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Abstract—In this paper, we analyze the effects of several factors
and configuration choices encountered during training and model
construction when we want to obtain better and more stable
adaptation in HMM-based speech synthesis. We then propose a
new adaptation algorithm called constrained structural maximum
a posteriori linear regression (CSMAPLR) whose derivation is
based on the knowledge obtained in this analysis and on the results
of comparing several conventional adaptation algorithms. Here,
we investigate six major aspects of the speaker adaptation: initial
models; the amount of the training data for the initial models;
the transform functions, estimation criteria, and sensitivity of
several linear regression adaptation algorithms; and combination
algorithms. Analyzing the effect of the initial model, we compare
speaker-dependent models, gender-independent models, and
the simultaneous use of the gender-dependent models to single
use of the gender-dependent models. Analyzing the effect of the
transform functions, we compare the transform function for only
mean vectors with that for mean vectors and covariance matrices.
Analyzing the effect of the estimation criteria, we compare the
ML criterion with a robust estimation criterion called structural
MAP. We evaluate the sensitivity of several thresholds for the
piecewise linear regression algorithms and take up methods com-
bining MAP adaptation with the linear regression algorithms. We
incorporate these adaptation algorithms into our speech synthesis
system and present several subjective and objective evaluation
results showing the utility and effectiveness of these algorithms in
speaker adaptation for HMM-based speech synthesis.

Index Terms—Average voice, hidden Markov model (HMM)-
based speech synthesis, speaker adaptation, speech synthesis,
voice conversion.

I. INTRODUCTION

R
ECENT unit-selection and concatenative approaches

[1]–[4] produce high-quality synthetic speech, but re-

quire large-scale speech corpora if the speech is to sound
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natural. Using these approaches to develop a humanlike speech

synthesizer, which could control many kinds of emotional ex-

pressions and speaking styles, we would have to prepare many

corpora corresponding to the different styles. These approaches

are thus quite unsuitable to the quick addition of several new

emotional expressions and speaking styles to a speech syn-

thesizer [5] and are particularly impractical when we need to

reproduce intermediate degrees of emotional expressions and

speaking styles, such as slightly joyful, somewhat depressed.

A statistical parametric speech synthesis system based on

hidden Markov models (HMMs) [6]–[12], in contrast, can

easily and flexibly generate natural sounding synthetic speech

with varying speaking styles and/or emotional expressions.

We have indeed already shown that the emotional expressions

and speaking styles of synthetic speech can be easily repro-

duced, controlled, and transformed by using style modeling

[13], model adaptation [14], model interpolation and model

morphing [15], or multiple-regression HMMs [16].

Another crucial deficiency of speech synthesis systems based

on unit selection is the limited number of speakers they can use.

Since a unit-selection approach requires to prepare immense

corpora corresponding to all the speakers a system uses, we en-

counter a similar problem to the aforementioned one in a range

of emotional expressions and speaking styles when we want to

make a speech synthesizer that can simultaneously deal with

many speakers’ voices. Eliminating this drawback would not

only reduce the cost of adding new voices but would also result

in many new applications for human–computer interfaces using

speech for input and output. For example, it would help person-

alize speech-to-speech translation so that a user’s speech in one

language can be used to produce corresponding speech in an-

other language while continuing to sound like the user’s voice.

To make such speech synthesis with diverse voices and styles

feasible, one should minimize the amount of the speech data re-

quired for a new speaker, emotional expressions, or speaking

style without reducing the quality of the synthetic speech.

For the past ten years, our group has therefore been de-

veloping speaker-independent HMM-based speech synthesis

in which “average voice models” are created from several

speakers’ speech data and are adapted with a small amount

of speech data from a target speaker (e.g., [17]–[20]). This

research started by transforming the spectral parameters of

speech [17], [21], [22] by using several speaker adaptation

techniques developed for automatic speech recognition such

as maximum-likelihood linear regression (MLLR) [23] or

MAP-VFS, which is an algorithm combining maximum a
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Fig. 1. Hidden semi-Markov model.

posteriori (MAP) adaptation [24] and vector field smoothing

(VFS) [25], [26]. Then, to simultaneously model and adapt the

excitation parameters of speech as well as the spectral parame-

ters, the multispace probability distribution (MSD) HMM [27]

and its MLLR adaptation algorithm [18], [28] have been used.

We used the logarithm of the fundamental frequency

and its dynamic and acceleration features as the excitation

parameters, and the MSD-HMM enabled us to treat the

sequence, which is a mixture of one-dimensional real numbers

for voiced regions and symbol strings for unvoiced regions, as

a probability framework. Furthermore, to also simultaneously

model and adapt duration parameters for the spectral and

excitation parameters, the MSD hidden semi-Markov model

(MSD-HSMM) [29] and its MLLR adaptation algorithm [20]

have been used. The HSMM [30]–[32] is an HMM having

explicit state duration distributions instead of the transition

probabilities to directly model and control phone durations

(see Figs. 1 and 2). We also developed several techniques for

training the initial model used in these speaker adaptation

techniques. The initial model we use is an average voice model

constructed from training data which consists of the speech

of several speakers. Because this training data includes a lot

of speaker-dependent characteristics that affect the adapted

models and the quality of synthetic speech generated from

them, we incorporated the speaker-adaptive training (SAT)

algorithm [33] into our speech synthesis system in order to

reduce the negative influence of speaker differences [19].

In the SAT algorithm, the model parameters for the average

voice model are obtained using a blind estimation procedure

assuming that the speaker difference is expressed by linear

transformations of the average voice model. The SAT algorithm

for the MSD-HSMM was also derived in [20]. A speaker nor-

malization technique for the tree-based clustering of the model

parameters for the average voice model was also developed

[34]. Applications to style adaptation (conversion of speaking

styles and emotional expressions) and to multilingual/polyglot

text-to-speech systems have also been reported [14], [35],

[36]. Using this speech synthesis method, which we call “av-

erage-voice-based speech synthesis (AVSS),” we can obtain

natural-sounding synthetic speech for a target speaker from

as little as 100 utterances (about 6 min worth of speech data).

Interestingly, we have shown that the speech produced by this

approach where the average voice model is trained from enough

speech data of several source speakers is perceived as being

more natural sounding than that of the speech produced by a

speaker-dependent (SD) system using the same 100 utterances

or even 450 utterances of the target speaker [20].

Fig. 2. Duration probability density functions (pdfs) of the hidden
semi-Markov model.

For this approach, we have investigated individual adapta-

tion effects of the spectral, excitation, and duration parameters

and have investigated the amount of adaptation data required

for the adaptation of each parameter in the framework of the

MSD-HSMMs [20]. In the previous analysis, we simply applied

the MLLR adaptation algorithm having transform functions for

only mean vectors to a gender-dependent average voice model.

However, many factors on which the performance of the speaker

adaptation depends are still unclear in this approach. For ex-

ample, before we conduct the speaker adaptation, we have to

answer question about the following factors.

Initial models: What kinds of average voice model (or

speaker-dependent model) is the most appropriate initial

model, from which adaptation will start?

The amount of the training data for the initial models: Does

the amount of the training data for the initial model affect

the adaptation performance? If so, how?

Transform functions: What kinds of transform functions

are appropriate? Does the adaptation of covariance ma-

trices affect adaptation performance?

Estimation criteria: Does the robust MAP criterion affect

the speaker adaptation for speech synthesis as well as the

adaptation for speech recognition?

Sensitivity: In the linear regression algorithms such as

MLLR, we need thresholds for controlling the number

of the transforms. How do wrong thresholds degrade

the adaptation performance? Are there any differences

between the thresholds sensitivities of several linear algo-

rithms?

Combination algorithms: Some adaptation algorithms can

be combined. Can adaptation performance be improved by

combining them?

In this paper, we therefore analyze the ways in which these

factors affect HMM-based speech synthesis so that we can find

out how to make the speaker adaptation better and more stable.

We first analyze the effect of the initial model by comparing

the results obtained using 1) speaker-dependent models, 2)

gender-independent models, 3) single use of the gender-depen-

dent models, and 4) simultaneous use of the gender-dependent

models. We then assess the effect of the transform functions

in linear regression algorithms by comparing the transform

function for only mean vectors with that for mean vectors

and covariance matrices. That is, we compare the transform
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TABLE I
DEFINITION OF ACRONYMS FOR FOUR LINEAR REGRESSION ALGORITHMS

function for MLLR with that for constrained MLLR (CMLLR)

[37], [38]. We then analyze the effect of the estimation cri-

teria by comparing the ML criterion with a robust estimation

criterion called structural MAP (SMAP) [39] in the linear

regression adaptation algorithms (i.e., SMAPLR adaptation

[40]). Classification and definition of the acronyms for these

linear regression algorithms are shown in Table I. At the same

time, we propose and evaluate a new adaptation algorithm,

called constrained SMAPLR (CSMAPLR), whose formulation

is based on the results of these analyses and a comparison of

the results of several conventional adaptation algorithms. We

evaluate the threshold sensitivities of four linear regression

algorithms described above. As one of the combination algo-

rithms, we choose a method [41] combining MAP adaptation

with the linear regression algorithms. We incorporate these

adaptation algorithms into our speech synthesis system and

show their effectiveness from several subjective and objective

evaluation results including our past reports [42]–[46].

This paper is organized as follows. Section II gives an

overview of the AVSS system used in our experiments, and

in Section III the CMLLR algorithm as well as the new

CSMAPLR adaptation algorithm are described in the frame-

work of the HSMM. Section IV-A describes the conditions

of the subjective and objective experiments, Section IV-B

describes the evaluations of the initial models, Section IV-C de-

scribes the evaluation of the transform functions and estimation

criteria in these linear regression algorithms, and Section IV-D

describes the evaluation of the threshold sensitivities of these

algorithms. Section IV-E describes the evaluation of combina-

tion algorithms, and Section IV-F, describes the evaluation of

the amount of the training data for the average voice model.

Section V concludes the paper by briefly summarizing our

findings.

II. OVERVIEW OF THE AVSS SYSTEM

As shown in Fig. 3, the average-voice-based speech synthesis

system comprises speech analysis, training of the average voice

model, speaker adaptation, and speech synthesis.

A. Speech Analysis

From a multi-speaker speech corpus we extract two kinds of

parameters required for the Mel-cepstral vocoder with simple

pulse or noise excitation: the Mel-cepstral coefficients and

. The Mel-cepstral coefficients are obtained by Mel-cep-

stral analysis [47]–[49] and the values are estimated using

an instantaneous-frequency-amplitude-spectrum (IFAS)-based

method [50]. We use not only these static features but also

dynamic and acceleration features. These dynamic and accel-

eration feature vectors are the first and second delta parameter

Fig. 3. Overview of the average-voice-based speech synthesis system.

vectors corresponding to the first and second time derivatives

of the static feature vector.

B. Acoustic Models and Labels

To model the extracted acoustic features together with their

duration in a unified modeling framework, we use context-de-

pendent multi-stream MSD-HSMMs as acoustic units for

speech synthesis. The multi-stream model structure is used to

model the Mel-cepstral coefficients and simultaneously.

Japanese phonetic and linguistic contexts used in the following

experiments contain phonetic features, mora-level features,

morpheme features, accentual features, breath-group-level

features, and utterance-level features. Details of the Japanese

contexts are as follows [19]:

• preceding, current, and succeeding phonemes;

• the part of speech of the preceding, current, and succeeding

morphemes;

• the number of morae and the type of accent in the pre-

ceding, current, and succeeding accentual phrases;

• the position of the current mora in the current accentual

phrase;

• the differences between the position of the current mora

and the type of accent;

• the number of morae in the preceding, current, and suc-

ceeding breath groups;

• the position of the current accentual phrase in the current

breath group;

• the number of morae in the sentence;

• the position of the breath group in the sentence.

Note that phoneme boundary labels are used only to obtain the

initial parameters of the average voice model and that we do not

require these labels at the adaptation or synthesis stage.
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C. Training of Average Voice Model

Using the above MSD-HSMMs, we train the average voice

model as the initial model, from which adaptation will start,

from training data that consists of the speech of several

speakers. To construct an appropriate average voice model, we

use a model-space SAT algorithm [20] to estimate the model

parameters and use a shared-decision-tree-based clustering

algorithm [34] to tie those parameters.

D. Speaker Adaptation

Using speaker adaptation techniques for the multi-stream

MSD-HSMM, we adapt the average voice model to that of

the target speaker by using a small amount of speech data.

In our conventional system, we used the MLLR adaptation

algorithm. In the experiments reported here, we used several

linear regression algorithms as shown in Table I.

Like the MLLR adaptation algorithm, the above adaptation

algorithms can utilize piecewise linear regression functions. For

automatic determination of multiple regression classes for the

piecewise linear regression, we used decision trees constructed

for the tying of the parameters of the average voice model be-

cause the decision trees have phonetic and linguistic contex-

tual questions related to the suprasegmental features by which

prosodic features, especially , are characterized [14].

E. Speech Synthesis

In the synthesis step, input text is first transformed into a se-

quence of context-dependent phoneme labels. A sentence MSD-

HSMM corresponding to the label sequence is then constructed

by concatenating the context-dependent MSD-HSMMs. Then

the Mel-cepstrum and corresponding to input text are sta-

tistically generated from the sentence MSD-HSMM itself. Here,

the duration pdfs automatically determine the duration of each

state of the sentence MSD-HSMM. In this system, we use a pa-

rameter generation algorithm that uses a maximum-likelihood

criterion [6]1 Finally, speech is resynthesized from the generated

Mel-cepstral and parameter sequences by using a Mel-loga-

rithmic spectrum approximation (MLSA) filter.

III. HIDDEN SEMI-MARKOV MODEL AND ITS

SPEAKER ADAPTATION TECHNIQUES

As described in the preceding section, we use the

MSD-HSMM framework for the simultaneous transforma-

tion of the Mel-cepstrum, , and duration parameters

of speech. For notational simplicity, here we explain the

CMLLR adaptation algorithm and the new adaptation algo-

rithm (CSMAPLR) adaptation in the framework of the original

HSMM. Extending those algorithms to the MSD-HSMM is

straightforward [18].

An -state left-to-right HSMM with no skip paths is spec-

ified by a state output probability distribution and

a state duration probability distribution . We assume

that the th state output and duration distributions are Gaussian

distributions respectively characterized by a mean vector

1Experimental results using a recent parameter generation algorithm that con-
sidered the global variance [51] were reported in [52], [53].

and diagonal covariance matrix and by a scalar

mean and variance . That is

(1)

(2)

where is an -dimensional observation vector and

is the duration of state . For a given HSMM , the observation

probability of training data of length can

be written as

(3)

where . Then and are the forward and

backward probabilities defined by

(4)

(5)

where and . The state occupancy prob-

ability of being in the state at the period of time from

to is defined as

(6)

For further explanation of the training, estimation, and imple-

mentation and issues of the HSMMs, see [14], [29], and [20].

A. Constrained Maximum-Likelihood Linear Regression

(CMLLR)

Target parameters for the HSMM-based MLLR adaptation

that were used in the conventional systems [14], [20] were re-

stricted to the mean vectors of the output and duration pdfs of

(1) and (2). In the adaptation for speech synthesis, however, we

should adapt both the mean vectors and covariance matrices of

the output and duration pdfs to a new speaker because the co-

variance is also an important factor affecting the characteris-

tics of synthetic speech. In the HMM-based CMLLR adaptation

[37], [38], mean vectors and covariance matrices of the state

output pdfs are transformed simultaneously using the same ma-

trix (Fig. 4).2 Similarly, the HSMM-based CMLLR adaptation

transforms the mean vectors and covariance matrices of the state

output and duration pdfs simultaneously as follows:

(7)

(8)

2An adaptation algorithm which transforms mean vectors and covariance ma-
trices of the state output pdfs using different matrices was also proposed [54].
Then it would be possible to apply the SMAP criterion to the adaptation algo-
rithm in a similar way to derive the CSMAPLR adaptation. In this paper, how-
ever, we do not consider the unconstrained MLLR algorithm and unconstrained

SMAPLR algorithm since experiments become increasingly complex.



70 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 1, JANUARY 2009

Fig. 4. Constrained maximum-likelihood linear regression (CMLLR) and its
related algorithms.

A matrix is used to transform both the mean vectors

and covariance matrices of the state output pdfs and then a scalar

is used to transform those of the state duration pdfs.

and are bias terms of the transforms. These model transforms

are equivalent to the following affine transforms of the feature

vectors and duration of state

(9)

(10)

(11)

(12)

(13)

(14)

where , , , ,

, and . and

are, respectively, the linear transform matrices

for the state output and duration pdfs.

We estimate a set of transforms maximizing the

likelihood of the adaptation data of length

(15)

where is the parameter set of the HSMM. Re-estimation for-

mulas based on the EM algorithm [55] of th row vector of

and can then be derived as follows:

(16)

(17)

where and . Note that is th cofactor

row vector of . The terms , ,

, and in these equations are given by

(18)

(19)

(20)

(21)

where is the th diagonal element of diagonal covariance

matrix and is the th element of the mean vector .

Note that is tied across the distributions and is tied

across distributions. Then and are scalar values that

satisfy the following quadratic equations:

(22)

(23)

Since the cofactor affects all row vectors of , we update

using an iterative method proposed in [8]. On the other hand, the

estimation of in (17) has a closed-form solution. Although

we explain this algorithm using a global transform, the expla-

nation can be straightforwardly extended to estimating mul-

tiple transforms and conducting piecewise linear regression. To

group the distributions in the model and to tie the transforms

in each group, we use decision trees for context clustering as

shown in Fig. 4.

This algorithm would have an effect on adaptation of

prosodic information because the ranges of and duration

are important factors for synthetic speech. For example, if the

target speaker has a speaking style characterized by modulation

and rhythm—that is, with and duration ranges wider than

those of the average voice model—we cannot mimic that style

without adapting the variance of the average voice model. It

could yield a similar benefit in adaptation of the Mel-cepstrum.

Another advantage of the CMLLR adaptation algorithm is

that we can efficiently transform the diagonal covariance ma-

trices of the Gaussian distributions of the average voice model

into full matrices in the parameter generation algorithm. In the

systems using the diagonal covariance matrices, each acoustic

feature dimension is optimized independently and thus it some-

times generates an artificial sound [56]. This limitation is then

addressed by the use of full-covariance modeling techniques,

which is able to reflect within-frame correlations. In [56], it is re-

ported that full covariance modeling using semi-tied covariance

[57] (also known as maximum-likelihood linear transformation

[58]) has an effect on the parameter-generation algorithm con-

sidering global variance (GV) [51]. As we can see from (7), the

full covariance can be modeled by using the CMLLR transform

instead of the semi-tied covariance.

In addition to these MLLR and CMLLR adaptation al-

gorithms, single bias removal [59], SMAP adaptation [39],

SMAPLR adaptation [40], multiple linear regression called
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ESAT [60] and so on can be also defined in the framework of

the HSMM [43].

B. Constrained Structural Maximum A Posteriori Linear

Regression (CSMAPLR)

The CMLLR adaptation algorithm uses the maximum-likeli-

hood criterion for the estimation of the transforms. The criterion

would work well in the training stage of the average voice model

using the SAT algorithm because a large amount of training data

for the average voice model is available. In the adaptation stage,

however, the amount of adaptation data is limited and we there-

fore need to use a more robust criterion, such as the maximum

a posteriori criterion. In the MAP estimation, we estimate the

transforms as follows:

(24)

where is a prior distribution for the transforms and .

For the prior distribution, the following combined matrix variate

normal distributions (matrix versions of the multivariate normal

distribution [61]) are convenient:

(25)

where means proportion, , ,

, , , and are the

hyperparameters for the prior distribution.

In the SMAP criterion [39], tree structures of the distributions

effectively cope with the control of the hyperparameters. Specif-

ically, we first use all the adaptation data to estimate a global

transform at the root node of the tree structure, and then prop-

agate it to its child nodes as their hyperparameters and . In

the child nodes, their transforms are estimated again using their

adaptation data and using the MAP criterion with the propagated

hyperparameters. Then the recursive MAP-based estimation of

the transforms from the root node to lower nodes is conducted

(Fig. 5). Shiohan et al. developed SMAPLR adaptation [40] by

applying the SMAP criterion to MLLR.

In this paper, we apply the SMAP criterion to the CMLLR

adaptation and use the recursive MAP criterion to estimate the

transforms for simultaneously transforming the mean vectors

and covariance matrices of state output and duration distribu-

tions. This algorithm is called constrained structural maximum a

posteriori linear regression (CSMAPLR). In CSMAPLR adap-

tation, we fix and to the identity matrices and set to

a scaled identity matrix so that the scaling is con-

trolled by a positive scalar coefficient in the same manner as

in SMAPLR adaptation [40]. Here is the identity ma-

trix. We use the same notation method for different-dimensional

identity matrices. Re-estimation formulas based on the EM al-

gorithm [55] of the transforms can be derived as follows:

(26)

(27)

Fig. 5. Constrained structural maximum a posteriori linear regression
(CSMAPLR) and its related algorithms.

where and are the same vectors as those of the CMLLR

adaptation. Then , , , and are given by

(28)

(29)

(30)

(31)

where is the th row vector of . The quadratic equations for

and are the same as (22) and (23).

CSMAPLR adaptation algorithm can utilize the tree structure

more effectively than CMLLR adaptation can because the tree

structure represents connection and similarity between the dis-

tributions, and the propagated prior information automatically

reflects the connection and similarity. And since the tree struc-

tures we used in these experiments represent linguistic informa-

tion as shown in Figs. 5, the propagated prior information would

reflect the connection and similarity of the distributions of the

linguistic information.

Computational costs for the CSMAPLR adaptation are as fol-

lows. 1) E step in the EM algorithm: The costs are the same

as those for the CMLLR adaptation. 2) M step in the EM al-

gorithm: Compared to the CMLLR adaptation, only simple ad-

ditional operations (28)–(31) are required to estimate a single

transform. When a binary tree structure is used for estimating

multiple tranforms, the CSMAPLR adaptation has about twice

the computational cost as CMLLR, since the transforms are es-

timated for each node of the binary tree.

C. Combined Algorithm With Linear Regression and MAP

Adaptation

Furthermore, we explain a combined algorithm of linear

regression and MAP adaptation [41], [62]. In the previous

speaker adaptation using linear regression, there is a rough

assumption that the target speaker model would be expressed

by the piecewise linear regression of the average voice model.

By additionally applying the MAP adaptation to the model

transformed by the linear regression, it would be possible to

appropriately modify the estimation for the distribution having
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Fig. 6. Combined algorithm of the linear regression and MAP adaptation.

relatively sufficient amount of speech samples (Fig. 6). Here we

utilize the same prior distributions as those in [41]. The MAP

adaptation of mean vectors of the Gaussian pdfs transformed by

the CSMAPLR algorithm can be simply estimated as follows:

(32)

(33)

where and are the mean vectors of the state output and du-

ration distributions of the average voice model, and

and are linearly transformed observation vector and

duration using the HSMM-based CSMAPLR adaptation. Then

and are positive hyperparameters of the prior distribu-

tions for the state output and duration distributions, respectively.

Similarly we can combine any linear regression algorithms with

this MAP adaptation. As the amount of the adaptation data in-

creases and the number of distributions having relatively suffi-

cient amount of speech samples increases, this algorithm grad-

ually improves the quality of synthetic speech.

IV. EXPERIMENTS

A. Experimental Conditions

We carried out several subjective and objective evaluation

tests to analyze and compare the speaker adaptation algorithms.

We used the ATR Japanese speech database (Set B),3 which con-

tains a set of 503 phonetically balanced sentences uttered by

six male speakers (MHO, MHT, MMY, MSH, MTK, and MYI)

and four female speakers (FKN, FKS, FTK, and FYM), and a

speech database containing the same sentences as those in the

ATR Japanese speech database but uttered by a different female

speaker (FTY) and a different male speaker (MMI). We chose

four of these males (MHO, MMY, MSH, and MYI) and four of

these females (FKN, FKS, FYM, and FTY) as training speakers

for the average voice model and used the other three males

(MHT, MTK, and MMI) and the other female (FTK) as target

speakers of the speaker adaptation. These speech databases con-

sist of high-quality, clean speech data collected under controlled

recording studio conditions.

Speech signals were sampled at a rate of 16 kHz and

windowed by a 25-ms Blackman window with a 5-ms shift.

3http://www.atr-p.com/sdb.html

The feature vectors consisted of 25 Mel-cepstral coefficients

[48], [63] including the zeroth coefficient, , and their

delta and delta-delta coefficients. We used 5-state left-to-right

context-dependent HSMMs without skip paths. Each state

had a single Gaussian pdf with a diagonal covariance matrix

as the state output pdf and had a single Gaussian pdf with a

scalar variance as the state duration pdf. The basic structure

of the speech synthesis system is the same as that in [20]. In

the modeling of the synthesis units, we used 42 phonemes,

including silence and pause, and took into account the phonetic

and linguistic contexts [19]. Since 450 sentences from each

training speaker were used for the training of the average voice

models, 1800 sentences were used for training the gender-de-

pendent average voice models and 3600 sentences were used

for training the gender-independent average voice model. We

first trained speaker-independent monophone HSMMs using

manually annotated phonetic labels. These were converted into

context-dependent HSMMs, and the model parameters were

reestimated again. Then, shared-decision-tree-based context

clustering [19] (using a minimum description length (MDL)

criterion [64]) was applied to the HSMMs, and the model pa-

rameters of the HSMMs at each leaf node of the decision trees

were tied. Note that decision trees were separately constructed

for each state of Mel-cepstrum, , and duration parts. We

then reestimated the clustered HSMMs using SAT with piece-

wise linear regression functions and built the average voice

models. [20]. We then adapted the average voice model to the

target speaker. In the speaker adaptation and speaker-adaptive

training, the estimation of multiple transforms was based on

the shared decision trees constructed in the training stage of

the average voice models. The tuning parameters for each

adaptation algorithm, the thresholds to control the number of

transforms and hyperparameters of the MAP estimation, were

manually and appropriately adjusted using objective measures

explained in the next subsection. The thresholds to control the

number of transforms were sensitive to the performance. We

discuss it in Section IV-D. On the other hand, the hyperparam-

eters of the MAP estimation were very less sensitive to the

performance. The linear transforms for the output pdfs in

the linear regression algorithms were diagonal triblocks [54]

corresponding to the static, delta, and delta-delta coefficients

as follows:

(34)

where 0 is the square zero matrix, and , , are the

full square matrices for transformation of the static, delta, and

delta-delta coefficients, respectively.

B. Evaluation of Initial Models

Parameter estimation for the speaker adaptation algorithms

is an iterative procedure and its likelihood function has a lot

of local maxima. The performance of the speaker adaptation

therefore depends on the initial model. To investigate the effect

of the initial model on the speaker adaptation, we first compared

the adaptation of speaker-dependent (SD), gender-independent

(GI), and gender-dependent (GD) models to the target speakers.
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The eight speaker-dependent models were trained from 450

sentences of each training speaker by using the HSMM-based

speaker-dependent method described in [29]. Here the adapta-

tion method of each model was MLLR.

The objective measures we calculated were Euclidean dis-

tances of the acoustic features used: the target speakers’ average

Mel-cepstral distance and root-mean-square-error (RMSE) of

. After 50 sentences were used for adaptation, 50 test sen-

tences included in neither the training nor the adaptation data

were used for the evaluation. For the calculation of the average

Mel-cepstral distance and the RMSE of , the state dura-

tion of each HSMM model was adjusted after Viterbi alignment

with the target speakers’ actual utterance. Silence and pause re-

gions were eliminated from the Mel-cepstral distance calcula-

tion. Since is not observed in the unvoiced region, the RMSE

of was calculated in the region where both the generated

and the actual were voiced.

The average measures between the actual and synthetic

speech of the four target speakers are listed in Table II. From

the results of the eight speaker-dependent models, we list

only the results of the best and worst models (The label

“GD+GD” in the table is explained later in this subsection).

From the data listed in this table, we can first see that the use

of the speaker-dependent model as an initial model is a risky

and unsmart strategy, since the performance differs widely

in individual speaker-dependent models. To choose the best

speaker-dependent model, we then need to calculate some mea-

sures between target speakers and training speakers. We can also

see that the best speaker-dependent model does not outperform

the gender-dependent models. Comparing the gender-indepen-

dent and gender-dependent models, we see that the RMSE of

for gender-independent model is slightly worse than

that for gender-dependent model, whereas the Mel-cepstral dis-

tances for gender-dependent and gender-independent models

are about the same. Thus, the use of gender-dependent models

seems to generally be a reasonable choice.

The voice and prosodic characteristics of some male

speakers, however, are closer to those of a female or gender-in-

dependent average voice model, and the voice and prosodic

characteristics of some female speakers are closer to those

of a male or gender-independent average voice model. For

the male speaker MMI, for example, the gender-independent

model works better than the gender-dependent model with

regard to the Mel-cepstral distance and the RMSE of .

We therefore investigated the effect on the simultaneous use

of gender-dependent models to perform soft decisions of the

models. For this purpose, we used a multiple linear regression

approach [42] combining both the gender-dependent models

(35)

where and are mean vectors for state in

the male and female average voice models. The speaker-adap-

tive training of the average voice models also used this multiple

linear regression. The results of this multiple linear regression

of the gender-dependent models are listed in the rows labeled

“GD+GD” in the five parts of Table II, where one finds a slight

TABLE II
RESULTS OF EVALUATION OF THE INITIAL MODELS. (THE ADAPTATION

ALGORITHM WAS MLLR, AND THERE WERE 50 ADAPTATION SENTENCES.)
(a)TARGET SPEAKER MHT. (b) TARGET SPEAKER MTK. (c) TARGET SPEAKER

MMI. (d) TARGET SPEAKER FTK. (e) AVERAGE

improvement over the use of a single gender-dependent model

only in the Mel-cepstral distance of the male speaker MMI.

Since this multiple-regression approach requires about twice as

many parameters to be estimated from the limited amount of

adaptation data, it seems to suffer from decrease of the accu-

racy of the estimation.

To confirm the effect of the initial models from the viewpoint

of perceptual differences, we conducted an ABX comparison

test. The single use of the gender-independent and gender-de-

pendent models and the simultaneous use of the gender-depen-

dent models were investigated. We compared similarity of the

synthetic speech using the models adapted from those initial

models. In the ABX test, A and B were a pair of synthetic speech

samples generated from the two models randomly chosen from
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Fig. 7. Subjective evaluation of the initial models using ABX tests. (The adap-
tation algorithm was MLLR, and there were 50 adaptation sentences.) (a) Target
speaker MHT. (b) Target speaker MTK. (c) Target speaker MMI. (d) Target
speaker FTK. (e) Average.

the above combinations of the initial models, and X was the ref-

erence speech. The reference speech was synthesized by a Mel-

cepstral vocoder since the quality of the speech by “copy-syn-

thesis” can be considered as an upper bound on the performance

of synthetic speech using parameters generated from HMMs

and the same vocoder. Seven subjects were presented synthetic

speech in the order of A, B, X or B, A, X, and were asked to

whether the first or second speech sample was more similar to

X (In an XAB test, the order becomes X, A, B or X, B, A). For

each subject, four test sentences were randomly chosen from the

same set of test sentences.

The average preference scores obtained in the ABX test are

shown in Fig. 7 along with their 95% confidence intervals. From

this figure we can see that these subjective evaluation results

Fig. 8. Objective evaluation of transform functions in linear regression algo-
rithms. Upper: average Mel-cepstral distance [dB], lower: RMSE of ����

[cent].

are consistent with the above objective results—the gender-de-

pendent models are better initial models than the gender-inde-

pendent model is, and the simultaneous use of the gender-de-

pendent models does not provide a significant improvement for

these speakers. We therefore concluded that the gender-depen-

dent models are a reasonable choice for the initial models for

speaker adaptation.

C. Evaluation of Transform Functions and Estimation Criteria

We then compared the transform functions in the linear re-

gression algorithms. To assess the effect on the covariance trans-

form in the ML criterion and the SMAP criterion, we mea-

sured CMLLR and CSMAPLR against MLLR and SMAPLR.

The transform function of MLLR and SMAPLR is composed

of linear functions of the mean vectors of Gaussian pdfs, and

that of CMLLR and CSMAPLR is composed of linear functions

of the mean vectors and covariance matrices of Gaussian pdfs.

The ML criterion is used in MLLR and CMLLR, whereas the

SMAP criterion is used in SMAPLR and CSMAPLR. From 5

to 100 adaptation sentences were used, and the target speakers

and other experimental conditions were the same as those de-

scribed in Section IV-B. The objective measures of the distance

between the actual and synthetic speech of the target speakers

are shown in Fig. 8, from which one sees that the mean and co-

variance transform in CMLLR and CSMAPLR adaptation gen-

erally produces a better RMSE of than the mean trans-

form in MLLR and SMAPLR adaptation does but decreases the

average Mel-cepstral distance only slightly.

We next compared the estimation criteria in the linear re-

gression algorithms. To assess the effect on the estimation cri-

teria in each transform function, we measured SMAPLR and

CSMAPLR against MLLR and CMLLR. The experimental con-

ditions were the same as those in the above comparison of trans-

form functions. The objective measures of the distance between

the actual and synthetic speech of the target speakers are shown

in Fig. 9, where one can see that the adaptation algorithms using
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Fig. 9. Objective evaluation of estimation criteria in linear regression algo-
rithms. Upper: average Mel-cepstral distance [dB], lower: RMSE of ����
[cent].

the SMAP criterion also produce a better RMSE of than

those using the ML criterion do. These results indicate that the

CSMAPLR adaptation, which uses both the covariance trans-

form and the SMAP criterion, would make the prosody of syn-

thetic speech more similar to that of actual speech than the con-

ventional adaptation techniques do.

To confirm the improvements of the CSMAPLR adaptation

algorithm, we used the XAB comparison test to evaluate the

similarity of the synthetic speech generated from the adapted

models. The target speakers were MHT, MTK, and MMI.

We excluded the target speaker FTK from this subjective

evaluation, because the objective measures of the linear re-

gression algorithms for the speaker show a similar tendency

to the speaker MTK. Fifty adaptation sentences were used

for this evaluation. Seven subjects were presented first with

the reference speech sample and then with a pair (in random

order) of the synthetic speech samples generated from two

adapted models chosen from MLLR, CMLLR, SMAPLR,

and CSMAPLR. The subjects were then asked which sample

was closer to the reference speech. For each subject, eight

test sentences were randomly chosen from fifty test sentences

contained in neither the training nor the adaptation data.

The preference scores and 95% confidence intervals are

shown in Fig. 10. The results confirm that although either the

covariance transform only (CMLLR) or the SMAP criterion

only (SMAPLR) does not produce synthetic speech signif-

icantly more similar to the target speaker’s speech than the

synthetic speech produced by the conventional MLLR, the

CSMAPLR adaptation using both the covariance transform and

the SMAP criterion does.

D. Evaluation of Sensitivity

Since the above linear regression algorithms use multiple

transforms, we generally need some thresholds or parameters

for controlling the number of the transforms. In the previous

Fig. 10. Subjective evaluation of the similarity of synthetic speech generated
from models adapted using several linear regression algorithms. (There were
50 adaptation sentences.) (a) Target speaker MHT. (b) Target speaker MTK. (c)
Target speaker MMI.

experiments, the appropriate numbers of the transforms were

manually determined as mentioned earlier. In a practical sense,

however, the adaptation performance of those piecewise linear

regression algorithms depends on their threshold sensitiv-

ities. The adaptation performance is especially dependent

on these threshold sensitivities when the target speakers are

unknown/undefined/unfixed. We therefore investigated the

threshold sensitivity of each algorithm and compared it with

those of the other algorithms. The target speakers were MHT,

MTK, and MMI, and there were 50 adaptation sentences from

each of these speakers. Experimental conditions other than the

thresholds were the same as those in the experiments described

in Section IV-C.

We gradually increased the number of the transforms for

each algorithm and calculated the objective measures. As the

number of transforms increases, we can perform detailed piece-

wise linear regression and utilize more linguistic information

of the tree structures. When the number of transforms increases

more than necessary, however, the amount of adaptation data

used for estimating a single transform relatively decreases

and over-fitting to the adaptation data occurs. This results in

degradation of the quality of synthetic speech. In addition, the

rank-deficient problem occurs because to estimate multiple

transforms we need to calculate several inverse matrices. Al-

though we could use the generalized inverses matrices with

singular value decomposition, this would decrease the accuracy

of the estimation. In MLLR and SMAPLR this rank-deficient

problem occurs when the number of distributions that share a

single transform is less than the number of dimensions of the
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Fig. 11. Objective evaluation of sensitivity of linear regression algorithms.
(There were 50 adaptation sentences.) Left: average Mel-cepstral distance [dB],
right: RMSE of ���� [cent]. (a) Target speaker MHT. (b) Target speaker
MTK. (c) Target speaker MMI.

feature vector. On the other hand, in CMLLR and CSMAPLR

it occurs when the number of the observations vectors to be

used for the estimation of a single transform is less than the

number of dimensions of the feature vector. The rank-deficient

problem would therefore occur more easily in MLLR and

SMAPLR than in CMLLR and CSMAPLR because increasing

the number of transforms in MLLR and SMAPLR is directly

linked to the rank-deficient problem.

The objective evaluation results for the sensitivity of MLLR,

CMLLR, SMAPLR, and CSMAPLR are shown in Fig. 11,

where the horizontal axis represents the number of transforms,

which were determined via the thresholds. From Fig. 11 we

can clearly see that the MLLR adaptation algorithm is the

one most sensitive to the change in the thresholds for con-

trolling the number of transforms. Especially, it is sensitive

to the change of the thresholds for Mel-cepstral coefficients.

Comparing CMLLR with MLLR, we see that the CMLLR

adaptation is less sensitive to the change in the thresholds.

One of the reasons would be due to the above rank-deficient

problem. Comparing SMAPLR with MLLR or CSMAPLR

with CMLLR, we notice that the robust SMAP criterion can

alleviate the over-fitting problem and that the thresholds used

for SMAPLR and CSMAPLR become less sensitive than those

used for MLLR and CMLLR. As a consequence, we can con-

firm that the CSMAPLR adaptation is the one least sensitive to

the change of the thresholds for controlling the number of the

Fig. 12. Objective evaluation of linear regression algorithms combined with
MAP adaptation. Left: average Mel-cepstral distance [dB], right: RMSE of
���� [cent]. (a) SMAPLR+MAP. (b) CSMAPLR+MAP.

transforms. It is thus expected to work stably and robustly even

for new features or new speakers.

E. Evaluation of Combined Algorithms

As mentioned previously, in the speaker adaptation using

linear regression, there is a rough assumption that the target

speaker model would be expressed by the piecewise linear

regression of mean vectors of the average voice model. We

therefore investigate the effect of the algorithms combining

linear regression and MAP adaptation [41]. By performing

MLLR or SMAPLR adaptation followed by MAP adaptation, it

would be possible to appropriately modify the mean vectors of

the distributions having relatively sufficient amount of speech

samples. By performing CMLLR or CSMAPLR adaptation

followed by MAP adaptation, it would be possible to perform

sphering (whitening) of diagonal covariance as well as the

modification of the mean vectors.

We compared the synthetic speech obtained before and

after applying the combined algorithm to models created by

SMAPLR or CSMAPLR adaptation. For the combination with

SMAPLR adaptation, we updated only the mean vectors in

order to see the effect of their modification. For the combina-

tion with CSMAPLR adaptation, we updated both the mean

vectors and the covariance matrices. The target speakers were

MHT, MTK, MMI, and FTK, and the experimental conditions

were the same as those described Section IV-C. The objective

measures between the actual and synthetic speech obtained

with and without the additional MAP adaptation of the target

speakers are shown in Fig. 12. The results of the combination

with SMAPLR adaptation (SMAPLR+MAP) are shown in part

(a), and the results of the combination with CSMAPLR adap-

tation (CSMAPLR+MAP) are shown in part (b). The objective

measures for speaker dependent (SD) models trained with

450 sentences and bias adaptation using the SMAP criterion

(SMAP:BIAS) are also shown for reference. The improvement
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Fig. 13. Subjective evaluation of SMAP-based linear regression algorithms and
an algorithm combining MAP adaptation with SMAP-based linear regression.
(There were 50 adaptation sentences.)

due to the combined algorithm with MAP adaptation is evident

when there are at least 20 sentences, and the additional MAP

adaptation seems to improve the RMSE of more than

it does the Mel-cepstrum distance. We also see that the model

adapted using 100 sentences gives results comparable to the

speaker-dependent model in terms of the Mel-cepstral distance

and a little better than the speaker-dependent model in terms

of the RMSE of . This tendency is similar to that in the

results reported in [20].

Although the above evaluations show that the CSMAPLR

adaptation worked better than SMAPLR adaptation, we used the

XAB test to compare similarity of the synthetic speech gener-

ated from the models adapted using SMAP-based bias adapta-

tion, SMAPLR adaptation, and a combination of MAP adapta-

tion and the SMAPLR adaptation so that we could assess the

effects of the following transforms of the mean vectors

(36)

(37)

(38)

where is an ML estimator of the mean vector calculated

from the adaptation data and is a hyperparameter for deter-

mining the interpolation ratio between the ML estimator and

the mean vector transformed by the linear regression. The target

speakers were the same four speakers. Seven subjects were pre-

sented first with reference speech and then with a pair of syn-

thetic speech (in random order) samples generated from the

models. The subjects were then asked which synthetic speech

was more similar to the reference speech. For each subject, five

test sentences were randomly chosen from a set of test sentences

contained in neither the training nor the adaptation data.

The preference scores (with 95% confidence intervals) of

each speaker adaptation algorithm are shown in Fig. 13, where

we can see that the subjects can distinguish between synthetic

speech obtained using the linear regression algorithms and

synthetic speech obtained using the combined algorithm.

This implies that the target acoustic features cannot be per-

fectly reproduced by only the (piecewise) linear transforms

of the average voice model. Although we need additional

forward-backward calculations after the linear transforms, it is

worth using the combined algorithm to reduce the gap between

the ML estimator and linearly transformed parameters.

For evaluating the effect of the amount of adaptation data used

in the above combined algorithm, we conducted a comparison

category rating (CCR) test. For reference, we also evaluated SD

Fig. 14. Subjective evaluation of models adapted using SMAPLR or using
SMAPLR combined with MAP adaptation. Similarity was rated on a 5-point
scale: 5 for very similar, 4 for similar, 3 for slightly similar, 2 for dissimilar, and
1 for very dissimilar.

models trained on each of the amounts of adaptation data that

were used to transform the models using SMAPLR adaptation

and the algorithm combining SMAPLR and MAP adaptation.

The numbers of adaptation sentences were 50, 100, 200, 300,

and 450. The target speakers were the same four speakers. Seven

subjects were presented first with reference speech and then,

in random order, with synthetic speech samples generated from

the models. The subjects were then asked to rate the similarity

of the synthetic speech to the reference speech. The rating was

done using a 5 point scale: 5 for very similar, 4 for similar, 3 for

slightly similar, 2 for dissimilar, and 1 for very dissimilar. For

each subject, five test sentences were randomly chosen from 50

test sentences contained in neither the training nor the adapta-

tion data.

The average scores obtained in this CCR test are shown in

Fig. 14 along with 95% confidence intervals. In this figure, con-

trary to our expectations that the combined algorithm gradually

improves the quality of synthetic speech as the amount of the

adaptation sentences increases, we can see significant differ-

ences between the linear regression algorithm and the combined

algorithm only for 100 and 200 adaptation sentences. Even for

other amount of adaptation data, however, the scores for the

combined algorithm are at least comparable to those for the

linear regression algorithm. Thus, we can say that although the

combined algorithm does not improve the similarity of synthetic

speech greatly, it does improve it. We used the SMAPLR adap-

tation in these evaluations, but an algorithm combining MAP

adaptation with CSMAPLR adaptation would have a similar ef-

fect because CSMAPLR adaptation is also a piecewise linear

regression algorithm.

It is obvious that with a limited amount of adaptation

sentences the average similarity scores for synthetic speech

obtained using the combined algorithm and even the linear

regression algorithm are significantly better than those for

the synthetic speech obtained using the speaker-dependent

approach. What is very interesting about this result is that the

average scores for synthetic speech obtained using the speaker

adaptation algorithms are still significantly better than those

for the speaker-dependent approach even for all the larger

amounts of adaptation sentences. This seems paradox because

1) the purpose of the combined algorithm is to reduce the gap

between the ML estimators of the mean vectors calculated from
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the adaptation data and linearly transformed mean vectors and

then 2) the speaker-dependent models are also built using the

same number of sentences with an ML criterion. As shown in

Fig. 13, the model using the combined algorithm is better than

linearly transformed model since the linearly transformed mean

vectors are modified by the ML estimators of the mean vectors.

However, the speaker-dependent model, which holds other ML

estimators of the mean vectors, is worse than one using the

combined algorithm in Fig. 14. We should therefore consider

the possibility that these results are due to some other factors

in the HMM training process. One would be relation between

the amount of training data for the average voice model and

decision-tree-based clustering of Gaussian distributions of the

HMMs. To cope with problems of data sparsity and unseen

context-dependent HMMs, we use the MDL criterion and build

decision trees for clustering of distributions. The decision trees

for the average voice model, which can easily utilize a lot of

speech data, thereby generally become larger and more precise

than those for the speaker-dependent model. The decision-tree

size differences caused by the amount of the training data

would affect the above results.

F. Evaluation of the Amount of Training Data for the Average

Voice Model

We first conducted an objective evaluation for confirming our

hypothesis on the effect of the decision-tree size differences.

The easiest way is to eliminate the influence of the different

decision-tree size and topology and compare the performance.

We thus constructed decision trees having the same structure/

topology and size common to all the training speakers for the

average voice model and target speakers using the shared-tree-

based clustering algorithm [34]. The target speaker used was a

male speaker MTK. The training speakers used were five male

speakers (MHO, MHT, MMY, MSH, and MYI). The gender-de-

pendent average voice model was trained using 450 sentences

for each training speaker, 2250 sentences in total. The average

voice model was then adapted to the target speaker using 5

to 450 sentences. The SD model having the common decision

trees was also built using 450 sentences of the target speaker.

Other experimental conditions were the same as those described

Section IV-C.

The objective measures between the actual and synthetic

speech obtained from models using several adaptation al-

gorithms and the SD models are shown in Fig. 15. The

Mel-cepstral distance is shown in part (a) and the RMSE of

is shown in part (b). We can see that these results using

the common decision trees show obviously different trends.

The measures of the combined algorithm (SMAPLR+MAP)

asymptotically come close to those of the SD models as the

amount of adaptation sentences available increases. This is

consistent with the nature of MAP estimation [24]. The im-

portant thing to remember is, however, that this situation does

not happen in reality because the average voice model and SD

model may always have individual tree structures/topologies

and sizes, resulting in mismatch in Fig. 14. Moreover the tree

Fig. 15. Objective evaluation of several speaker adaptation algorithms. The
common decision trees are used in both the average voice model and speaker-de-
pendent model to eliminate the influence of the different decision-tree size and
topology. (a) Average Mel-cepstral distance [dB]. (b) RMSE of ���� [cent].

Fig. 16. Number of leaf nodes of the decision trees for the average voice models
versus the number of the training sentences for the average voice models.

structure and size for the average voice model may vary with

the amount of the training data available.

Therefore, we investigated the effect of the amount of

training data for the average voice models and analyzed how

the tree structure and size for the average voice model are

associated with the performance of the adaptation. Although

the use of the gender-dependent average voice models are, as

discussed above, more appropriate than the gender-independent
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Fig. 17. Objective evaluation of the amount of training data for the average voice models. (The adaptation data was 450 sentences, and the adaptation algorithm
was the one combining SMAPLR with MAP.) Left: average Mel-cepstral distance [dB], right: RMSE of ���� [cent]. (a) Target speaker MHT. (b) Target speaker
FKS. (c) Target speaker MSH. (d) Target speaker FTK. (e) Target speaker MTK. (f) Target speaker FTY.

model average voice model, we used the gender-independent

one in these experiments because it makes it much easier to see

the effects of the amount of training data. From the speakers

included in the speech database described above, we chose as

the target speakers one male and one female speaker and trained

a gender-independent average voice model using the speech

data obtained from the rest of the five speakers (excluding

MMI) and four female speakers. By changing the combination

of the target speakers and training speakers, we evaluated total

of six speakers (MHT, MSH, MTK, FKS, FTK, and FTY)

as the target speakers. The amount of the training data used

for the gender-independent average voice models was ranged

from 450 to 4050 sentences. The amount of the speech data

used from each training speaker was ranged from 50 to 450

sentences in increments of 50 sentences. For reference, the

speaker-dependent models trained from the 450 sentences were

also evaluated at the same time. The same sentence set was

used for the average voice models and the speaker-dependent

models. The sentence set consists of several predefined subsets

[65]. To reduce the bias of contextual information between

the subsets included in the training data for the average voice

model, we worked out the combination of the subset of training

data from each training speaker so that we could reduce the

overlap between the subsets as much as possible. Thus, even the

minimum amount of the training data (450 sentences) contains

the same sentences set as that of the speaker-dependent models.

We used 450 sentences from the target speaker as adaptation

data in order to assess the effect of the amount of the training

data and the number of leaf nodes of the decision trees as

accurately as possible. The adaptation algorithm we used was

the one combining SMAPLR adaptation and MAP adaptation.

Although we should have used CSMAPLR adaptation rather

than SMAPLR adaptation, we used SMAPLR adaptation

method in order to reduce the computational time needed for

the relatively large amount of adaptation data. Even if we used

the CSMAPLR adaptation in these experiments, it would not

change the results very much because the MAP adaptation

using the relatively generous amount of adaptation data is

applied to the model transformed by SMALR adaptation. The

experimental conditions were the same as those in the experi-

ment described in Section IV-C.

The average number of leaf nodes of decision trees con-

structed for the average voice models is shown in Fig. 16 as a

function of the number of training sentences for the average

voice models. In this figure, we also show the average number

of leaf nodes of decision trees used for the SD models. In

construction of all the decision trees, the MDL criterion was

used for preventing over-fitting and determining an appropriate
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Fig. 18. Subjective evaluation of the amount of the training data for the average
voice models. The evaluation method was the CCR test, and there were adapta-
tion sentences. The adaptation algorithm was SMAPLR+MAP, and naturalness
was rated on a 5-point scale: �2 for much more natural than the SD models, 0
for almost the same as the SD models, and �2 for much less natural than the
SD models. (a) Male speakers. (b) Female speakers.

number of the leaf nodes. The MDL criterion can be explained

simply; it ensures that the increase in likelihood after each

split of nodes of the decision tress is above a threshold dictated

by the feature dimensionality and the number of observation

frames in the training set [64]. From this figure we can see that

the number of leaf nodes increases linearly as the amount of

training data for the average voice model increases. Especially,

the decision trees for are much larger than those of the

SD models.

We calculated the objective measures of the difference be-

tween actual and synthetic speech, and for reference we also

calculated the objective measures for the SD models. Fig. 17

shows the objective measures for each target speaker as a func-

tion of the number of the training sentences for the average

voice models. From these results it can be seen that both the

Mel-cepstral distance and RMSE of of synthetic speech

generated from the adapted model become remarkably better

as the amount of training data for the average voice models

increases. Although it is ironic that increasing the amount of

training data is more effective than other speaker-adaptation-im-

proving methods we investigated in the work reported in this

paper, this is simple and effective. We can see in Fig. 17 that

when more than 1350 sentences are used for training the average

voice models, for all the target speakers the RMSE of is

better with the adapted models than it is with the SD models.

When 4050 sentences are used for training the average voice

models, the Mel-cepstral distance for the target speakers MHT

and FKS is slightly better with the adapted models than it is

with the SD models. Since the improvements in both Mel-cep-

stral distance and RMSE of that are due to the increase of

the amount of the training data for the average voice models do

not converge even at 4050 sentences, they would be enhanced

by using more than 4050 training sentences.

We used the CCR test to evaluate the naturalness of the syn-

thetic speech obtained using each average voice model and SD

model. Seven subjects were presented first with synthetic speech

generated from the SD model as a reference and then with a

speech sample generated from the adapted models randomly

chosen from the set of the models. The subjects were then asked

to rate the naturalness of the synthetic speech relative to that of

the reference speech. The rating was done using the following

five-point scale: 2 for much more natural, 1 for more natural,

0 for almost the same, 1 for less natural, and 2 for much less

natural. For each subject, eight test sentences were randomly

chosen from 50 test sentences that were contained in neither the

training nor the adaptation data.

The results of the CCR test are shown (with 95% confidence

intervals) in Fig. 18, from which we can see that, for all the

target speakers, when there are more than 1350 training sen-

tences the average scores for naturalness of synthetic speech ob-

tained using the adapted models are higher than those of the syn-

thetic speech obtained using the SD models. This result is con-

sistent with the fact that when there are more than 1350 training

sentences, the RMSE of of the speech obtained using the

adapted models is better results than that of the speech obtained

using the SD models. Although the Mel-cepstral distance of the

speech obtained using adapted models were not better than those

of the speech obtained using the SD models, the differences be-

tween the Mel-cepstral distance for the speech obtained using

the adapted models and that for the speech obtained using SD

models were small. When there were 1350 training sentences,

this distance was between 0.1 and 0.3 dB. Thus, these differ-

ences would not have affected these subjective evaluation re-

sults. In fact, we can see that there is a strong correlation be-

tween the average scores for the naturalness of synthetic speech

generated from the adapted models and the number of leaf nodes

of the decision trees constructed for in Fig. 16. Since the

number of leaf nodes of the decision tree increases linearly with

the amount of training data for the average voice models, we can

also say that the naturalness of synthetic speech generated from

the adapted models is closely correlated with the amount of the

training data for the average voice models. Using more training

data is a very simple and straightforward but effective and reli-

able method for improving the quality of synthetic speech ob-

tained using speaker adaptation methods.

Finally, we analyzed the influence of the tree-topology differ-

ences of the average voice model and SD models. In previous

experiments, the MDL criterion is used for automatically de-

termining an appropriate number of leaf nodes of the decision

trees and thus the decision trees for the average voice model

and SD models have different size. In order to eliminate the in-

fluence of the different decision-tree size, instead of the MDL

criterion, we manually adjusted the number of leaf nodes of the

decision trees for the SD models to that for the average voice

model and compare the performance. As mentioned earlier, the

MDL criterion specifies a threshold for the split of nodes of the
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Fig. 19. Number of leaf nodes of the decision trees for the SD models versus
the objective measures. (The training data used for the SD models was 450
sentences, and the speaker used was the male speaker MTK.) Left: average
Mel-cepstral distance [dB], right: RMSE of ���� [cent].

Fig. 20. Objective evaluation for the SD models with the same number of leaf
nodes as those of the average voice model. (The training data used for the SD
models was 450 sentences, and the speakers used was the male speaker MTK
and the female speaker FTK.) Left: average Mel-cepstral distance [dB], right:
RMSE of ���� [cent]. (a) Target speaker MTK. (b) Target speaker FTK.

decision tress. We added a new positive weighting factor to the

threshold and continued the split of the nodes by decreasing the

weight. The speakers used were the male speaker MTK and the

female speaker FTK. The amount of training data used for the

SD models was 450 sentences. Fig. 19 shows the manually-ad-

justed numbers of leaf nodes for the male speaker MTK versus

the objective measures. For reference, we calculated the ob-

jective measures for 50 sentences randomly selected from the

training data as well as the 50 test sentences used in Fig. 17.

From these figures, we can see that the number of leaf nodes

determined by the MDL criterion is reasonably close to the op-

timal one for the test data, that is, the MDL criterion prevents

over-fitting to the training data. Fig. 20 shows the objective eval-

uation results which focus on regions between the number of

leaf nodes specified by the MDL criterion in the SD models and

that specified by the MDL criterion in the average voice model.

The average voice model was identical to one trained from 4050

sentences in Fig. 17. The results for MTK are shown in part

(a) and those for FTK are shown in part (b). For reference, the

adaptation results using 450 sentences were also shown in the

figures. It can be seen that the RMSE of is still better with

the adapted models than it is with even the SD models having

the same number of leaf nodes as those of the average voice

model. From these results, we can conclude the decision trees

for the average voice model have a better topology for

than those for the SD models.

V. CONCLUSION

In this paper, we have presented the results obtained using the

subjective and objective tests to evaluate the effects of several

factors and configuration choices encountered during training

and model construction in speaker adaptation for HMM-based

speech synthesis. We have also proposed the new robust and

stable CSMAPLR adaptation algorithm whose derivation was

based on the knowledge obtained in this analysis and by com-

paring the results of major linear-regression algorithms such as

the MLLR, CMLLR, and SMAPLR adaptation algorithms. The

findings obtained from our analysis results can be summarized

as follows. Better and more stable adaptation performance can

be obtained from a small amount of speech data by preparing

gender-dependent average voice models from a large amount

of training data as the initial model and adapting these models

by using an algorithm combining CSMAPLR adaptation and

MAP adaptation. Increasing the number of training sentences

for the average voice model is a simple and remarkably effective

method for improving the quality of synthetic speech obtained

using speaker adaptation methods. It provides larger decision

trees having a better topology. The CSMAPLR adaptation algo-

rithm improves the RMSE of the of synthetic speech as

well as the Mel-cepstral distance between actual and synthetic

speech. It thereby improves the similarity of actual and synthetic

speech. It can also reduce the threshold sensitivity for deter-

mining the number of multiple transforms. It is especially effec-

tive for the thresholds for Mel-cepstral coefficients. Algorithms

combining linear regression with MAP adaptation are effective

when more than 20 adaptation sentences are available. They

would improve the similarity of actual and synthetic speech by

appropriately modifying both the mean vectors and covariance

matrices of the Gaussian distributions of the MSD-HSMMs. In

addition the coherence between these subjective and objective

tests reported in this paper itself are an interesting result.

This study on speaker adaptation will also have strong rel-

evance to style adaptation since these factors also affect style

adaptation. It would also be interesting to investigate other fac-

tors such as the number of the training speakers or the number

of training speakers who are professional narrators. Our future

work is to release these adaptation algorithms for speech syn-

thesis to the public4 and develop an unsupervised speaker adap-

tation algorithm for speech synthesis.

4Some of these techniques have already been released in an open-source soft-
ware toolkit called HTS (from “H Triple S,” an acronym for the “HMM-based
speech synthesis system”) [66]. The recently released HTS version 2.0 [67]
includes the MLLR and CMLLR adaptation algorithms and algorithms com-
bining them with MAP adaptation for MSD-HMMs. We also plan to integrate
and release several additional adaptation algorithms including the SMAPLR and
CSMAPLR algorithms for the MSD-HSMMs as a part of a new HTS version
2.1. Therefore, these results on the speaker adaptation techniques described in
this paper would also be very beneficial to new users of the HTS toolkit who
want to try speaker adaptation techniques using their speech data.
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