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1 Introduction

Noninvasive interrogation of the interior of tissues and other materials by electromagnetic
waves has important applications in various fields including medical imaging for the early
detection of anomalies and nondestructive damage detection in aircraft [2, 3]. For example,
microwave imaging for breast cancer detection is expected to be safe for the patient and
has the potential to detect very small cancerous tumors in the breast [16]. This ability for
detection is based on the difference in electrical properties of malignant and normal tissues.
Biological tissue interactions with the fields are defined by their complex permittivity which
is a function of the various electric and magnetic polarization mechanisms and conductivity
of the biological medium. Similarly, nondestructive damage detection in materials for the
detection of defects such as cracks is based upon the changes in the electrical properties
that occur due to the presence of these defects. Thus, one of the aims of electromagnetic
interrogation problems is the determination of the dielectric properties of the materials
under investigation.

To computationally simulate these electromagnetic interrogation problems requires set-
ting up a suitable inverse problem which involves numerous forward simulations of the
propagation of transient electromagetic waves in lossy dispersive dielectrics such as bio-
logical tissue. Hence, the development of accurate, consistent and stable discrete forward
solvers is very important, as errors in the numerical solvers can result in inaccurate deter-
mination of the dielectric properties that determine the characteristics of the material being
investigated.

The electric and magnetic fields inside a material are governed by the macroscopic
Maxwell’s equations along with constitutive laws that account for the response of the ma-
terial to the electromagnetic field. In special cases Maxwell’s equations can be reduced to a
vector wave equation in the electric or magnetic fields. Numerical approximation algorithms
of time-dependent wave equations and Maxwell’s equations introduce error into the ampli-
tude and speed of the propagating waves. These errors include dissipation, the dampening
of some frequency modes, and dispersion, the frequency dependence of the phase velocity
of numerical wave modes in the computational grid.

Dielectric materials have actual physical dispersion. The complex electric permittivity of
a dielectric medium is frequency dependent (has dielectric dispersion). Thus, an appropriate
discretization method should have a numerical dispersion that matches the model dispersion
as closely as possible. Dielectric materials also have physical dissipation, or attenuation,
which must also be correctly computed by a numerical method. In particular, if a method
does not sufficiently damp initial disturbances, possibly due to round-off error, the method
can become unstable. Certain algorithms have criteria based on discretization parameters
to determine when it may be unstable; these are called conditionally stable methods.

The stability and dispersion properties for the finite difference time domain (FDTD)
schemes applied to Maxwell’s equations in free space are well known (see [35]). Addition-
ally, different time domain finite element methods have also been devised for the numerical
approximation of Maxwell’s equations in free space (see [27, 23] and the references therein).
While free space analyses for finite element and finite difference methods are well doc-
umented, stability and phase error analysis for dispersive dielectrics has been primarily
focused on finite difference methods (see [28, 35] for standard second order methods and
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[29] for higher order schemes). The treatment for finite element methods has been limited to
scalar-potential formulations to model dielectric dispersion at low frequencies ([31]), scalar
Helmholtz equation ([24]), and in some cases, hybrid methods ([15]).

There are several FDTD extensions that have been developed to model electromagnetic
pulse propagation in dispersive media. One technique is to add to Maxwell’s equations a
set of ODE’s that relate the electric displacement ~D(t) to the electric field ~E(t) [18], or
a set of ODE’s that model the dynamic evolution of the polarization vector ~P (t) driven
by the electric field [20, 19]. Dielectric dispersion can be expressed in the time domain
as a convolution integral involving the electric field and a causal susceptibility function.
The recursive convolution method [26, 25, 21] uses a recursive technique to update the
convolution representation of the constitutive law along with the FDTD time update of
Maxwell’s equations. There are other methods such as the Z-transform [34, 33] and the
TLM method [9] that have also been used to model pulse propagation in dispersive media.
Many of these methods have been compared and analyzed for their numerical errors and
stability properties [28, 36, 30, 10, 12].

In this paper we study the propagation characteristics of the discretized Maxwell’s equa-
tions with Debye or Lorentz polarization, using a finite element method, in terms of numer-
ical stability and dispersion analyses. We obtain information about the expected accuracy
of the method from the construction of the dispersion relation which relates the numerical
wave number k to the frequency ω for waves propagating in the finite element grid and then
compare with the dispersion relation for the corresponding continuous model (differential
equations). We compare the stability and dispersion properties of the finite element method
with those of finite difference methods analyzed in [28]. Such finite element methods have
been used for the electromagnetic interrogation of dielectric media with a metal backing,
for the determination of dielectric properties and geometrical dimensions of the medium
[5], as well as for the detection of cracks in composite materials [8]. In [1], finite element
methods were used to interrogate dielectric media with acoustic waves as virtual reflectors.

We analyze one dimensional models to which we apply standard linear finite elements
for the spatial discretization of the electric field and the polarization. Maxwell’s equations
are reduced to a wave equation in the electric field, and the constitutive law in the medium
involves an ordinary differential equation that describes the dynamic evolution of the po-
larization driven by the electric field. The entire system is rewritten in first order form and
time discretized using a theta scheme.

The numerical stability results for Debye and Lorentz media suggest that the extension
of the finite element scheme for these media retain the unconditional stability property of
the scheme in free space. The well known Lax-Richtmayer theorem [32] states that the
convergence of consistent difference schemes to initial value problems represented by PDE’s
is equivalent to stability. Thus, unconditional stability is a desirable property of difference
schemes as it allows the choice of the time step to be determined by the physical dimensions
of the problem, such as a relaxation time. The FDTD methods, on the other hand, are
conditionally stable. Since the stability condition is determined by the smallest cell size in
the domain, the FDTD analysis of very fine geometric structures requires a large number
of time iterations. In the finite element case unconditional stability allows us to choose
the Courant number, which relates the time step to the mesh step size, to minimize the
numerical phase error.
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The numerical dispersion analysis shows that for accuracy we need to resolve the shortest
time scale in the problem which agrees with the result obtained in [28]. This is reflected
in the fact that the time step for simulating Debye media should be chosen to be about
O(10−3)τ , where τ is the relaxation time of the medium, whereas for Lorentz media, the
time step should be chosen to be the minimum of O(10−2)τ and 0(10−2)(2π

ω0
), where ω0 is

the resonance frequency of the medium.
We thus determine a guideline for users in which the time step is chosen to minimize

the dissipation of the scheme and the Courant factor is chosen to minimize the phase error,
providing good agreement between the exact and numerical complex permittivity.

2 Model formulation

We consider Maxwell’s equations which govern the electric field ~E and the magnetic field
~H in a domain Ω from time 0 to T given as

∂ ~D

∂t
+ ~J −∇× ~H = 0 in (0, T ) × Ω, (2.1a)

∂ ~B

∂t
+ ∇× ~E = 0 in (0, T ) × Ω, (2.1b)

∇ · ~D = 0 in (0, T ) × Ω, (2.1c)

∇ · ~B = 0 in (0, T ) × Ω, (2.1d)

~E(0, ~x) = 0 in Ω, (2.1e)

~H(0, ~x) = 0 in Ω. (2.1f)

The fields ~D, ~B are the electric and magnetic flux densities respectively. All the fields in
(2.1) are functions of position ~x = (x, y, z) and time t. We have ~J = ~Jc + ~Js, where ~Jc is a
conduction current density and ~Js is the source current density. However, we will assume
~Jc = 0 in this paper, as we are interested in dielectrics with no free charges. Appropriate
boundary conditions are added to system (2.1) to terminate the computational domain.

Constitutive relations which relate the electric and magnetic fluxes ~D, ~B to the electric
and magnetic fields ~E, ~H are added to these equations to make the system fully determined
and to describe the response of a material to the electromagnetic fields. In free space, these
constitutive relations are ~D = ǫ0 ~E, and ~B = µ0

~H, where ǫ0 and µ0 are the permittivity
and the permeability of free space, respectively, and are constant [17]. In general there are
different possible forms for these constitutive relationships. In a frequency domain formula-
tion of Maxwell’s equations, these are usually converted to linear relationships between the
dependent and independent quantities with frequency dependent coefficient parameters. We
will consider the case of a dielectric in which magnetic effects are negligible. Thus, within
the dielectric medium we have constitutive relations that relate the flux densities ~D, ~B to
the electric and magnetic fields, respectively, as

~D = ǫ0 ~E + ~P , (2.2a)

~B = µ0
~H. (2.2b)
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In (2.2a), the quantity ~P is called the macroscopic electric polarization. (A discussion of the
relationship between the macroscopic polarization and the microscopic material properties
leading to distributions of relaxation times and other dielectric parameters in the constiu-
tive laws can be found in [6].) Electric polarization may be defined as the electric field
induced disturbance of the charge distribution in a region. This polarization may have an
instantaneous component as well as delayed effects; the latter will usually have associated
time constants called relaxation times which are denoted by τ . We define the instantaneous
component of the polarization to be related to the electric field by means of a dielectric
constant ǫ0 and a susceptibility χ. The remainder of the electric polarization, called the
relaxation polarization, is denoted as ~PR. Therefore, we have

~P = ~PI + ~PR = ǫ0χ~E + ~PR, (2.3)

and hence the constitutive law (2.2a) becomes

~D = ǫ0ǫr
~E + ~PR, (2.4)

where ǫr = (1 + χ) is the relative permittivity of the dielectric medium. We will henceforth
denote ~PR by ~P , as the instantaneous polarization will be absorbed into the dielectric
constant ǫr. The following section defines the equations for polarization models of interest
in this paper.

2.1 Models for Polarization

To describe the behavior of the media’s relaxation polarization ~P , one may use ordinary
differential equation models that describe microscopic polarization mechanisms such as
dipole or orientational polarization (Debye), as well as ionic and electronic polarization
(Lorentz), and other frequency dependent polarization mechanisms [4]. For more complex
dielectric materials, a simple Debye or Lorentz polarization model is often not adequate to
characterize the dispersive behaviour of the material. One can then turn to combinations
of Debye, Lorentz, or even more general nth order mechanisms [5] as well as Cole-Cole
type (fractional order derivative) models [11]. Additionally, materials may be represented
by a distribution of the associated time constants or even a distribution of polarization
mechanisms (see [7, 6]). In this report we concentrate our analysis on single pole Debye
and Lorentz polarization models.

2.1.1 Debye Model

The differential equation of the Debye model for orientational or dipolar polarization is given
by

τ
∂ ~P

∂t
+ ~P = ǫ0(ǫs − ǫ∞) ~E. (2.5)

Here ǫs is the static relative permittivity. The presence of instantaneous polarization is
accounted for in this case by the coefficient ǫ∞ in the electric flux equation. That is,
ǫr = ǫ∞. The remainder of the electric polarization is seen to be a decaying exponential
with relaxation parameter τ , driven by the electric field, less the part included in the

5



instantaneous polarization. This model was first proposed by Debye [14] to model the
behaviour of materials that possess permanent dipole moments. The magnitude of the
polarization term ~P represents the degree of alignment of these individual moments and is
based on a uniformity assumption at the molecular level (see [6]). The choice of coefficients
in (2.5) gives a physical interpretation to ǫs and ǫ∞ as the relative permittivities of the
medium in the limit of the static field and very high frequencies, respectively. In the static
case, we have ~Pt = 0, so that ~P = ǫ0(ǫs − ǫ∞) ~E and ~D = ǫ0ǫs

~E. For very high frequencies,
τ ~Pt dominates ~P so that ~P ≈ 0 and ~D = ǫ0ǫ∞ ~E (thus the notation of ∞).

The Debye model is most often used to model electromagnetic wave interactions with
water-based substances, such as biological materials. In particular, biological tissue is well
represented by multi-pole Debye models, by accounting for permanent dipole moments in
the water. The Debye model has other physical characteristics which make it attractive
from an analytical point of view (for details, see [36]).

2.1.2 Lorentz Model

The Lorentz model for electronic polarization in differential form is represented with the
second order equation:

∂2 ~P

∂t2
+

1

τ

∂ ~P

∂t
+ ω2

0
~P = ǫ0ǫdω

2
0
~E, (2.6)

where ǫd = ǫs − ǫ∞ and ω0 is the resonance frequency of the material.
The Lorentz model is formulated by modeling the atomic structure of the material as a

damped vibrating system. Applying classical Newtonian laws of motion, the displacement
of the outermost shell of the atom is found to be a solution to a second-order, ordinary
differential equation [36].

2.2 Reduction to One Dimension

The electric field is assumed to be polarized to have oscillations in the x-z plane only, as
described in [5]. Restricting the problem to one dimension, we can write the electric and
magnetic fields, ~E and ~H respectively, as follows

~E(t, ~x) = îE(t, z)

~H(t, ~x) = ĵH(t, z),

so that we are only concerned with the scalar values E(t, z) and H(t, z). In this case
Maxwell’s equations become:

∂E

∂z
= −µ0

∂H

∂t
(2.7a)

−∂H

∂z
=

∂D

∂t
+ Js. (2.7b)

We take the partial derivative of Equation (2.7a) with respect to z, and the partial of

Equation (2.7b) with respect to t. Equating the ∂2H
∂z∂t terms in each, and thus eliminating

the magnetic field H, we have:

E′′ = µ0

(

D̈ + J̇s

)

,
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(where ′ denotes z derivatives and ˙ denotes time derivatives). Using the constitutive law
for he electric flux density given by D = ǫ0ǫ∞E + P , we have

µ0ǫ0ǫ∞Ë + µ0P̈ − E′′ = −µ0J̇s in Ω = [a, b]. (2.8)

In order to have a finite computational domain, we impose absorbing boundary conditions
at z = a and z = b, which are modeled as

[

Ė − cE′
]

z=a
= 0;

[

Ė + cE′
]

z=b
= 0, (2.9)

where c = 1/
√

ǫ0µ0 is the speed of light in vacuum. With these boundary conditions,
any incident signal passes out of the computational domain, and does not return. The
homogeneous initial conditions in 1D become

E(0, z) = 0, P (0, z) = 0, Ṗ (0, z) = 0, Ė(0, z) = 0. (2.10)

3 Numerical Solution

3.1 Spatial Discretization Using Finite Elements

We apply a finite element method using standard piecewise linear one dimensional basis
elements to discretize the model (2.8) in space. Let N be the number of intervals in the
discretization of z, and ∆z = (b− a)/N , then the finite element discretization has an order
of accuracy of O(∆z2). The resulting system of ordinary differential equations after the
spatial discretization is the semi-discrete form

ǫ∞µ0ǫ0Më + µ0Mp̈ + Bė + Ke = µ0J, (3.1)

with either
ṗ + λp = ǫ0ǫdλe, (Debye Media), (3.2)

or
p̈ + λṗ + ω2

0p = ǫ0ǫdω
2
0e, (Lorentz Media), (3.3)

where λ = 1
τ . The vectors e and p represent the values of E, and P , respectively at the

nodes zi = i∆z. The mass matrix M has entries

Mij = 〈φi, φj〉 :=

∫ b

a
φiφjdz,

where {φi}N
i=0 are the basis functions. The stability matrix K has entries

Kij = 〈φ′
i, φ

′
j〉 :=

∫ b

a
φ′

iφ
′
jdz.

The matrix B results from the boundary conditions where

Bij =
1

c
[φi(a)φj(a) − φi(b)φj(b)] .
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Finally, J is defined as

Ji = −〈φi, J̇s〉 := −
∫ b

a
J̇sφidz.

For Debye media, we differentiate (3.2) and substitute for p̈ into (3.1) to obtain an
equation only dependent explicitly on p, given as

ǫ∞Më + (B + ǫdλM)ė + (c2K − ǫdλ
2M)e +

λ2

ǫ0
Mp =

1

ǫ0
J, (3.4a)

ṗ + λp − ǫ0ǫdλe = 0. (3.4b)

In the above c = 1/
√

ǫ0µ0 is the speed of light in vacuum.
For Lorentz media we substitute (3.3) into (3.1) to get

ǫ∞Më + Bė + (c2K + ǫdω
2
0M)e − ω2

0

ǫ0
Mp − λ

ǫ0
Mṗ =

1

ǫ0
J, (3.5a)

p̈ + λṗ + ω2
0p = ǫ0ǫdω

2
0e. (3.5b)

For linear finite elements in one dimension, the entries of the mass matrix M are

Mij =











2∆z/3, if 0 < i = j < N,

∆z/3, else if i = j = 0 or N,

∆z/6, else if i = j ± 1.

(3.6)

The entries of the stiffness matrix can be calculated as

Kij =











2/∆z, if 0 < i = j < N,

1/∆z, else if i = j = 0 or N,

−1/∆z, else if i = j ± 1.

(3.7)

3.2 Time Discretization Using Finite Differences

In order to solve the semi-discrete form of our equations we may convert each coupled second
order system of equations into one larger first order system and apply a theta method [22].
As our finite element method is second order in space, if we choose θ = 1

2 the discretization
is second order in time as well (thus, we have used θ = 1

2 throughout). Therefore, for
appropriately smooth data and with ∆t = O(∆z), the combined method is second order in
time and space. For the system of equations corresponding to the Debye model we consider
an additional method of temporal finite difference for comparison.

3.2.1 Debye Media

In the first method to be considered, we will convert the coupled second order system of
equations into one larger first order system and simply apply a theta method as described
above. In the second method, we will solve first for the polarization with a forward differenc-
ing scheme using the initial conditions, and then use polarization solution vector to update
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a second order central difference scheme for the magnitude of the electric field. We then
continue this process iteratively, alternating between solving for p and for e. Both methods
are second order in time and space for appropriately smooth data (and with ∆t = O(h)).

Method 1: For Debye media we convert (3.4a)-(3.4b) into a first order system of equations
in three unknowns, X = [e, p, d]T , where d = ė, resulting in

M̄Ẋ + K̄X = J̄ , (3.8)

with

M̄ =









I 0 0

0 I 0

0 0 ǫ∞M









, (3.9)

K̄ =









0 0 −I

−ǫ0ǫdλ λ 0

(c2K − ǫdλ
2M) λ2

ǫ0
M B + ǫdλM









, (3.10)

and
J̄ =

[

0 0 1
ǫ0

J
]T

. (3.11)

We apply a theta-scheme to (3.8) to obtain

(M̄ + θ∆tK̄)Xn+1 = (M̄ − (1 − θ)∆tK̄)Xn + (θJ̄n+1 + (1 − θ)J̄n). (3.12)

For θ = 0.5 the scheme can be written as

(M̄ +
∆t

2
K̄)Xn+1 = (M̄ − ∆t

2
K̄)Xn +

1

2
(J̄n+1 + J̄n). (3.13)

where, J̄n = J̄(n∆t) and Xn = X(n∆t).

As we are assuming a fixed time step ∆t, the matrix to be inverted does not change
over time. Therefore, we solve for the LU factorization at the beginning and use back
substitution at each time step. Since the matrices M̄ and K̄ are sparse, we employ
the sparse matrix package UMFPACK [13]. For problems where the number of time
steps is small compared with the number of nodes, it may be more efficient to use an
iterative solver with the previous solution vector as the initial iterate.

Method 2: In our second method we use a second order central difference scheme to solve
(3.4a). Our approach is to first solve for p using a θ-method, and then use that approx-
imation to solve for e at the next time step. Thus, our finite difference approximation
for (3.4b) is

pn+1 = pn − ∆tλpn+θ + ∆tλǫde
n+θ (3.14)

where vn+θ = θvn+1 + (1 − θ)vn, for v = e or v = p. This implies

pn+1 = pn +
λ∆t

1 + λ∆tθ
(ǫde

n+θ − pn). (3.15)
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Once we have pn+1 we can solve for en+2. Applying second order central difference
with averaging to (3.4a) gives

1

∆t2
ǫ∞M(en+2 − 2en+1 + en) +

1

2∆t
(B + ǫdλM)(en+2 − en)

+
1

4
(c2K − ǫdλ

2M)(en+2 + 2en+1 + en) =
1

ǫ0
Jn+1 − λ2

ǫ0
Mp̄n+1.

(3.16)

Defining hτ = λ∆t and solving for the en+2 term we have
[(

ǫ∞ +
ǫdhτ

2
− ǫdh

2
τ

4

)

M +
1

2
∆tB

]

en+2 =

[

(2ǫ∞ +
ǫdh

2
τ

2
)M − c2∆t2

2
K

]

en+1

−
[

(ǫ∞ − ǫdhτ

2
− ǫdh

2
τ

4
)M +

c2∆t2

4
K +

1

2
∆tB

]

en +
∆t2

ǫ0
Jn+1 − h2

τ

ǫ0
Mpn+1

(3.17)

or equivalently,

A1e
n+2 = A2e

n+1 + A3e
n +

∆t2

ǫ0
Jn+1 − h2

τ

ǫ0
Mpn+1. (3.18)

Note that in this case A1 is tridiagonal and the matrix is the same for each time step,
so we may store the Crout LU factorization and use back substitution to solve the
system at each time step. For tridiagonal matrices the factorization and the back
substitution are both order O(N) [22].

Again, for θ = 1
2 , (3.15) will be second order in time if the corresponding solution is

C3 in time. Equation (3.18) is also second order in time assuming an exact solution
for P , and that E has four continuous time derivatives (for the second order difference
approximation). The truncation error for this approximation is

T (tn) = ∆t2
(

1

12
E(4) +

1

6
E(3) +

1

4
E(2)

)

.

Therefore, since the semi-discrete form is O(h2), this approximation method overall
is O(h2) when ∆t = O(h).

3.2.2 Lorentz Media

For Lorentz media we convert (3.5a)-(3.5b) into a first order system of equations in three
unknowns, X = [e, p, d, q]T , where d = ė, q = ṗ, resulting in

M̄Ẋ + K̄X = J̄ , (3.19)

with

M̄ =















I 0 0 0

0 I 0 0

0 0 ǫ∞M 0

0 0 0 I















, (3.20)
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K̄ =

















0 0 −I 0

0 0 0 −I

(c2K + ǫdω
2
0M) −ω2

0

ǫ0
M B − λ

ǫ0
M

−ǫ0ǫdω
2
0 ω2

0 0 λ

















, (3.21)

and
J̄ =

[

0 0 1
ǫ0

J 0
]T

. (3.22)

As before, we apply a theta-scheme to M̄Ẋ + K̄X = J̄ to obtain

(M̄ + θ∆tK̄)Xn+1 = (M̄ − (1 − θ)∆tK̄)Xn + (θJ̄n+1 + (1 − θ)J̄n), (3.23)

For θ = 0.5 the scheme can be written as

(M̄ +
∆t

2
K̄)Xn+1 = (M̄ − ∆t

2
K̄)Xn +

1

2
(J̄n+1 + J̄n). (3.24)

where, J̄n = J̄(n∆t) and Xn = X(n∆t).
Again we are assuming a fixed ∆t, therefore we solve for the LU factorization at the

beginning and use back substitution at each time step.

4 Stability Analysis

Fourier analysis is an important tool in the study of stability of finite difference and finite
element schemes. The Fourier transform of a function gives an alternative representation of
the function, and one can infer certain properties of a function from its Fourier transform.
The Fourier inversion formula represents a function as a superposition of waves eiωz with
different amplitudes that are given by the Fourier transform. Under the Fourier transform
the operation of differentiation is converted into the operation of multiplication by iω.

An important application of Fourier analysis is the von Neumann analysis of stability
of difference schemes. With the use of Fourier analysis we can give necessary and sufficient
conditions for the stability of these schemes. For a difference scheme, advancing the solu-
tion of the scheme by one time step is equivalent to multiplying the Fourier transform of
the solution by an amplification factor. The amplification factor is so called because its
magnitude is the amount that the amplitude of each frequency in the solution, given by the
Fourier transform of the solution at time step n, is amplified in advancing the solution to
time step n + 1. All the information of a scheme is contained in its amplification factor.
In particular, the stability and accuracy of schemes can be determined from the amplifica-
tion factor. Using Fourier analysis on the scheme to calculate the amplification factor ζ is
equivalent to relacing discrete values of any unknown field vector vn

m, at time t = n∆t and
spatial position z = m∆z, in the scheme by ζneimθ for each value of n and m. The resulting
equation is a polynomial in ζ and is called the stability polynomial or the characteristic
polynomial for the scheme. The stability polynomial usually depends on the discretization
parameters, such as the time step and the mesh step size as well as the medium parameters.
The roots of this polynomial can be obtained and will determine the stability of the scheme.
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Since the roots of the polynomial are the amplification factors of the scheme, the scheme
will be stable if the amplitude of the roots is less than or equal to 1.

We follow [28] to derive stability results for the finite element schemes presented here.
Since the boundary conditions do not affect the stability and dispersion properties of the
scheme in the interior of the domain, we neglect the effects of boundary conditions (B = 0
in (3.1)) in our analysis. As the stability and dispersion properties of the scheme are also
independent of the source Js, we take J = 0 in (3.1) without loss of generality.

4.1 Free Space

For the stability analysis in free space we have P = 0. Thus, in equation (3.1) we also
substitute P̈ = 0. In free space we have the equation

µ0ǫ0Më + Ke = 0. (4.1)

In the above we have also assumed that ǫ∞ = 1. Using c = 1/
√

ǫ0µ0, and rewriting (4.1) in
first order form in the variables X = [e, d]T , where d = ė, we have

[

I 0

0 1
c2

M

]

Ẋ +

[

0 −I

K 0

]

X = 0. (4.2)

Applying a theta scheme to (4.2) we get

[

I −θ∆tI

θ∆tK 1
c2

M

]

Xn+1 =

[

I (1 − θ)∆tI

−(1 − θ)∆tK 1
c2

M

]

Xn = 0. (4.3)

We note the following identities associated with the application of the mass and the
stiffness matrices on vectors φn

j = φ̃ζnei(kj∆z).

1. For the mass matrix M we have

Mφn
j =

∆z

6
φn

j−1 +
2∆z

3
φn

j +
∆z

6
φn

j+1

=
(

e−ik∆z + 4 + eik∆z
) ∆z

6
φn

j

= (3 − 2 sin2 (k∆z/2))
∆z

3
φn

j

(4.4)

2. For the stiffness matrix K we have

Kφn
j = − 1

∆z
φn

j−1 +
2

∆z
φn

j − 1

∆z
φn

j+1

=
(

e−ik∆z − 2 + eik∆z
) −1

∆z
φn

j

=
4

∆z
sin2 (k∆z/2))φn

j .

(4.5)
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We also define two quantities

κ = 3 − 2 sin2

(

k∆z

2

)

, (4.6a)

η = 3ν2 sin2

(

k∆z

2

)

, (4.6b)

where the Courant number is

ν =
c∆t

∆z
, (ǫ∞ = 1). (4.7)

In a general dispersive material ν = c∆t√
ǫ∞∆z . In air ǫ∞ = 1. To determine the stability

criterion for the finite element scheme in free space we now substitute

Xn
j =

[

en
j

dn
j

]

=

[

ẽ

d̃

]

ζnei(kj∆z), (4.8)

into the discrete equations (4.3) with θ = 1/2. Here k is the wave number, Using the
identities (4.4) and (4.5) we obtain a homogeneous linear system of the form

AX̃ = 0, (4.9)

with

A =







ζ − 1 −∆t
2 (ζ + 1)

2∆t

∆z
sin2

(

k∆z

2

)

(ζ + 1)
∆z

3c2

(

3 − 2 sin2

(

k∆z

2

))

(ζ − 1)






(4.10)

and

X̃ =
[

ẽ, d̃
]T

. (4.11)

By setting the determinant of A to be zero, we obtain the stability polynomial

ζ2 − 2ζ

(

κ2 − η2

κ2 + η2

)

+ 1 = 0, (4.12)

From (4.12) we can show that |ζ| = 1 always, regardless of the medium parameters. This
implies that the finite element scheme with the theta method (θ = 1/2) in free space is
unconditionally stable as well as non-dissipative.

4.2 Debye Media

To determine the stability conditions for the finite element scheme described as Method 1
in Section 3.2.1 for Debye media we substitute

Xn
j =





en
j

pn
j

dn
j



 =





ẽ
p̃

d̃



 ζneikj∆z, (4.13)
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in the discrete equations (3.13) (with J = 0). As in the case of free space, we obtain a
homogeneous system of the type AX̃ = 0. We then set det(A) = 0 to obtain the stability
polynomial

a3ζ
3 + a2ζ

2 + a1ζ + a0 = 0, (4.14)

where the coefficients of the stability polynomial are given as

a3 = η2(hτ + 2) + κ2(hτ ǫs + 2ǫ∞), (4.15)

a2 = η2(3hτ + 2) − κ2(hτ ǫs + 6ǫ∞), (4.16)

a1 = η2(3hτ − 2) − κ2(hτ ǫs − 6ǫ∞), (4.17)

a0 = η2(hτ − 2) + κ2(hτ ǫs − 2ǫ∞), (4.18)

where η, and κ are as defined in (4.6b), and (4.6a), respectively, and hτ = ∆t/τ .
To determine the stability polynomial for the finite element scheme described in Method

2 in Section (3.2.1), we substitute (4.13) in the discrete equations (3.17). Following the
procedure discussed above we obtain the stability polynomial

b3ζ
3 + b2ζ

2 + b1ζ + b0 = 0, (4.19)

with coefficients

b3 = η2(hτ + 2) + κ2(hτ ǫs + 2ǫ∞) − κ2h3
τ ǫd

4
, (4.20)

b2 = η2(3hτ + 2) − κ2(hτ ǫs + 6ǫ∞) +
κ2h3

τ ǫd

4
, (4.21)

b1 = η2(3hτ − 2) − κ2(hτ ǫs − 6ǫ∞) +
κ2h3

τ ǫd

4
, (4.22)

b0 = η2(hτ − 2) + κ2(hτ ǫs − 2ǫ∞) − κ2h3
τ ǫd

4
, (4.23)

If we neglect terms involving h3
τ , the stability polynomial of Method 2 for Debye is the

same as in Method 1. Thus for small values of hτ , the two methods have the same stability
properties. In the rest of this section we refer to Method 1 as the finite element scheme
and we will compare stability properties of this scheme with those of the finite difference
scheme [18] analyzed in [28].

In Figure 1 we plot the absolute value of the largest root of (4.14) for the finite element
scheme with ν = 1 as a function of k∆z. In Figure 2 we plot the the absolute value of the
largest root of the stability polynomial of the finite difference scheme JHT [18], with ν = 1
as a function of k∆z.

In Figure 3 (left) we plot the absolute value of the largest root of (4.14) for the finite
element scheme with ν = 1 as a function of the wave number k. In Figure 3 (right) we plot
the the absolute value of the largest root of the stability polynomial of the finite difference
scheme JHT [18], with ν = 1 as a function of k.

To generate these plots we assumed the following values of the physical parameters:
τ = 8.1 × 10−12, ǫ∞ = 1, and ǫs = 78.2. The time step ∆t is determined by the choice of
hτ and the physical parameter τ . These plots show varying values of hτ from 0.1 to 0.001.
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Figure 1: Plot of max|ζ| versus k∆z for hτ = {0.1, 0.01, 0.001} for the finite element scheme
in a Debye medium, with ν = 1. (Right plot is zoom of left plot.)

From the plots we can see that the dissipation of the numerical schemes can be reduced
by decreasing hτ . For stability and least dissipation, hτ = 0.001 is recommended. For
the finite element scheme increasing ν from 1 to 16 does not seem to change the stability
behaviour of the scheme. This suggests the unconditional stability of the finite element
scheme. However, the finite difference scheme is conditionally stable and has the stability
criteria ν ≤ 1. The stability criteria for the finite difference scheme have been derived in
[28, 10].

In Figure 4 we plot max|ζ| versus k∆z for hτ = 0.1 (left) and hτ = 0.3 for the finite
element schemes of Method 1 (FEM1) and Method 2 (FEM2) in a Debye medium, with
ν = 1. From this plot we can see a slight difference in the two schemes when hτ = 0.3.
However, for hτ = 0.1 the two schemes produce the same plots.
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Figure 2: Plot of max|ζ| versus k∆z for hτ = {0.1, 0.01, 0.001} for the finite difference
scheme JHT in a Debye medium, with ν = 1. (Right plot is zoom of left plot.)
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Figure 3: Plot of max|ζ| versus the wave number k for hτ = {0.1, 0.01, 0.001} for the finite
element scheme (left) and the finite difference scheme (right) in a Debye medium, with
ν = 1.
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Figure 4: Plots of max|ζ| versus k∆z for hτ = 0.1 (left) and hτ = 0.3 for the finite element
schemes of Method 1 (FEM1) and Method 2 (FEM2) in a Debye medium, with ν = 1.

4.3 Lorentz Media

To determine the stability conditions for Lorentz media we substitute

Xn
j =









en
j

pn
j

dn
j

qn
j









=









ẽ
p̃

d̃
q̃









ζneikj∆z, (4.24)

in the discrete equations (3.24). As in the case of free space, we obtain a homogeneous
system of the type AX̃ = 0. We then set det(A) = 0 to obtain the stability polynomial

a4ζ
4 + a3ζ

3 + a2ζ
2 + a1ζ + a0 = 0, (4.25)

where the coefficients of the stability polynomial are given as

a4 = η2(2π2h2
0 + hτ + 2) + κ2(2π2h2

0ǫs + hτ ǫ∞ + 2ǫ∞) (4.26)

a3 = η2(8π2h2
0 + 2hτ ) − κ2ǫ∞(8 + 2hτ ) (4.27)

a2 = η2(12π2h2
0 − 4) − κ2(4π2h2

0ǫs − 12ǫ∞) (4.28)

a1 = η2(8π2h2
0 − 2hτ ) − κ2ǫ∞(8 − 2hτ ) (4.29)

a0 = η2(2π2h2
0 − hτ + 2) − κ2(2π2h2

0ǫs − hτ ǫ∞ + 2ǫ∞), (4.30)

where η, and κ are as defined in (4.6b), and (4.6a), respectively, hτ = ∆t/τ , and h0 = ∆t/T0,
where T0 = 2π/ω0.

We plot the absolute value of the largest root of (4.25) for ν = 1 versus k∆z for the
finite element scheme in Figures 5, and for the finite difference schemes JHT [18] and KF
[19] in Figures 6 and 7.
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Figure 5: Plot of max|ζ| versus k∆z for hτ = {0.1, 0.01, 0.001} for the finite element scheme
in a Lorentz medium, with ν = 1. (Right plot is zoom of left plot.)

We then plot the absolute value of the largest root of (4.25) for ν = 1 versus the wave
number k for the finite element scheme in Figures 8, and for the finite difference schemes
JHT and KF in Figures 9.

To generate these plots we assumed the following values for physical parameters: τ =
1.786 × 10−16, ǫ∞ = 1, ǫs = 2.25, and ω0 = 4 × 1016. For the Lorentz medium, all time
scales must be properly resolved, therefore the time step ∆t is determined by the choice of
either hτ or h0, whichever is most restrictive. For the current parameter values, T0 < τ ,
thus h0 is used. The plots show varying values of h0 from 0.1 to 0.001. From the plots we
can see that the dissipation of the numerical schemes can be reduced by decreasing h0. For
stability and least dissipation, h0 = 0.01 is recommended.

As in the case of the finite element method for Debye media, we see that increasing ν
from 1 to 16 does not affect the stability properties of the finite element scheme for Lorentz
media. This suggests the unconditional stability of the finite element method. However the
finite difference scheme is again conditionally stable with the criteria ν ≤ 1. The stability
criteria for the finite difference scheme for Lorentz media have also been derived in [28, 10].
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Figure 6: Plot of max|ζ| versus k∆z for hτ = {0.1, 0.01, 0.001} for the JHT finite difference
scheme in a Lorentz medium, with ν = 1. (Right plot is zoom of left plot.)
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Figure 7: Plot of max|ζ| versus k∆z for hτ = {0.1, 0.01, 0.001} for the KF finite difference
scheme in a Lorentz medium, with ν = 1. (Right plot is zoom of left plot.)
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Figure 8: Plot of max|ζ| versus the wave number k for hτ = {0.1, 0.01, 0.001} for the KF
finite element scheme in a Lorentz medium, with ν = 1.
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Figure 9: Plot of max|ζ| versus the wave number k for hτ = {0.1, 0.01, 0.001} for the JHT
(left) and KF (right) finite difference schemes for Lorentz medium, with ν = 1.
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5 Analysis of Dispersion and Phase Error

The numerical approximation of time-dependent wave problems introduces errors which
involve dissipation, dispersion, and anisotropy. The attenuation of the amplitude of the
plane wave is referred to as dissipation. The numerical model produces waves that propa-
gate at incorrect speeds. The dependence of the velocity of propagation of the numerical
sinusoidal waves on frequency is termed as dispersion, while the dependence of the velocity
upon direction is referred to as numerical anisotropy.

A dispersive model admits plane wave solutions of the form ei(ωt−~k·~x) for which the
speed of propagation, governed by the wave number ~k, is not independent of the frequency
ω. For time-harmonic waves, numerical dispersion results in the creation of a numerical
phase velocity error, or phase error, in the solution. This is due to the incorrect modeling
of the sinusoidal behavior of the propagating wave, for example, the piecewise polynomial
approximation of a finite element method does not exactly match a sine or cosine function.
Dispersion is present in numerical approximation methods such as finite difference/finite
element methods even in the absence of any dispersion in the actual media. Errors are
cumulative, thus as waves propagate over long distances the numerical solution becomes
corrupted and may completely deviate from the correct solution.

5.0.1 Free Space

Substituting a solution of the form

e(t, z) = ei(kz−ωt)

into equation (2.8) results in the dispersion relation of the continuous model in free space
being

kV
EX(ω) =

ω

c
, (5.1)

where kV
EX denotes the wavenumber in free space (where V in the superscript denotes

“vacuum”) for the exact equations (EX in the subscript denotes “exact”). To determine the
dispersion relation for the discretized model using the finite element method, we substitute

Xn
j =

[

en
j

dn
j

]

=

[

ẽ

d̃

]

ei(k∆j∆z−ωn∆t), (5.2)

where k∆ is the numerical wave number, into the discrete equation (4.3). Using the identities
(4.4), (4.5) as well as the following two trignometric identities

e−iω∆t/2 + eiω∆t/2 = 2 cos(ω∆t/2), (5.3a)

e−iω∆t/2 − eiω∆t/2 = −2i sin(ω∆t/2). (5.3b)

we obtain the linear system
AX̃ = 0, (5.4)

with

A =







2i sin
(

ω∆t
2

)

∆t cos
(

ω∆t
2

)

4∆t

∆z
sin2

(

k∆∆z

2

)

cos

(

ω∆t

2

)

−∆z

3c2

(

3 − 2 sin2

(

k∆∆z

2

))

2i sin

(

ω∆t

2

)
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and
X̃ =

[

ẽ, d̃
]T

. (5.5)

Setting the determinant of A = 0 we obtain a relation between k∆ and ω, which is the
numerical dispersion relation for the finite element scheme in free space. This relation is

sin2 (k∆∆z/2) =

(

2

3
+

ν2 cos2 (ω∆t/2)

sin2 (ω∆t/2)

)−1

. (5.6)

Solving for k∆ in the above we get

k∆ = kV
FE(ω) =

2

∆z
sin−1













1
√

2

3
+

ν2 cos2 (ω∆t/2)

sin2 (ω∆t/2)













. (5.7)

The dispersion relation for the FDTD scheme is given to be

sin (k∆∆z/2) =
sin (ω∆t/2)

ν
, (5.8)

which implies that

k∆ = kV
FD(ω) =

2

∆z
sin−1

[

sin (ω∆t/2)

ν

]

. (5.9)

We will define the phase error as

Φ(ω∆t) =

∣

∣

∣

∣

kEX(ω∆t) − k∆(ω∆t)

kEX(ω∆t)

∣

∣

∣

∣

, (5.10)

where for the finite element scheme in a vacuum, we have k∆ = kV
FE as defined in (5.7),

whereas for the FDTD schemes we have k∆ = kV
FD as defined in (5.9).

In Figures 10 and 11 we plot the phase error in a vacuum for the finite element
scheme with the theta method (ν =

√

1/2, 1, 4, 16) and for the FDTD scheme (ν =
0.6,

√

1/2,
√

2/3, 1), respectively.
To see why ν ≈ .7 has the least dispersion for FEM (see plot on the right in Figure 10)

and why ν ≈ 1 has the least dispersion for FDTD (see plot on the right in Figure 11), it is
helpful to plot the relations in equations (5.6) and (5.8) versus the continuous model values.
We define

γ2
EX := sin2

(

ωdt

2ν

)

(5.11)

where we have substituted kV
EX∆z = νω∆t. We similarly define γ2

FE = sin2(kV
FE∆z/2)

and γ2
FD = sin2(kV

FD∆z/2) using the definitions in (5.7) and (5.9), respectively. Figure 12
displays plots each of these γ2(ω∆t) functions for various values of ν. For the continuous
model (left plot), ν has the effect of moving the location of the maximum value, γ2 = 1.
For the finite difference case (right plot) the location of the maximum does not change,
although the value of the maximum does. For ν = 1 the curve coincides exactly with the
continuous case. For the finite element method (middle plot) the location of the maximum
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Figure 10: Plot of the phase error Φ versus ω∆t for the finite element scheme in freespace
with ν = {

√

1/2, 1, 4, 16}. For ν =
√

1/2, FEM has the least dispersion. (Right plot is
zoom of left plot.)
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Figure 11: Plot of the phase error Φ versus ω∆t for the finite difference scheme in freespace
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1/2, .6}. For ν = 1 FDTD has zero dispersion. (Right plot is zoom
of left plot.)

does not change, nor does the value. However, as this value is fixed at 1.5, it will never

coincide exactly with the continuous case for any value of ν.
To determine the best value of ν for the finite element method, we first note that γ2

EX

can be expanded as

1/4
ω2∆t2

ν2
− 1/48

ω4∆t4

ν4
+

1

1440

ω6∆t6

ν6
+ O

(

ω8∆t8
)

. (5.12)

As both the expansions of γFD and γFE match up to the second order coefficient, it is the
fourth order Taylor coefficient that determines how well the discretization method matches
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Figure 12: Plot of the γ2 versus ω∆t for the continuous model, the finite elment scheme,
and the finite difference scheme (left to right).

the continuous model. For the finite difference method we have

cFD
4 = −1/48 ν−2, (5.13)

whereas for the finite element method we have

cFE
4 = 1/24

−1 + ν2

ν4
. (5.14)

For ν = 1, cFD
4 = cEX

4 = 1/48, but cFE
4 = 0. If we solve (cEX

4 − cFE
4 )(ν) = 0 we find

that ν =
√

1/2 is the value for which the finite element method most closely matches the
continuous model.

In Figure 13 we plot the fourth-order Taylor coefficient of sin(k∆z/2) as a function of ν
for k = {kV

EX, kV
FE, kV

FD}, i.e., the k values for the continuous model, the finite element scheme
and finite difference scheme, respectively. As mentioned above, for ν =

√

1/2 the coefficient
corresponding to the finite element scheme is equal to that of the value corresponding to the
exact k. This suggests that least dispersion will be achieved in the finite element scheme
when ν =

√

1/2. For ν = 1 the coefficient corresponding to the finite difference scheme
is equal to that of the value corresponding to kV

EX. It is known that this is the value of
ν for which finite difference schemes exhibit least dispersion. Further, for ν =

√

2/3 the
coefficient corresponding to the finite element scheme is equal to that of the finite difference
scheme. The dispersion curves are nearly identical for the two schemes when ν =

√

2/3.
The plots of γ2 for these values of ν are displayed in Figure 14.

In Figures 15 and 16 we plot the phase velocity vp (scaled by 1
c ) versus ω∆t for the

finite element scheme with the theta method and the phase error for the FDTD schemes,
respectively.
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Figure 13: Value of the 4th order Taylor coefficient of sin2(k∆z
2 ) for k = {kV

EX, kV
FE, kV

FD}.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
γ2 with ν=1

ω ∆ t

γ2

 

 

EX
FEM
FD

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
γ2 with ν=0.816497

ω ∆ t

γ2

 

 

EX
FEM
FD

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
γ2 with ν=0.707107

ω ∆ t

γ2

 

 

EX
FEM
FD
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Figure 15: Plot of the velocity vp (scaled by 1
c ) versus ω∆t for the finite element scheme in

freespace with ν = {
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1/2, FEM has the velocity closest to one.
Note that for ν <
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Figure 16: Plot of the velocity vp (scaled by 1
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5.0.2 Debye Media

The dispersion relation for the continuous Debye model is given by

kD
EX(ω) =

ω

c

√

ǫDr (ω). (5.15)

where

ǫDr (ω) =
ǫsλ − iω

λ − iω
, (5.16)

is the relative complex permittivity of the Debye medium, λ = 1/τ . To determine the
numerical dispersion relation for the finite element method described as Method 1 in Section
3.2.1 applied to a Debye media, we substitute

Xn
j =





en
j

pn
j

dn
j



 =





ẽ
p̃

d̃



 ei(k∆j∆z−ωn∆t) (5.17)

in the discrete equations (3.13) (with J = 0). We assume again that ǫ∞ = 1. As in the
case of free space, we obtain a homogeneous system of the type AX̃ = 0. We then set
det(A) = 0 to obtain a relation between the numerical wavenumber k∆ and the frequency
ω. Solving for k∆ in this relation, and writing in a form comparable to (5.15), we obtain
the numerical dispersion relation for the FEM1 scheme applied to Debye media to be

k∆ = kD
FE(ω) =

2

∆z
sin−1

[

ω∆

c

∆z

2

√

ǫDr,FE

]

, (5.18)

with the discrete relative complex permittivity given by

ǫDr,FE =
ǫs,∆λ∆ − iω∆

λ∆ − iω∆
, (5.19)

where the discrete medium parameters are

ǫs,∆ =
ǫs

α2β2
(5.20)

λ∆ = λ cos(ω∆t/2)β2α3 (5.21)

ω∆ = ωsωα (5.22)

and

sω =
sin(ω∆t/2)

ω∆t/2
(5.23)

α =

(

2 sin2(ω∆t/2)

3ν2
+ cos2(ω∆t/2)

)−1/2

(5.24)

β =

(

2ǫs sin2(ω∆t/2)

3ν2
+ cos2(ω∆t/2)

)1/2

. (5.25)

To determine the numerical dispersion relation for the finite element scheme described in
Method 2 in Section (3.2.1), we substitute (4.13) in the discrete equations (3.17). Following
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the procedure discussed above we obtain the numerical dispersion relation for the FEM1
scheme applied to Debye media to be

sin2(k∆∆z/2) = α2

(

2 sin(η)i − λ cos(η)ǫs∆t + 1
4h3

τ cos(η)ǫd

2 sin(η)i − λ cos(η)ǫs∆tβ2α2 + 1
6h3

τ cos(η)ǫdα2

)

, (5.26)

where η = ω∆t
2 , ǫd = ǫs − 1 and hτ = ∆t/τ . If we neglect terms in h3

τ , then the expression
(5.26) reduces to (5.18). Thus, for small hτ , both the finite element methods have the same
numerical dispersion relations. From the section on stability analysis we have seen that for
low dissapation htau needs to be about 0.001 for Debye media and 0.01 for Lorentz media.
For these values of hτ both finite element schemes produce the same dispersion graphs.

Both the FEM schemes misrepresent the continuous model parameters λ and ǫs dis-
cretely as λ∆ and ǫs,∆, and misrepresent the frequency ω as ω∆. We note that as ν
increases (ν >

√
ǫs),the product αβ → 1, and ǫs,∆ → ǫs. The discrete parameter λ∆

for the finite element method is a function of the continuous model parameter ǫs via the
quantity β. However, for the regime of interest, namely ω∆t small, and when ν is large
(ν >

√
ǫs), 2ǫs sin2(ω∆t/2)/3ν2 is dominated by cos2(ω∆t/2). Also the product αβ → 1,

α → 1/ cos(ω∆/2) and thus λ∆ → λ. Finally for ω∆t small and ν large, sωα ≈ 1 and
thus ω∆ → ω. Hence, the choice of the Courant number ν is important in maintaining low
dispersion error in the discrete FEM.

We compare the FEM scheme for Debye media with the finite difference scheme pre-
sented in [18] and analyzed in [28] (for the Debye media, this method is again equivalent
to the scheme in [20]). The numerical dispersion relation for this finite difference scheme
applied to Debye media is given to be

k∆ = kD
FD(ω) =

2

∆z
sin−1

[

ω

c
sω

∆z

2

√

ǫDr,FD

]

, (5.27)

ǫDr,FD =
ǫsλ∆ − iω∆

λ∆ − iω∆
. (5.28)

If written in the form of (5.18), this would correspond to the following discrete representa-
tions of the continuous model parameters:

ǫs,∆ = ǫs (5.29)

λ∆ = λ cos(ω∆t/2), (5.30)

and a representation of the frequency by

ω∆ = ωsω. (5.31)

We compare the phase error for the finite element scheme applied to Debye media to phase
error for the finite difference scheme. The phase error is plotted against values of ω∆t in
the range [0, π]. We note that ω∆t = 2π/Nppp, where Nppp is the number of points per
period, and is related to the number of points per wavelength Nppw via

Nppw = νNppp. (5.32)
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Thus, for ν ≤ 1, the number of points per wavelength is always less than or equal to the
number of points per period, and conversely for ν > 1. Note that the number of points per
wavelength in the range [π/4, π] is 8 to 2 points per period. We are more interested in the
range [0, π/4] which involves more than 8 points per period (or equvivalently more than 8
points per wavelength).

To generate the plots below we have used the following values for the medium parame-
ters:

ǫ∞ = 1 (5.33)

ǫs = 78.2 (5.34)

τ = 8.1 × 10−12 sec. (5.35)

Figures 17–19 plot the phase error Φ versus ω∆t for the FEM scheme applied to the
Debye model, with various values of hτ and ν. Figures 20–22 plot the same for the finite
difference method.

Figures 23–25 plot the phase error Φ versus the frequency ω for the FEM scheme applied
to the Debye model, with various values of hτ and ν. Figures 26–28 plot the same for the
finite difference method. In these plots we can see that in the finite element scheme the
phase error reduces as ν increases, even beyond 1.

In Figure 31 plots of the phase error in the two finite element schemes described in
Method 1 and Method 2 in Section 3.2.1 are shown with ν = 1 and hτ = 0.3 (left) and
hτ = 0.1 (right). As can be seen in these plots the phase error in both the schemes is
identical. A slight difference is noticeable in the case hτ = 0.3, however for hτ = 0.1 the
two graphs are identical.

In Figures 32–37 we plot the real and imaginary parts of the relative complex permittiv-
ity for Debye media for the continuous equations (exact values), the finite element scheme
with ν = {

√

1/2, 1, 4}, hτ = {0.1, 0.01}, and finally the finite difference scheme with ν = 1
fixed and hτ = {0.1, 0.01}. For hτ = 0.1, as ν is increased the discrete permittivites of
the finite element scheme approach the exact values. For hτ = 0.01, the agreement of the
discrete permittivities with the exact values is better than with hτ = 0.1, for each value of
ν. For ν = 4 we see the best agreement of the discrete real and imaginary permittivities
with the exact values. This is again seen in the plots of the discrete values of the parameters
λ and ǫs in Figures 39 and 38, respectively. In both these figures we see that the discrete
parameters in the finite element scheme have better agreement with the exact values as
ν is increased and hτ is decreases. However the discrete value of the frequency ω, Figure
40, seems to have a better agreement with the exact value when ν = 1. For the finite
difference scheme, the discrete parameters do not depend on the value of ν. However as hτ

is decreased they agree better with the exact values. For the particular values tested here,
it seems that the value of ν that correctly represents λ will sufficiently model the complex
permittivity.
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Figure 17: Plot of the phase error φ versus ω∆t for the finite element scheme of the Debye
model with ν = {

√

1/2, 1, 4, 16} using hτ = 0.1. (Right plot is zoom of left plot.)
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Figure 18: Plot of the phase error φ versus ω∆t for the finite element scheme of the Debye
model with ν = {

√

1/2, 1, 4, 16} using hτ = 0.01. (Right plot is zoom of left plot.)
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Figure 19: Plot of the phase error φ versus ω∆t for the finite element scheme of the Debye
model with ν = {

√

1/2, 1, 4, 16} using hτ = 0.001. (Right plot is zoom of left plot.)
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Figure 20: Plot of the phase error φ versus ω∆t for the finite difference scheme of the Debye
model with ν = {1,

√

2/3,
√

1/2, .6} using hτ = 0.1. (Right plot is zoom of left plot.)
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Figure 21: Plot of the phase error φ versus ω∆t for the finite difference scheme of the Debye
model with ν = {1,

√

2/3,
√

1/2, .6} using hτ = 0.01. (Right plot is zoom of left plot.)
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Figure 22: Plot of the phase error φ versus ω∆t for the finite difference scheme of the Debye
model with ν = {1,

√

2/3,
√

1/2, .6} using hτ = 0.001. (Right plot is zoom of left plot.)

32



0 0.5 1 1.5 2

x 10
11

0.05

0.1

0.15

Debye dispersion for FEM with hτ=0.1

ω

Φ

 

 

ω τ < 1 ω τ > 1
ν=√1/2
ν=1
ν=4
ν=16

0 0.5 1 1.5 2

x 10
11

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Debye dispersion for FEM with hτ=0.1

ω

Φ

 

 

ω τ < 1 ω τ > 1

ν=√1/2
ν=1
ν=4
ν=16

Figure 23: Plot of the phase error φ versus ω for the finite element scheme of the Debye
model with hτ = 0.1 using ν = {

√

1/2, 1, 4, 16}. (Right plot is log of left plot.)
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Figure 24: Plot of the phase error φ versus ω for the finite element scheme of the Debye
model with hτ = 0.01 using ν = {

√

1/2, 1, 4, 16}. (Right plot is log of left plot.)
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Figure 25: Plot of the phase error φ versus ω for the finite element scheme of the Debye
model with hτ = 0.001 using ν = {

√

1/2, 1, 4, 16}. (Right plot is log of left plot.)
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Figure 26: Plot of the phase error φ versus ω for the finite difference scheme of the Debye
model with hτ = 0.1 using ν = {0.6,
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1/2,
√

2/3, 1}. (Right plot is log of left plot.)
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Figure 27: Plot of the phase error φ versus ω for the finite difference scheme of the Debye
model with hτ = 0.01 using ν = {0.6,

√

1/2,
√

2/3, 1}. (Right plot is log of left plot.)
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Figure 28: Plot of the phase error φ versus ω for the finite difference scheme of the Debye
model with hτ = 0.001 using ν = {0.6,

√

1/2,
√

2/3, 1}. (Right plot is log of left plot.)
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Figure 29: Plot of the phase error φ versus ω for the finite element scheme of the Debye
model with ν = 1 using hτ = {0.1, 0.01, 0.001}. (Right plot is log of left plot.)
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Figure 30: Plot of the phase error φ versus ω for the finite difference scheme of the Debye
model with ν = 1 using hτ = {0.1, 0.01, 0.001}. (Right plot is log of left plot.)
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Figure 31: Comparison of the phase error in the two finite element schemes with ν = 1 and
hτ = 0.3 (left) and hτ = 0.1 (right).
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Figure 32: Plots of the real and imaginary parts of the relative complex permittivity for
Debye media for the continuous equations, the finite element scheme with ν =

√

1/2, hτ =
0.1 and the finite difference scheme with ν = 1, hτ = 0.1.
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Figure 33: Plots of the real and imaginary parts of the relative complex permittivity for
Debye media for the continuous equations, the finite element scheme with ν =

√

1/2, hτ =
0.01 and the finite difference scheme with ν = 1, hτ = 0.01.
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Figure 34: Plots of the real and imaginary parts of the relative complex permittivity for
Debye media for the continuous equations, the finite element scheme with ν = 1, hτ = 0.1
and the finite difference scheme with ν = 1, hτ = 0.1.
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Figure 35: Plots of the real and imaginary parts of the relative complex permittivity for
Debye media for the continuous equations, the finite element scheme with ν = 1, hτ = 0.01
and the finite difference scheme with ν = 1, hτ = 0.01.

39



0 1 2 3 4 5 6 7 8 9 10

x 10
11

0

10

20

30

40

50

60

70

80

ω

R
el

at
iv

e 
P

er
m

itt
iv

ity
 (

re
al

 a
nd

 im
ag

in
ar

y)

Debye with hτ = 0.1, ν = 4

 

 
Exact (real)
Exact (imag)
FEM (real)
FEM (imag)
FD (real)
FD (imag)

Figure 36: Plots of the real and imaginary parts of the relative complex permittivity for
Debye media for the continuous equations, the finite element scheme with ν = 4, hτ = 0.1
and the finite difference scheme with ν = 1, hτ = 0.1.
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Figure 37: Plots of the real and imaginary parts of the relative complex permittivity for
Debye media for the continuous equations, the finite element scheme with ν = 4, hτ = 0.01
and the finite difference scheme with ν = 1, hτ = 0.01.
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Figure 38: Plots of ǫs for Debye media for the continuous equations, the finite element
scheme and the finite difference scheme (ν = 1) with hτ = 0.1 (left) and hτ = 0.01 (right).
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Figure 39: Plots of λ for Debye media for the continuous equations, the finite element
scheme and the finite difference scheme (ν = 1) with hτ = 0.1 (left) and hτ = 0.01 (right).
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Figure 40: Plots of the frequency ω for Debye media for the continuous equations, the finite
element scheme and the finite difference scheme (ν = 1) with hτ = 0.1 (left) and hτ = 0.01
(right).

5.0.3 Lorentz Media

The dispersion relation for the continuous Lorentz model is given by

kL
EX(ω) =

ω

c

√

ǫLr (ω). (5.36)

where the relative complex permittivity for Lorentz media is given to be

ǫLr (ω) =
ω2 − ǫsω

2
0 + iλω

ω2 − ω2
0 + iλω

, (5.37)

To determine the numerical dispersion relation for the finite element method applied to a
Lorentz medium we substitute

Xn
j =









en
j

pn
j

dn
j

qn
j









=









ẽ
p̃

d̃
q̃









ei(k∆j∆z−ωn∆t) (5.38)

into the discrete equations (3.19),(3.20) and (3.21). Again, we asssume that ǫ∞ = 1 in the
following analysis.

As before we obtain a homogeneous system of the type AX̃ = 0. We then set det(A) = 0
to obtain a relation between the numerical wavenumber k∆ and the frequency ω. Solving for
k∆ in this relation, and writing in a form comparable to (5.36), we have that the numerical
dispersion relation for the FEM scheme applied to Lorentz media is

k∆ = kL
FE(ω) =

2

∆z
sin−1

[

ω∆

c

∆z

2

√

ǫLr,FE

]

, (5.39)
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where the discrete relative complex permittivity is given to be

ǫLr,FE =
ω2

∆ − ǫs,∆ω2
0,∆ + iλ∆ω∆

ω2
∆ − ω2

0,∆ + iλ∆ω∆
. (5.40)

Here

ǫs,∆ =
ǫs

α2β2
(5.41)

λ∆ = λ cos(ω∆t/2)α (5.42)

ω0,∆ = ω0 cos(ω∆t/2)βα2 (5.43)

ω∆ = ωsωα, (5.44)

where sω, α, β are as defined in equations (5.23)–(5.25). Thus, the FEM scheme misrepre-
sents ǫs, λ, ω0 and ω as ǫs,∆, λ∆, ω0,∆ and ω∆ respectively. In particular, note that for the
finite element method applied to the Lorentz model, λ∆ does not depend on the continuous
model parameter ǫs, however, ω0,∆ does. In the Debye model, λ∆ depended on β2 whereas
for the Lorentz model, ω0,∆ depends directly on β. However, the discrete parameter appears
as ω2

0,∆ in the dispersion relation, so the contribution from β is again raised to the second
power. This coupled with the fact that the regime of interest is ω∆t small, means that
again the effect of ǫs on the dispersion caused by the ω0,∆ term is likely to be small.

We compare the FEM scheme for Lorentz media with two different finite difference
schemes which have been analyzed in [28]. For the scheme in [18], which we will refer to as
the JHT scheme, the numerical dispersion relation is given as

k∆ = kL
JHT(ω) =

2

∆z
sin−1

[

ω

c

∆z

2
sω

√

ǫLr,JHT

]

, (5.45)

where the discrete relative complex permittivity for the JHT scheme is

ǫLr,JHT =
ω2

∆ − ǫs,∆ω2
0,∆ + iλ∆ω∆

ω2
∆ − ω2

0,∆ + iλ∆ω∆
. (5.46)

Here the discrete representations of the continuous model parameters and the frequency are
given as

ǫs,∆ = ǫs (5.47)

λ∆ = λ
s̃ω

sω
(5.48)

ω0,∆ = ω0

√

cos(ω∆t) (5.49)

ω∆ = ωsω, (5.50)

where s̃ω =
sin(ω∆t)

ω∆t
.

The second finite difference scheme is presented in [19] and will be refered to as the KF
scheme. The numerical dispersion relation for this scheme is given by

kL
KF(ω) =

2

∆z
sin−1

[

ω

c

∆z

2
sω

√

ǫLr,KF

]

, (5.51)
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where the discrete relative complex permittivity for the KF scheme is

ǫLr,KF =
ω2

∆ − ǫs,∆ω2
0,∆ + iλ∆ω∆

ω2
∆ − ω2

0,∆ + iλ∆ω∆
. (5.52)

The discrete representations of the continuous model parameters and the frequency are
given to be

ǫs,∆ = ǫs (5.53)

λ∆ = λ cos(ω∆t/2) (5.54)

ω0,∆ = ω0 cos(ω∆t/2) (5.55)

ω∆ = ωsω. (5.56)

We now plot the phase error Φ as defined in (5.10) for the finite element scheme applied
to Lorentz media and we compare it with the phase errors for the JHT and the KF finite
difference schemes. The phase error is plotted against values of ω∆t in the range [0, π]. We
note that ω∆t = 2π/Nppp, where Nppp is the number of points per period and is related to
the number of points per wavelength Nppw via

Nppw = νNppp. (5.57)

To generate the plots below we have used the following values for the medium parame-
ters:

ǫ∞ = 1 (5.58)

ǫs = 2.25 (5.59)

τ = 1.786 × 10−16 sec (5.60)

ω0 = 4 × 1016 rad/sec. (5.61)

Figures 41–43 plot the phase error Φ versus ω∆t for the FEM scheme applied to the
Lorentz model, with various values of h0 and ν. Figures 44–49 plot the same for the finite
difference methods. Figures 50–52 plot the phase error Φ versus ω for the FEM scheme
applied to the Lorentz model, with various values of h0 and ν. Figures 53–58 plot the same
for the finite difference methods. Note that the dispersion for the finite element method
reduces as ν goes to 1 for all values of h0.

Figure 59 shows the effect of varying hτ on the finite element scheme for ν = 1. Figures
60 and 61 demonstrate this effect for the JHT and KF finite difference methods, respectively.

In Figures 62–67 we plot the real and imaginary parts of the relative complex permittiv-
ity for Lorentz media for the continuous equations (exact values), the finite element scheme
with ν = {

√

1/2, 1, 4}, h0 = {0.1, 0.01}, and finally the finite difference scheme with ν = 1
fixed and h0 = {0.1, 0.01}. For h0 = 0.1, as ν is increased, the discrete permittivites of the
finite element scheme approach those of the finite difference method. However, for ν = 1
it seems that the finite element approximation is actually better. For h0 = 0.01, the agree-
ment of the discrete permittivities with the exact values is better than with h0 = 0.1, for
each value of ν. For ν = 1 we see the best agreement of the discrete real and imaginary
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Figure 41: Plot of the phase error φ versus ω∆t for the finite element scheme of the Lorentz
model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.1. (Right plot is zoom of left plot.)
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Figure 42: Plot of the phase error φ versus ω∆t for the finite element scheme of the Lorentz
model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.01. (Right plot is zoom of left plot.)

permittivities with the exact values, regardless of h0. This is not seen in the plots of the
discrete values of the parameters λ, ǫs and ω0 in Figures 69, 68 and 70, respectively. In
these figures we see that the discrete parameters in the finite element scheme have better
agreement with the exact values as ν is increased, even beyond 1. However the discrete
value of the frequency ω, Figure 71, seems to have a better agreement with the exact value
when ν = 1. As the discrete complex permittivity matches the exact more closely when
ν = 1, we conclude that for the Lorentz model, the value of ν that correctly represents
ω will sufficiently model the complex permittivity. For the finite difference scheme, the
discrete parameters do not depend on the value of ν. However, as with the finite element
method, if h0 is decreased they agree better with the exact values.
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Figure 43: Plot of the phase error φ versus ω∆t for the finite element scheme of the Lorentz
model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.001. (Right plot is zoom of left plot.)
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Figure 44: Plot of the phase error φ versus ω∆t for the JHT finite difference scheme of the
Lorentz model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.1. (Right plot is zoom of left
plot.)
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Figure 45: Plot of the phase error φ versus ω∆t for the JHT finite difference scheme of the
Lorentz model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.01. (Right plot is zoom of left
plot.)
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Figure 46: Plot of the phase error φ versus ω∆t for the JHT finite difference scheme of the
Lorentz model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.001. (Right plot is zoom of left
plot.)
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Figure 47: Plot of the phase error φ versus ω∆t for the KF finite difference scheme of the
Lorentz model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.1. (Right plot is zoom of left
plot.)
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Figure 48: Plot of the phase error φ versus ω∆t for the KF finite difference scheme of the
Lorentz model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.01. (Right plot is zoom of left
plot.)
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Figure 49: Plot of the phase error φ versus ω∆t for the KF finite difference scheme of the
Lorentz model with ν = {1,
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2/3,
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1/2, .6} using h0 = 0.001. (Right plot is zoom of left
plot.)
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Figure 50: Plot of the phase error φ versus ω for the finite element scheme of the Lorentz
model with ν = {1,
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1/2, .6} using h0 = 0.1. (Right plot is zoom of left plot.)
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Figure 51: Plot of the phase error φ versus ω for the finite element scheme of the Lorentz
model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.01. (Right plot is zoom of left plot.)
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Figure 52: Plot of the phase error φ versus ω for the finite element scheme of the Lorentz
model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.001. (Right plot is zoom of left plot.)
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Figure 53: Plot of the phase error φ versus ω for the JHT finite difference scheme of the
Lorentz model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.1. (Right plot is zoom of left
plot.)
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Figure 54: Plot of the phase error φ versus ω for the JHT finite difference scheme of the
Lorentz model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.01. (Right plot is zoom of left
plot.)
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Figure 55: Plot of the phase error φ versus ω for the JHT finite difference scheme of the
Lorentz model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.001. (Right plot is zoom of left
plot.)
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Figure 56: Plot of the phase error φ versus ω for the KF finite difference scheme of the
Lorentz model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.1. (Right plot is zoom of left
plot.)
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Figure 57: Plot of the phase error φ versus ω for the KF finite difference scheme of the
Lorentz model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.01. (Right plot is zoom of left
plot.)
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Figure 58: Plot of the phase error φ versus ω for the KF finite difference scheme of the
Lorentz model with ν = {1,

√

2/3,
√

1/2, .6} using h0 = 0.001. (Right plot is zoom of left
plot.)
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Figure 59: Plot of the log of the phase error φ versus ω for the finite element scheme of the
Lorentz model with ν = 1 using h0 = {0.1, 0.01, 0.001}. (Right plot is zoom of left plot.)
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Figure 60: Plot of the log of the phase error φ versus ω for the JHT finite difference scheme
of the Lorentz model with ν = 1 using h0 = {0.1, 0.01, 0.001}. (Right plot is zoom of left
plot.)
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Figure 61: Plot of the log of the phase error φ versus ω for the KF finite difference scheme
of the Lorentz model with ν = 1 using h0 = {0.1, 0.01, 0.001}. (Right plot is zoom of left
plot.)
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Figure 62: Plots of the real and imaginary parts of the relative complex permittivity for
Lorentz media for the continuous equations, the finite element scheme with ν =

√

1/2, h0 =
0.1 and the KF finite difference scheme with ν = 1, h0 = 0.1.
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Figure 63: Plots of the real and imaginary parts of the relative complex permittivity for
Lorentz media for the continuous equations, the finite element scheme with ν =

√

1/2, h0 =
0.01 and the KF finite difference scheme with ν = 1, h0 = 0.01.
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Figure 64: Plots of the real and imaginary parts of the relative complex permittivity for
Lorentz media for the continuous equations, the finite element scheme with ν = 1, h0 = 0.1
and the KF finite difference scheme with ν = 1, h0 = 0.1.
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Figure 65: Plots of the real and imaginary parts of the relative complex permittivity for
Lorentz media for the continuous equations, the finite element scheme with ν = 1, h0 = 0.01
and the KF finite difference scheme with ν = 1, h0 = 0.01.
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Figure 66: Plots of the real and imaginary parts of the relative complex permittivity for
Lorentz media for the continuous equations, the finite element scheme with ν = 4, h0 = 0.1
and the KF finite difference scheme with ν = 1, h0 = 0.1.
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Figure 67: Plots of the real and imaginary parts of the relative complex permittivity for
Lorentz media for the continuous equations, the finite element scheme with ν = 4, h0 = 0.01
and the KF finite difference scheme with ν = 1, h0 = 0.01.
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Figure 68: Plots of ǫs for Lorentz media for the continuous equations, the finite element
scheme and the KF finite difference scheme (ν = 1) with h0 = 0.1 (left) and h0 = 0.01
(right).
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Figure 69: Plots of λ for Lorentz media for the continuous equations, the finite element
scheme and the KF finite difference scheme (ν = 1) with h0 = 0.1 (left) and h0 = 0.01
(right).
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Figure 70: Plots of the resonant frequency ω0 for Lorentz media for the continuous equations,
the finite element scheme and the KF finite difference scheme (ν = 1) with h0 = 0.1 (left)
and h0 = 0.01 (right).
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Figure 71: Plots of the frequency ω for Lorentz media for the continuous equations, the
finite element scheme and the KF finite difference scheme (ν = 1) with h0 = 0.1 (left) and
h0 = 0.01 (right).
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Figure 72: The interrogating signal when the frequency is 10 GHz.

6 Numerical Simulations

To verify the observations drawn from the stability and dispersion analyses in the previous
sections, we examine simulations of several sample problems, which use either the Debye
polarization model or the Lorentz model. In each case we will successively reduce the value
of hτ , and hence the time step, holding all other parameters fixed, until convergence is
achieved.

6.1 Debye Simulations

In our first numerical calculation we simulate the propagation of 12 cycles of a truncated
sine wave with carrier frequency at 10 GHz (1 × 1010 Hz), plotted in Figure 72, which
is normally incident on a Debye medium from a vacuum. The medium is defined by the
parameters given in Section 4.2, namely ǫs = 78.2, ǫ∞ = 1, and τ = 8.1 × 10−12 seconds.
We performed simulations with the finite element scheme using ν = 4, as the dispersion
analysis demonstrated that for this value of ν we obtained the least phase error in the
regime that is of interest in this simulation. A time trace of the electric field at a depth of
15 mm was recorded. Figure 73 shows the solutions for three different values of hτ . The
traces for hτ = 0.16 and hτ = 0.08 appear to be identical at this scale. However, Figure
74, which displays a closer view of the central portion of the signal, demonstrates that true
convergence has not been reached. Figure 75 displays plots of one of the peaks from the
central portion of the signal with smaller hτ values. From this plot we can see that at most
hτ = 0.01 (i.e., at least 100 points per τ) is necessary for convergence on this small scale.
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Figure 73: Time trace of the electric field at a depth of 15 mm into a Debye medium
(frequency is 10 GHz) computed using the finite element scheme, for three different values
of hτ .

We note that while this frequency is “relatively” small (i.e., ωτ = 0.5089 < 1), and
therefore the corresponding points per wavelength is large in this example (ppw = 873),
however this high resolution of the wavelength is not the reason that the value of hτ = 0.01
is required. In fact, for a “relatively” high frequency of 100 GHz (i.e., ωτ = 5.089 > 1,
ppw = 87.3), we have essentially the same restriction. Figure 72 plots the interrogating
signal when the frequency is 100 GHz. Figure 77 shows the solutions for three different
values of hτ . Again, the curves corresponding to the smaller two values appear identical.
However, Figure 78 shows that at most hτ = 0.01 is necessary for convergence on this
small scale. In this example, the points per τ are on the same order of magnitude as the
points per wavelength. Any further increase in frequency would result in the period of the
interrogating signal, T , being much less than the relaxation time, and therefore chosing
hτ = 0.01 would not guarantee that the smallest time scale in the problem is resolved.

These examples verify the guideline of at least 100 points per relaxation time, when τ
is the smallest time scale to be resolved. This agrees with FDTD results from [28], in that
to ensure minimal dispersion and dissapation error, hτ should be less than 0.01, preferably
O(10−3). As the same number of time steps are required for both the finite element method
and the finite difference method, the fact that the finite element method used here requires
a linear solve at each time step is an issue. However, both of the above simulations for
interrogating a Debye material using hτ = 0.01 took less than 300 seconds on a 3.8 GHz
speed processor. The case when hτ = 0.16 takes only .3 seconds. In order to compare
the stability and phase errors between the finite element method and the finite difference
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Figure 74: Closer view of the center of the time trace of the electric field at a depth of 15
mm into a Debye medium (frequency is 10 GHz), for three smaller values of hτ .

method, we first determine that hτ = 0.04 requires 0.3 seconds and hτ = 0.0015 requires
280 seconds. Figure 79 compares the stability and phase errors of the finite element method
and the finite difference method for the parameter set that resulted in a 0.3 second runtime.
Figure 80 displays the same comparisons for the 280 second runtime case. The finite element
method has the lesser dispersion error only for the low frequency and low resolution case.
However, the stability results and phase errors for the other cases are all on the same order
of magnitude as the finite difference method.
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Figure 75: Magnified view of the time trace of the electric field at a depth of 15 mm into a
Debye medium (frequency is 10 GHz). Convergence on this scale is achieved at hτ = 0.01.
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Figure 76: The interrogating signal when the frequency is 100 GHz.
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Figure 77: Time trace of the electric field at a depth of 15 mm into a Debye medium
(frequency is 100 GHz) computed using the finite element scheme, for three different values
of hτ .
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Figure 78: Magnified view of the time trace of the electric field at a depth of 15 mm into a
Debye medium (frequency is 100 GHz). Convergence on this scale is achieved at hτ = 0.01.

65



0 5000 10000 15000
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05
Debye stability comparison (runtime 0.3 s)

k

m
ax

 |ζ
|

 

 

FEM ν=4, hτ=0.16

FD ν=1, hτ=0.04

0 1 2 3 4 5 6 7 8

x 10
11

0

0.01

0.02

0.03

0.04

0.05

0.06

f=1e+10 Hz f=1e+11 Hz

Debye dispersion comparison (runtime 0.3 s)

ω

Φ

 

 

FEM hτ=0.16, ν=4

FD hτ=0.04, ν=1

Figure 79: The stability and phase errors of the finite element method and the finite differ-
ence method applied to the Debye model for the parameter set that resulted in a 0.3 second
runtime.
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Figure 80: The stability and phase errors of the finite element method and the finite dif-
ference method applied to the Debye model for the parameter set that resulted in a 280
second runtime.
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Figure 81: The interrogating signal when the frequency is 1.5 PHz.

6.2 Lorentz Simulations

For interrogation of a Lorentz medium, we simulate the propagation of 12 cycles of a
truncated sine wave with carrier frequency at 1.5 PHz (1.5 × 1015 Hz), plotted in Figure
81, which is normally incident on the medium from a vacuum. The medium is defined by
the parameters given in Section 4.3, namely ǫs = 2.25, ǫ∞ = 1, τ = 1.786 × 10−16, and
ω0 = 4 × 1016. We performed simulations with the finite element scheme using ν = 1. A
time trace of the electric field at a depth of 0.01 mm was recorded. Figure 82 shows the
solutions for three different values of hτ . The traces for h0 = 0.16 and h0 = 0.08 appear to
be identical at this scale. However, Figure 83, which displays a closer view of the central
portion of the signal, demonstrates that true convergence has not been reached. Figure 84
displays plots of one of the peaks from the central portion of the signal with smaller h0

values. From this plot we can see that at most h0 = 0.02 (i.e., at least 50 points per ω0) is
necessary for convergence on this small scale.

The required value of h0 < 0.02 is in line with the suggested range of O(10−2). This
also agrees with FDTD results from [28].

As we have simulated propagation deeper (w.r.t wavelengths) into the material in this
case as compared with the Debye simulations above (6600 spatial steps, i.e. 50 wavelengths
into the material versus 437 spatial steps or 0.5 wavelength for the Debye medium), our
computational time is appropriately longer. For h0 = 0.02, the runtime was greater than
10 minutes on a 3.8 GHz speed processor.

Again, the finite element method used here requires a linear solve at each time step as
opposed to both finite difference methods. Thus, in order to compare the stability plots
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Figure 82: Time trace of the electric field at a depth of 0.01 mm into a Lorentz medium
computed using the finite element scheme, for three different values of h0.

and phase errors of the finite element method to the finite difference method (here, the
KF scheme), we first determine the value of h0 in the KF scheme which gives runtimes
comparable to those of the cases with h0 = 0.16 and h0 = 0.02 when used in the finite
element method. The runtimes are 10 seconds and 780 seconds, respectively, and the
corresponding h0 values are 0.03 and 0.0038 on a 3.8 GHz speed processor. Figure 85
compares the stability and phase errors of the finite element method and the finite difference
method for the parameter set that resulted in a 10 second runtime. Figure 86 displays the
same comparisons for the 780 second runtime case. Similar to the Debye case, the stability
results and phase errors are all on the same order of magnitude as in the finite difference
method.

68



5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95 6

x 10
−5

−3

−2

−1

0

1

2

3

t (ns)

el
ec

tr
ic

 fi
el

d 
(v

ol
ts

/m
et

er
)

FEM on Lorentz with ν=1

 

 
h

0
=0.32

h
0
=0.16

h
0
=0.08

Figure 83: Closer view of the center of the time trace of the electric field at a depth of 0.01
mm into a Lorentz medium, for three smaller values of h0.
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Figure 84: Magnified view of the time trace of the electric field at a depth of 0.01 mm into
a Lorentz medium. Convergence on this scale is achieved at hτ = 0.02.
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Figure 85: The stability and phase errors of the finite element method and the finite dif-
ference method applied to the Lorentz model for the parameter set that resulted in a 10
second runtime.
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second runtime.
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7 Conclusions

From the stability and dispersion analysis as well as the simulations shown in the paper, we
can conclude that the artificial dissipation in the finite element schemes presented here for
Debye and Lorentz media are strongly dependent on the quantity hτ when τ is the smallest
time scale. For Lorentz media, in addition, the quantity h0 may be the dominant quantity
if T0 = 2π/ω0 is smaller than τ . We see that hτ or h0 have to be sufficiently small so that
not much energy is lost after the large amount of timesteps usually needed to propagate
short pulses any appreciable distance into a medium. For Debye media hτ is recommended
to be at least 100 points per τ , preferably hτ = O(10−3). For Lorentz media we recommend
either h0 or hτ to be O(10−2) in order to minimize dissipation. These results agree with
the guidelines posed in [28] for FDTD schemes.

From the dispersion analysis for the finite element schemes we see that the value of ν
to be chosen should be the one that provides the best agreement of the discrete relative
complex permittivity with the exact complex permittivity, i.e. the value that has the least
phase error for the regime of interest. The unconditional stability of the finite element
scheme allows the user to have some freedom in the choice of ν. For the Debye model, the
value of ν that best represents λ should sufficiently model the complex permittivity. For
the Lorentz model, the value of ν that correctly represents ω should be chosen.
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