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Operational efficiency and stability are two critical aspects to measure bus systems. Influenced by many stochastic factors, buses
always suffer from delay and bunching. Traditional studies focus on a single route and lack research on the systematic evaluation of
bus network. In this paper, we propose a data-driven framework to analyze the efficiency and stability based on small granularity
GPS trajectory data from the perspective of entire bus network. +e IC card data and route data are used to extract the boarding
passenger number and topological structure, respectively. +e results show that the average headway of stations follows a
lognormal distribution. Moreover, the distribution of arrival efficiency of stations is inhomogeneous and a small number of
stations have large values. In addition, the relationships among average headway of stations, boarding passenger number, bus
number, and complex network indicators are revealed. It is found that the average headway of station is negatively correlated with
other indicators, which implies that complex network connections and more passenger flows could weaken the efficiency of bus
operations.+is paper provides a way to evaluate the operational performance of bus networks and could give help for monitoring
and optimizing the daily operation of bus systems.

1. Introduction

Nowadays, public transport plays a growing role in allevi-
ating traffic congestion and reducing greenhouse gas
emission. Building effective, convenient, and stable public
transport has become a crucial step to solve urban traffic
problems in many countries. +e efficiency and stability of
public transport are two core problems that are concerned
by both travelers and operators. Affected by many stochastic
factors such as weather, congestion, passenger flow, and
drivers’ behavior, bus delay and bunching occur in many
routes during the operation time [1–4]. Bus bunching is that
the adjacent buses belonging to the same route are too close
to each other. Bus bunching could impact the uniformity of
buses and lead to big interval from the other buses, which
enhance passengers’ waiting time and result in low effi-
ciency. In some bus systems with dense stations and large
passenger flow, a small disturbance of buses in a route may

spread all over the network. So, it is imperative to construct a
robust public transport system to provide better service.

+e development of public transport information
technology provides a powerful tool to monitor and manage
the transportation system. +e Automatic Vehicle Location
(AVL) system and Automatic Passenger Count (APC)
system could record the travel trajectory and passenger
information. In recent years, many studies focused on travel
time, delay, and reliability of buses based on AVL data [5–7].
To address these problems, numerous control strategies have
been proposed, like speed control [8], holding strategies
[9, 10], and skip-stop strategies [11].+e prediction methods
give great help to improve the control effects, which is better
than traditional models without predictions [12]. High-
resolution bus GPS data could also be used to identify
congestion hotspots in the urban street [13]. +e APC data
are commonly used to extract OD information, estimate
waiting time, and find missing transfers [14–16]. Recently,
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some researchers use APC data to identify public transit
corridors and transit network flow characteristics [17, 18].
Typically, the bus operational status can be achieved by AVL
data incorporating APC data [19].

Essentially, the delay and bunching of bus are caused by
small disturbances such as more boarding passengers and
bad traffic condition of road. +ese small disturbances may
spread, superpose, and amplify, which results in heavy
disorder of the entire bus system.+e public transit system is
a complex spatiotemporal network embedded in compli-
cated urban surroundings [5]. Understanding the mecha-
nism of bus operation is conducive to enhance the efficiency
of transit service. Most researches have focused on a single
route [8, 20], and few studies pay attention to the whole
transit network’s operational stability. +e structures and
dynamics of bus networks are so complicated. In the past
years, researchers studied the bus networks from complex
network perspective using line information and IC card data
[21–23]. +ey pay main attention to the structure charac-
teristics of bus such as community structure and “small
world.”

Recently, there are many researches focusing on extract
bus network characteristics by merging AVL data and APC
data. Chen et al. used IC card data and GPS data to estimate
passenger boarding and alighting station of the entire bus
and found that passenger flow is mainly distributed in an
east-west belt-shaped downtown area [19]. Sui et al. con-
structed a layered network model to depict public transport
network, OD flows, and transfer flows [24].+e data-driven
methods appear to analyze the whole bus network per-
formance in recent years. Zhang et al. studied the average
headway and headway deviation of the entire bus network
in Jinan, China, and found that the two indicators follow
lognormal distributions [25]. Iliopoulou et al. used AVL
data to identify spatiotemporal patterns of bus bunching by
clustering method. However, they did not study the pas-
senger flow factor due to the lack of APC data [26].
Nowadays, network-based studies using big data have been
successfully applied in many transportation systems
[27–31].

Most aforementioned studies focus on the operational
performance of a single route using AVL data. However,
there is limited research for the whole network. Actually, the
operational performance of bus network is more significant
in bus network design and optimization of operation. For
example, planners consider passenger flow, network struc-
ture, accessibility, and transfer when designing or adding
new routes. +ey rarely consider the operation performance
systematically. +erefore, there exist many stations having
very bad operation performance. Passengers should wait a
long time or suffer from bus bunching at these stations. +is
is a big problem for bus systems. At present, the network-
based studies of bus network concentrated on the topo-
logical structure rather than operational performance. How
to evaluate the bus operation performance and find the hub
stations is the key to solve the problem. To fill this gap, this
paper designs proper indicators based on GPS trajectory
data to evaluate the operational performance of the entire
bus network.

In this study, we conduct a data-driven framework to
measure the operational status of bus network-based in-
corporating GPS trajectory data, IC card data, and route
data. First, we propose average headway of station and
average arrival rate of station to assess the stability and
efficiency of bus network. Second, the relationships among
the two proposed indicators, boarding passengers, bus
supply, and topological structure are studied. +is paper
aims to construct a framework based on multisource data to
evaluate the operation of bus systems. +e rest paper is
organized as follows. Section 2 gives the literature review.
Section 3 proposes evaluation indicators of bus network
performance. Section 4 introduces the data used in this
paper. Section 5 shows the results. Section 6 concludes the
paper.

2. Literature Review

2.1. Application of Locator Data in Transportation Area.
+e GPS trajectory data are space-time continuum, which is
the foundation to study bus operation status and residents’
activity. In transportation area, it has been widely applied in
travelers’ behavior, estimation of traffic demand, traffic
status, and traffic model optimization. +e GPS trajectory
data are playing a more and more important role in traffic
planning and management. In some areas, it has become an
alternative to traditional traffic survey.

At present, the studies of travelers’ behavior and esti-
mation of traffic demand concentrated on taxi trajectory
data and mobile phone data. Tang et al. divided the studied
area into small cells and estimated the distribution of OD
[32]. Zhang et al. utilized complex network theory to reveal
the urban traffic demand based on taxi trajectory data [33].
Mobile data are a good source to study travelers’ behavior,
which is a research hotspot [34, 35]. Dockless bike sharing is
an emerging traffic mode, which plays a significant role in
connecting with other traffic modes. +e trip data can be
used to analyze travelers’ behavior, traffic demand estima-
tion, and bicycle rebalance [36–38]. In the transit area, there
are many researches that focus on travel time prediction and
delay [5, 39]. +e GPS trajectory data could reflect the
operational status of bus, which is crucial for operation
management. Besides that, the trajectory data can be used to
detect the travelers’ behavior incorporating IC card. Tu et al.
studied the dynamic characteristics of multimode travel by
trajectory data, IC card data, and taxi trajectory data [40].
Tang et al. used GPS trajectory data and smart card data to
optimize the timetable of the bus line [41]. +e GPS tra-
jectory data could also be used to identify transportation
mode by GIS information and machine learning methods
[42, 43].

2.2. Operational Stability of Public Transport. +e opera-
tional stability of public transport has drawn much at-
tention since the AVL and APC devices were applied.
Chepuri et al. pointed out that the travel times during peak
hours followed normal distributions [44]. Fan and
Machemehl verified the relationship between the waiting
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time of passengers and headway deviation and they found a
positive relationship between them [45]. +e travel time of
bus contains running time and stopping time. Studies show
that the running time is affected by traffic conditions of
roads and traffic signals [46, 47]. Kieu et al. analyzed the
distribution of transit travel time used transit signal pri-
ority data and found that they followed lognormal dis-
tributions [48]. +e stopping time comprises door opening,
door closing, and the time of passengers boarding and
alighting. Research shows that the time of stopping could
account for 26% of total travel time [49]. Generally, the
main factor that impacts the stopping time is the number of
boarding and alighting passengers [50]. Ji et al. claimed that
enlarging the platform areas and installed guide guardrails
could reduce the variation of dwell time, but not the time
[51]. Passengers’ arrival times are related to the headway.
When the headway is smaller than 12 minutes, passengers
arrive randomly [45]. Chepuri et al. proposed new reli-
ability indicators to measure the bus route by trajectory
data from both route level and segment level [52]. Paudel
revealed that high volumes of bus ridership could cause a
significant increase in the variance of bus service
reliability [53].

2.3. Evaluation of Transit System. +e service quality of the
transit system is influenced by many components such as
transit network structure and management level. +e
transit systems are fragile when they meet periodic pas-
senger flow fluctuations and other stochastic factors. It is
necessary to grasp the operational status of the transit
system. Traditional studies focused on a single route rather
than the entire network. From the evaluation of transit
network perspective, there have been various researches in
the past years. Zhang et al. constructed the evaluation
framework which includes convenience, comfort, security,
reliability, and facility level according to survey data [54].
Lots of studies analyzed transit network topology struc-
ture using complex network theory [55–57]. Sun et al.
estimated the transit ridership by points of interest [58].
Chen et al. used GPS trajectory data and IC card data to
estimate the number of boarding and alighting passengers
and the distributions of passenger flow [19]. Illiopoulou
et al. used the clustering method to distinguish different
types of bus bunching [26]. Zuo et al. proposed a holistic
accessibility measurement considering land use, timeta-
ble, and individual factors to evaluate the bus system [59].
Zhang et al. identified the bus station patterns based on
network structure, operational status, and POI data [60].
Wei et al. highlighted the bus lines value and proposed a
“line-line” network to examine the spatial characteristics
of cross-administration bus lines [61]. Bree et al. studied
the relationship between transit ridership and local ac-
cessibility and found that it was more closely to predict
public transit ridership when including gravity-based
accessibility in the model [62]. All in all, there were many
studies on the evaluation of transit system, but there is
little study focus on the operational status of the entire
transit network.

3. Evaluation Indicators of Bus
Network Performance

+e performance of a bus network is significant in daily
operations. Reliability and efficiency are two key indicators
to measure the performance of bus systems. Headway is an
important indicator to study the reliability. +e headway
between adjacent buses varies, affected by many stochastic
factors such as traffic congestion and bad weather. +e GPS
trajectory data are a feasible source to detect the operational
status of buses. Figure 1 shows the GPS trajectory data of bus
routes. Traditional studies mainly focus on the operational
status of a single route. In this paper, we use the average
headway of stations and the average arrival rate of stations to
evaluate the operational performance of bus networks. We
intend to extract the macroscopic operation status of bus
networks by mining the GPS trajectory data.

3.1. Average Headway of Stations. +e bus run is considered
as a series of events that comprises section running, arrivals,
and departures. Headway is the time difference between two
successive vehicles belonging to the same routes. It is defined
as [25]

ΔHi,j
k �

0, j � 1,

h
i,j+1
k − h

i,j
k

∣∣∣∣∣
∣∣∣∣∣, otherwise,


 (1)

where ΔHi,j
k is the headway between vehicle j and the former

vehicle of line i at station k; set the headway for the first
vehicle as 0; h

i,j
k is the arrival time of vehicle j of line i at

station k.
Generally, the headways of buses are even according to

their schedule timetable when they depart at original sta-
tions. +e headways fluctuate due to the complicated ex-
ternal environment and drivers’ factors. Sometimes, the
headway between two consecutive buses is smaller than the
plan headway. When the headway is too small that two
consecutive buses arrive at the same time, the bus bunching
appears. On the contrary, there is larger headway. Figure 2
shows the four kinds of bus operation status. Bus bunching
and large headway disturb the balance of operation, which
could result in long waiting time for passengers.

In this paper, the average headway of stations during
time period t is defined as

ΔHt

k �∑
mt

i�1

∑
nit

j�1

ΔHi,j
k

stk
, (2)

where mt is the number of routes that stop at station k, nit is
the number of buses of route i during time period t, and stk is
the total number of buses that stop at station k during time
period t.

3.2. Average Arrival Rate of Stations. Bus operational effi-
ciency is crucial for passengers, which could reflect the
quality of service. In this paper, we introduce the average
arrival rate of stations to measure the operational efficiency
of the entire bus network. It is defined as the mean value of
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time of the nearest bus that runs to a station at a certain time.
+is index is correlated with the position of the buses. When
a bus delays, the operational efficiency decreases. It is known
that the time of sending GPS message is out of synchro-
nization. To solve the problem, we introduce a small time
period and choose the last GPS message in the time period.

+e average arrival rate of stations is defined as

λtk �

1

1/skΔt( )∑Li�1∑Oij�1 tkij − tcij + Δt( )cΔtijk
, tkij − t

c
ij ≥ 0,

0, tkij − t
c
ij < 0,


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(3)
where L is the number of bus routes,Oi is the number of buses
of i-th route that running to k station, Δt is the given time
period, Δt≥max(tsend), tsend is the time interval of sending
message, tkij is the arrival time of i-th route of j-th vehicle at
station k, tcij is the last message time of i-th route of j-th vehicle
in the time period t + Δt, and skΔt is the number of buses that
runs to station k. cΔtijk � 1 if i-th route of j-th vehicle is running
to station k; otherwise, cΔtijk � 0. Figure 3 shows the sketchmap
of arrival efficiency of bus station.

3.3. Structural Measures. In many complex networks, the
structure of network has an important impact on system
functions. Some nodes with a large degree or betweenness
play a critical role in system dynamics. During the past two
decades, there are many studies focusing on the topological
structure of public transport networks such as bus and
metro. In this part, we introduce four main network-based

indicators to study the relationship between bus network
structure and operational performance.

3.3.1. Node Degree. Node degree is defined as the number of
nodes that are connected with the node. Typically, nodes
with a very large degree account for a very small proportion.
It is defined as

ki � ∑
N

j≠ i
eij, (4)

where ki denotes the degree of node i, eij is the connection
status between node i and node j, and eij � 1 means that there
exist connections between node i and node j; otherwise eij � 0.

3.3.2. Betweenness. In transportation networks, transport
efficiency is very crucial. Betweenness is another index to
evaluate the importance of nodes in propagation. It is cal-
culated as follows:

CB(v) � ∑
s≠ t

σst(v)

σst
, (5)

where CB(v) is the betweenness value of node v, σst is the
number of shortest paths going from s to t, and σst(v) is the
number of the shortest paths going from s to t through the
node v.

3.3.3. Clustering Coefficient. Clustering coefficient reflects
the connections among the neighbors of a node. It is
defined as
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Figure 1: GPS trajectory points of bus lines.
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C vi( ) � 2ei
mi mi − 1( ), (6)

where C(vi) is the clustering coefficient of node vi, ei is the
number of edges among local neighbors of node vi, andmi is
the connection degree of neighbors of node vi.

3.3.4. PageRank. PageRank is widely used to measure node
importance in many networks. PageRank could grasp the
global topological information. +us, we introduce the
PageRank algorithm to achieve the importance of nodes,
which is defined as

pi �
1

N
(1 − p) + p∗ ∑

N

j�1

aji

koutj

∗pj, (7)

where pi denotes the influence score of ith node, p is the
damping coefficient, koutj means the out-degree of jth node,
and aji is the adjacency matrix.

4. Data Description

+e data were collected on October 25, 2018, in Xuchang,
China. Xuchang is a famous historical city that is located in the
central Henan Province. +e studied bus network of Xuchang
comprises 39 routes and 629 stations. Figure 4 exhibits the bus
network of Xuchang, China. +ere are three kinds of data that
contain GPS trajectory data, IC card data, and bus routes data.

Table 1 shows the basic information of bus route data,
which includes line number, direction, station index, station
name, longitude, and latitude. Direction “0” represents the
upstream route and “1” represents the downstream route.
+e bus network can be constructed by the bus route in-
formation. It is noted that the station index in the table is
given for a route. In this paper, each station will be given a
unique index when generating the bus network. Table 2 gives
the main information of GPS trajectory data, which contains
line number, bus number, date, time, longitude, latitude,
station index, and direction. +e GPS devices of bus send a
message every 10–15 seconds. +e station index “0” means
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Figure 3: Sketch map of arrival efficiency of bus station.
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that the buses are running in the sections between stations.
+e running status of each bus can be achieved by the GPS
trajectory data. In addition, we can get the departure and
arrival information of stations for each bus. Table 3 intro-
duces the main information of IC card, which comprises
card number, line number, bus number, date, time, and
direction. We can obtain the boarding number of passengers
by joining with GPS trajectory data.

+e data were preprocessed to eliminate the outliers. +e
duplicated and missing values are removed. Moreover, the
longitudes and latitudes out of the studied area are removed.
+e bus network will be constructed by the bus routes data.

+e performance of the bus network could be calculated by
the proposed indicators with given data. +en the statistical
analysis and visualization will be done. In this paper, we use
ArcGIS 10.3 to visualize the data.

Table 1: Illustration of bus routes data of Xuchang.

Line no. Direction Station index Station name Longitude Latitude

1 0 1 Huilong Guoji 113.7723 34.0141
1 0 2 Shiba Zhongxue 113.7761 34.0150
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

1 0 36 Shangmaocheng 113.8607 33.9769
2 1 1 Gongjiao Gongsi 113.8808 34.0675
2 1 2 Dazhang Shequ 113.8777 34.0648
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

Direction: “0” represents upstream route and “1” represents downstream route.

N

0 5 10 20 km

Bus station

Bus route

Figure 4: Bus network of Xuchang, China.

Table 2: Main information of GPS trajectory data.

Line no. Bus no. Date Time Longitude Latitude Station index Direction

1 1511 2018/10/25 6 : 38 :17 113.7723 34.0141 0 0
1 1511 2018/10/25 6 : 38 : 31 113.7725 34.0142 0 0
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

1 1511 2018/10/25 6 : 40 : 27 113.7761 34.0150 2 0
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

1 113.7812 34.0161 0 0
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

Station index: “0” represents nonstation.

Table 3: Information of IC card data.

Card no. Line no. Bus no. Date Time Direction

EB3F10 1 1511 2018/10/25 7 : 27 :16 0
000F2A 1 1511 2018/10/25 7 : 36 : 28 0
EB278D 1 1511 2018/10/25 8 : 28 : 06 0
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .
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5. Results

5.1. TrafficDemand and Bus Vehicle. Passenger flow and bus
supply of bus play critical roles in daily management. On one
hand, bus will delay at stations if there are a large number of
boarding and alighting passengers. On the other hand, bus
operational efficiency will enhance if the operational com-
pany provides more buses. Figure 5 shows the number of
boarding passengers and bus vehicles during different hours
in a day. We can see that the distributions of boarding
passengers exhibit two obvious peaks in morning and af-
ternoon. During the morning peak (7 : 00–9 : 00) and
evening peak (16 : 00–18 : 00), there are many commuters.
+e peaks are not sharp; that is because some elder people
prefer to travel to avoid peak hours [63]. +e number of bus
distributions is smooth and the large value appears in the
morning peak hours.

Figure 6 shows the distributions of bus number and
boarding passenger number of stations in a day. As we can
see that the bus number of stations follows a lognormal
distribution and the boarding passenger number of sta-
tions follows an exponential distribution. +e results in-
dicate that the stations that have a large value of bus
number and boarding passenger number account for small
proportions. In bus networks, the lognormal and expo-
nential distributions are ubiquitous. It is reported the
average dwell time and headway deviation of stations
follow lognormal distributions [25]. Bus network struc-
ture could have some impacts on the results. A small
proportion of stations in the bus network have more
connections and most stations have a few connections.
+e degree of stations follows power-law distributions or
exponential distributions [55].

Figure 7 shows the spatial distributions of bus number
and boarding passenger numbers. We can see that the
stations with large values are located in the central city. +e
stations with a large number of boarding passengers are
more concentrated. Operators should pay more attention to
the balance of operational status of the bus network.

5.2. Average Headway of Stations. Bus headway is an im-
portant index to measure the operational efficiency and
reliability. +e headway of a route is changing according to
many stochastic factors such as the number of boarding and
alighting passengers, traffic signal, and weather conditions.
For passengers, a stable and small headway is expected.
Unstable headway will disturb passengers’ travel plan and
large headway will enhance the waiting time. For operators,
stable headway could enhance the efficiency of bus routes.
+ere are a large number of studies focusing on strategies to
keep the headway stable by holding bus, skipping stations,
and controlling signals [64–66]. Bus bunching is a serious
problem about headway stability in daily operation, which
means two or more buses of one route arrive at the same
station simultaneously. Figure 8 exhibits the running maps
of route 9 and route 16. As can be seen, there are many buses
running with small headways in route 16 during the
morning and evening peak hours.

Traditional headway studies mostly focus on single
routes. +e situation of the entire network headway is not
very clear. Understanding the headway condition of bus
networks could provide a macroscopic view for planner and
manager when making schedules and strategies. In this
paper, we use the proposed average headway of stations to
evaluate the whole network headway conditions. Figure 9
shows the distributions of average headway of stations in
different time periods: (a) 8 : 00–9 : 00, (b) 10 : 00–11 : 00, (c)
12 : 00–13 : 00, (d) 14 : 00–15 : 00, (e) 16 : 00–17 : 00 , and (f )
18 : 00–19 : 00. +e red curve is the fitted curves of lognor-
mal. We can see that the average station headways follow
lognormal distributions with obvious right tails. Most values
are concentrated between 100 seconds and 1000 seconds.
Stations with large values more than 1000 seconds account
for a small proportion.

Figure 10 shows the average headway of station values of
all stations in a day. We can see that there are some stations
that have very large values. +e top five stations are Ruix-
ianglu-Gongnonglu, Xuchang Shiyan School, Jianglijijie,
Yangguangdadao Dongkou, and Nongji Wuliuyuan. In
addition, there is a large difference in the deviation of the
values in different hours in a day among the stations. +e
standard deviations range from 6.32 to 2780.

5.3. Average Arrival Rate of Station. +e average arrival rate
of station is an index to measure the instantaneous opera-
tional efficiency of stations, which can be achieved by the
high dense GPS trajectory data. In this part, we mainly
consider the buses that run to the nearest station. Figure 11
shows the average arrival rate of station that there exit buses
running to them at 8 : 00, 10 : 00, 12 : 00, 14 : 00, 16 : 00, and
18 : 00. As we can see, the distributions of the values are
inhomogeneous. A small number of stations have large
values, while most stations have small values. In the morning
and evening peak hours, there are many stations that have a
large value. +e reason is that there are more buses running
on the road in those time periods. For one station, the
average arrival rate is changing as time goes. +e indicator
could measure the station service quality instantaneously.
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Operators could make the targeted policy to enhance the
arrival efficiency of stations by providing more buses.

Figure 12 shows the mean value of the average arrival rate
of station at different hours of a day. We can see that the
values are large in the peak hours and small in the off-peak
hours. +e value is very small after 20 : 00, because most
routes stop running on the road. It is noted that there are
some time periods that have larger values. Due to some
stochastic factors, the headways are affected and lose ho-
mogeneity. Operators should provide amore robust timetable
to keep the values stable. As we know, the stability of headway
plays an important role in residents’ travel mode choice. High
operation efficiency and stable headway could attract more

people to use the public transport.+e headway control could
not pay attention to a single route but the entire bus network.

5.4. Topological Structural Characteristics. In many complex
networks, the topology structure is of significance in system
function. We introduce node degree, betweenness, clus-
tering coefficient, and PageRank index to evaluate the
structural characteristics of the studied bus network. Fig-
ure 13 shows the spatial distributions of the four indicators.
+ere is a small proportion of stations that have very large
values of the four indicators, which are concentrated on the
center of the city. Take node degree, for example; there is
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only 5.2% of stations that the degree is larger than 8. +e top
five stations are Gaotiedong Zhan, Keyunbei Zhan, Beihai
Park, Railway station, and Jianan Hospital. +ose stations
are transport hub which attract numerous passengers.

5.5. Relationship between Indicators. To explore the rela-
tionship among passengers, operational performance, and
the connections of stations, Figure 14 shows the heatmap of
the Pearson correlation coefficient among these indicators.
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Figure 10: Heatmap of average headway of stations in a day.
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As can be seen, the boarding number is strongly correlated
with the bus number. Moreover, the boarding number is
positively correlated with topology structure indicators,

which means that a better network connection could attract
more passenger flows. It is remarkable that the average
headway of station is negative with boarding passenger
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Figure 12: Mean value of average arrival rate of stations in a day.
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number, which demonstrates that the passenger number is a
critical factor to disturb the stability of operation. For the
network structure, the PageRank index has a strong positive
correlation with node degree. Clustering coefficient could
reflect the local connections. +e figure shows clustering
coefficient nearly has no correlations with other indicators,
which indicates that local connections hardly impact the
operation. Operators should pay more attention to the entire
network. We can see that the average headway of station is
negatively correlated with other indicators, which implies
that complex network connections and more passenger
flows could weaken the efficiency of bus operation.

6. Conclusions

Bus system is a complicated spatiotemporal network, which
plays a key role in alleviating traffic congestions. Under-
standing the operational status of the whole network is of
significance for improving the service quality. +e bus
system often suffers from delay and bunching due to many
factors such as traffic condition of road, weather, traffic light,
and number of boarding and alighting passengers. Any
disturbance of bus operation could cause the cascade re-
action from stops to a route, even to the entire network. +e
efficiency and stability are two key indicators to measure the
bus operation.

To evaluate the operational performance of the bus
network, this paper proposes a spatiotemporal analysis of the
bus network based on GPS trajectory data, IC card data, and

route data. We build average headway of station and arrival
efficiency of station to evaluate the bus network operation.
+e results show that the bus number and boarding pas-
senger number of bus network follow lognormal and ex-
ponential distributions. Moreover, the average headway of
stations follows a lognormal distribution. +ere exist some
stations, where the average headway of the station is very
large during the operation time. Managers should arrange
more buses for the routes that serve these stations. +e
distributions of the average arrival rate of stations are in-
homogeneous. A small number of stations have large values,
while most stations have small values. We test the rela-
tionships among passengers, operational performance, and
the connections of stations. It is found that the average
headway of station is negatively correlated with other in-
dicators, which implies that complex network connections
and large passenger flows could weaken the efficiency of bus
operation. In addition, the boarding number is strongly
correlated with bus number. +e boarding number is pos-
itively correlated with topology structure indicators, which
means that a better network connection could attract more
passengers to use public transport.

+is paper will promote the study of stability and effi-
ciency of bus system from a single route to the entire
network, which has important theoretical and practical
meaning for bus systematic management and control. +e
limitations of this study are as follows. +is paper did not
involve the number of alighting passengers due to data
limitation. +e external factors, such as traffic condition and
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weather, have not been considered in the paper. In the future
study, more factors will be considered and prediction model
will be studied.
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