then closeness

centrality is

CCj ¼
X

i2fVnjg
2$dðj;iÞ ð11Þ

where {V\j} is the set of all the vertices or grid points

excluding j. One of the physical interpretation of this

measure is that it gives the speed of information propaga-

tion. For example, any perturbation in the system travels

fastest to the vertices with highest vales of CCj. We have

normalized CCj between 0 and 1 by dividing it with the

maximum of CCj.

Fig. 3 Schematic flow diagram showing the steps involved in the

construction of the network (read from left to right) and in calculating

some network measure n. First, we define events for a rainfall time

series at the each grid point and then calculate event synchronization

matrix Qij and delay direction matrix qij. Depending on matrix

characteristics, we establish undirected or directed links and convert

the network to an adjacency matrix. And from the adjacency matrix

we estimate the network measure n
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Betweenness centrality CBj is the sum of the ratio of the

number of shortest paths between two vertices passing

through a particular grid point to the total number of

shortest paths between those two vertices. Mathematically

it is given by

CBj ¼
X

j6¼s 6¼t2V

rjðl;mÞ

rðl;mÞ
ð12Þ

where rj (l, m) is the number of shortest paths between l

and m passing through j. Physically CBj indicate the

information pathways if we assume that the information

travels using shortest path. In our case, we hypothesise that

rain events (or in the wider sense water vapour) are the

quantity traveling through the network. This hypothesis is

subject to further research in order to provide a robust and

solid physical interpretations.

We can also measure the length of the links in physical

units by defining thegeographical distance. If two grid

points i and j are connected then the length of this link Lij
can be calculated using the formula for spherical earth

projected on to plane, i.e.,

Lij ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd/ijÞ
2 þ ðcosð/mÞdkijÞ

2
q

ð13Þ

where d/ij and dkij are differences in latitude and longitude

in radians between grid point i and j, /m is the mean of the

latitudes of i and j and R is the radius of the earth.

4.4 Directed networks: local network flux

Directed networks are the networks where every link has a

sense of direction, i.e., either it is outgoing or incoming.

The indegree kin is the number of links incident on a grid

point; the outdegree kout is the number of links leaving a

grid point. We define the local network flux as the differ-

ence of the two, i.e., Dk ¼ kin $ kout. A strong positive

value of Dk will indicate accumulation of moisture at the

grid point, i.e., it will be a moisture sink. To calculate the

local network flux, we make use of the matrix Aq evaluated

as defined in Sect. 4.2.

4.4.1 Identifying anomalous monsoon years

The above described measures can help us in studying the

spatial structures of rainfall fields and their properties but

not its temporal evolution. In the following section, we

develop and present a new scheme, which uncovers some

details of the temporal evolution of the ISM rainfall pat-

terns. We apply this to the same data set over last 6 decades

and provide new insights into the spatiotemporal com-

plexity of monsoonal rainfall. Our underlying assumption

is that the above constructed network has the minimum

essential correlation structure of the rainfall field. We thus

suggest that extreme events occur within this structure and

will deviate from this synoptic structure only if the ISM is

abnormal. We can use this observation to find anomalous

behaviours of the ISM and to identify regions where the

ISM rainfall has the most intricate spatial structure. Usu-

ally, the method employed for discovering anomalous

monsoon behaviour is based on a standard deviation of a

rainfall index, which may be biased by inhomogeneous

spatial rainfall distributions. The method described in the

following paragraphs is not impacted by the large spatio-

temporal discrepancies in rainfall data.

Let us assume that a rain event occurs at some grid point

i. This will make any other grid point j vulnerable to such

an event too, if there exists a link from i to j. This type of

vulnerability must be inversely depended on the distance

from i to j. Apart from the link strength its directionality is

also important, as only those grid points will be vulnerable

which have incoming links from i. All this information can

be obtained from the adjacency matrix AQq. A schematic

explanation of the above is presented in the diagram in

Fig. 4. We can now write the vulnerability of grid point j

receiving rainfall to be

qj ¼

P

i2VðtÞ
1
Lij
A
Qq
ij

PN
i¼1

1
Lij
A
Qq
ij

ð14Þ

where V(t) the set of grid points where rain event of the

type a happened at time t and N is the total number of grid

points. Lij is the geographical distance between grid points

i and j. qj is calculated from the first half of the data set and

predicted for the second half. We set a pre-assigned value

for qj to find the prediction accuracy and assess the evo-

lution of monsoonal rainfall patterns and also their spatial

complexity.

Fig. 4 A simple schematic representation of the calculation of qj
(Eq. 14). The matrix depicts the square grid points over land. j is most

vulnerable as it is geographically closest to i. Only incident links

contribute to the vulnerability of a grid point and may have an

extreme rain event
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5 Results and discussion

First, we discuss the degree centrality and its distribution

obtained from the adjacency matrix A. Then we present the

analysis of spatial scales and clustering coefficients. Fur-

ther, we introduce our results on centrality measures, fol-

lowed by an attempt to visualise the links within the

network. At the end of the discussion, we analyse the

spatiotemporal evolution of ISM rainfall patterns using

the new scheme described in Sect. 4.5.

5.1 Degree centrality and degree distribution

The spatial patterns of degree centrality CDj are very

similar for both thresholds of a = 94% and a = 90%.

Higher degrees are observed in northwest Pakistan and

lowest values occur in southeast India (Fig. 5). We suggest

that higher degree emerges mainly due to longer spatial

connections in these regions. This potentially can be rela-

ted to the large spatial scale of ISM rainfall over these

regions. To distinguish between regions where monsoonal

rainfall is also due to localised or synoptic (large scale)

activity of ISM, we show the distribution of the degree in

Fig. 6a for the case of a = 90%. We obtain a bimodal

distribution and a model fit of the type

PðkÞ ¼
nr

nk expð$nrÞ

nk!
þ

nd
nk expð$ndÞ

nk!
ð15Þ

where we found nr = 17.4, nd = 8.0 and nk = k/40 (red

curve in Fig. 6a). Hence, P(k) is sum of two poissonian

distributions with different means. This implies that there

must exist two different kinds of regions with their own

characteristic number of links or distinct spatial scales of

rainfall. Previous work has documented that the ISM has

two modes, the active phase and the break phase. There-

fore, it is possible that certain regions continue to receive

rainfall during the break phases but certain other regions

receive rainfall only during the active phases of ISM

especially areas bounded by the monsoonal trough. To

construct such a division of regions, we divide grid points

into different zones (Fig. 6b). This figure depicts the spatial

regions associated with the degree distribution. Rainfall in

central Pakistan northwestern India, and partly in the

western Tibetan Plateau (Zada Basin) is expected to be the

result of large spatial monsoonal activity. Heavy rainfall

processes in the northwestern Indian subcontinent are

associated with atmospheric interactions between western

disturbances and the Indian monsoon system. Where the

trough existing in mid latitude westerlies penetrates

southward and interacts with monsoonal trough over the

Indo-Pakistan region causing recurvature of depressions

and lows in 75"E–78"E belt (Ding and Sikka 2006). This

complex interaction is fundamentally composed of cold

westerly winds interacting with warm, moisture-laden

monsoonal winds over a very dry and hot region during

the peak of summer with low pressure fields. Hence such

interaction should lead to volatile convective instabilities

in the atmosphere and which should not only produce

extreme convective rainfall but also has far reaching

effects on the internal dynamics of ISM. It is understood

that this interaction first enhances monsoonal rainfall over

the northwest and may ultimately lead to withdrawal of

monsoonal trough to foothills of Himalayas i.e a break

phase of ISM (Ding and Sikka 2006 and references

therein). A recent study detailing the causes of floods in

North West Pakistan during late July–August 2010 also

hints that a similar mechanism was responsible for these

floods (Hong et al. 2011). We will go into further details

of this interaction and its possible influences in the next

sections.

5.2 Median length of links

We provide further insight into the spatial scales involved

in these regions by analysing the geographical length of

these links. We will use the formula introduced in Eq. 13.

This distance metric gives us the advantage of expressing

spatial scales in length units. The median of Lij for each

grid point is shown in Fig. 7a. Clearly the characteristic

scale of monsoonal rainfall for the 90th percentile seems to

be below 250 km for most of the region. Also, some larger

spatial scales above 500 km exist, such as in northwest

Pakistan and the southwestern coast of peninsular India.

We observe that most of the larger spatial scales exist in

the region with medium to high degree distributions (green

and blue colors in Fig. 6b). This supports our statement

that these regions receive rainfall from large spatial mon-

soon activity stretching over distances of 500 km, a char-

acteristic for the active monsoon phase. Figure 7a also

provides some supplementary information to Figs. 5 and 6,

about the south west coast of peninsular India along. Due to

the significant topographic barrier of the western Ghats

(c.f. Fig. 1) this region has a generally smaller degree

centrality (see Fig. 5). However, we observe high spatial

scales for this region (Fig. 7a) and associated these with

rainfall coeval with rainfall south of the Himalaya during

the active monsoon phases.

Next, we analyze if the spatial scales follow an analy-

tical form. For this purpose, we plot the distribution of

distance versus the number of links (Fig. 7). The fitted bold

lines are gamma distribution of the form

PðLÞ ¼ nL
ðga$1Þ expð$nL=hÞ

CðgaÞh
ga

ð16Þ

where nL = L/100.0 and the values of other parameter are

given in the legend of the Fig. 7b for the fitted curves.
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Figure 7b indicates that we observe longer spatial scales in

the smaller events. Although characteristic scales must be

larger for stronger rainfall events at a = 94%, because

these values are higher for most part of the distribution

(blue points in Fig. 7b). Our analytical form implies that

more extreme rain events are more spatially localised.

5.3 Clustering coefficient

The local clustering coefficient Cj shows the spatial orga-

nization of rainfall with respect to a reference grid point.

The field may have a large spatial extent but whether it is

highly fragmented or spatially continuous cannot be

Fig. 5 Degree centrality CDj

a a = 94%, b a = 90%.

Obtained from the matrix A it

gives the number of links to a

grid point and it is normalized

between 0 and 1 by dividing it

by N - 1 i.e., the total possible

number of links to grid point.

Note higher CDj in northwest

Pakistan and lower values on

the southern Indian peninsular

Fig. 6 Spatial degree

distribution. a Measured degree

distributions are shown in blue

dots and red line indicates the

model fit. b Depicts the spatial

distribution of colored regions

shown in a. The region in blue

and green receive rainfall only

during the large-scale spatial

activity of monsoon, i.e., during

its active phases, whereas the

regions in pink also receive

rainfall during break phases

Fig. 7 a Median of geographical length (km) of links calculated

using formula for spherical Earth projected onto a plane. b The

distribution of length scales for a = 94% (blue) and a = 90% (red)

and their corresponding fits. Note that more extreme rainfall events

(a = 94%) have longer characteristic spatial scales as the blue curve

results in higher numbers of links at longer distances. However, the

longest recorded spatial scales are associated with a = 90%, because

the red curve has a longer tail
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inferred from the above measures and analysis. However,

we can derive this additional information from the values

of Cj: We associate lower values of the clustering coeffi-

cient with more fragmented or spatially discontinuous

rainfall fields, whereas larger values represent clustered

activity. Importantly, this measure is independent of the

involved spatial scales. The spatial pattern of Cj for the two

rainfall threshold we are using is very similar to each other

(Fig. 8a, b). Large areas of low clustering values Cj related

to fragmented rainfall are located in northwest Pakistan and

in central and eastern India. We observe higher clustering

coefficients in south Pakistan, parts of the Tibetan plateau,

and in the northwestern and southeastern parts of India (c.f.

Figs.1, 8) This suggests that stronger rainfall events are

more spatially clustered in these regions. Northwest Paki-

stan has lower values of clustering coefficients, which

indicates that this region receives rainfall due to the large

spatial activity of the ISM, but with a spatially fragmented

rainfall field. Also, comparing the two panels in Fig. 8a, b

indicates that stronger rainfall events are more spatially

fragmented than smaller ones.

5.4 Centrality measures

Closeness centrality CCj has been introduced in Sect. 4.3

and it can be employed in the task of identifying the grid

points which perform a critical role in the functioning of

this network structure. CCj is plotted in Fig. 9a and shows

that regions of highest closeness centrality lies in the

northwestern subcontinent with a focus on northwest

Pakistan. As described in Sect. 4.3 this indicates that the

information travels fastest to and from these points. Any

perturbation occurring in this region will effect the mon-

soonal rainfall patterns at rapid temporal scales. The

existence of any atmospheric instability over this region

will have an immediate and widespread effect over ISM

rainfall. It has also been observed that this region is near

the boundary between two synoptic systems: the westerly

and the monsoonal trough. Spatial fluctuations in the

westerly trough and its southward penetration could lead to

an interaction resulting in a complex modulation of the

ISM activity over rest of the land mass (Ding and Sikka

2006). To provide further evidence that this may be an

important mechanism during the most active phase of the

ISM, we make the following calculation. First, we identify

a set of 50 grid points with 50 top most values of CCj. We

found that all the grid points in this set have CCj[ 0:7585,

(see Fig. 9a). Next, we calculate the linear cross correlation

r between the total number of events above the threshold

a = 90% that occurred within a set of 50 grid points and

the remainder of the land mass. The value r was found to

be 0.535 (refer Table 1) and CCj[ 0.7585. Most of these

50 grid points are located in northwest Pakistan (see

Fig. 9a). This indicates that interaction of western

Fig. 8 Local clustering

coefficient Cj a a = 94%,

b a = 90%. Red colours

indicate that the rainfall field is

less spatially continuous, i.e., it

is fragmented. In contrast, blue

colours outline more spatially

continuous rainfall fields. We

observe that Cj is independent

of the spatial scales involved in

the rainfall (compare with

Fig. 7a)

Fig. 9 a Closeness centrality

CCj. We observe high CCj in the

northwestern parts of the

subcontinent suggesting the

importance of atmospheric

processes in modulating the

ISM activity. b Betweenness

centrality CBj. Higher values of

CBj represent the moisture

transport pathways over the land

during the active phase of the

ISM. For both a and b we chose

a = 90%
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disturbances with the ISM plays an important role in

generation of the extreme rainfall events over large parts of

the Indian subcontinent. Our results indicate that an influ-

ence of such interactions must be far more spatially

extensive then limited to the northwestern parts of the

subcontinent. We will further analyse the underlying

atmospheric mechanism in the next section.

We have plotted the betweenness centrality CBj to

analyze and visualize its spatial structure (Fig. 9b). Higher

values of CBj are observed over large parts of Tibet, the

east coast of peninsular India, parts of central India, the

central Gangetic plains, northwest Pakistan and along

the western Ghats. From a mathematical point of view,

the higher values of CBj highlight the main pathways of

information travel in a network. In the above case, moisture

is the quantity assumed to be traveling through the network

and therefore our analysis highlights the main pathways of

moisture transport during the ISM. Pathways of moisture

transport are modulated and facilitated by the existence of

deep convection and the underlying topography (Roe 2005;

Webster et al. 1998; Bookhagen and Burbank 2006, 2010;

Bookhagen 2010). Hence, higher values of CBj in Fig. 9b

represents the region where deep convection ceases to exist

during the active phase of monsoon.

5.5 Visualising links of complex networks for the study

region

These links that are obtained from the matrix A and are non

directional. In Fig. 10 we have plotted the number of links

in relation to 50 grid points selected for a particular region

(highlighted by a gridded, red colour matrix in Fig. 10).

The number of links to other regions are shown by the

colour scale ranging from 0 to 50. In Fig. 10a we observe

that links over northwest Pakistan extend deep into central

India and also connect to parts of Tibet and to almost the

entire western and central Himalayan region. As stated

previously, this indicates that stronger rainfall events over

northwest Pakistan are likely the result of large spatial

scale monsoonal activity. In Fig. 10a we are able to visu-

alise this spatial extent and spatial structure of monsoonal

activity. Clearly the spatial structure in Fig. 10a reem-

phasis the significance of the mechanism mentioned in

Sect. 5.3. It indicates the extensive influence on the

extreme rain events that occur in other parts of the

Table 1 Linear correlation r between extreme rain events in a region

and to the remainder of the subcontinent for a = 90%

Region No. of grid

points

Ref.

Fig.

r

Tibet 50 10b 0.4495

NW Pakistan 50 10a 0.4675

Central India 50 10d 0.3182

West coast of India 50 10c 0.2992

Closeness[ 0.7585 50 9a 0.5351

log(Betweenness ? 1)[ 4.358 50 9b 0.5325

Degree centrality[ 0.26 50 9c 0.4893

Fig. 10 Links between a set of

50 reference grid points

(gridded red matrix) to other

grid points (colour bar) at

a = 90%. Note the spatially

extensive links for a reference

area in northwestern Pakistan

(a). In contrast, extreme rainfall

linkages in the western Ghats

(d) have a limited spatial extent
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subcontinent. The number of links on the Tibetan plateau

are high and they appear to be much more localised (see

Fig. 10b), as high topographic barriers exist to the west and

south. In Fig. 10c we observe an interesting feature for the

central Indian region: there are two major geographically

disconnected regions with high number of links. This may

happen due to formation of deep convective cells over the

region of NW Pakistan and adjoining regions and is

dominating during the active phase of the ISM. We also

observe some localisation in the southwest India Fig. 10d.

This localization is caused by the topographic barriers

formed by the western Ghats. We also observe a few long-

range connections from this region to almost the entire

west coast of India and western parts of the subcontinent.

These links may emerge due to the existence of an offshore

trough along the west coast of India and embedded

mesoscale vortices during active phase of monsoon (Ding

and Sikka 2006). This synoptic configuration facilitates

convection along the west coast and the orographic forcing

of western Ghats acts as boundary to this convection.

In Table 1 we provide the linear cross-correlation r

between rain events at a = 90% occurring in the marked

regions during the ISM season to similar events that occur

in the rest of the region (Fig. 10). We observe that the

highest linear cross-correlation are the ones in northwest

Pakistan. This strengthens the argument that extreme

rainfall events in this region are due to the large spatial

activity of the ISM. The interaction of western disturbances

and the ISM could be an intensifying monsoonal activity

over the Indian subcontinent (Dimri 2004). However, no

detailed study, at least to our knowledge, exists about this

interaction and the penetration depth across the Himalaya

and Tibet.

An immediate practical application of our methodology

can be derived from Fig. 10 and Table 1: These regions

outline areas that are best suited for paleoclimatic proxies

that reconstruct the Holocene and historical monsoonal

activity. Our results suggest that the best region lies in the

northwestern Indian subcontinent centered in northwest

Pakistan and within the northwestern Himalaya because

only very strong and significant active phases of the ISM

transport rainfall to this region.

5.6 Directed networks

To obtain the sinks of moisture over land, we plot the local

network flux Dk as defined in Sect. 4.4 in Fig. 11. Higher

positive values exhibit moisture sinks over land and are

highlighted in red colours in Fig. 11. One of the pro-

nounced moisture sinks spreads from the central to lower

Gangetic plains along the foothills of the central Himalaya.

This region is known for the formation of a high number of

low-pressure systems (monsoonal lows and depressions)

(Mooley and Shukla 1989). The large spread of sinks is

related to the movement of low-pressure systems over land,

as they are not constant spatial feature (Sikka 1977). The

extent of the red areas in the map indicates the region in

which most of these systems form. A second major mois-

ture sink shown in Fig. 11 is located in Pakistan near the

western boundary of the average monsoonal-trough loca-

tion (Ding and Sikka 2006). Some other minor sinks are

observed on the Tibetan plateau and along the western

Ghats. These sinks are rainfall accumulation from different

directions, i.e., moisture convergence zones and do not

necessarily indicate higher rainfall amounts. This type of

moisture convergence is likely generated by the underlying

heat balance and orographic effects over these regions

(Bhide et al. 1997). The regions with high negative values

of local network flux are the regions, which are closer to

the moisture sources.

In this study we have considered extreme rain events (90

and 94% percentile), which are usually a result of con-

vective rainfall processes (Schumacher and Houze 2003).

The mesoscale convective systems (MCS) play an impor-

tant role for generating these rainfall amounts(Johnson

2006; Houze et al. 2007). Therefore, the identified sinks

and sources can be associated to spatial patterns of MCS

within the ISM region. Apart from the underlying heat

balance over the land, the vorticity and divergence of wind

vectors can also provide information about the spatial

structures of the MCS and corresponding locations of

sources and sinks of moisture (moisture convergence

zones). To better understand the origin of moisture sinks

over land, we present a comparison of Fig. 11 with wind

vorticity and divergence (NCEP/NCAR data) (Fig. 11). For

obtaining the time indices of the wind vector, we have used

the same thresholding procedure as used for APHRO-

V1003R1 and thus we maintain a statistical consistency.

Fig. 11 Local network flux obtained from directed networks i.e.,

matrix Aq, a = 90%
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The relative vorticity (f) and divergence (d) were com-

puted using the formulas

f ¼
ov

ox
$
ou

ox
; d ¼

ou

ox
þ
ov

oy

where u and v are zonal and meridional wind components

at the height of 850 hPa. We observe positive vorticity over

the central Gangetic plains extending over the central

Himalaya and Tibet (Fig. 12a). Also, positive vorticity is

observed over Pakistan and southeast India. These are also

the two regions where we observe higher local network

flux. Positive vorticity is associated with cyclonic rotation

and can often be related to low pressure areas, which drive

the moisture inward into the land. Divergence shows con-

vergent winds over the central Gangetic plains and in

central India (Fig. 12b). The shape of the divergence zone

in Pakistan appears to show the boundary of monsoonal

trough during these events. The similarity in spatiotem-

poral extent of divergence and vorticity during the extreme

rainfall events suggests that these structures are required

for causing extreme rainfall events.

5.7 Identifying anomalous monsoon years

In this section, we will present an application and

description of the mathematical scheme developed in Sect.

4.5 to (i) identify regions in which ISM rainfall has the

most intricate and temporally unstable structure, to (ii)

identify anomalous monsoon years and their deviation

from the normal spatial structure of the ISM rainfall field,

and to (iii) decipher the temporal evolution of spatial

structure of the ISM rainfall.

The first requirement for using the scheme described in

Sect. 4.5 is to determine a threshold on qj (c.f. Eq. 14).

Then we will use this threshold to ascertain the accuracy of

our prediction. Our prediction based on qj will be in binary

space, i.e., if qj is greater than a predetermined threshold,

an event (1) occurs at grid point j, else no event (0) occurs

at j on this day. We thus need two different kinds of ratios

to examine the quality of the prediction. First, we have
ep
Ep
;

which is the ratio of the correctly predicted events (ep) to

the total number of events predicted (Ep). Second, we will

use a ratio
Ep

ET
, i.e., total number of predicted events to the

total number of events that occurred (ET). We will use a

quantile value of qj, i.e., Q[q] as a threshold on qj. The

value of Q[q] is chosen such that
ep
Ep

(
Ep

ET
has the best

accuracy in the first half of the data. The curves between

the above two ratios are shown in Fig. 13a, b without delay

and with 1-day delay, respectively. The red lines indicate

the points where
ep
Ep

(
Ep

ET
is satisfied. The delay of 1 day

was introduced by changing the set V(t) to V(t - 1) in

Eq. 14. The value of Q[q] has been estimated from the first

half of the data set and the second half is predicted. We will

use the symbol e for the accuracy of prediction and it is

given by e ¼
ep
Ep

where
ep
Ep

(
Ep

ET
: In Fig.13a we observe e ¼

ep
Ep

(
Ep

ET
( 0:7; i.e., 70% of the events were correctly pre-

dicted when we did not use a time delay. The curve in

Fig. 13b suggests that the scheme described above does not

have practical usefulness for prediction of extreme rainfall

events. Introducing a delay of 1 day, we observe that the

accuracy drops to 30%. We will only be using the e (also

referred as accuracy in this text) without delay as a measure

of spatiotemporal intricacy of the ISM rainfall field

(Fig. 14). The accuracy (e) will be higher if the correlation

structure of extreme rainfall events obtained using the

above methodology is least intricate and more temporally

stable. The accuracy metric e is known as probability of

detection (POD). Using the same threshold on Q[q] we

compare the quality of prediction with other skill scores in

Fig. 15. We have used the threat score (TH) which is

defined as TH ¼
ep

epþefþem
: Where ef the number of false

Fig. 12 Relative vorticity (a) and divergence (b) obtained from the

NCEP/NCAR reanalysis data set for wind at the height of 850 hPa.

We observe high vorticity over the central Gangetic plains and

adjacent regions in Nepal, Tibet, and parts of Pakistan. When

comparing a with Fig. 11, most high vorticity regions correspond to

moisture sinks. The divergence zone over northern Pakistan shows the

western boundary of the monsoonal trough during extreme events

considered in the study
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alarms, i.e., predicted events that did not occur and em is

the number of misses, i.e., no predicted event but an actual

event occurred. Also, EP ¼ ep þ ef and ET ¼ ep þ em: TH

is more balanced score and it ranges between 0 and 1

(Fig. 15a). An additional similar skill score is the equitable

threat score (ETH), which is defined as ETH ¼
ep$er

epþefþem$er
:

Where er ¼
EPET

Nd
; Nd is the number of predicted days. er

gives the number of prediction correct by chance

(Fig. 15b). We observe that the basic pattern of prediction

quality remains almost the same for all measures. How-

ever, values of prediction are slightly lower for most

regions based on TH and ETH as compared to POD.

Following the procedure described above, we calculated

e for each grid point. We have plotted e in map view and

we observe that for most of the subcontinent the accuracy

(e) was above 70% and even reaches up to 100% in places

(Fig. 14). We also clearly show that regions with high and

complex topography such as the Himalaya and the western

Ghats are characterizedby the loweste values. From this spatial

patternwe infer that these regionsare characterized by themost

intricate rainfall patterns and high temporal fluctuations.

Next, we employ the above scheme to analyse the

anomalous behaviour of the ISM. Our basic assumption for

this task is that the complex-network construct inherits the

most essential structures and patterns of extreme rainfall

events. Hence, any considerable deviation from this

essential structure should suggest anomalous behaviour of

the ISM—an exceptionally weak or strong, or an abnormal

monsoon. We will consider our prediction accuracy e per

year for the entire region to be the measure of this devia-

tion. In Fig. 16a we plot a scatter plot of our prediction

accuracy e per year for the entire region versus the z-score

of AIMRI (All-India Monsoon Rainfall Index) (Parthasar-

athy et al. 1995). The significance band of e was obtained

by bootstrapping the spatial sum of e for each day (Davison

and Hinkley 2006). That is, we randomly draw 122 days

with replacement from the spatial sum over e for all the

grid points. We observe that the prediction accuracy e is

lower for weak monsoon years and is high for strong

monsoon years (Fig. 16a). All the weak monsoon years are

below the upper limit of the significance band and similarly

all the strong monsoon years are above the upper limit of

the significance band. This indicates that the prediction

accuracy e can distinguish between normal and abnormal

monsoon. We emphasise that e tends to distinguish a

monsoon year in terms of the spatial organization and

structure of the extreme rain events (90th percentile) in a

particular year. Years lying within the significance band are

characterized by no significant change in spatial organi-

zation and structure of the extreme rain events.

Fig. 13 Estimation of qj from

the first half of the data set. The

value of the qj used is one where

the condition
ep
Ep

(
Ep

ET
is

satisfied. a No delay, b 1-day

delay

Fig. 14 The accuracy of prediction e on a scale from 0 to 1 for the

last half of the data set over the map, calculated without delay in the

prediction scheme. The lower values of e indicate higher intricacies in

rainfall patterns. Observe lower values of e along the Himalaya and

the western Ghats in southern peninsular India
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Ea is the total number of events above the threshold

a = 90% in a year over the whole subcontinent. The cross

correlation between Ea and AIMRI was found to be 0.83.

We use Ea instead of AIMRI for further analysis as AIMRI

is limited to the year 2000. In Fig. 16b we plot a scatter

plot of Ea and e. It is thought that there exists a dynamical

coupling between El Niño Southern Oscillation (ENSO)

and ISM. This coupling has been of wide interest in the

scientific literature (e.g., Kumar et al. 1999, 2006, Mokhov

et al. 2011; Maraun and Kurths 2005). Thus, we attempt to

identify possible influences of ENSO on the spatial struc-

ture of the ISM rainfall field. We have indicated the El

Niño and La Niña years in Fig. 16b and we observe many

events where the ISM has been weak during El Niño years

(left to the vertical red lines in Fig. 16b) and the accuracy

has been low. When a strong monsoon has followed La

Niña (right to the vertical blue line in Fig.16b) there is a

generally higher accuracy. We also observe several

exceptions to this rule: some (El Niño years) are not only

within the significance band but also above the significance

band. In summary, our above results suggest that El Niño

and La Niña are not resulting in a complete breakdown of

the spatial structure of monsoonal rainfall or in its complete

re-organization. ENSO’s influence on ISM rainfall pattern

appears to be highly complex. These exceptions could be

caused by the temporal evolution of the suggested weak-

ening of the coupling between ENSO and ISM (Kumar

et al. 1999). The dynamical nature of this coupling could

also be another reason, as it has been hypothesised that

ENSO-ISM relationship is a bi-directional phenomena

rather then ENSO directly influencing ISM only (Mokhov

et al. 2011).

We can also take this analysis a step further to under-

stand how the ISM has evolved during the time span of the

data set. This will give additional information about the

changes in the organization and structure of the ISM

extreme rainfall field during times of global warming

(Goswami et al. 2006; Ramanathan et al. 2005; Levermann

et al. 2009; Zickfeld et al. 2005). For this purpose we plot

the temporal evolution of e in Fig. 16c. Between 1951 and

2000, we do not observe any drastic trend in the values of

e: It is merely fluctuating between the higher values for

strong monsoon and the opposite for weak monsoon years.

However, a small change in the mean level of fluctuation is

observed around the late 1960s. Interestingly, we observe a

characteristically distinct evolution of e since the year 2000

with e not following the previously determined rule with

high values for strong monsoon and the opposite for weak

monsoon. It is continually and strongly increasing, for

example the years 2005, 2006, and 2007 show the highest

values of e: This indicates that some basic structural change

may have occurred in the rainfall patterns over the Indian

subcontinent during this period. Increase in e can only be

due to considerable increase in spatial correlations during

this period and it is known that increasing spatial correla-

tions are an early warning of approaching tipping points or

abrupt dynamical transitions in dynamical systems (Lenton

2011; Lenton et al. 2008). We speculate that we are read-

ing a tipping point in this system, which has some parti-

cular precursor in the dynamics (Lenton et al. 2008;

Zickfeld et al. 2005; Levermann et al. 2009). A plausible

reason for this is a shift in the distribution of magnitude and

frequency of extreme rainfall events, caused either by rapid

changes in surface heat fluxes due to the increase in

aerosols content (Ramanathan et al. 2005) or that some

inherent monsoonal dynamics has changed during this time

(Levermann et al. 2009). A few recent studies suggested a

significant increasing trend in the frequency and magnitude

of extreme rain events and a significant decreasing trend in

the frequency of moderate events over central India during

the monsoon seasons from 1951 to 2000 (Goswami et al.

2006) and 1901–2004 (Rajeevan et al. 2008). Our above

arguments are only speculative and subject to further

research.

6 Summary of key findings

We have analyzed the spatial structure and organization of

the monsoonal rainfall field. We have obtained the

Fig. 15 Comparison of the

prediction quality using several

skill scores (see text for

explanation). a The threat score

(TH). b The equitable threat

score (ETH). The basic spatial

prediction pattern remains the

same regardless of skill score

(c.f. Fig. 13). However, we note

the values derived form TH and

ETH are slightly lower than e

for almost all the regions
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correlation structure of extreme rainfall events ([90th and

[94th percentiles) employing nonlinear correlation of

event synchronization. Furthermore, we have carried out a

comprehensive spatiotemporal analysis using a complex

network approach. Some of our findings provide new

insights into the interaction of atmospheric processes

responsible for the generation of extreme rainfall events

during the ISM. Our methodological approach is

strengthened by reiterating previous findings and observa-

tion of the climatic features of the ISM. Because of the

somewhat extensive and new methodology, we synthesize

and list our important findings:

1. It has been previously shown that there exist two

distinctive phases of activity within during the ISM

(Webster et al. 1998): (1) the active phase, during

which large areas of the Indian subcontinent receive

extensive rainfall and (2) the break phase during which

most regions receive no to very little rainfall. With the

presented approach, we have been able to document

the spatial manifestation of these phases and are thus

able to support and validate our approach. In addition,

our approach provides new insights and we were able

to identify regions, which receive rainfall only during

the most active phase of the ISM. In a second step, we

were able to provide a quantitative measure of the

median length scale involved in rainfall during the

active phase of monsoon. This analysis of geographi-

cal-length scales shows that spatial scales above the

90th and 94th percentile rain events follow a gamma

distribution. We determined that median length scale

in these events are up to 250 km for most of the region.

2. We were able to identify the structure and organization

of the rain field in terms of its spatial discontinuity.

Using clustering coefficients, we have determined that

in northwest and southeast India, south Pakistan and in

parts of the Tibetan plateau rainfall activity of the ISM

occurs in more defragmented forms as compared to

Fig. 16 a Scatter plot between AIMRI (All-India Monsoon Rainfall

Index) and e (accuracy of prediction). The red dashed vertical line is

the -1 sigma standard deviation of AIMRI, i.e., to the left of it are the

weakest monsoons years and the blue dashed vertical line is the ?1

standard deviation of AIMRI, i.e., to the right of it are the strongest

monsoon years. The colour code gives Ea, which is the total number

of events above the used threshold a in a year over the entire region.

We observe that years with large number of events accumulate at the

top of the significance band indicating that e is higher for stronger

monsoon years and lower for weak monsoon years, i.e., years with

less events accumulating at the bottom of the significance band. b

Scatter plot between Ea and e and different colours representing the El

Niño years (red), La Niña years (blue) and Non El Niño/La Niña

years (black). Left to the red vertical line are the weakest 15%

monsoon years in terms of Ea and right to the blue line are top 15% of

the monsoon years in terms of Ea. c The temporal evolution of e: El
Niño years (red circles), La Niña years (blue circles) and Non El

Niño/La Niña years (black circles). Colours within the circles are E
a

values. We note a strong increase in e since the year 2000 with highest

values of e occurring for the last 3 years
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other parts of the subcontinent. This may be related to

the fact that extreme rainfall events (at the 90 and 94%

percentiles) in these regions are often associated with

localized convective rainfall cells.

3. Our approach using centrality measures (degree, close-

ness, betweenness) suggests that atmospheric processed

innorthwest Pakistanplaycrucial role in thegenerationof

large rainfall events over other parts of the Indian

subcontinent during the ISM. In northwest Pakistan, mid-

latitudewesterlies interactwith themonsoonal trough in a

very dry and hot region enabling formation of convection

instabilities. This particular interaction is also said to be

responsible for generation of the ISMbreak phase. Hence

we are able to establish with our methodology the

importance of this particular mechanism on the internal

dynamics of monsoon.

4. We have identified that the central Gangetic plains and

parts of Pakistan are the major moisture sinks character-

ized by high amounts of moisture accumulation during

the ISM. The location of these moisture sinks was also

found to be consistent with vorticity and divergence of

wind vector during the ISM. The central Gangetic plains

are known for the formation high number of monsoonal

depressions during the ISM season.

5. We have developed amethodology based on causalities of

rain events and the complex network approach to identify

anomalousmonsoon years.We find that regions with high

topography and relief have the most intricate and unstable

ISMrainfall patterns.Using a similar approach,we studied

the temporal evolution of the ISM and its linkages to El

Nino Southern Oscillation (ENSO). This analysis reveals

that ENSO is not always resulting in a complete break-

down of the spatial ISM rainfall structure nor in its

complete re-organization. This findings supports the

previously established understanding that the coupling

between ENSO and ISM is of complex dynamical nature.

6. Our analysis reveals that since the year 2000 the ISM

exhibits characteristically different rainfall patterns as

compared to the time period from 1951 to 2000. This is a

new insight into the evolving complexity of monsoonal

precipitation in a warming environment. As it has been

stated in previous studies, there exists an increase in

magnitude and frequency in extreme rainfall events during

the ISM, while moderate rainfall events are decreasing.

This characteristic feature in ISM rainfall distribution

could be responsible for the observed change in rainfall

patterns since 2000.

7 Conclusion

In this study, we have presented an analysis of the

spatiotemporal Indian Summer Monsoon (ISM) rainfall

distribution using nonlinear methods and complex net-

works. Our study improves previous analysis because it

specifically takes into account the temporal disparities

and spatial complexity of ISM rainfall. The analysis

provides new insights into the interaction of different

atmospheric processes responsible for generation of

extreme rainfall events (at the 90 and 94% percentile)

during the ISM. In summary, this study not only opens up

new opportunities for meteorologist to look at regional

climate using tools from complex networks, but also

provides new and valuable insights into the phenomena of

ISM rainfall.
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