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Abstract

We consider spectral clustering algorithms for community detection under a general bi-
partite stochastic block model (SBM). A modern spectral clustering algorithm consists of
three steps: (1) regularization of an appropriate adjacency or Laplacian matrix (2) a form
of spectral truncation and (3) a k-means type algorithm in the reduced spectral domain.
We focus on the adjacency-based spectral clustering and for the first step, propose a new
data-driven regularization that can restore the concentration of the adjacency matrix even
for the sparse networks. This result is based on recent work on regularization of random
binary matrices, but avoids using unknown population level parameters, and instead esti-
mates the necessary quantities from the data. We also propose and study a novel variation
of the spectral truncation step and show how this variation changes the nature of the mis-
classification rate in a general SBM. We then show how the consistency results can be
extended to models beyond SBMs, such as inhomogeneous random graph models with ap-
proximate clusters, including a graphon clustering problem, as well as general sub-Gaussian
biclustering. A theme of the paper is providing a better understanding of the analysis of
spectral methods for community detection and establishing consistency results, under fairly
general clustering models and for a wide regime of degree growths, including sparse cases
where the average expected degree grows arbitrarily slowly.

Keywords: Spectral clustering; bipartite networks; stochastic block model; regular-
ization of random graphs; community detection; sub-Gaussian biclustering; graphon clus-
tering.

1. Introduction

Spectral clustering is one of the most popular and successful approaches to clustering and
has appeared in various contexts in statistics and computer science among other disciplines.
The idea generally applies when one can define a similarity matrix between pairs of objects
to be clustered (Ng et al., 2002; Von Luxburg, 2007; Von Luxburg et al., 2008). Recently,
there has been a resurgence of interest in the spectral approaches and their analysis in
the context of network clustering (Boppana, 1987; McSherry, 2001; Dasgupta et al., 2006;

c©2019 Zhixin Zhou and Arash A. Amini.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-170.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-170.html


Zhou and Amini

Coja-Oghlan, 2010; Tomozei and Massoulié, 2010; Rohe et al., 2011; Balakrishnan et al.,
2011; Chaudhuri et al., 2012; Fishkind et al., 2013; Qin and Rohe, 2013; Joseph and Yu,
2013; Krzakala et al., 2013; Lei et al., 2015; Yun and Proutiere, 2014a,b; Binkiewicz et al.,
2014; Lyzinski et al., 2014; Chin et al., 2015; Gao et al., 2017). The interest has been partly
fueled by the recent activity in understanding statistical network models for clustering and
community detection, and in particular by the flurry of theoretical work on the stochastic
block model (SBM)—also called the planted partition model—and its variants (Abbe, 2017).

There has been significant recent advances in analyzing spectral clustering approaches in
SBMs. We start by identifying the main components of the analysis in Section 3, and then
show how variations can be introduced at each step to obtain improved consistency results
and novel algorithms. We will work in the general bipartite setting which has received
comparatively less attention, but most results in the paper can be easily extended to the
(symmetric) unipartite models (cf. Remark 7). It is worth noting that clustering bipartite
SBMs is closely related to the biclustering (Hartigan, 1972) and co-clustering (Dhillon, 2001;
Rohe and Yu, 2012) problems.

A modern spectral clustering algorithm often consists of three steps: (a) the regu-
larization and concentration of the adjacency matrix (or the Laplacian) (b) the spectral
truncation step, and (c) the k-means step. By using variations in each step one obtains
different spectral algorithms, which is then reflected in the variations in the consistency
results.

The regularization step is fairly recent and is motivated by the observation that proper
regularization significantly improves the performance of spectral methods in sparse net-
works (Chaudhuri et al., 2012; Amini et al., 2013; Joseph and Yu, 2013; Le et al., 2015;
Chin et al., 2015). In particular, regularization restores the concentration of the adjacency
matrix (or the Laplacian) around its expectation in the sparse regime, where the average
degree of the network is constant or grows very slowly with the number of nodes. In this
paper, building on these recent advances, we introduce a novel regularization scheme for the
adjacency matrix that is fully data-driven and avoids relying on unknown quantities such
as maximum expected degrees (for rows and columns) of the network. This regularization
scheme is introduced as Algorithm 1 in Section 4 and we show that under a general SBM
it achieves the same concentration bound (Theorem 3) as its oracle counterpart.

For the spectral truncation step, we will consider three variations, one of which (Al-
gorithm 2) is the common approach of keeping the top k leading eigenvectors as columns
of the matrix passed to the k-means step. In this traditional approach, the spectral trun-
cation can be viewed as obtaining a low-dimensional representation of the data, suitable
for an application of simple k-means type algorithms. We also consider a recent variant
(Algorithm 3) proposed in Yun and Proutiere (2014b) and Gao et al. (2017), in which the
spectral truncation step acts more as a denoising step. We then propose a third alternative
(Algorithm 4 in Section 5) which combines the benefits of both approaches while improv-
ing the computational complexity. One of our novel contributions is to derive consistency
results for Algorithms 3 and 4, under a general SBM, showing that the behavior of the two
algorithms is the same (but different than Algorithm 2) assuming that the k-means step
satisfies a property we refer to as isometry invariance (Theorems 5 and 6).

In the final step of spectral clustering, one runs a k-means type algorithm on the output
of the truncation step. We discuss this step in some detail since it is often mentioned
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briefly in the analyses of spectral clustering, with the exception of a few recent works (Lei
et al., 2015; Gao et al., 2017, 2018). By the k-means step, we do not necessarily mean the
solution of the well-known k-means problem, although, this step is usually implemented
by an algorithm that approximately minimizes the k-means objective. We will consider
the k-means step in some generality, by introducing the notation of a k-means matrix (cf.
Section 3.3). The goal of the final step of spectral clustering is to obtain a k-means matrix
which is close to the output of the truncation step. We characterize sufficient conditions
on this approximation so that the overall algorithm produces consistent clustering. Any
approach that satisfies these conditions can be used in the k-means step, even if it is not
an approximate k-means solver.

Most of the above ideas extend beyond SBMs and, in Section 6, we consider various
extensions. We first consider some unique aspects of the bipartite setting, for example, the
possibility of having clusters only on one side of the network, or having more clusters on one
side than the rank of the expected adjacency matrix. We then show how the results extend to
general sub-Gaussian biclustering (Section 6.3) and general inhomogeneous random graphs
with approximate clusters (Section 6.4).

The organization of the rest of the paper is as follows: After introducing some notation in
Section 1.1, we discuss the general (bipartite) SBM in Section 2. An outline of the analysis is
given in Section 3, which also provides the high-level intuition of why the spectral clustering
works in SBMs and what each step will achieve in terms of guarantees on its output. This
section provides a typical blueprint theorem on consistency (Theorem 1 in Section 3.1)
which serves as a prelude to later consistency results. The rest of Section 3 provides the
details of the last two steps of the analysis sketched in Section 3.1. The regularization and
concentration (the first step) is detailed in Section 4 where we also introduce our data-
driven regularization. We then give explicit algorithms and their corresponding consistency
results in Section 5. Extensions of the results are discussed in Section 6. Some simulations
showing the effectiveness of the regularization are provided in Section 7.

Related work. There are numerous papers discussing aspect of spectral clustering and its
analysis. Our paper is mostly inspired by recent developments in the field, especially by the
consistency results of Lei et al. (2015), Yun and Proutiere (2014a), Chin et al. (2015), Gao
et al. (2017) and concentration results for the regularized adjacency (and Laplacian) ma-
trices such as Le et al. (2015) and Bandeira et al. (2016). Theorem 4 on the consistency
of the typical adjacency-based spectral clustering algorithm—which we will call SC-1—is
generally known (Lei et al., 2015; Gao et al., 2017), though our version is slightly more
general; see Remark 5. The spectral algorithm SC-RR is proposed and analyzed in Yun
and Proutiere (2014b), Gao et al. (2017) and Gao et al. (2018) for special cases of the SBM
(and its degree-corrected version); the new consistency result we give for SC-RR is for the
general SBM and reveals the contrast with SC-1. Previous analyses did not reveal this
difference due to focusing on the special case; see Examples 1 and 2 in Section 5 for details.
We also propose the new SC-RRE which has the same performance as SC-RR (assuming
a proper k-means step) but is much more computationally efficient. The results that we
prove for SC-RR and SC-RRE can be recast in terms of the mean parameters of the SBM
(in contrast to SC-1), as demonstrated in Corollary 4 of Section 5.3. For an application of
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this result, we refer to our work on optimal bipartite network clustering (Zhou and Amini,
2018).

1.1. Notation

Orthogonal matrices. We write O
n×k for the set of n × k matrices with orthonormal

columns. The condition k ≤ n is implicit in defining O
n×k. The case O

n×n is the set of
orthogonal matrices, though with some abuse of terminology we also refer to matrices in
O
n×k as orthogonal even if k < n. Thus, Z ∈ O

n×k iff ZTZ = Ik. We also note that
Z ∈ O

n×k1 and U ∈ O
k1×k implies ZU ∈ O

n×k. The following holds:

‖Ux‖2 = ‖x‖2, ∀x ∈ R
k, U ∈ O

k1×k, (1)

for any k1 ≥ k. On the other hand,

‖UTx‖2 ≤ ‖x‖2, ∀x ∈ R
k1 , U ∈ O

k1×k, (2)

where equality holds for all x ∈ R
k1 , iff k1 = k. To see (2), let u1, . . . , uk ∈ R

k1 be the
columns of U , constituting an orthonormal sequence which can be completed to an orthonor-
mal basis by adding say uk+1, . . . , uk1 . Then, ‖UTx‖22 =

∑k
j=1〈uj , x〉2 ≤

∑k1
j=1〈uj , x〉2 =

‖x‖22.
Membership matrices and misclassification. We let H

n×k denote the set of hard
cluster labels: {0, 1}-valued n×k matrices where each row has exactly a single 1. A matrix
Z ∈ H

n×k is also called a membership matrix, where row i is interpreted as the membership
of node i to one of k clusters (or communities). Here we implicitly assume that we have a
network on nodes in [n] = {1, . . . , n}, and there is a latent partition of [n] into k clusters.
In this sense, Zik = 1 iff node i belongs to cluster k. Given, two membership matrices
Z,Z ′ ∈ H

n×k, we can consider the average misclassification rate between them, which we
denote as Mis(Z,Z ′): Letting zTi and (z′i)

T denote the ith row of Z and Z ′ respectively, we
have

Mis(Z,Z ′) := min
Q

1

n

n∑

i=1

1{zi 6= Qz′i} (3)

where the minimum is taken over k×k permutations matrices Q. We also let Misr(Z,Z
′) be

the misclassification rate between the two, over the rth cluster of Z, that is, Misr(Z,Z
′) =

1
nr

∑
i: zi=r

1{zi 6= Q∗z′i} where nr =
∑n

i=1 1{zi = r} is the size of the rth cluster of Z, and

Q∗ is the optimal permutation in (3). Note that in contrast to Mis, Misr is not symmetric
in its two arguments. We also write Mis∞ := maxrMisr. These definitions can be extended
to misclassification rates between k-means matrices introduced in Section 3.3.

2. Stochastic Block Model

We consider the general, not necessarily symmetric, Stochastic Block Model (SBM) with
bi-adjacency matrix A ∈ {0, 1}n1×n2 . We assume throughout that n2 ≥ n1, without loss of
generality. We have membership matrices Zr ∈ H

nr×kr for each of the two sides r = 1, 2,
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where kr ≤ nr denotes the number of communities on side r. Each element of A is an
independent draw from a Bernoulli variable, and

P := E[A] = Z1BZT2 , B =
Ψ√
n1n2

(4)

where B ∈ [0, 1]k1×k2 is the connectivity— or the edge probability—matrix, and Ψ is a
rescaled version. We also use the notation

A ∼ Ber(P ) ⇐⇒ Aij ∼ Ber(Pij), independent across (i, j) ∈ [n1]× [n2]. (5)

Classical SBM which we refer to as symmetric SBM corresponds to the following modifica-
tions:

(a) A is assumed to be symmetric: Only the upper diagonal elements are drawn inde-
pendently and the bottom half is filled symmetrically. For simplicity, we allow for
self-loops, i.e., draw the diagonal elements from the same model. This will have a
negligible effect in the arguments.

(b) n1 = n2 = n, k1 = k2 = k, Z1 = Z2 = Z.

(c) B is assumed symmetric.

We note that (4) still holds over all the elements. Directed SBM is also a special case,
where (b) is assumed but not (a) or (c). That is, A is not assumed to be symmetric and all
the entries are independently drawn, while B may or may not be symmetric.

We refer to P as the mean matrix and note that it is of rank at most k := min{k1, k2}.
Often k ≪ n1, n2, that is P is a low-rank matrix which is the key in why spectral clustering
works well for SBMs. However, the case where either k1 & n1 or k2 & n2 is allowed. (Here,
k1 & n1 means k1 ≥ cn1 for some universal constant c > 0.) An extreme example of such
setup can be found in Section 6.1.

We let Nr = diag(nr1, . . . , nrkr) for r = 1, 2 where nrj is the size of the jth cluster of
Zr; that is, Nr is a diagonal matrix whose diagonal elements are the sizes of the clusters on
side r. We also consider the normalized version of Nr,

N̄r := Nr/nr = diag(πr1, . . . , πrkr), (6)

collecting the cluster proportions πrj := nrj/nr. Let us define

B̄ := N
1/2
1 BN

1/2
2 = N̄

1/2
1 ΨN̄

1/2
2 .

For sparse graphs, we expect N̄r and Ψ to remain stable as nr → ∞, hence B̄ remains
stable; in contrast, the entries of B itself vanish under scaling (4). See Remark 2 below for
details. Throughout the paper, barred parameters refer to quantities that remain stable or
slowly vary with nr →∞. The following lemma is key in understanding spectral clustering
for SBMs:
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Lemma 1 Assume that B̄ = UψΣV
T
ψ is the reduced SVD of B̄, where Uψ ∈ O

k1×k, Vψ ∈
O
k2×k, Σ = diag(σ1, . . . , σk), and k = min{k1, k2}. Then,

P = (Z̄1Uψ) Σ (Z̄2Vψ)
T (7)

is the reduced SVD of P where Z̄r := ZrN
−1/2
r is itself an orthogonal matrix, Z̄Tr Z̄r = Ikr .

Proof We first show that ZTr Zr = Nr which then implies that Z̄r is orthogonal. Let zTri
be the ith row of Zr and note that ZTr Zr =

∑n
i=1 zriz

T
ri. Since zri ∈ H

1×kr , each zriz
T
ri is

a diagonal matrix with a single 1 on the diagonal at the position determined by the clus-
ter assignment of node i on side r. Now, a little algebra on (4) shows that P = Z̄1B̄Z̄T2 ,
hence (7) holds. Since Z̄r ∈ O

nr×kr , we have Z̄1Uψ ∈ O
n1×k and Z̄2Vψ ∈ O

n2×k showing
that (7) is in fact a (reduced) SVD of P .

When dealing with the symmetric SBM, we will drop the subscript r from all the relevant
quantities; for example, we write N = N1 = N2, Z̄ = Z̄1 = Z̄2, πj = π1j = π2j , and so on.

Remark 1 (Reduced versus truncated) The term reduced SVD in Lemma 1 (also
known as compact SVD) means that we reduce the orthogonal matrices in a full SVD by
removing the columns corresponding to zero singular values. The number of columns of the
resulting matrices will be equal to the rank of the underlying matrix (i.e., both Z̄1Uψ and
Z̄2Vψ will have k = min{k1, k2} columns in the case of P ). Hence, a reduced SVD is still an
exact SVD. Later, we will use the term truncated SVD to refer to an “approximation” of the
original matrix by a lower rank matrix obtained by further removing columns corresponding
to small nonzero singular values (starting from a reduced SVD). Hence, a truncated SVD
is only an approximation of the original matrix.

Remark 2 (Scaling and sparsity) As can be seen from the above discussion, the nor-
malization in (4) is natural for studying spectral clustering. In the symmetric case, where
n1 = n2 = n, the normalization reduces to B = Ψ/n, which is often assumed when studying
sparse SBMs by requiring that either ‖Ψ‖∞ is O(1) or grows slowly with n. To see why
this implies a sparse network, note that the expected average degree of the symmetric SBM
(under this scaling) is

1

n
1TP1 =

1

n
1TNBN1 = 1T N̄ΨN̄1 =

k∑

i,j=1

πiπjΨij =: dav

using 1TnZ = 1TkN . (Here and elsewhere, 1 is the vector of all ones of an appropriate
dimension; we write 1n if we want to emphasize the dimension n.) Thus, the growth of
the average expected degree, dav, is the same as Ψ, and as long as Ψ is O(1) or grows very
slowly with n, the network is sparse. Alternatively, we can view the expected density of the
network (the expected number of edges divided by the total number of possible edges) as a
measure of sparsity. For the symmetric case, the expected density is (121

TP1)/
(
n
2

)
∼ dav/n

and is O(n−1) if dav = O(1). Similar observations hold in the general bipartite case if we
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let n =
√
n1n2, the geometric mean of the dimensions. The expected density of the bipartite

network under the scaling of (4) is

1TP1

n2
=

1

n2
1TN1BN21 =

1

n
1T N̄1ΨN̄21 =

dav
n

, (n =
√
n1n2)

where dav := 1T N̄1ΨN̄21 =
∑

i,j π1iπ2jΨij can be thought of as the analog of the expected
average degree in the bipartite case. As long as ‖Ψ‖∞ grows slowly relative to n =

√
n1n2,

the bipartite network is sparse.

3. Analysis steps

Throughout, we focus on recovering the row clusters. Everything that we discuss goes
through, with obvious modifications, for recovering the column clusters. Recalling the
decomposition (7), the idea of spectral clustering in the context of SBMs is that Z̄1Uψ has
enough information for recovering the clusters and can be obtained by computing a reduced
SVD of P . In particular, applying a k-means type clustering on the rows of Z̄1Uψ should
recover the cluster labels. On the other hand, the actual random adjacency matrix, A, is
concentrated around the mean matrix P , after proper regularization if need be. We denote
this potentially regularized version as Are. Then, by the spectral perturbation theory, if we
compute a reduced SVD of Are = Ẑ1Σ̂Ẑ

T
2 where Ẑr ∈ O

nr×k, r = 1, 2 and Σ̂ is diagonal,
we can conclude that Ẑ1 concentrates around Z̄1Uψ. Hence, applying a continuous k-means

algorithm on Ẑ1 should be able to recover the labels with a small error.

3.1. Analysis sketch

Let us sketch the argument above in more details. A typical approach in proving consistency
of spectral clustering consists of the following steps:

1. We replace A with a properly regularized version Are. We provide the details for one
such regularization in Theorem 2 (Section 4). However, the only property we require of the
regularized version is that it concentrates, with high probability, around the mean of A, at
the following rate (assuming n2 ≥ n1):

|||Are − E[A]|||op ≤ C
√
d, where d =

√
n2

n1
‖Ψ‖∞. (8)

Here and throughout ||| · |||op is the ℓ2 → ℓ2 operator norm and ‖Ψ‖∞ = maxij Ψij .

2. We pass from Are and P = E[A] to their (symmetrically) dilated versions A†
re and

P †. The symmetric dilation operator will be given in (13) (Section 3.2) and allows us to
use spectral perturbation bounds for symmetric matrices. A typical final result of this step
is

|||Ẑ1 − Z̄1UψQ|||F ≤
C2

σk

√
kd, w.h.p. (9)

for some Q ∈ O
k×k. We recall that ||| · |||F is the Frobenius norm. Here, σk is the smallest

nonzero singular value of B̄ as defined in Lemma 1. The form of (9) will be different
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if instead of Ẑ1 one considers other objects as the end result of this step; see Section 5
(e.g., (34)) for instances of such variations. The appearance of Q is inevitable and is a
consequence of the necessity of properly aligning the bases of spectral subspaces, before
they can be compared in Frobenius norm (cf. Lemma 3). Nevertheless, the growing stack
of orthogonal matrices on the RHS of Z̄1 has little effect on the performance of row-wise
k-means, as we discuss shortly.

3. The final step is to analyze the effect of applying a k-means algorithm to Ẑ1. Here,
we introduce the concept of a k-means matrix, one whose rows take at most k distinct
values. (See Section 3.3 for details). A k-means algorithm K takes a matrix X̂ ∈ R

n×m

and outputs a k-means matrix K (X̂) ∈ R
n×m. Our focus will be on k-means algorithms

with the following property: If X∗ ∈ R
n×m is a k-means matrix, then for some constant

c > 0,

|||X̂ −X∗|||2F ≤ ε2 =⇒ Mis(K (X̂), X∗) ≤ c ε2/(nδ2). (10)

where δ2 = δ2(X∗) is the minimum center separation of X∗ (cf. Definition 2), and Mis is the
average misclassification rate between two k-means matrices. For future reference, we refer
to property (10) as the local quadratic continuity (LQC) of algorithm K ; see Remark 6 for
the rationale behind the naming. As will become clear in Section 3.3, k-means matrices
encode both the cluster label information and cluster center information, and these two
pieces can be recovered from them in a lossless fashion. Thus, it makes sense to talk about
misclassification rate between k-means matrices, by interpreting it as a statement about
their underlying label information. In Section 3.3, we will discuss k-means algorithms that
satisfy (10).

The preceding three steps of the analysis follow the three steps of a general spectral
clustering algorithm, which we refer to as regularization, spectral truncation and k-means
steps, respectively. Recalling the definition of cluster proportions, let us assume for some
βr ≥ 1,

max
(t,s): t 6=s

2

π−1
rt + π−1

rs
≤ βr

kr
, r = 1, 2. (A1)

The LHS is the maximum harmonic mean of pairs of distinct cluster proportions. For
balanced clusters, we have πrt = 1/kr for all t ∈ [kr] and we can take βr = 1. In general,
βr measures the deviation of the clusters (on side r) from balancedness. The following is a
prototypical consistency theorem for a spectral clustering algorithm:

Theorem 1 (Prototype SC consistency) Consider a spectral algorithm with a k-means
step satisfying (10), and the “usual” spectral truncation step, applied to a regularized bi-
adjacency matrix Are satisfying concentration bound (8). Let K (Ẑ1) be the resulting esti-
mate for membership matrix Z1, and assume k1 = k =: min{k1, k2}. Then, under the SBM
model of Section 2 and assuming (A1), w.h.p.,

Mis(K (Ẑ1), Z̄1) . β1

( d

σ2
k

)
.
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Here, and in the sequel, “with high probability”, abbreviated w.h.p., means with probability
at least 1 − n−c1 for some universal constant c1 > 0. The notation f . g means f ≤ c2 g
where c2 > 0 is a universal constant. In addition, f ≍ g means f . g and g . f .
Proof By assumption, concentration bound (8) holds. By Lemma 3 in Section 3.2, (8)
implies (9) for the usual truncation step. Let O := UψQ and ε2 = C2

2 kd/σ
2
k so that (9)

reads |||Ẑ1 − Z̄1O|||F ≤ ε2. The k-means step satisfies (10) by assumption. Applying (10)
with X̂ = Ẑ1, X

∗ = Z̄1O and ε2 defined earlier leads to

Mis(K (Ẑ1), Z̄1) = Mis(K (Ẑ1), Z̄1O) .
ε2

n1δ2
. (11)

It remains to calculate the minimum center separation of X∗ = Z̄1O ∈ R
n1×k, where

Z̄1 ∈ O
n1×k1 and O := UψQ ∈ O

k1×k. We have

δ2 = δ2(Z̄1O) = δ2(Z̄1) = min
t 6=s
‖n−1/2

1t et − n
−1/2
1s es‖22 = min

t 6=s
(n−1

1t + n−1
1s )

where es ∈ R
k1 is the sth standard basis vector. The second equality uses invariance of δ2

to right-multiplication by a square orthogonal matrix. This is a consequence of ‖uTO −
vTO‖2 = ‖u − v‖2 for u, v ∈ R

k1 and O ∈ O
k1×k when k1 = k; see (1). The third equality

is from the definition Z̄1 = Z1N
−1/2
1 . Using (A1),

(n1δ
2)−1 ≤ max

t 6=s
(π−1

1t + π−1
1s )

−1 ≤ β1
2k1

.

Thus, ε2

n1δ2
. β1

k
k1

d
σ2

k

which gives the result in light of (11) and assumption k1 = k.

The case k1 > k will be discussed in Section 6.2. For (10) to hold for a k-means algorithm,
one usually requires some additional constraints on ε2/(nδ2), ensuring that this quantity
is small. We will restate Theorem 1 with such conditions explicitly once we consider the
details of some k-means algorithms. For now, Theorem 1 should be thought of as a gen-
eral blueprint, with specific variations obtained in Section 5 for various spectral clustering
algorithms.

Remark 3 To see that Theorem 1 is a consistency result, consider the typical case where
β1 ≍ 1, and σk ≍ d, so that Mis(K (Ẑ1), Z̄1) = O(d−1). Then, as long as d → ∞, i.e.,
the average degree of the network grows with n, assuming n1 ≍ n2 ≍ n (for some n),
we have Mis(K (Ẑ1), Z̄1) = o(1), i.e., the average misclassification rate vanishes with high
probability. One might ask why σk ≍ d is reasonable. Consider the typical case where Ψ =
ρnΨ

′ for some constant matrix Ψ′ and a scalar parameter ρn that captures the dependence
on n. This setup is common in network modeling (Bickel and Chen, 2009). Then, d ≍
‖Ψ‖∞ = ρn‖Ψ′‖∞ and σk = ρnσ

′
k where σ′

k is defined based on Ψ′ and hence constant. It

follows that d ≍ ρn ≍ σk and Mis(K (Ẑ1), Z̄1) = o(ρ−1
n ). Note that, in general, ρn can grow

as fast as n (cf. (4)). More specific examples are given in Section 5.

Remark 4 We note that bounds similar to (9) appear in the recent literature (Abbe et al.,
2017; Cape et al., 2018) but for the 2→∞ operator norm, as opposed to the Frobenius norm,
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assuming that the network is dense enough. These bounds can be used to show that spectral
clustering achieves exact recovery when the degree grows as log n for the two-community
case (Abbe et al., 2017). A similar exact recovery result for general K is obtained in (Su
et al., 2017) assuming a degree growth of (log n)a for sufficiently large a. Whether the
2→∞ bounds can be used to sharpen the misclassification rate of spectral clustering below
the log n regime is open.

Remark 5 Condition (A1) is more relaxed that what is commonly assumed in the literature
(though the proof is the same). Stating the condition as a harmonic mean allows one to
have similar results as the balanced case when one cluster is large, while others remain more
or less balanced. For example, let πr1 = 1− c for some constant c ∈ (0, 1), say c = 0.4, and
let πrt = c/(kr − 1) for t 6= 1. Then, we have for s 6= t

2

π−1
rt + π−1

rs
≤ 2min{πrt, πrs} =

2c

kr − 1
≤ 4

kr

assuming kr ≥ 2. Hence (A1) holds with βr = 4. Note that as kr is increased, all but one
cluster get smaller.

Remark 6 (LQC naming) The rationale behind the naming of (10) is as follows: Let
∆(X,Y ) := 1√

n
|||X − Y |||F be the metric induced by the normalized Frobenius norm on the

space of n×m matrices. Assume that X∗ is a k-means matrix and that k-means matrices
are fixed points of algorithm K , hence X∗ = K (X∗). Then, by taking the infimum over
ε2, (10) can be written as

Mis
(
K (X̂),K (X∗)

)
≤ ω

(
∆(X̂,X∗)

)
(12)

where ω(t) = ct2/δ2(X∗), showing that K is continuous w.r.t. the two (pseudo)-metrics,
locally at X∗, with a quadratic modulus of continuity. Note that this continuity is only
required to hold around a k-means matrix X∗ (and not in general). Another reason for the
“locality” is that such statements often only hold for sufficiently small ∆(X̂,X∗).

In this rest of this section, we fill in some details of the last two steps of the plan sketched
above, deferring Step 1 to Section 4.

3.2. SV truncation (Step 2)

We now show how the concentration bound (8) implies the deviation bound (9) for the usual
spectral truncation step. Consider the symmetric dilation operator : Rn1×n2 → S

n1+n2 ,
given by

P † :=

(
0 P
P T 0

)
, (13)

where S
n is the set of symmetric n × n matrices. This operator will be very useful in

translating the results between the symmetric and non-symmetric cases. Let us collect
some of its properties:

10
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Lemma 2 (Symmetric Dilation) Let P ∈ R
n1×n2 have a reduced SVD given by P =

UΣV T where Σ = diag(σ1, . . . , σk) is a k × k nonnegative diagonal matrix . Then,

(a) P † has a reduced EVD given by

P † = W

(
Σ 0
0 −Σ

)
W T , W =

1√
2

(
U U
V −V

)
∈ O

(n1+n2)×2k.

(b) P 7→ P † is a linear operator with |||P †||| = |||P ||| and |||P †|||F =
√
2|||P |||F .

(c) The gap between k top (signed) eigenvalues of P † and the rest of its spectrum is 2σk.

Proof Part (a) can be verified directly (e.g. W TW = I2k follows from UTU = V TV = Ik)
and part (c) follows by noting that σj ≥ 0 for all j. Part (b) also follows directly from
part (a), using unitary-invariance of the two norms.

In addition, let us define a singular value (SV) truncation operator Tk : R
n1×n2 →

R
n1×n2 that takes a matrix A with SVD A =

∑
i σiuiv

T
i to the matrix

A(k) := Tk(A) :=

k∑

i=1

σiuiv
T
i . (14)

In other words, Tk keeps the largest k singular values (and the corresponding singular
vectors) and zeros out the rest. Recall that we order singular values in nonincreasing fashion
σ1 ≥ σ2 ≥ · · · . We also refer to (14) as the k-truncated SVD of A. Using the dilation and
the Davis–Kahan (DK) theorem for symmetric matrices (Bhatia, 2013, Theorem VII.3.1),
we have:

Lemma 3 Let A
(k)
re = Ẑ1Σ̂Ẑ

T
2 be the k-truncated SVD of Are and assume that the concen-

tration bound (8) holds. Let Z̄1Uψ be given by the reduced SVD of P in (7). Then, the
deviation bound (9) holds for some k × k orthogonal matrix Q, and C2 = 2C.

Later, in Section 5, we introduce an alternative spectral truncation scheme. It is worth
comparing the above lemma to Lemma 6 which establishes a similar result for the alternative
truncation.

Remark 7 (Symmetric case) When P is symmetric one can still use the dilation oper-
ator. In this case, since P itself is symmetric, it has an eigenvalue decomposition (EVD),
say P = UΛUT , where Λ = diag(λ1, . . . , λk) is the diagonal matrix of the eigenvalues of P .
Since these eigenvalues could be negative, there is a slight modification needed to go from
the EVD to the SVD of P . Let si be the sign of λi and set S = diag(si, i = 1, . . . , k). Then,
it is not hard to see that with V = US and Σ = ΛS = diag(|λi|, i = 1, . . . , k), we obtain
the SVD P = UΣV T . In other words, all the discussion in this section, and in particular
Lemma 3 hold with V = US and σi = |λi|. The special case of Lemmas 2 and 3 for the
symmetric case appears in Lei et al. (2015). These observations combined with the fact that
the concentration inequality discussed in Section 4 holds in the symmetric case leads to the
following conclusion: All the results discussed in this paper apply to the symmetric SBM,
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for the version of the adjacency-based spectral clustering that sorts the eigenvalues based
on their absolute values. This is the most common version of spectral algorithms in use.
On the other hand, one gets a different behavior for the algorithm that considers the top k
(signed) eigenvalues. We have borrowed the term “symmetric dilation” from Tropp (2015)
where these ideas have been successfully used in translating matrix concentration inequalities
to the symmetric case.

3.3. k-means algorithms (Step 3)

Let us now give the details of the third and final step of the analysis. We introduce some
notations and concepts that help in the discussion of k-means (type) algorithms.

k-means matrices. Recall that H
n×k denotes the set of hard (cluster) labels: {0, 1}-

valued n × k matrices where each row has exactly a single 1. Take Z ∈ H
n×k. A related

notion is that of a cluster matrix Y = ZZT ∈ {0, 1}n where each entry denotes whether the
corresponding pair are in the same cluster. Relative to Z, Y loses the information about
the ordering of the cluster labels. We define the class of k-means matrices as follows:

M
k
n,m := {X ∈ R

n×m : X has at most k distinct rows}
= {ZR : Z ∈ H

n×k, R ∈ R
k×m}.

(15)

The rows of R, which we denote as rTi , play the role of cluster centers. Let us also denote
the rows of X as xTi . The second equality in (15) is due to the following correspondence:
Any matrix X ∈ M

k
n,m uniquely identifies a cluster matrix Y ∈ {0, 1}n×n via, Yij = 1 iff

xi = xj . This in turn “uniquely” identifies a label matrix Z up to k! permutation of the
labels. From Z, we “uniquely” recover R, with the convention of setting rows of R for which
there is no label equal to zero. (This could happen if X has fewer than k distinct rows.)

With these conventions, there is a one-to-one correspondence between X ∈ M
k
n,m and

(Z,R) ∈ H
n×k × R

k×m, up to label permutations. That is, (Z,R) and (ZQ,QR) are
considered equivalent for any permutation matrix Q. The correspondence allows us to talk
about a (relative) misclassification rate between two k-means matrices: If X1, X2 ∈ M

k
n,m

with membership matrices Z1, Z2 ∈ H
n×k, respectively, we set

Mis(X1, X2) := Mis(Z1, Z2). (16)

k-means as projection. Now consider a general X̂ ∈ R
n×m. The classical k-means

problem can be thought of as projecting X̂ onto M
k
n,m, in the sense of finding a nearest

member of Mk
n,m to X̂ in Frobenius norm. Let us write dF (·, ·) for the distance induced by

the Frobenius norm, i.e., dF (X̂,X) = |||X̂ −X|||F . The k-means problem is that of solving
the following optimization:

dF (X̂,Mk
n,m) := min

X ∈Mk
n,m

dF (X̂,X). (17)

The arguments to follow go through for any distance on matrices that has a ℓ2 decomposition
over the rows:

dF (X̂,X)2 =

n∑

i=1

d(x̂i, xi)
2, (18)

12
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where xTi and x̂Ti are the rows of X and X̂ respectively, and d(x̂i, xi) is some distance
over vectors in R

d. For the case of the Frobenius norm: d(x̂i, xi) = ‖x̂ − xi‖2, the usual
ℓ2 distance. This is the primary case we are interested in, though the result should be
understood for the general case of (18). Since solving the k-means problem (17) is NP-
hard, one can look for approximate solutions:

Definition 1 A κ-approximate k-means solution for X̂ is a matrix X̃ ∈M
k
n,m that achieves

κ times the optimal distance:

dF (X̂, X̃) ≤ κ dF (X̂,Mk
n,m). (19)

We write Pκ : Rn×m 7→ M
k
n,m for the (set-valued) function that maps matrices X̂ to κ-

approximate solutions X̃.

An equivalent restatement of (19) is

dF (X̂, X̃) ≤ κ dF (X̂,X), ∀X ∈M
k
n,m. (20)

Note that Pκ(X̂) = {X̃ ∈ M
k
n,m : X̃ satisfies (20)}. Our goal is to show that whenever X̂

is close to some X∗ ∈M
k
n,m, then any κ-approximate k-means solution based on it, namely

X̃ ∈ Pκ(X̂) will be close to X∗ as well. This is done in two steps:

1. If the distance dF (X, X̃) between two k-means matrices X, X̃ ∈ M
k
n,m is small, then

their relative misclassification rate Mis(X, X̃) is so.

2. If a general matrix X̂ ∈ R
n×d is close to a k-means matrix X ∈ M

k
n,m, then so is its

κ-approximate k-means projection. More specifically,

dF (X̃,X) ≤ (1 + κ) dF (X̂,X), ∀X̃ ∈ Pκ(X̂), (21)

which follows from the triangle inequality dF (X̃,X) ≤ dF (X̃, X̂)+dF (X̂,X) and (20).

Combining the two steps (taking X = X∗), we will have the result.

Let us now give the details of the first step above. For this result, we need the key notion
of center separation. k-means matrices have more information that just a membership
assignment. They also contain an encoding of the relative positions of the clusters, and hence
the minimal pairwise distance between them, which is key in establishing a misclassification
rate.

Definition 2 (Center separation) For any X ∈ M
k
n,m, let us denote its centers, i.e.

distinct rows, as {qr(X), r ∈ [k]}, and let

δr(X) = min
ℓ: ℓ6=r

d(qℓ(X), qr(X)), δ∧(X) = min
r

δr(X). (22)

In addition, let nr(X) be the number of nodes in cluster r according to X, and n∧(X) =
minr nr(X), the minimum cluster size.
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If X has m < k, the convention would be to let qk(X) = 0 for k = m+1, . . . , k. We usually
do not work with these degenerate cases. Implicit in the above definition is an enumeration
of the clusters of X. We note that definition of δr = δr(X) in (22) implies

d(qℓ(X), qr(X)) ≥ max{δℓ, δr}, ∀(r, ℓ) : r 6= ℓ. (23)

We are now ready to show that that any algorithm that computes a κ-approximate solu-
tion to the k-means problem (17) (where κ is some constant) satisfies the LQC property (10)
needed in the last step of the analysis sketched in Section 3.1. Recall that Misr(X; X̃) is
the misclassification rate over the rth cluster of X (Section 1.1).

Proposition 1 Let X, X̃ ∈ M
k
n,m be two k-means matrices, and write nr = nr(X), n∧ =

n∧(X) and δr = δr(X). Assume that dF (X, X̃) ≤ ε and

(a) X has exactly k nonempty clusters, and

(b) c−2
r ε2/(δ2rnr) < 1 for r ∈ [k], and constants cr > 0 such that cr + cℓ ≤ 1, r 6= ℓ.

Then, X̃ has exactly k clusters and

Misr(X; X̃) ≤ c−2
r ε2

nr δ2r
, ∀r ∈ [k]. (24)

In particular, under the conditions of Proposition 1 with cr = 1/2, we have

Mis∞(X, X̃) ≤ 4 ε2

minr nrδ2r
≤ 4 ε2

n∧δ2∧
, Mis(X, X̃) ≤ 4 ε2

n δ2∧
.

where the second one follows from the identity Mis(X, X̃) =
∑k

r=1(nr/n)Misr(X, X̃). Com-
bining Proposition 1 with (21), we obtain the following corollary:

Corollary 1 Let X∗ ∈ M
k
n,m be a k-means matrix, and write nr = nr(X

∗), n∧ = n∧(X∗)

and δr = δr(X
∗). Assume that X̂ ∈ R

n×m is such that dF (X
∗, X̂) ≤ ε and

(a) X∗ has exactly k nonempty clusters, and

(b) c−2
r (1+κ)2ε2/(δ2rnr) < 1 for r ∈ [k], and constants cr > 0 such that cr+cℓ ≤ 1, r 6= ℓ.

Then, any X̃ ∈ Pκ(X̂) has exactly k clusters and

Misr(X
∗;Pκ(X̂)) ≤ c−2

r (1 + κ)2ε2

nr δ2r
, ∀r ∈ [k]. (25)

As before, Misr(X
∗,Pκ(X̂)) should be interpreted as max

X̃∈Pκ(X̂)
Misr(X

∗, X̃), that is,

the result hold for any κ-approximate k-means solution for X̂. In particular, under the
conditions of Corollary 1 with cr = 1/2, we have

Mis(X∗,Pκ(X̂)) ≤ 4(1 + κ)2
ε2

n δ2∧
. (26)

A similar bound holds for Mis∞. Note that (26) is of the desired form needed in (10).
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Remark 8 Corollary 1 shows that any constant-factor approximation to the k-means prob-
lem (17) satisfies the LCQ property (10). Such approximations can be computed in polyno-
mial time; see for example Kumar et al. (2004). One can also use Lloyd’s algorithm with
kmeans++ initialization to get a κ . log k approximation (Arthur and Vassilvitskii, 2007).
Both Kumar et al. (2004) and Arthur and Vassilvitskii (2007) give constant probability ap-
proximations, hence if such algorithms are used in our subsequent results, “w.h.p.” should
be interpreted as with high constant probability (rather than 1 − o(1)). Recently Lu and
Zhou (2016) has shown that Lloyd’s algorithm with random initialization can achieve near
optimal misclassification rate in certain random models. Their analysis is complementary
to ours in that we establish and use the LQC property (10) which uniformly holds for any
input matrix X̂ and we do not consider specific algorithms. The core ideas of our analy-
sis in this section are borrowed from Lei et al. (2015) and Jin (2015). It is worth noting
that there are other algorithms that turn a general matrix into a k-means matrix, without
trying to approximate the k-means problem (17), and still satisfy the LQC. We will give
one such example, Algorithm 6, in Appendix B. Interestingly, in contrast to the k-means
approximation algorithms, the LQC guarantee for Algorithm 6 is not probabilistic.

4. Regularization and concentration

Here, we provide the details of Step 1, namely, the concentration of the regularized adjacency
matrix. We start by a slight generalization of the results of Le et al. (2017) to the rectangular
case:

Theorem 2 Assume n1 ≤ n2 and let A ∈ {0, 1}n1×n2 have independent Bernoulli entries
with mean E[Aij ] = pij. Take d ≥ maxij n2 pij. Pick any subsets I1 ⊂ [n1] and I2 ⊂ [n2]
such that

|I1| ≤ 10n2/d, and |I2| ≤ 10n2/d (27)

and fix some d′ > 0. Define a regularized adjacency matrix Are as follows:

(a) Set [Are]ij = Aij for all (i, j) ∈ Ic1 × Ic2.

(b) Set [Are]ij arbitrarily when i ∈ I1 or j ∈ I2, but subject to the constraints ‖[Are]i∗‖1 ≤
d′ and ‖[Are]∗j‖1 ≤ d′ for all i ∈ I1 and j ∈ I2.

Then, for any r ≥ 1, with probability at least 1−n−r
2 , the new adjacency matrix Are satisfies

|||Are − E[A]|||op ≤ C2 r
3/2(
√
d+
√
d′). (28)

The same result holds if in step (b) one uses ℓ2 norm instead of ℓ1.

Theorem 2 follows directly from the non-symmetric (i.e., directed) version of (Le et al.,
2017, Theorem 2.1), by padding A with rows of zeros to get a square n2 × n2 matrix.
The result then follows by the same argument as in (Le et al., 2017, Theorem 2.1). The
term “arbitrary” in the statement of the theorem includes any reduction even if the scheme
is stochastic and depends on A itself. This feature will be key in developing data-driven
schemes.
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To apply Theorem 2, take I1 = {i ∈ [n1] :
∑

j Aij > 2d} and I2 = {j ∈ [n2] :
∑

iAij >
2d}, i.e., the set of rows and columns with degrees larger than 2d. It is not hard to see that
if d is any upper bound on the expected row and column degrees, then the sizes of these
sets satisfy (27) with high probability. This follows, for example, from the same argument
as that leading to (64) in Appendix A.2. Recalling the scaling of the connectivity matrix
in (4), taking d = n2‖P‖∞ gives an upper bound on the expected row and column degrees,
assuming n2 ≥ n1. Thus, we can apply Theorem 2 with d′ = d =

√
n2/n1‖Ψ‖∞ = n2‖P‖∞,

to obtain the desired concentration bound (8). Note that this concentration result does not
require d = n2‖P‖∞ to satisfy any lower bound (such as d = Ω(log n2)). See Remarks 9
and 10 for the significance of this fact.

A disadvantage of the regularization scheme described in Theorem 2 is the required
knowledge of a good upper bound on d = n2‖P‖∞. In the next section, under a SBM with
some mild regularity assumptions, we develop a fully data-driven scheme with the same
guarantees as those of Theorem 2.

4.1. Data-driven regularization

We now describe a regularization scheme that is data-driven and does not require the
knowledge of d as in Theorem 2. Let us write Di =

∑n2

j=1Aij for the degree of node i on

side 1 and D = 1
n1

∑n1

i=1Di for the average degree on side 1. Consider the following order
statistics for the degree sequence:

D(1) ≥ D(2) ≥ · · · ≥ D(n1). (29)

The idea is that under a block model, we can achieve concentration (8) by reducing the
row degrees that are roughly above D(α) for α = ⌊n1/D⌋ (and similarly for the columns).
The overall scheme is described in Algorithm 1. The algorithm has a tuning parameter τ ;
however, we will show that taking τ = 3 is enough. This constant is for convenience and has
no special meaning. Note that the regularization described in Step 6 is a special case of that
in Step 5; it is equivalent to first reducing the row degrees by setting [Are]i∗ ← Ai∗d̂1/Di for
i ∈ Î1 followed by reducing the column degrees [Are]∗j ← [Are]∗j d̂2/Dj for j ∈ Î2, or vice
versa. Alternatively, we can replace the ℓ1 norm constraints in Step 5 with ℓ2 norm version

and replace Step 6 with [Are]ij = Aij
√

wiw′
j for all i ∈ [n1], j ∈ [n2].

Let pij = E[Aij ] and define di := E[Di] =
∑

j pij and

d =
1

n1

n∑

i=1

di, dmax := max
i

di, d := n2 ·max
i,j

pij . (30)

Note that d ≤ dmax ≤ d and we have d = E[D], that is, the expected average degree of the
network (on side 1). We need the following mild regularity assumption:

(A2) Consider the SBM model given by (4) and (5) with n1 ≤ n2. Assume further that for
some β ≥ 1, and for all t ∈ [k1] and s ∈ [k2],

n1t ≥
n1

βk1
, n2s ≥

n2

βk2
, and

(n2

n1

)2
max{8βk1, 8βk2, 90} ≤ d ≤ 1

2
n1. (31)
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Algorithm 1 Data-driven adjacency regularization

Input: Adjacency matrix A ∈ R
n1×n2 and regularization parameter τ . (Default: τ = 3)

Output: Regularized adjacency matrix Are ∈ R
n1×n2 .

1: Form the degree sequence Di =
∑n2

j=1Aij for i = 1, . . . , n and the corresponding order

statistics: D(1) ≥ D(2) ≥ · · · ≥ D(n1).

2: Let D = 1
n1

∑n1

i=1Di and α = ⌊n1/D⌋.
3: Set d̂1 = τD(α) and Î1 = {i : Di ≥ d̂1}.
4: Repeat Steps 1–3 on AT to get Î2 and d̂2, and let D′

j be the corresponding degrees (i.e.,

column degrees in the original matrix A).

5: Set [Are]ij = Aij for all (i, j) ∈ Îc1×Îc2, and set [Are]ij arbitrarily when i ∈ Î1 or j ∈ Î2,
but subject to: ‖[Are]i∗‖1 ≤ d̂1 for all i ∈ Î1 and ‖[Are]∗j‖1 ≤ d̂2 for all j ∈ Î2.

6: For example, [Are]ij = Aijwiw
′
j for all (i, j) ∈ [n1] × [n2], where wi = d̂1

Di
∧ 1 and

w′
j =

d̂2
D′

j
∧ 1 satisfies the conditions in Step 5.

The next key lemma shows that D(α) is a good proxy for dmax and d under a SBM:

Lemma 4 Let α = ⌊n1/D⌋ where D is the average degree on side 1 as defined earlier.
Under assumption (A2), the following hold, with probability at least 1−3e−n1/80−e−n1/(βk2),

(a) dmax/2 ≤ D(α) ≤ 3dmax/2.

(b)
∣∣i : Di > 3D(α)

∣∣ ≤ 10n1/d.

Conditions in (31) are quite mild: The first and second require that the clusters associated
with the maximum degree are not too small. In the balanced case, where all clusters are of
equal size, we have nrt = nr/kr (for all t ∈ [kr] and r = 1, 2) hence the condition is satisfied
with β = 1. In general, β measures deviations from balancedness. Note that (A1) and the
first two conditions in (31) do not imply each other. The last condition in (31) is satisfied
if d→∞ slower than n1 and faster than max{k1, k2} (assuming β = O(1) and n1 ≍ n2).

A result similar to Lemma 4 holds for the column degrees with appropriate modifications:
Let D′

j =
∑

iAij be the column degrees with expectation d′j =
∑

i pij , and define the

corresponding average d′ = 1
n2

∑
j d

′
j and d′max = maxj d

′
j . We, however, keep d as defined

in (30).

Lemma 5 Let α′ = ⌊n2/D
′⌋ where D′ is the average degree on side 2 as defined earlier.

Under assumption (A2), the following hold, with probability at least 1−3e−n2/80−e−n1/(βk1),

(a) d′max/2 ≤ D′
(α′) ≤ 3d′max/2.

(b)
∣∣j : D′

j > 3D′
(α′)

∣∣ ≤ 10n2/d.

Equipped with Lemmas 4 and 5, we have the following for Algorithm 1:
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Theorem 3 Assume that A ∈ R
n1×n2 is generated from the SBM model satisfying (A2).

Then, for any r ≥ 1, with probability at least 1 − n−r
2 − 6e−n1/80 − 2e−n1/βmax{k1,k2}, the

regularized output Are of Algorithm 1 (with τ = 3) satisfies

|||Are − E[A]|||op ≤ C3r
3/2
√
d, (32)

where d is as in (30) and C3 > 0 is a universal constant.

Proof [Proof of Theorem 3] Recall the definitions of Îr and d̂r (r = 1, 2) in Algorithm 1.
On the union of the events described in Lemmas 4 and 5, both |Î1| and |Î2| are bounded
by 10n2/d (since n1 ≤ n2), d̂1 = 3D(α) ≤ 9dmax/2 and d̂2 = 3D′

(α′) ≤ 9d′max/2. Since

dmax ≤ n2‖P‖∞ = d and d′max ≤ n1‖P‖∞ ≤ d, we can apply Theorem 2 with d′ = 9d/2
completing the proof.

Theorem 3 thus provides the same concentration guarantee as in Theorem 2 without the
knowledge of d. See Appendix A.2 for the proof of the two lemmas of this section.

Remark 9 (Comparison with existing work) Results of the form (8) hold for A itself
without any regularization if one further assumes that d & log n2. These result are often
derived for the symmetric case; see for example Tomozei and Massoulié (2010), Lei et al.
(2015) and Chen and Xu (2016); or Bandeira et al. (2016) for the more general result with
d = maxi

∑
j pij. In order to break the log n2 barrier on the degrees, one has to resort to

some form of regularization. When d is given, the general regularization for the adjacency
matrix is to either to remove the high degree nodes as in Chin et al. (2015) or reduce their
effect as in Le et al. (2017) and Theorem 2 above. In contrast, there is little work on data-
driven regularization for the adjacency matrix. One such algorithm was investigated in Gao
et al. (2017) for the special case of the SPBB model—discussed in Example 1 (Section 5)—
under the assumption a = O(b). The algorithm truncates the degrees to a multiple of the
average degree, i.e., d̂1 = CD for some large C > 0. A possible choice of C = 5 is given in
Yun and Proutiere (2014a) assuming that the expected degrees of the nodes are similar.

In contrast to existing results, our data-driven regularization holds for a general SBM
and only requires the mild assumptions in (A2) while preserving the same upper bound (32)
that holds with the knowledge of d. In particular, we do not require minkℓΨkℓ ≍ maxkℓΨkℓ

(which is what a = O(b) means in the SPBB model). Algorithm 1 enables effective and
provable regularization without knowing any parameters.

5. Consistency results

We now state our various consistency results. The proofs are deferred to Appendix A.4. We
start with a refinement of Theorem 1 for the specific algorithm SC-1 given in Algorithm 2.

Theorem 4 Consider the spectral algorithm SC-1 given in Algorithm 2. Assume k1 =
k =: min{k1, k2}, and for a sufficiently small C > 0,

kd σ−2
k ≤ C(1 + κ)−2.

Then, under the SBM model satisfying (A2), w.h.p.,

Mis(Pκ(Ẑ1), Z̄1) . (1 + κ)2β1

( d

σ2
k

)
.
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Algorithm 2 SC-1

1: Apply regularization Algorithm 1 to A to obtain Are.

2: Obtain the k-truncated SVD of Are as A
(k)
re = Ẑ1Σ̂Ẑ

T
2 . See (14).

3: Output an element of Pκ(Ẑ1), i.e., a κ-approximate k-means solution for input Ẑ1.

Algorithm 3 SC-RR

1: Apply regularization Algorithm 1 to A to obtain Are.

2: Obtain the best rank k approximation of Are, that is, A
(k)
re = Tk(Are). See (14).

3: Output an element of Pκ(A(k)
re ), i.e., a κ-approximate k-means solution for input A

(k)
re .

where β1 is given in (A1) and d is defined in (8).

One can take κ to be a fixed small constant say 1.5, since there are κ-approximate k-
means algorithms for any κ > 1. In that case, (1+κ)2 can be absorbed into other constants,
and the bound in Theorem 4 is qualitatively similar to Theorem 1.

5.1. Reduced-rank SC

Theorem 4 implicitly assumes σk > 0, otherwise the bound is vacuous. This assumption is
clearly violated if B is rank deficient (or equivalently, P has rank less than k). A variant
of SC suggested in Yun and Proutiere (2014a) and Gao et al. (2018) can resolve this issue.
The idea is to use the entire rank k approximation of Are, and not just the singular vector
matrix Ẑ1, as the input to the k-means step. This approach, which we call reduced-rank
SC, or SC-RR, is detailed in Algorithm 3. Recall the SV truncation operator Tk given
in (14). It is well-known that Tk maps every matrix to its best rank-k approximation in
Frobenius norm, i.e.,

Tk(Are) = min
{
|||R−Are|||F : rank(R) ≤ k

}

with the approximation error satisfying

|||Tk(Are)−Are|||op = σk+1(Are). (33)

SC-RR uses this best rank-k approximation as a denoised version of Are and runs a k-
means algorithm on its rows. To analyze SC-RR, we need to replace bound (9) in Step 2
with an appropriate modification. The following lemma replaces Lemma 3 and provides the
necessary bound in this case.

Lemma 6 Let A
(k)
re = Tk(Are) be the k-truncated SVD of Are and assume that the concen-

tration bound (8) holds. Then,

|||A(k)
re
− P |||F ≤ C

√
8 kd. (34)

Comparing with (9), we observe that (34) provides an improvement by removing the
dependence on the singular value gap σk. However, we note that in terms of the relative
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error, i.e., |||A(k)
re − P |||F /|||P |||F this may or may not be an improvement. There are cases

where |||P |||F ≈
√
kσk, in which case the relative error predicted by (34) is O(

√
d/σk), similar

to the relative error bound based on (9) (since ‖Z̄1UψQ‖F =
√
k); see Example 1 below.

Following through the three-step analysis of Section 3.1, with (9) replaced with (34),
we obtain a qualitatively different bound on the misclassification error of Algorithm 3. The
key is that center separation of P treated as a k-means matrix is different from that of
Z̄1UψQ. Note that P is indeed a valid k-means matrix according to Definition (15); in fact,
P ∈M

k1
n1, n2

. Similarly, P T ∈M
k2
n2, n1

. Let us define

Ψ2
1,∧ := min

(s,t): s 6=t

k2∑

ℓ=1

π2ℓ(Ψsℓ −Ψtℓ)
2, (35)

Ψ̃2
1,∧ := min

(s,t): s 6=t

[
π1t

k2∑

ℓ=1

π2ℓ(Ψsℓ −Ψtℓ)
2
]
. (36)

Theorem 5 Consider the spectral algorithm SC-RR given in Algorithm 3. Assume that
for a sufficiently small C1 > 0,

kd Ψ̃−2
1,∧ ≤ C1(1 + κ)−2. (37)

Then, under the SBM model satisfying (A2), with d as defined in (8), w.h.p.,

Mis(Pκ(A(k)
re

), P ) ≤ C−1
1 (1 + κ)2

( kd

Ψ2
1,∧

)
.

As is clear from the proof, one can take C1 = 1/(32C2) where C is the constant in
concentration bound (8). Condition (37) can be replaced with the stronger assumption

kd (π1,∧Ψ
2
1,∧)

−1 ≤ C1(1 + κ)−2 (38)

a where π1,∧ := mint∈ [k1] π1t, since Ψ̃2
1,∧ ≥ π1,∧Ψ2

1,∧.
Although the bounds of Theorems 4 and 5 are different, surprisingly, in the case of the

planted partition model, they give the same result as the next example shows.

Example 1 (Planted partition model, symmetric case) Let us consider the simplest
symmetric SBM, the symmetric balanced planted partition (SBPP) model, and consider the
consequences of Theorems 4 and 5 in this case. Recall that in the symmetric case we drop
index r from kr, nr, nrj, N̄r, βr, Ψr,∧ and so on. SBPP is characterized by the following
assumptions:

Ψ = bEk + (a− b)Ik, a ≥ b, πj = nj/n =
1

k
, ∀j ∈ [k].

Here, Ek ∈ R
k×k is the all ones matrix and balanced refers to all the communities being of

equal size, leading to cluster proportions πj = 1/k. In particular, β = 1, as defined in (A1).
We have B̄ = N̄1/2ΨN̄1/2 = Ψ/k, recalling N̄ = diag(πj). Hence, the smallest singular
value of B̄ is σk = (a− b)/k. Theorem 4 gives the following result:
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Figure 1: An example of the performance boost of SC-RR (or SC-RRE) relative to SC-1. The
data is generated from the bipartite version of Example 2 with n2 = 2n1 = 1000, k1 = k2 = 4,
πrℓ = nr/kr for all ℓ ∈ [kr], r = 1, 2, and Ψ = 2bE4 + diag(16, 16, 16, 2) similar to (39). The key is
the significant difference in the two smallest diagonal elements of Ψ. The plot shows the normalized
mutual information (a measure of cluster quality) between the output of the two spectral clustering
algorithms and the true clusters, as b varies. Only row clusters are considered. The plot shows a
significant improvement for SC-RR(E) relative to SC-1 over a range of b. As b increases, the relative
difference between Ψ33 and Ψ44 reduces and the model approaches that of Example 1, leading to
similar performances for both algorithms as expected. It is interesting to note that the monotone
nature of the performance of SC-RR(E) as a function of b and the non-monotone nature of that of
SC-1 is reflected in the upper bounds (40) and (41).

Corollary 2 Under the SBPP model, as long as k3a/(a − b)2 is sufficiently small, SC-1
has average misclassification error of O(k2a/(a− b)2) with high probability.

Now consider SC-RR. Using definitions (35), we have kΨ̃2
∧ = Ψ2

∧ = 2(a− b)2/k. Then,
Theorem 5 gives the exact same result for SC-RR:

Corollary 3 Corollary 2 holds with SC-1 replaced with SC-RR.

Results of Corollary 2 and 3 are consistency results as long as k2a/(a−b)2 = o(1). A typical
example is when k = O(1), a = a0fn, b = b0fn, a0 ≍ 1 and b0 ≍ 1 for some fn → ∞ as
n→∞. Then, SC-1 and SC-RR are both consistent at a rate O(f−1

n ).

Let us now give an example where SC-1 and SC-RR behave differently.

Example 2 Consider the symmetric balanced SBM, with

Ψ = bEk + diag(α1, . . . , αk), πj = nj/n =
1

k
, ∀j ∈ [k]. (39)

As in Example 1, we have dropped the index r determining the side of network in the
bipartite case. Let us assume that α1 ≥ α2 ≥ · · · ≥ αk ≥ 0. We have

kΨ̃2
∧ = Ψ2

∧ = k−1min
s 6=t

∑

ℓ

(Ψsℓ −Ψtℓ)
2 = k−1(α2

k−1 + α2
k).
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Thus, Theorem 5 gives the following: With ρ defined as follows:

ρ := k2
α1 + b

α2
k−1 + α2

k

, (40)

as long as kρ is sufficiently small, SC-RR has average misclassification error O(ρ) with
high probability.

To determine the performance of SC-1, we need to estimate σk, the smallest singular
value of B̄ = N̄1/2ΨN̄1/2 = Ψ/k. Since Ψ is obtained by a rank-one perturbation of a
diagonal matrix, it is well-known that when {αt} are distinct, the eigenvalues of Ψ are
obtained by solving

∑k
t=1 1/(αt − λ) = −1/b; the case where some of the {αt} are repeated

can be reasoned by the taking the limit of the general case. By plotting λ 7→∑k
t=1 1/(αt−λ)

and looking at the intersection with λ 7→ −1/b, one can see that the smallest eigenvalue
of Ψ, equivalently its smallest singular value, is in [αk, αk−1], and can be made arbitrarily
close to αk by letting b → 0. Letting αk + εk(α; b) denote this smallest singular value, we
have 0 ≤ εk(α; b)→ 0 as b→ 0.

It follows that σk = σk(B̄) = k−1(αk + εk(α; b)). Theorem 4 gives the following: With ρ
defined as

ρ := k2
α1 + b

(αk + εk(α; b))2
, (41)

as long as kρ is sufficiently small, SC-1 has average misclassification error O(ρ) with high
probability.

Comparing (41) with (40), the ratio of the two bounds is (α2
k−1+α2

k)/(αk+εk(α; b))
2 →

1 + (αk−1/αk)
2 as b → 0. This ratio could be arbitrarily large depending on the relative

sizes of αk and αk−1. Thus, when the bounds give an accurate estimate of the misclassifi-
cation rates of SC-1 and SC-RR, we observe that SC-RR has a clear advantage. This is
empirically verified in Figure 1, for moderately dense cases. (In the very sparse case, the
difference is not very much empirically.) In general, we expect SC-RR to perform better
when there is a large gap between σk and σk−1, the two smallest nonzero singular values of
B̄.

Example 3 (Rank-deficient connectivity) Consider an extreme case where Ψ is rank
one: Ψ = uvT for some u, v ∈ R

k
+, where again for simplicity we have assumed k1 =

k2 = k > 1. Also assume n1 ≍ n2 = n and πrj = 1/k for j ∈ [k] and r = 1, 2, i.e., the
clusters are balanced. In this case, B̄ = Ψ/k and σk = 0, hence Theorem 4 does not provide
any guarantees for SC-1. However, Theorem 3 is still valid. We have kΨ̃2

1,∧ = Ψ2
1,∧ =

k−1‖v‖22mins 6=t(us − ut)
2 and d . ‖Ψ‖∞ ≤ ‖u‖∞‖v‖∞. It follows from Theorem 3 that

SC-RR has average misclassification rate bounded as

O
( k2‖u‖∞‖v‖∞
‖v‖22mins 6=t(us − ut)2

)

whenever k times the above is sufficiently small. This is a consistency result assuming that
the coordinates of u are different, all the elements of u and v are growing at the same rate
and k = O(1).

22



Spectral Clustering for Community Detection: Bipartite Setting

Algorithm 4 SC-RRE

1: Apply degree regularization Algorithm 1 to A to obtain Are.

2: Obtain A
(k)
re = Ẑ1Σ̂Ẑ

T
2 , the k-truncated SVD of Are.

3: Output K (Ẑ1Σ̂) where K is an isometry-invariant κ-approximate k-means algorithm.

5.2. Efficient reduced-rank SC

The SC-RR algorithm discussed above has the disadvantage of running a k-means algo-

rithm on vectors in R
n (the rows of A

(k)
re , or in the ideal case the rows of P ). We now

introduce a variant of this algorithm that has the same performance as SC-RR in terms of
misclassification rate, while computationally is as efficient as SC-1. This approach which
we call efficient reduced-rank spectral clustering, SC-RRE, is detailed in Algorithm 4. The
efficiency comes from running the k-means step on vectors in R

k which is usually a much
smaller space than R

n (k ≪ n in applications).
For the k-means step in SC-RRE, we need a k-means (type) algorithm K that only

uses the pairwise distances between the data points. We call such k-means algorithms
isometry-invariant :

Definition 3 A k-means (type) algorithm K is isometry-invariant if for any two matrices

X(r) ∈ R
n×dr , r = 1, 2, with the same pairwise distances among points—i.e., d(x

(1)
i , x

(1)
j ) =

d(x
(2)
i , x

(2)
j ) for all distinct i, j ∈ [n], where (x

(r)
i )T is the ith row of X(r)—one has

Mis(K (X(1)),K (X(2))) = 0.

Although the rows of K (X(1)) and K (X(2)) lie in spaces of possibly different dimensions,
it still makes sense to talk about their relative misclassification rate, since this quantity
only depends on the membership information of the k-means matrices and not their center
information. We have implicitly assumed that d(·, ·) defines a family of distances over all
Euclidean spaces R

d, d = 1, 2, . . . . This is obviously true for the common choice d(x, y) =
‖x − y‖2. If algorithm K is randomized, we assume that the same source of randomness
is used (e.g., the same random initialization) when applying to either of the two cases X(1)

and X(2).
The following result guarantees that SC-RRE behaves the same as SC-RR when one

uses an isometry-invariant approximate k-means algorithm in the final step.

Theorem 6 Consider the spectral algorithm SC-RRE given in Algorithm 4. Assume that
for a sufficiently small C1 > 0, (37) holds. Then, under the SBM model of Section 2, w.h.p.,

Mis(K (Ẑ1Σ̂), P ) ≤ C−1
1 (1 + κ)2

( kd

Ψ2
1,∧

)
.

Remark 10 (Comparison with existing results) The existing results hold under dif-
ferent assumptions. Table 1 provides a summary of some the recent results. The “p vs. q”
denotes the assortative case where the diagonal entries of B are above p and off-diagonal
entries are below q. The “e.v. dep” denotes whether the consistency result depends on the
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Table 1: Comparison of consistency results (cf. Remark 10).

min. degree p vs. q p = O(q) e.v. dep given Ψ k-means

Rohe et al. (2011) Ω(n/
√
log n). No. Not needed. Yes. No. n× k.

Yun et al. (2014a) Not needed. Yes Not needed. No. No. n× n.

Lei et al. (2015) Ω(log n). No. Not needed. Yes. No. n× k.

Chin et al. (2015) Not needed. Yes. Required. Yes. Yes. n× k.

Gao et al. (2017) Not needed. Yes. Required. Yes. No. n× k.

Gao et al. (2018) Not needed. Yes. Required. No. No. n× n.

SC-1 Not needed. No. Not needed. Yes. No. n× k.

SC-RRE Not needed. No. Not needed. No. No. n× k.

kth eigenvalue or singular value of B (or Ψ). The “k-means” column records the dimension
of the matrix on which a k-means algorithm is applied. To allow for better comparison, let
us consider a typical (special) case of the setting in this paper, where n1 = n2, k1 = k2, Ψ
is symmetric and d ≍ Ψ1,∧. Then all the spectral methods in Table 1 have misclassification
rate guarantees that are polynomial in d−1. General SBMs without assortative assump-
tion (e.g., “p vs. q”) were considered in earlier literature (Rohe et al., 2011; Lei et al.,
2015). However, the theoretical guarantees were provided for sufficiently dense networks.
The generalization to sparse networks is considered in Yun and Proutiere (2014a), Chin
et al. (2015), Gao et al. (2017) and Gao et al. (2018) using some regularization on the
adjacency matrix. However, these results only apply to assortative networks and with extra
assumptions. Overall, the algorithms SC-1 and SC-RRE require less assumptions than any
existing works. We also note that the guarantees of Theorems 5 and 6 in the context of a
general SBM are new and have not appeared before (not even in the dense case).

5.3. Results in terms of mean parameters

One useful aspect of SC-RR(E) is that one can state its corresponding consistency result in
terms of the mean parameters of the block model. Such results are useful when comparing
to the optimal rates achievable in recovering the clusters. The row mean parameters of the
SBM in Section 2 are defined as Λsℓ := Bsℓ n2ℓ for (s, ℓ) ∈ [k1]× [k2] which we collect in a
matrix Λ = (Λsℓ) ∈ R

k1×k2 . To get an intuition for Λ note that

E[AZ2] = PZ2 = Z1BN2 = Z1Λ.

Each row of AZ2 is obtained by summing the corresponding row of A over each of the
column clusters to get a k2 vector. In other words, the rows of AZ2 are the sufficient
statistics for estimating the row clusters, had we known the true column clusters. Note
that E[(AZ2)i∗] = zT1iΛ, where the notation (·)i∗ denotes the ith row of a matrix. In other
words, we have E[(AZ2)i∗] = Λs∗ if node i belongs to row cluster s. Let us define the
minimum separation among these row mean parameters:

Λ2
∧ := min

t 6=s
‖Λs∗ − Λt∗‖2. (42)

We have the following corollary of Theorem 5 which is proved in Appendix A.4.
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Corollary 4 Assume that πr,∧ := mint πrt ≥ (βrkr)
−1 for r = 1, 2, and let k = min{k1, k2}

and α = n2/n1. Consider the spectral algorithm SC-RR given in Algorithm 3. Assume
that for a sufficiently small C1 > 0,

β1β2 k k1k2 α
‖Λ‖∞
Λ2
∧
≤ C1(1 + κ)−2. (43)

Then, under the SBM model of Section 2, w.h.p.,

Mis(Pκ(A(k)
re

), P ) ≤ C−1
1 (1 + κ)2β2 k k2 α

‖Λ‖∞
Λ2
∧

.

We note that the exact same result as Corollary 4 holds for SC-RRE assuming the k-
means step uses an isometry invariant algorithm as discussed in Section 5. We refer to Zhou
and Amini (2018) for an application of this result in constructing optimal clusterings in the
bipartite setting.

6. Extensions

6.1. Clusters on one side only

The bipartite setting allows for the case where only one side has clusters. Assume that
A ∼ Ber(P ) in the sense of (5) and, for example, only side 2 has k2 clusters. Then we can
model the problem as P having k2 distinct columns. However, within columns we do not
require any block constant structure, i.e., the k2 distinct columns of P are general vectors
in [0, 1]n1 . This problem can be considered a special case of the SBM model discussed in
Section 2 where k1 = n1: We recall that P = Z̄1B̄Z̄T2 where Z̄1 is an orthogonal matrix
of dimension n1 × k1, hence Z̄1 = In1

. All the consistency results of the paper thus hold,
where we set k1 = n1.

6.2. More clusters than rank

One of the unique features of the bipartite setting relative to the symmetric one is the pos-
sibility of having more clusters on one side of the network than the rank of the connectivity
matrix. In the notation established so far, this is equivalent to k1 > k = min{k1, k2}. Let
us first examine the performance of SC-1. Recall the SVD of B̄ = UψΣV

T
ψ , as given in

Lemma 1. In contrast to the case k1 = k, where the singular vector matrix Uψ has no effect
on the results (cf. Theorem 4), in the case k1 > k, these singular vectors play a role. Recall
that Uψ is a k1×k orthogonal matrix, i.e., Uψ ∈ O

k1×k. For a matrix k1×k1 matrix M , and
index set I ⊂ [k1], let MI be the principal sub-matrix of M on indices I × I. We assume
the following incoherence condition:

max
I ⊂ [k1]: |I|=2

|||(UψUT
ψ − Ik1)I |||op ≤ 1− ρ1, (44)

for some ρ1 ∈ (0, 1]. Letting uTs be the sth row of Uψ, for s ∈ [k1], we note that (UψU
T
ψ )st =

〈us, ut〉, that is, UψUT
ψ is the Gram matrix of the vectors us, s ∈ [k1]. We have the following

extension of Theorem 4:
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Algorithm 5 SC-RRE for sub-Gaussian noise

1: Obtain A(k) = Ẑ1Σ̂Ẑ
T
2 , the k-truncated SVD of A.

2: Output K (Ẑ1Σ̂) where K is an isometry-invariant κ-approximate k-means algorithm.

Theorem 7 Consider the spectral algorithm SC-1 given in Algorithm 2. Assume that for
a sufficiently small C > 0,

kd σ−2
k ≤ C(1 + κ)−2ρ1.

Then, under the SBM model of Section 2, w.h.p.,

Mis(Pκ(Ẑ1), Z̄1) . (1 + κ)2β1

( k

ρ1k1

)( d

σ2
k

)
. (45)

The theorem is proven in Appendix A.5. The factor k/(k1ρ1) = k2/(k1ρ1) in (45) is
the price one pays for the asymmetry of the number of communities, when applying SC-1.
(Recall that k := min{k1, k2} = k2 by assumption.) Note that increasing k1 decreases k/k1,
and at the same time, often increases ρ1 since it is harder to have many nearly orthogonal
unit vectors in low dimensions.

Remark 11 It is interesting to note that in contrast to SC-1, the consistency results
for SC-RR(E) do not need any modification for the case where the number of clusters
is larger than the rank. In other words, the same Theorems 5 and 6 hold regardless of
whether k1 = k or k1 > k, though the difficulty of the latter case will be reflected implicitly
via a reduction in Ψ2

1,∧ and Ψ̃2
1,∧.

6.3. General sub-Gaussian case

The analysis presented so far for network clustering problems can be extended to general
sub-Gaussian similarity matrices. Consider a random matrix A with block constant mean

P := E[A] = Z1BZT2 , (46)

as defined in (4), and where Zr, r = 1, 2 are again membership matrices. However, here
A is not necessarily an adjacency matrix. We assume that Aij are sub-Gaussian random
variables independent across (i, j) ∈ [n1] × [n2] and let σ := maxi,j ‖Aij − EAij‖ψ2

. We
recall that a univariate random variable X is called sub-Gaussian if its sub-Gaussian norm
is finite (Vershynin, 2018):

‖X‖ψ2
:= inf{t > 0 : E exp(X2/t2) ≤ 2} <∞ (47)

Note that we do not assume Aij and Ai′j′ to have the same distribution or the same sub-
Gaussian norm even if Z1i = Z1i′ and Z2j = Z2j′ .

Adapting Algorithm 4 to the general sub-Gaussian case, we have Algorithm 5 with the
following performance guarantee:
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Theorem 8 Let B1,∧ and B̃1,∧ be defined as in (35) with Ψ replaced with B and let

n̄ := (n−1
1 + n−1

2 )−1.

Consider the spectral algorithm for sub-Gaussian noise given in Algorithm 5. Assume that
for a sufficiently small C1 > 0,

σ2

n̄
k B̃−2

1,∧ ≤ C1(1 + κ)−2. (48)

Then, under the model defined in this section,

Mis(K (Ẑ1Σ̂), P ) ≤ C−1
1 (1 + κ)2

(σ2

n̄

k

B2
1,∧

)
.

with probability at least 1− 2e−(n1+n2).

See Appendix A.6 for the proof. Consider the typical case where the number of clusters
k and the separation between them, B2

1,∧, remains fixed as n̄ → ∞. Then, σ2/n̄ plays the

role of the signal-to-noise ratio (SNR) for the clustering problem and as long as σ2/n̄ = o(1),
Algorithm 5 is consistent in recovering the clusters. Of course, there are other conditions
under which we have consistency, e.g., cluster separation quantity B2

1,∧ could go to zero, and

k could grow as well (as n̄ → ∞) and as long as σ2/n̄ = o(B2
1,∧/k) the algorithm remains

consistent.

6.4. Inhomogeneous random graphs

Up to now, we have stated consistency results for the SBM of Section 2. SBM is often crit-
icized for having constant expected degree for nodes in the same community, in contrast to
degree variation observed in real networks. (Although, SBM in the sparse regime d = O(1)
can still exhibit degree variation within a community, since the node degrees will be roughly
Poi(d) distributed, showing little concentration around their expectations unless d → ∞.)
The popular remedy is to look at the degree-corrected block model (DC-SBM) (Karrer and
Newman, 2011; Zhao et al., 2012; Gao et al., 2018). Instead, we consider the more gen-
eral inhomogeneous random graph model (IRGM) (Söderberg, 2002; Bollobás et al., 2007)
which might be more natural in practice, since it does not impose the somewhat parametric
restrictions of DC-SBM on the mean matrix.

We argue that consistency results for the spectral clustering can be extended to a general
inhomogeneous random graph (IRGM) model A ∼ Ber(P ), assuming that the mean matrix
can be well-approximated by a block structure. Let us consider a scaling as before:

P :=
P 0

√
n1n2

, and take d =

√
n2

n1
‖P 0‖∞. (49)

Note that P ∈ [0, 1]n1×n2 is a not assumed to have any block structure. However, we
assume that there are membership matrices Zr ∈ Hnr,kr , r = 1, 2 such that P over the
blocks defined by Z1 and Z2 is approximately constant. Let

B̃st :=
1

n1sn2t

∑

ij

Pij(Z1)is(Z2)jt, s ∈ [k1], t ∈ [k2] (50)

27



Zhou and Amini

be the mean (or average) of P over these blocks, and let B̃ = (B̃st) ∈ [0, 1]k1×k2 . Compactly,
B̃ = N−1

1 ZT1 PZ2N
−1
2 , in the notation established in Section 2. We can define the SBM

approximation of P as

P̃ := Z1B̃ZT2 = Z̄1Z̄
T
1 PZ̄2Z̄

T
2 = Π1PΠ2, (51)

recalling Z̄r = ZrN
−1/2
r and introducing the notation Πr = Z̄rZ̄

T
r . Note that Πr is a rank

kr projection matrix. According to (51), the map P 7→ Π1PΠ2 takes a (mean) matrix to
its SBM approximation relative to Z1 and Z2. We can thus define a similar approximation
to P 0,

P̃ 0 := Π1P
0Π2, noting that P̃ =

P̃ 0

√
n1n2

.

In order to retain the qualitative nature of the consistency results, the deviation of each

entry P 0
ij from its block mean (P̃ 0)ij should not be much larger than (P̃ 0)

1/2
ij . In fact, we

allow for a potentially larger deviation, assuming that:

1√
n1n2

|||P 0 − P̃ 0|||F ≤ C0

√
d, (52)

for some constant C0 > 0 and a satisfying (49). The key is the following concentration
result:

Proposition 2 Assume that A ∼ Ber(P ) as in (5), with n1 ≤ n2, and let Are be obtained
from A by the regularization procedure in Theorem 2, with d′ = d as given in (49). Let P̃ be
as defined in (51), and assume that it satisfies (52). Then, with probability at least 1−n−c

2 ,

|||Are − P̃ |||op ≤ c2
√
d. (53)

Proposition 2 provides the necessary concentration bound required in Step 1 of the
analysis outlined in Section 3.1. In other words, bound (53) replaces (8) by guaranteeing a
similar order of deviation for Are around P̃ instead of P . Thus, all the results of the paper
follow under an IRGM with a mean matrix satisfying (52), with the modification that the
connectivity matrix and all the related quantities (such as σk,Ψ

2
1,∧ and so on) are now based

on B̃, the connectivity matrix of the corresponding approximate SBM, as given in (50).

6.4.1. Graphon clustering

As a concrete example of the application of Proposition 2, let us consider a problem which
we refer to as graphon clustering. For simplicity, consider the case n1 = n2 = n. Let ρ0 :
[0, 1]2 → R+ be a bounded measurable function, and letX1, . . . , Xn, Y1, . . . , Yn ∼ Unif([0, 1])
be an i.i.d. sample. Assume that

Aij | {Xi′}, {Yj′} ∼ Bern
(
ρ0(Xi, Yj)/n

)
, (54)

independently over i, j = 1, . . . , n. Consider two partitions of the unit interval:
⊎k1
s=1 Is =⊎k2

t=1 Jt = [0, 1] where Is and Jt are (unknown) measurable sets. Let Ψ ∈ [0, 1]k1×k2 and
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consider the block-constant function ρ̃0 on [0, 1]2 defined by

ρ̃0 :=

k1∑

s=1

k2∑

t=1

Ψst1Is×Jt , (55)

where 1Is×Jt(x, y) = 1Is(x)1Jt(y) is the indicator of the set Is×Jt. Whenever ρ0 has a block
constant approximation such as ρ̃0, we can consider Is and Jt as defining implicit (true)
clusters over nodes. More precisely, row node i belongs to community s if 1{Xi ∈ Is} and
similarly for the column labels. Note that none of {Xi}, {Yj}, {Is} and {Jt} are observed.
One can ask whether we can still recover these implicit clusters given an instance of A.

Proposition 3 Assume that there exists a function ρ̃0 of the form (55), such that

‖ρ̃0 − ρ0‖L4 = o(
√
d) (56)

Consider normalized mean matrices P 0 and P̃ 0 with entries, P 0
ij = ρ0(Xi, Yj) and P̃ 0

ij =

ρ̃0(Xi, Yj). Then, with high probability |||P 0 − P̃ 0|||F ≤ n
√
d.

Proposition 3 shows that a fourth moment bound of the form (56) is enough to guaran-
tee (52) and as a consequence the result of Proposition 2. In order to apply the results of
the paper, we require that (56) holds with d = ‖ρ0‖∞. Then, all the consistency results of
the paper follow with Ψ replaced by that from (55), and regularization Algorithm 1 replaced
with that of Theorem 2.

For example, with σk as defined in Section 2 (using Ψ from (55) in forming B̄), Theorem 4
gives a misclassification rate at most O(d/σ2

k) for recovering the labels 1{Xi ∈ Is} by the
SC-1 algorithm. In typical cases, it is plausible to have σ2

k ≍ d2 (cf. Remark 3), hence a
misclassification rate of O(1/d) = o(1) as d→∞. Proposition 3 is an illustrative example,
and one can obtain other conditions by assuming more about the deviation ρ̃0 − ρ0, such
as boundedness.

Remark 12 We note that graphon clustering problem considered above is different from
what is typically called graphon estimation. In the latter problem, under a model of the
form (54), one is interested in recovering the mean matrix E[A] or ρ0 in the MSE sense.
This problem has been studied extensively in recent years, often under the assumption of
smoothness of ρ0, for maximum likelihood SBM approximation (Airoldi et al., 2013; Olhede
and Wolfe, 2014; Gao et al., 2015; Klopp et al., 2017) and spectral truncation (Xu, 2017).
The graphon clustering problem, as far as we know, has not been considered before and is
concerned with recovering the underlying clusters, assuming that such true clusters exist.
We only need the existence of a block constant approximation ρ̃0, over the true clusters
(of the form (55)) that satisfies ‖ρ̃0 − ρ0‖L4 = o(

√
d) for d = ‖ρ̃0‖∞. Then our results

implicitly imply that the underlying clusters are identifiable and consistently recovered by
spectral approaches. Note that we do not impose any explicit smoothness assumption on ρ
and there is no lower bound requirement on d (such as d = Ω(log n) in Xu (2017)).
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Figure 2: (a) NMI plots for SC-RRE algorithm with degree regularization Algorithm 1 for various
values of τ = 1, 1.2, 1.4 and ∞. (b) Relative operator norm error between the adjacency matrix and
its expectation, with data-driven and oracle (dmax) regularization as well as no regularization.

7. Simulations

We now present some simulation results showing the performance of the data-driven reg-
ularization of Section 4.1. We sample from the bipartite SBM model with connectivity
matrix

B =

√
log(n1n2)

n1n2
B0, where B0 =

1

2



6 1 1 1
1 6 1 1
1 1 6 1


 , (57)

for which Ψ =
√

log(n1n2)B0 as in (4). We let n1 = n0k1 and n2 = n0k2, and we vary
n0. Note that k1 = 3 and k2 = 4. We measure the performance using the normalized
mutual information (NMI) between the true and estimated clusters. The NMI belongs to
the interval [0, 1] and is monotonically increasing with clustering accuracy. We consider
Algorithm 1 with regularization parameter τ = 1, 1.2, 1.4 and∞, where τ =∞ corresponds
to no regularization. Although we have established theoretical guarantees for τ = 3, this
constant is not optimal and any scalar ≍ 1 might perform well.

In this model, the key parameter d =
√

n2/n1‖Ψ‖∞ ∼
√
log n0 as n0 → ∞. In other

words, the maximum expected degree of the network scales as
√
log n0 which is enough for

the consistency of spectral clustering; in fact, results in Section 5 predict a misclassification
rate of O(d−1) = O

(
(log n0)

−1/2
)
for various spectral algorithms discussed in this paper.

Figure 2(a) shows the NMI plots as a function of n0 for the SC-RRE algorithm with
the regularization scheme of Algorithm 1. In the k-means step, we have used kmeans++

which as described in Remark 8 satisfies the approximation property of Section 3.3 with
κ = O(log(k1 ∧ k2)) = O(1) in this case. The results are averaged over 15 replicates. The
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plots clearly show that the regularization considerably boosts the performance of spectral
clustering for model (57).

Figure 2(b) shows the relative operator norm error between the (regularized) adjacency
matrix and its expectation, i.e., |||Are − EA|||op/|||EA|||op with and without regularization
(Are = A). The plots correspond to the same SBM model with n0 = 500 (and the results
are averaged over 3 replicates). For the regularization, we consider both the oracle where
the degrees are truncated to τdmax and τd′max for the rows and columns (see Section 4.1
for the definitions of these quantities) as well as the data-driven one that truncates as in
Algorithm 1. The plots show the relative error as a function of τ and we see that the
regularization clearly improves the concentration. We also note that the behavior of the
data-driven truncation closely follows that of the oracle as predicted by Theorem 3.

The code is available at (Zhou and Amini, 2018).
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Appendix A. Proofs

A.1. Proofs of Section 3.2

Proof [Proof of Lemma 3] Let W̄ and Ŵ be the W of Lemma 2(a) for P † and A†
re,

respectively. Let us also write W̄1 and Ŵ1 for the (n1+n2)×k matrices obtained by taking

the submatrices of W̄ and Ŵ on columns 1, . . . , k. We have

W̄1 =
1√
2

(
Z̄1Uψ
Z̄2Vψ

)
, Ŵ1 =

1√
2

(
Ẑ1

Ẑ2

)
.

Note that W̄1, Ŵ1 ∈ O
(n1+n2)×k. Let ΠW̄1

be the (orthogonal) projection operator, project-
ing onto Im(W̄1), i.e., the column span of W̄1, and similarly for Π

Ŵ1

. We have

|||Π
Ŵ1

−ΠW̄1
|||op ≤

2

2σk
|||A†

re − P †|||op (Symmetric DK and Lemma 2(d))

=
1

σK
|||(Are − P )†|||op (Linearity of dilation)

=
1

σK
|||Are − P |||op (Lemma 2(b)).

The next step is to translate the operator norm bound on spectral projections into a Frobe-
nius bound. The key here is the bound on the rank of spectral deviations which leads to a√
k scaling as opposed to

√
n1 + n2, when translating from operator norm to Frobenius:

min
Q∈Ok×k

|||Ŵ1 − W̄1Q|||F ≤ |||ΠŴ1

−ΠW̄1
|||F (By Lemma 8 in Appendix C)

≤
√
2k |||Π

Ŵ1

−ΠW̄1
|||op ( rank(Π

Ŵ1

−ΠW̄1
) ≤ 2k )

≤
√
2k

σk
|||Are − P |||op.
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Since 2|||Ŵ1 − W̄1Q|||2F = |||Ẑ1 − Z̄1UψQ|||2F + |||Ẑ2 − Z̄2VψQ|||2F , we obtain the desired result
after combining with (8).

A.2. Proofs of Section 4

Let us start with a relatively well-known concentration inequality:

Proposition 4 (Prokhorov) Let S =
∑

iXi for independent centered variables {Xi},
each bounded by c <∞ in absolute value a.s. and suppose v ≥∑

i EX
2
i , then

P
(
S > vt

)
≤ exp[−vhc(t)], t ≥ 0, where hc(t) :=

3

4c
t log

(
1 +

2c

3
t
)
. (58)

Same bound holds for P(S < −vt).

We often apply this result with c = 1. We note that for any u ≥ 2
3α any α > 0,

h1(αu) ≥
3

4
αu log

(2
3
αu

)
≥ 3

4
αu log u2 ≥ 3

2
αu log u. (59)

Proof [Proof of Lemma 4] We first note that

P(Di − di > vt) ≤ exp(−vh1(t)), ∀v ≥ di, t ≥ 0, (60)

P(Di − di < −vt) ≤ exp(−vh1(t)), ∀v ≥ di, t ≥ 0. (61)

Lower bound. Let Yi = 1{Di < dmax/2}. Without loss of generality, assume that
cluster 1 achieves the maximum in the definition of dmax (i.e., t∗ = 1), and fix i such that
z1i = 1. We have di = dmax, hence applying (61) with v = di = dmax and t = 1/2,

P(Di < dmax/2) ≤ exp(−dmax/10),

using h1(1/2) = 0.2157 > 1/10. Let q := exp(−dmax/10) so that EYi ≤ q. By assumption
dmax ≥ d is sufficiently large that q ≤ 1/4. We then have

P(D(⌊n1/D⌋) < dmax/2) ≤ P

( n1∑

i=1

1{Di ≥ dmax/2} ≤ n1/D
)
≤ P

( ∑

i:z1i=1

1{Di ≥ dmax/2} ≤ n1/D
)

= P

( ∑

i:z1i=1

Yi > n11 − n1/D
)

≤ P

( ∑

i:z1i=1

Yi > n11 − 2n1/d
)
+ P

(
D <

d

2

)
=: T1 + T2

For the first term we have

T1 ≤ P

( ∑

i:z1i=1

(Yi − EYi) > n11(1− q)− 2n1/d
)
.
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By assumptions n11 ≥ n1/(βk1) and βk1/d ≤ 1/8, we have n11(1 − q) − 2n1/d ≥ n11/2.
Taking c = 1, v = n11q, t = 1/(2q) in Proposition 4, we have vt = n11/2 and t ≥ 2

T1 ≤ P

( ∑

i: z1i=1

(Yi − EYi) > n11/2
)
≤ exp

(
−n11 q h1

( 1

2q

))

≤ exp
(
−c1 n11dmax

)
≤ e−3n1/5

where we have applied (59) with α = 1/2 and u = 1/q = edmax/10 to get

q h1
( 1

2q

)
≥ q

3

2

1

2q
log(1/q) =

3

40
dmax

and n11dmax ≥ n1dmax/(βk1) ≥ 8n1 since βk1/dmax ≤ βk1/d ≤ 1/8 by assumption.

For the second term T2, we note that n1(D − d) =
∑

i,j(Aij − EAij). Applying Propo-

sition 4 with v = n1d and t = 1/2, we have

T2 = P

(
n1(D − d) < −n1d/2

)
≤ exp(−n1d/10) ≤ e−n1/5. (62)

using h1(1/2) ≥ 1/10 and d ≥ 2.

Upper bound. For any ∈ [n1], applying (60) with v = dmax ≥ di, and t = 1/2, we have

P(Di > 3dmax/2) ≤ exp(−dmax/10).

Let Zi = 1{Di > 3dmax/2} and note that EZi ≤ q = exp(−dmax/10), as in the case of the
lower bound. Then,

P

(
D(⌊n1/D⌋) >

3

2
dmax

)
≤ P

( n1∑

i=1

Zi ≥
n1

D
− 1

)

≤ P

( n1∑

i=1

Zi ≥
2n1

3d
− 1

)
+ P

(
D >

3d

2

)
=: T ′

1 + T ′
2.

Using assumption n1/d ≥ 2, we have 2n1/(3d)− 1 ≥ n1/(6d) ≥ n1/(6dmax), hence

T ′
1 ≤ P

( n1∑

i=1

(Zi − EZi) ≥
n1

6dmax
− n1q

)
=: T ′′

1 (63)

We claim that if dmax ≥ 1, then for any γ ≥ 1,

f(γ) := P

( n1∑

i=1

(Zi − EZi) ≥
n1

γdmax

)
≤ e−3n1/(20γ). (64)

To see this, taking c = 1, v = n1q, t = 1/(γqdmax) in Proposition 4, we have

f(γ) ≤ exp
(
−n1q h1

( 1

γqdmax

))
.
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Applying (59) with α = 1/(γdmax) and u = 1/q = edmax/10, noting that u ≥ (2/3)α,

q h1
( 1

γqdmax

)
≥ q

3

2

1

γqdmax
log(1/q) =

3

20γ

showing (64).
Going back to bounding T ′′

1 , for sufficiently large dmax, we have 1/(6dmax) − q ≥
1/(12dmax). Hence, we can apply (64) with γ = 12 to conclude, T ′′

1 ≤ e−n1/80. For T ′
2,

by the same argument as in (62), we have T2 ≤ e−n1/5.

Proof of part (b). From the lower bound, we have that 3D(⌊n1/D⌋) >
3
2dmax on an event

A with probability P(A) ≥ 1− 2e−n1/80. Then,

Wi := 1
{
Di > 3D(⌊n1/D⌋)

}
≤ 1{Di > 3dmax/2} = Zi, on A.

Hence,
∣∣i : Di > 3D(⌊n1/D⌋)

∣∣ = ∑
iWi and

P

({ n1∑

i=1

Wi >
10n1

d

}
∩ A

)
≤ P

( n1∑

i=1

Zi >
10n1

d

)
= P

( n1∑

i=1

(Zi − EZi) >
10n1

d
− n1q

)
.

Since dmax ≥ n2‖P‖∞/(βk2) = d/(βk2), and βk2 ≤ d/8 ≤ dmax/8 we have d2max ≥ 8d.
Recalling that q = e−dmax/10

qd = (qd2max)(d/d
2
max) ≤ 1/8. (65)

for dmax ≥ 90. We have

10n1

d
− n1q ≥

9n1

d
≥ 9n1

dmax

1

βk2

hence we can apply (64) with γ = βk2/9 to obtain

P

( n1∑

i=1

Wi >
10n1

d

)
≤ exp

(
− 27n1

20βk2

)
.

The proof is complete.

Proof [Proof of Lemma 5] The proof of part (a) follows exactly as in the case of row degrees
establishing the result with probability at least 1− 3e−n2/80. For part (b), we have by the
same argument as in the case of row degrees

P

(∣∣j : D′
j > 3D′

(⌊n2/D′⌋)
∣∣ > 10n2

d

)
≤ P

( n2∑

j=1

(Z ′
j − EZ ′

j) >
10n2

d
− n2q

′
)
+ P(A′c)

:= T3 + P(A′c)

where A′ is defined similar to A for column variables and is controlled similarly. We also
have q′ := exp(−d′max/10).
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To simplify notation, let α := n2/n1 ≥ 1. We have d′max ≥ n1‖P‖∞/(βk1) = d/(αβk1),
recalling d = n2‖P‖∞. By assumption, d ≥ 8βk1α

2. Since n1d =
∑

ij pij = n2d
′, that is,

d = αd′, we obtain βk1 ≤ d/(8α2) = d′/(8α) ≤ d′max/(8α). It follows that (d′max)
2 ≥ 8d

which is similar to what we had for the rows; hence, q′d ≤ 1/8 as long as d′max ≥ 90
(see (65)), which is true since d′max ≥ d′ = d/α ≥ d/α2 ≥ 90 by assumption. Then,

10n2

d
− n2q

′ ≥ 9n2

d
≥ 9n2

d′max

1

αβk1
.

Therefore, applying the column counterpart of (64) with γ = αβk1/9,

T3 ≤ exp
(
− 27n2

20αβk1

)
= exp

(
− 27n1

20βk1

)
.

The proof is complete.

A.3. Proofs of Section 3.3

Proof [Proof of Corollary 1] Using (21), we have dF (X
∗, X̃) ≤ (1+κ)ε for any X̃ ∈ Pκ(X̂).

We now apply Proposition 1 to X∗ and X̃, both k-means matrices, with (1 + κ)ε in place
of ε.

Proof [Proof of Proposition 1] The proof follows the argument in (Lei et al., 2015, Lemma 5.3)
which is further attributed to Jin (2015). Let Cr denote the rth cluster of X, having center
qr = qr(X). We have |Cr| = nr. Let xTi and x̃Ti be the ith row of X and X̃, respectively,
and let

Tr := {i ∈ Cr : d(x̃i, qr) < crδr} = {i ∈ Cr : d(x̃i, xi) < crδr}

using xi = qr for all i ∈ Cr which holds by definition. Let Sr = Cr \ Tr. Then,

|Sr|c2rδ2r ≤
∑

i∈Sr

d(x̃i, xi)
2 ≤ ε2 =⇒ |Sr|

|Cr|
≤ c−2

r ε2

nrδ2r
< 1. (66)

where we have used assumption (b). It follows that Sr is a proper subset of Cr, that is, Tr
is nonempty for all r ∈ [k].

Next, we argue that if two elements belong to different Tr, r ∈ [k], they have different
labels according to X̃. That is, i ∈ Tr, j ∈ Tℓ for r 6= ℓ implies x̃i 6= x̃j . Assume otherwise,
that is, x̃i = x̃j . Then, by triangle inequality and cr + cℓ ≤ 1,

d(qk, qℓ) ≤ d(qk, x̃i) + d(qℓ, x̃j) < crδr + cℓδℓ ≤ max{δr, δℓ}

contradicting (23). This shows that X̃ has at least k labels, since all Tr are nonempty,
hence exactly k labels, since X̃ ∈M

k
n,m by assumption.

Finally, we argue that if two elements belong to the same Tr, they have the same label
according to X̃. This immediately follows from the previous step since otherwise there will
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be at least k + 1 labels. Thus, we have shown that, for all r ∈ [k], the labels in each Tr are
in the same cluster according to both X and X̃, that is, they are correctly classified. The
misclassification rate over cluster Cr is then ≤ |Sr|/|Cr| which establishes the result in view
of (66).

A.4. Proofs of Section 5

Proof [Proof of Theorem 4] Going through the three-step plan of analysis in Section 3, we
observe that (8) holds for Are by Theorem 2, and (9) holds by Lemma 3. We only need
to verify conditions of Corollary 1, so that κ-approximate k-means operator Pκ satisfies
bound (10) of the k-means step. As in the proof of Theorem 1, X∗ = Z̄1O ∈ R

n1×k, where
Z̄1 ∈ O

n1×k1 and O := UψQ ∈ O
k1×k. Clearly, X∗ has exactly k distinct rows (recalling

k = k1). Furthermore, using the calculation in the proof of Theorem 1,

n1t δ
2
t = n1t min

s: s 6=t
(n−1

1t + n−1
1s ) = min

s: s 6=t
(1 +

n1t

n1s
) ≥ 1.

Recalling that ε2 = C2
2kd/σ

2
k, as long as

4(1 + κ)2ε2 = 4C2
2 (1 + κ)2 kd/σ2

k < 1 ≤ n1t δ
2
t

condition (b) of Corollary 1 holds and Pκ satisfies (10) with c = 4(1 + κ)2 as in (26). The
rest of the proof follows as in Theorem 1.

Proof [Proof of Lemma 6] Throughout the proof, let ||| · ||| = ||| · |||op be the operator norm.
Recall that P = EA is the mean matrix itself, and let ∆re := Are−P . By Weyl’s theorem on
the perturbation of singular values, |σi(Are)− σi(P )| ≤ |||∆re||| for all i. Since σk+1(P ) = 0
(see (7)), we have σk+1(Are) ≤ |||∆re|||, hence

|||A(k)
re − P ||| ≤ |||A(k)

re −Are|||+ |||∆re||| (triangle inequality)

= σk+1(Are) + |||∆re||| (by (33))

≤ 2|||∆re||| (Weyl’s theorem).

Thus, in terms of the operator norm, we lose at most a constant in going from Are to

A
(k)
re . However, we gain a lot in Frobenious norm deviation. Since Are is full-rank in

general, the best bound on ∆re based on its operator norm is |||∆re|||F ≤
√
n∧ |||∆re||| where

n∧ = min{n1, n2}. On the other hand, since A
(k)
re − P is of rank ≤ 2k, we get

|||A(k)
re − P |||F ≤

√
2k|||A(k)

re − P ||| ≤ 2
√
2k|||∆re|||.

Combining with (8), that is, |||∆re||| ≤ C
√
d, we have the result.

Proof [Proof of Theorem 5] We only need to calculate δ(P ) = δ∧(P ) the minimum center
separation of P viewed as an element of Mk1

n1, n2
. Recall that

P = Z̄1B̄Z̄T2 = Z1N
−1/2
1 (N̄

1/2
1 ΨN̄

1/2
1 )Z̄T2 = n

−1/2
1 Z1ΨN̄

1/2
1 Z̄T2 .
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Let es be the sth standard basis vector of Rk1 . Unique rows of P are qTs := n
−1/2
1 eTs (ΨN̄

1/2
2 )Z̄T2

for s ∈ [k1]. We have

‖qs − qt‖22 = n−1
1 ‖Z̄2N̄

1/2
2 ΨT (es − et)‖22

= n−1
1 ‖N̄

1/2
2 ΨT (es − et)‖22 = n−1

1

k2∑

ℓ=1

π2ℓ(Ψsℓ −Ψtℓ)
2.

It follows that δ2(P ) = mint 6=s ‖qs − qt‖22 = n−1
1 Ψ2

1,∧. We apply Corollary 1, with X∗ = P

and X̂ = A
(k)
re , taking ε2 = 8C2kd according to Lemma 6. Condition (b) of the corollary

holds if

32C2(1 + κ)2kd = 4(1 + κ)2ε2 < n1t δ
2
t (P ) = π1t min

s: s 6=t

k2∑

ℓ=1

π2ℓ(Ψsℓ −Ψtℓ)
2

for all t ∈ [k1], which is satisfied under assumption (37). Corollary 1, and specifically (26)
gives the desired bound on misclassification rate ≤ 4(1 + κ)2ε2/(n1δ

2(P )).

Proof [Proof of Theorem 6] Recall that A
(k)
re = Ẑ1Σ̂Ẑ

T
2 is the k-truncated SVD of Are. Let

X(1) = Ẑ1Σ̂ and X(2) = A
(k)
re , and let (x

(1)
i )T and (x

(2)
i )T be their ith rows, respectively.

Then,

‖x(i)2 − x
(j)
2 ‖ = ‖Ẑ2(x

(i)
1 − x

(j)
1 )‖2 = ‖x(i)1 − x

(j)
1 ‖2, ∀i 6= j,

using Ẑ2 ∈ O
n2×k and (1). Isometry-invariance of K implies Mis(K (Ẑ1Σ̂),K (A

(k)
re )) = 0.

Since Mis is a pseudo-metric on k-means matrices, using the triangle inequality, we get

Mis
(
K (Ẑ1Σ̂), P

)
≤ Mis

(
K (Ẑ1Σ̂),K (A(k)

re )
)
+Mis

(
K (A(k)

re ), P
)

= Mis
(
K (A(k)

re ), P
)
.

(In fact, using the triangle inequality in the other direction, we conclude that the two sides
are equal.) The result now follows from Theorem 5.

Proof [Proof of Corollary 4] We have

‖Λs∗ − Λt∗‖2 =
k2∑

ℓ=1

n2
2ℓ(Bsℓ −Btℓ)

2 =

k2∑

ℓ=1

n2
2ℓ

n1n2
(Ψsℓ −Ψtℓ)

2 = α

k2∑

ℓ=1

π2
2ℓ(Ψsℓ −Ψtℓ)

2

where we have used α := n2/n1. Recall from (42) that Λ2
∧ := mint 6=s ‖Λs∗−Λt∗‖2. It follows

that α−1Λ2
∧ ≤ Ψ2

1,∧, using π2,ℓ ≤ 1. We also have Ψ̃2
1,∧ ≥ π1,∧Ψ2

1,∧ ≥ π1,∧α−1Λ2
∧. Recalling

the definition of a from (8), and using Ψsℓ = (
√
n1n2/n2ℓ)Λsℓ, we have

d =

√
n2

n1
‖Ψ‖∞ ≤

√
n2

n1

√
n1n2

n2,∧
‖Λ‖∞ =

1

π2,∧
‖Λ‖∞ ≤ β2k2 ‖Λ‖∞.
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Hence, kdΨ−2
1,∧ ≤ k β2k2 ‖Λ‖∞(α−1Λ2

∧)
−1 = β2kk2α‖Λ‖∞Λ−2

∧ which is the desired bound.
We also note that

kdΨ̃−2
1,∧ ≤ kdπ−1

1,∧Ψ−2
1,∧ ≤ (β1k1) kdΨ

−2
1,∧

which combined with the previous bound shows that the required condition (43) in the
statement is enough to satisfy (37).

A.5. Proof of Theorem 7

As in the proof of Theorem 4, we only need to verify conditions of Corollary 1, with
X∗ = Z̄1UψQ ∈ R

n1×k, so that κ-approximate k-means operator Pκ satisfies bound (10) of
the k-means step. Recall that Z̄1 ∈ O

n1×k1 , Uψ ∈ O
k1×k and Q ∈ O

k×k. Clearly, X∗ has
exactly k1 distinct rows, uTs Q, s ∈ [k1]. Furthermore,

δ2 := δ2∧(Z̄1UψQ) = δ2∧(Z̄1Uψ) = min
(t,s): t 6=s

‖n−1/2
1t ut − n

−1/2
1s us‖22

where the second equality is by (1). Letting ‖ · ‖ = ‖ · ‖2, and x = π
−1/2
1t and y = π

−1/2
1s for

simplicity, and z = (x,−y) ∈ R
2, we have

n1‖n−1/2
1t ut − n

−1/2
1s us‖2 = ‖π−1/2

1t ut − π
−1/2
1s us‖2

= ‖
(
ut us

)( x
−y

)
‖2

= zT (UψU
T
ψ )I z, (where I = {t, s}),

= ‖z‖2 − zT (Ik1 − UψU
T
ψ )I z

T .

Since Ik1 − UψU
T
ψ is positive semidefinite, using (44), we have

0 ≤ zT (Ik1 − UψU
T
ψ )I z

T ≤ (1− ρ1)‖z‖2,

hence, n1‖n−1/2
1t ut − n

−1/2
1s us‖2 ≥ ρ1‖z‖2 = ρ1(π

−1
1t + π−1

1s ). It follows by (A1),

(n1δ
2)−1 ≤ 1

ρ1
max
t 6=s

(π−1
1t + π−1

1s )
−1 ≤ 1

ρ1

( β1
2k1

)
.

We also have

n1t δ
2
t = n1t min

s: s 6=t
‖n−1/2

1t ut − n
−1/2
1s us‖22 ≥ ρ1

(
1 +

π1t
π1s

)
≥ ρ1.

We obtain, with ε2 = C2
2kd/σ

2
k and O = UψQ,

Mis(K (Ẑ1), Z̄1) = Mis(K (Ẑ1), Z̄1O) .
ε2

n1δ2
.

β1
ρ1

k

k1

d

σ2
k

as long as 4(1+κ)2(n1t δ
2
t )

−1ε2 = 4C2
2 (1+κ)2 ρ−1

1 kd/σ2
k < 1, to guarantee that condition (b)

of Corollary 1 holds, so that Pκ satisfies (10) with c = 4(1 + κ)2 as in (26). The proof is
complete.
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A.6. Proof of Theorem 8

The following concentration result for sub-Gaussian random matrices is well-known (Ver-
shynin, 2018):

Lemma 7 Let A ∈ R
n1×n2 have independent sub-Gaussian entries, and σ = maxi,j ‖Aij −

EAij‖ψ2
. Then for any t > 0, we have

|||A− EA|||op ≤ C σ(
√
n1 +

√
n2 + t), (67)

with probability at least 1− 2 exp(−t2).

Let t =
√
n1 +

√
n2 in Lemma 7, then |||A−EA|||op ≤ 2Cσ(

√
n1 +

√
n2) with probability

at least 1 − 2e−(n1+n2). We thus have the concentration bound (8) with
√
d = 2σ(

√
n1 +√

n2). The proof of Theorem 5 goes through and the result follows by replacing d with the

upper bound d ≤ 4σ2(n1 + n2), and replacing Ψ2
1,∧ and Ψ̃2

1,∧ with n1n2B
2
1,∧ and n1n2B̃

2
1,∧,

respectively.

A.7. Proofs of Section 6.4

Proof [Proof of Proposition 2] We have with the given probability,

|||Are − P̃ |||op ≤ |||Are − P |||op + |||P − P̃ |||op
≤ C
√
d+

1√
n1n2

|||P 0 − P̃ 0|||op

≤ C
√
d+

1√
n1n2

|||P 0 − P̃ 0|||F ≤ (C0 + C)
√
d

where we have used Theorem 2 to bound the first term using d′ = d =
√

n2/n1‖P 0‖∞ =
n2‖P‖∞. The last inequality uses assumption (52). The proof is complete.

Proof [Proof of Proposition 3]

Letting f(x, y) := [ρ0(x, y)− ρ̃0(x, y)]
2,

‖P 0 − P̃ 0‖2F =
n∑

i=1

n∑

j=1

f(Xi, Yj) =
∑

j∈Zn

∑

i∈Zn

f(Xi, Yi+j),

where Zn = Z/nZ is {1, . . . , n} viewed as a cyclic group of order n. We have

E[f(X1, Y1)
2] = ‖f‖2L2 = ‖ρ0 − ρ̃0‖4L4 = o(d2)

and E[f(X1, Y1)] = ‖f‖L1 ≤ ‖f‖L2 = o(d). Note that {f(Xi, Yj) : i, j ∈ Zn} are not
independent, however, for each j ∈ Zn, {f(Xi, Yi+j) : i ∈ Zn} are i.i.d.. Let Zj :=∑

i∈Zn
f(Xi, Yi+j). By independence,

var(Zj) = n var(f(X1, Y1)) ≤ n‖f‖2L2 .
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Since EZj = n‖f‖L1 , by the Chebyshev inequality, for any j ∈ Zn,

P(Zj ≥ nd) = P
(
Zj − EZj ≥ nd− n‖f‖L1

)

≤ n‖f‖2L2

(na− n‖f‖L1)2
=

1

n

o(d2)

(d− o(d))2
= o

( 1

n

)
.

It follows that P
(
|||P 0 − P̃ 0|||2F ≥ n2d

)
≤∑

j∈Zn
P
(
Zj ≥ nd

)
≤ n o

(
n−1

)
= o(1).

Appendix B. Alternative algorithm for the k-means step

In this appendix, we present a simple general algorithm that can be used in the k-means
step, replacing the κ-approximate k-means solver used throughout the text. The algorithm
is based on the ideas in Gao et al. (2017) and Yun and Proutiere (2014b), and the version
that we present here acheives the misclassification bound ε2/(nδ2) needed in Step 3 of
the analysis (Section 3.1) without necessarily optimizing the k-means objective function.
We present the results using the terminology of the k-means matrices (with rows in R

d)
introduced in Section 3.3, although the algorithm and the resulting bound work for data
points in any metric space.

Let X ∈ M
k
n,m be a k-means matrix and let us denote its centers, i.e. distinct rows, as

{qr(X), r ∈ [k]}. As in Definition 2, we write δr(X) and nr(X) for the rth cluster center
separation and size, respectively, and δ∧(X) = minr δr(X) and n∧ = minr nr(X). Assume
that we have an estimate X̂ ∈ R

n×d of X, and let us write d(i, j) := d(x̂i, x̂j), i, j ∈ [n] for
the pairwise distances between the rows of X̂.

Algorithm 6 which is a variant of the one presented in Gao et al. (2017), takes these
pairwise distances and outputs cluster estimates Ĉ1, . . . , Ĉk ⊂ [n], after k recursive passes
through the data. A somewhat more sophisticated version of this algorithm appears in Yun
and Proutiere (2014b), where one also repeats the process for i = 1, . . . , log n and radii

Ri = iR1 in an outer loop, producing clusters Ĉ(i)r , r ∈ [k]; one then picks, among these log n
possible clusterings, the one that minimizes the k-means objective. The variant in Yun and
Proutiere (2014b) also leaves no unlabeled nodes by assigning the unlabeled to the cluster
whose estimated center is closest. In the rest of this section, we will focus on the simple
version presented in Algorithm 6 as this is enough to establish our desired bound. The
following theorem provides the necessary guarantee:

Theorem 9 Consider the cluster model above and let nr = nr(X), n∧ = n∧(X) and δ∧ =
δ∧(X). Assume that we have approximate data x̂1, . . . , x̂n such that

∑n
i=1 d(xi, x̂i)

2 ≤ ε2.
In addition, assume that for some γ ∈ (0, 1) and β ≥ 1:

(i) nr ≤ βn∧ for all r ∈ [k] (Clusters are β-balanced.),

(ii)
2ε√
γn∧

<
δ∧
3

(ε2 small enough compared to n∧δ2∧.),

(iii) ξβ + γ < 1− γ where ξ := γ/(1− γ). (Gamma small enough relative to β.)
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Algorithm 6 k-means replacement

Input: Pairwise distance d(i, j), i, j ∈ [n] and radius ρ.
1: S ← [n]
2: for r = 1, . . . , k do
3: For every i ∈ S, let Bd(i; ρ) := {j ∈ S : d(i, j) ≤ ρ}.
4: Pick i0 ∈ S that maximizes i 7→ |Bd(i; ρ)|.
5: Let Ĉr = Bd(i0; ρ).
6: S ← S \ Ĉr.
7: end for

Output: Return clusters Ĉr : 1, . . . , k and output remaining S as unlabeled.

Let Mn(ρ) be the (average) misclassification rate of Algorithm 6 with input radius ρ. Then,

Mn(ρ) ≤
8ε2

nρ2
, ∀ρ ∈

[ 2ε√
γn∧

,
δ∧
3

)
.

Applying the algorithm with ρ ≥ αδ∧ for α < 1/3 we obtain the misclassication bound
cα ε

2/(nδ2∧) where cα = 8/α2. Thus, Algorithm 6 with a proper choice of the radius ρ
satisfies the desired bound (10) of the k-means step.
Proof [Proof of Theorem 9] The proof follows the argument in Gao et al. (2017). As in the
proof of Proposition 1, let Cr denote the rth cluster of X, having center qr = qr(X). We
have |Cr| = nr. Let xi and x̂i be the ith row of X and X̂, respectively, and let

Tr := {i ∈ Cr : d(x̂i, qr) < ρ/2} = {i ∈ Cr : d(x̂i, xi) < ρ/2}

using xi = qr for all i ∈ Cr which holds by definition. {Tr} are disjoint and clearly Tr ⊂ Cr.
Let T :=

⊎
r Tr, a disjoint union, and T c = [n] \ T . We have

|T c|ρ2/4 ≤
∑

i∈T c

d(x̂i, xi)
2 ≤ ε2 =⇒ |T c| ≤ 4ε2/ρ2. (68)

As a consequence of assumption (ii) and our choice of ρ, we have 4ε2/(n∧ρ2) ≤ γ, hence

|Tr| = |Cr| − |Cr \ Tr| ≥ |Cr| − |T c| ≥ n∧
(
1− 4ε2

n∧ρ2

)
≥ n∧(1− γ) (69)

for all r ∈ [k]. On the other hand, |T c| ≤ γn∧. In particular, combining the two estimates

|T c| ≤ ξ |Tr|, ∀r ∈ [k] (70)

where ξ = γ/(1−γ). These size estimates will be used frequently in the course of the proof.

Recall that d(i, j) := d(x̂i, x̂j), i, j ∈ [n], the collection of pairwise distances between the
data points x̂1, . . . , x̂n. Thus, with some abuse of notation, (i, j) 7→ d(i, j) defines a pseudo-
metric on [n] (and a proper metric if {x̂i} are distinct). For any two subsets A,B ⊂ [n] we
write d(A,B) = inf{d(i, j) : i ∈ A, j ∈ B}. For any i ∈ [n], let d(i, A) = d({i}, A).

We say that node i0 is near T if d(i0, T ) ≤ ρ, i.e., i0 belongs to the ρ-enlargement of T .
Similarly, we say that i0 is near Tr if d(i0, Tr) ≤ ρ and far from Tr otherwise. Note that i0
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can be near at most one of Tr, r ∈ [k]. This is since d(Tr, Tℓ) ≥ δ∧− ρ for r 6= ℓ, and we are
assuming δ∧ > 3ρ. In fact, i0 is near T iff i0 is near exactly one of Tr, r ∈ [k].

To understand Algorithm 6, let us assume that we are at some iteration of the algorithm
and we are picking the center i0 and the corresponding cluster Ĉ := {j : d(j, i0) ≤ ρ}. One
of the following happens:

(a) We pick the new center i0 ∈ Tr for some r, in which case Ĉ will include the entire Tr,
none of Tℓ, ℓ 6= r, and perhaps some of T c. That is, Ĉ ⊃ Tr and Ĉ ∩ Tℓ = ∅ for ℓ 6= r.

(b) We pick i0 near Tr for some r. In this case, |Ĉ| ≥ |Tr|, otherwise any member of Tr
would have created a bigger cluster by part (a) above. Now, Ĉ cannot contain any
of Tℓ, ℓ 6= r, because i0 is far from those if it is near Tr. Hence, Ĉ ⊂ Tr ∪ T c. Since
|T c| ≤ ξ|Tr| by (70), and |Ĉ| ≥ |Tr|, we have |Ĉ ∩Tr| ≥ (1− ξ)|Tr|. That is, Ĉ contains
a large fraction of Tr.

If either of the two cases above happen, we say that Tr is depleted, otherwise it is intact. If
Tr is depleted, it will not be revisited in future iterations, as long as other intact Tℓ, ℓ 6= r
exist. To see this, first note that |Tr ∩ Ĉc| ≤ ξ|Tr| ≤ ξβn∧, using assumption (i). Taking i0
on or near Tr in a future iteration will give us a cluster of size at most (ξβ+γ)n∧ < (1−γ)n∧
(by assumption (iii)) which is less that |Tℓ| for an intact cluster.

To simplify notation, if either of (a) and (b) happen, i.e., we pick cluster center i0 near
Tr for some r, we name the corresponding cluster Ĉr. This is to avoid carrying around a
permutation of cluster labels different than the original one, and is valid since each Tr is
visited at most once by the above argument. (In fact, each is visited exactly once, as we
argue below.) That last possibility is

(c) We pick i0 far from any Tr, that is d(i0, T ) > ρ. This gives Ĉ ⊂ T c, hence |Ĉ| ≤ |T c| ≤
γn∧ < (1 − γ)n∧ ≤ |Tℓ| for any intact Tℓ. Thus as along as there are intact Tℓ, this
case does not happen.

The above argument gives the following picture of the evolution of the algorithm: At
each step t = 1, . . . , k, we pick i0 near Tr for some previously unvisited r, making it depleted,
creating estimated cluster Ĉr and proceeding to the next iteration. After the k-th iteration
all Tℓ, ℓ ∈ [k] will be depleted. We have |Ĉr| ≥ |Tr|, and Ĉr ⊂ Tr ∩ T c for all r ∈ [k].

By construction {Ĉℓ} are disjoint. Let Ĉ :=
⊎
ℓ∈[k] Ĉℓ, and note that |Ĉ| ≥ |T | hence

|Ĉc| ≤ |T c|. Since Ĉℓ ∩ Tr = ∅ for ℓ 6= r, we have Tr ⊂
⋂
ℓ6=r Ĉcℓ , hence Tr ∩ Ĉcr ⊂ Ĉc. All

the misclassified or unclassified nodes produced by the algorithm are contained in [
⋃
r(Tr ∩

Ĉcr)] ∪ T c which itself is contained in Ĉc ∪ T c. Hence, the misclassification rate is bounded
above by

1

n
|Ĉc ∪ T c| ≤ 1

n
(|Ĉc|+ |T c|) ≤ 2

n
|T c| ≤ 8ε2

nρ2
.

where we have used (68). The proof is complete.
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Remark 13 The last part of the argument can be made more transparent as follows: Each
Ĉr consists of two disjoint part, Ĉr∩Tr and Ĉr∩T c. We have |Ĉr∩T c| ≥ |Tr \ Ĉr| (equivalent
to |Ĉr| ≥ |Tr|). Then,

∑

k

|Tr \ Ĉr| ≤
∑

r

|Ĉr ∩ T c| = |Ĉ ∩ T c| ≤ |T c|

and total misclassifications are bounded by
∑

k |Tr \ Ĉr|+ |T c|.

Appendix C. Auxiliary lemmas

Lemma 8 Let Z, Y ∈ O
n×k and let ΠZ = ZZT and ΠY = Y Y T be the corresponding

projection operators. We have

min
Q∈Ok×k

|||Z − Y Q|||F ≤ |||ΠZ −ΠY |||F .

Proof We first note that |||ΠZ |||2F = tr(Π2
Z) = tr(ΠZ) = k (since projections are idempotent),

and |||Z|||2F = tr(ZTZ) = tr(ΠZ) = k. Let ZTY = UΣV T be the SVD of ZTY where
U, V ∈ O

k×k and Σ = diag(σ1, . . . , σk) � 0. Then, using the change of variable O = V TQU ,

1

2
min
Q
|||Z − Y Q|||2F = k −max

Q
tr(ZTY Q)

= k − max
O ∈ Ok×k

tr(ΣO) = k − |||Σ|||∗,

where |||Σ|||∗ =
∑

i σi is the nuclear norm of Σ. To see the last equality, we note that since O is
orthogonal, we have |Oii| ≤ 1 for all i, hence maxO tr(ΣO) ≤ max∀i, |Oii|≤1

∑
i σiOii =

∑
i σi

by the duality of ℓ1 and ℓ∞ norms and σi ≥ 0. The equality is achieved by O = Ik. On the
other hand

1

2
|||ΠZ −ΠY |||2F = k − tr(ΠZΠY ) = k − |||ZTY |||2F = k − |||Σ|||2F .

Since |||Σ|||op = |||ZTY |||op = |||Z|||op|||Y |||op ≤ 1, we have σi ≤ 1 for all i. It follows that
|||Σ|||2F ≤ |||Σ|||∗ completing the proof.
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