
Analysis of State-Independent
Importance-Sampling Measures for the
Two-Node Tandem Queue

PIETER-TJERK DE BOER
University of Twente

We investigate the simulation of overflow of the total population of a Markovian two-node tandem
queue model during a busy cycle, using importance sampling with a state-independent change of
measure. We show that the only such change of measure that may possibly result in asymptoti-
cally efficient simulation for large overflow levels, is exchanging the arrival rate with the smallest
service rate. For this change of measure, we classify the model’s parameter space into regions of
asymptotic efficiency, exponential growth of the relative error, and infinite variance, using both
analytical and numerical techniques.
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1. INTRODUCTION

Since the end of the 1980s, there has been a steady interest in the problem
of estimating rare event probabilities in queueing models, particularly in net-
works of queues. This interest derives mainly from applications in the field of
telecommunications, where buffers in routers and switches should be dimen-
sioned so that overflow is a rare event.

One rare-event simulation method that has received much attention, is im-
portance sampling (IS). In this method, the target event is artificially made
less rare by changing the probability distributions (also called change of mea-
sure or tilting) in the model; this is compensated for by keeping track of the
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so-called likelihood ratio. This method can give very large simulation speedup,
but the difficulty is finding an appropriate change of measure.

A landmark paper on importance sampling for queueing models is [Parekh
and Walrand 1989], in which a rather simple change of measure is proposed
for estimating probabilities of overflow in a single queue and of overflow of the
total population in networks of queues. For an M

�
M
�
1 queue, the method boils

down to exchanging the arrival rate and the service rate; for such queues in
tandem, the arrival rate is exchanged with the rate of the bottleneck server.
This change of measure is derived using heuristics based on large-deviations
theory. Experimentally, it was shown that the method works well for a single
queue, but also that for networks its performance is less consistent, depending
strongly on the particular arrival and service rates. Henceforth, this change of
measure will be referred to as P&W.

[Sadowsky 1991] proves that the approach from [Parekh and Walrand 1989]
is indeed asymptotically efficient for single GI

�
GI
�
1 queues. Asymptotic ef-

ficiency means that while the rare event probability decreases exponentially
with increasing overflow level, the amount of simulation effort needed for a
given relative error (standard deviation divided by the mean) increases less
than exponentially with the overflow level.

A less positive result was given in [Glasserman and Kou 1995], where it
is shown that for a relatively simple network, namely two (or more) Marko-
vian queues in tandem, the P&W method may or may not be asymptotically
efficient. For part of the parameter space (arrival and service rates) a proof
was given that the resulting simulation is asymptotically efficient. For an-
other part of the parameter space, a proof was given that the simulation is not
asymptotically efficient. The remaining part of the parameter space was left
undecided.

The P&W change of measure is state-independent. This means that the
change of measure is a simple change of the arrival and service rates in a
way that does not depend on the actual state of the model (e.g., the number
of customers in the queues). Use of a state-dependent change of measure (i.e.,
allowing the rates to depend on the numbers of customers in the queue) can
produce asymptotic efficiency even in cases where it has been shown that the
P&W change of measure is not asymptotically efficient, as demonstrated in
[de Boer 2000] and [de Boer and Nicola 2002]. Related approaches are given
in [Kollman et al. 1999] and [Ahamed et al. 2006], both of which explicitly try
to approximate the change of measure that theoretically gives a zero-variance
estimator (which is state-dependent). However, the gain from using a state-
dependent change of measure comes at a significant increase in complexity;
this extra complexity is mainly due to the large state space of typical models of
interest, and becomes even worse when non-Markovian models are considered
[de Boer 2005].

So on the one hand, we have P&W’s state-independent tilting, which in sev-
eral cases does not work well; on the other hand, we have the state-dependent
tilting which works well even in those cases, but is much more complex. There-
fore, even though state-dependent methods are known, it is of interest to bet-
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ter understand the exact limitations of state-independent methods. A natu-
ral question is whether other state-independent tiltings than P&W could be
asymptotically efficient. The fact that P&W is derived on the basis of large-
deviations theory, and the fact that an adaptive approach to finding a state-
independent tilting fails to result in asymptotic efficiency in some cases (see
Section 7.4.4 in [de Boer 2000]), suggest that this might not be the case, but
does not constitute a proof.

In Section 3 of this article, we will show that indeed P&W is the only state-
independent tilting that can possibly be asymptotically efficient for the two-
node tandem queue model. (Whether this result is also true for more general
models, is an interesting open question.)

As it turns out, the approach used for this proof can also be used to fur-
ther analyze the behavior of P&W tilting for the two-node tandem queue. This
allows us to pinpoint in Section 4 a larger region in which P&W is not asymp-
totically efficient than was previously known, and to prove in Section 5 that in
part of this region P&W leads to infinite variance.

Finally, for completeness, Section 6 gives an extension of the region in which
P&W is asymptotically efficient using a modification of the proof from [Glasser-
man and Kou 1995], and in Section 7 the performance of P&W tilting is studied
numerically.

Clearly, the rest of this article is devoted to estimating one particular over-
flow probability of just about the simplest nontrivial queueing network. Sim-
ulating this particular network by itself is not very interesting. However, the
problems that arise when applying P&W to this simple network will presum-
ably also occur in more complicated models. So better simulation techniques
will need to be developed, and for doing so, a thorough understanding of the
simplest case is helpful. This is discussed in more detail in the concluding
Section 8.

2. PRELIMINARIES

2.1 The Model

This article deals with two M
�
M
�
1 queues in tandem. Customers arrive to the

first queue according to a Poisson process with rate � . The service time in the
first server is exponentially distributed with rate � . After service completion at
the first queue, the customers enter the second queue, the service time of which
is exponentially distributed with rate � . (Note that this notation is slightly
different from [Glasserman and Kou 1995]: their � 1 and � 2 are written here as� and � .) The (rare-event) probability we are interested in is the probability of
reaching a state in which the total population of the two queues is K, starting
from a state in which there is one customer in the first queue and zero in the
second queue, and before the total system becomes empty again. Note that
this starting state is equivalent to starting from the completely empty system,
since there is only one way to leave the empty state.

We limit the study to cases where both queues are stable, that is, ����� and���	� ; otherwise, the overflow event would not be rare. Furthermore, we limit
ourselves to the case where the second server is the bottleneck, i.e., ��
�� .
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Fig. 1. Transition probabilities for
two queues in tandem, illustrated for
K 
 6.
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As noted in [Glasserman and Kou 1995], this is no essential loss of generality.
Still, Section 7 also gives numerical results for the case where the first server
is the bottleneck.

Since all distributions involved in the model are exponential, and we are not
interested in times, we simplify the model to a discrete-time Markov chain.
Obvious variables to label the states are n1 and n2, denoting the number of
customers in the first and second queues, respectively (including the customers
in service). We will also use another set of labels, i and j, defined as i � n1 � n2
and j � n1, because the total population (now i) plays a more important role in
the further calculations than the populations of the individual queues.

The resulting Markov chain is illustrated in Figure 1, which also shows the
transition probabilities. We have chosen � � � � ��� 1, without loss of general-
ity; thus the transition probabilities are simply � , � , and � in any state in the
interior (i.e. where both n1 
 0 and n2 
 0).

2.2 Importance Sampling Simulation

Importance sampling simulation involves changing the underlying probability
distributions of the model; this is called a change of measure or simply tilting.
In the case of a discrete-time Markov chain, this is usually done by changing
the transition probabilities. In the present article, only tiltings of the following
simple form are considered: replace every � by ��� , every � by ��� , and every� by ��� , for any positive ��� , ��� , and ��� with ��� � ��� � ��� � 1. As noted in the
introduction, such a tilting is called state-independent, since the replacement
rates are the same for every state.

Consider a sample path X of this system, represented by the sequence of
states it visits: X �"! Z1 # Z2 #%$%$&$'# Z (*) , with Z1 � (1 # 0) and stopping time +	�
min(t ,Zt � (0 # 0) - Zt . S) with S �/! (n1 # n2) , n1 � n2 � K ) . Furthermore, define
ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.
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the overflow indicator I(X) � 1Z 021 S, and the likelihood ratio

L(X) � (43 15
i 6 1

qZi 7 Zi 8 1

q �Zi 7 Zi 8 1

#
where q 9:9:9 and q � 9:9:9 are the transition probabilities in the original and the
tilted system, respectively. Then the overflow probability pK equals pK �;�<

I(X)L(X), where
;�<

denotes expectation in the tilted system. Using sim-
ulation to generate N sample paths X i in the tilted system, the overflow prob-
ability can be estimated by the sample average p̂K �>= N

n 6 1 I(Xn)L(Xn)
�
N.

(See [Heidelberger 1995] for more details.)
The goal of importance sampling simulation is to make the event of inter-

est less rare, in such a way that its probability can be estimated with a small
variance. Typically, one strives for asymptotic efficiency, meaning in practice
that although the overflow probability decreases exponentially in the overflow
level K, the amount of simulation effort needed to estimate it with a constant
relative error (i.e., the estimator’s standard deviation divided by its mean) in-
creases less than exponentially fast in K. Conversely, for a given number of
replications, the relative error increases less than exponentially fast in K.

Define mK as the second moment of the importance sampling estimator:
mK � ; <

I2(X)L2(X) � ;
I(X)L(X). Then the estimator’s relative error is given

by ? mK @ p2
K A pK B N, where N is the number of replications. The estimator is

asymptotically efficient if [Glasserman and Kou 1995]

lim sup
K 7DC log mK

log pK
� 2 $

That same article also provides the following limit: limK 7DC 1
K log pK � log EF $

Combining these leads to the following criterion for asymptotic efficiency:

lim
K 7DC 1

K
log mK � 2 log

�� $ (1)

2.3 Basic Equations for the Second Moment

Define yi G j to be the expectation of the second moment of the estimator in the
tilted system, starting from state n1 � n2 � i, n1 � j. Clearly then mK � y1 G 1.
Note the difference: mK emphasizes the dependence on the overflow level K
and presumes starting from state i � 1 # j � 1, while yi G j emphasizes the start-
ing state and implicitly assumes the overflow level K. For brevity, we write
bold y for the vector containing yi G j for all i, j.

Next, define y(m)
i G j as the contribution to yi G j made by sample paths of at most

m steps. Consider a state on the “left” boundary, that is, a state with j � 0. By
conditioning on the next step of the sample path, one easily finds that

y(m)
i G 0 � q(i G 0) 7 (i H 1 G 1)

q(i G 0) 7 (i H 1 G 1)

q �(i G 0) 7 (i H 1 G 1)

y(m 3 1)
i H 1 G 1 � q(i G 0) 7 (i 3 1 G 0)

q(i G 0) 7 (i 3 1 G 0)

q �(i G 0) 7 (i 3 1 G 0)

y(m 3 1)
i 3 1 G 0 $

Substituting the transition probabilities from Figure 1, and repeating the cal-
culation for the other boundary and the “interior”, we find the following equa-
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tions, for 1 I i I K @ 1 and 0 I j I i:

y(m)
i G 0 � � � � � �

( � � � )2 J � 2� � y(m 3 1)
i H 1 G 1 � � 2� � y(m 3 1)

i 3 1 G 0 K (2a)

y(m)
i G i � � � � � �

( � � � )2 J � 2� � y(m 3 1)
i H 1 G i H 1 � � 2� � y(m 3 1)

i G i 3 1 K (2b)

y(m)
i G j � � 2� � y(m 3 1)

i H 1 G j H 1 � � 2� � y(m 3 1)
i G j 3 1 � � 2� � y(m 3 1)

i 3 1 G j (2c)

with boundary conditions, for 0 I j I K:

y(m)
0 G 0 � 0 (2d)

y(m)
K G j � 1 (2e)

An appropriate starting vector for this iteration scheme is y( 3 1) � 0. Then for
all m L 0, the y(m)

i G j can be interpreted as the contribution to the second moment
of the overflow probability estimator made by sample paths of at most m steps.
Hence, the sequence y(m)

i G j is monotonically nondecreasing in m, for any i and j.
One easily sees that there are only two possibilities:

—either the sequence y(m) converges to some finite vector ỹ: in that case the
estimator’s second moment mK (and thus its variance) is finite and given by
ỹ1 G 1, and ỹ is a stationary, positive, finite solution to (2a)—(2e);

—all elements (except for the boundaries (2d) and (2e)) of the vectors y(m) run
off to infinity as m MON : in that case the variance is infinite, and no station-
ary, positive, finite solution to (2a)—(2e) exists.

In the sequel we will not use the iterative scheme by doing multiple it-
erations starting from 0, but by doing a single iteration from some suitable
(nonzero) initial y(0). From this, conclusions can be drawn about the station-
ary solution of the iteration scheme, and thus about the second moment of the
estimator. (E.g., if we prove that no finite positive stationary solution exists,
the finite-variance case is impossible, leaving only the infinite-variance case.)

2.4 A Theorem about Iterations

Definition 2.1. For a given matrix P i G j, a set J, and an index k0, we say that
J is reachable from k0 if there exists a sequence of indices k1 # k2 # k3 #%$&$%$&# kq such
that kq . J and P ki G ki 8 1 
 0 for all i . ! 0 # 1 #%$%$&$Q# q @ 1 ) .

THEOREM 2.2. Consider the following iterative scheme:

x(m)
i �SRT U 1 for i . JV

j

P i G jx(m 3 1)
j for i

�. J (3)

for some nonempty set J, and with all P i G j positive and such that J is reachable
from any i. Furthermore, we are given some initial vector x(0) such that 0 I
x(0)

i I x(1)
i for all i, with x(1) calculated from x(0) by (3).

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.



Analysis of State-Independent Importance-Sampling Measures � 231

Then if a finite, positive, stationary vector x̃ for this iteration scheme exists, all
of its components are larger than or equal to those of the initial vector: x̃i L x(0)

i
for all i.

PROOF. Assume that the theorem is not true; that is, there is a finite, posi-
tive, stationary vector x̃ for this iteration scheme, and at least one component
of our initial vector x(0) is strictly larger than the corresponding component of
the stationary vector.

Define the quantities fi � x(0)
i
�
x̃i for all i. For i

�. J, we find

fi � x(0)
i

x̃i
I x(1)

i

x̃i
� = j P i G jx(0)

j= j P i G jx̃j
� = j P i G jfjx̃j= j P i G jx̃j

$
If i . J, then fi I x(1)

i
�
x̃i � 1

�
1 � 1. Thus, for each i:

fi
RWWT WWU
I 1 if i . J� fj if i

�. J and fj equal for all j for which P i G j 
 0� max
j: X i Y j Z 0

fj otherwise
$ (4)

Set k0 � arg maxi fi, then due to our assumption that the theorem is not true,
fk0 
 1 and k0

�. J. Complete the sequence kj for j � 1 $&$%$ q as given in Defini-
tion 2.1. Applying (4) to fk0 , one sees that fk1 � fk0 , since we had chosen k0 such
that fk0 L fj for all j. This reasoning can be repeated, leading to fkq � fk0 
 1.
However, since kq . J, we also have fkq I 1: a contradiction. Thus, our as-
sumption that the theorem is not true, must be incorrect.

In Sections 3, 4, and 5, this theorem will be applied to the iterative scheme
given by (2a)—(2e) (with an initial vector to be specified later). One easily
verifies that indeed the theorem’s conditions regarding P i G j are satisfied, not-
ing that the single index i in the theorem corresponds to a pair of indices in
(2a)—(2e), and with J as the set of overflow states. Note that boundary con-
dition (2d), which is of a form not explicitly allowed by the theorem, can be
eliminated by substituting it into (2a)—(2c).

In the sequel, we will refer to the condition y(1)
i G j L y(0)

i G j for all i # j as “growth
under iteration”.

2.5 The big O symbol

Throughout this article, we interpret the notation [ ( \ X ) for any P]
 0 as mean-
ing that ^_� # � # � : ` M 
 0 : ^_\ # i # j # K : , [ ( \ X ) ,*� M \ X . Informally, this means
that the bound may depend on � , � , and � , but not on i, j, and K.

3. ONLY P&W CAN BE ASYMPTOTICALLY EFFICIENT

THEOREM 3.1. For the two-node tandem queue simulation problem defined
in Section 2, every state-independent change of measure for which �_�ba�c� , or� � a�/� , or � � a�/� , is not asymptotically efficient. That is, the P&W tilting is the
only one that may be asymptotically efficient.
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PROOF. The proof consists of first proposing an initial guess y(0), showing
that this guess grows under the iterations if a non-P&W tilting is used, and
concluding from this that asymptotic efficiency is not possible.

— Initial Guess
Define the following:

y(0)
i G j � J � 2(1 @ \ 2)� 2 K i 3 K ai

aK
bj (5)

with

ai � RWWWWT WWWWU
0 if i � 0
1 if i � 1

ai 3 1 d 1 @ J 1 @ 2 \
1 @ \ K i 3 2

(1 @ \ ) e 3 1

if i 
 1
(6)

and

bj �gf 1 @ B \ if j � 0
1 otherwise $

The quantity \ is a small positive number (e.g., 0 �h\�� 1
�
2), independent of

K, i, and j, which is chosen as small as necessary to satisfy the conditions that
show up later.
Note the following properties of ai, for i L 1:

1 � ai H 1

ai
I 1\ (7a)

ai 3 1

ai
� ai

ai H 1
� [ ( \ ) (7b)! ai ) is bounded. (7c)

The proof for (7c) starts by noting that for any fixed \ . (0 # 1 � 2) and for all

sufficiently large i, log J 1 @ji 1 3 2 k
1 3 kml i 3 2

(1 @ \ ) K 3 1 � 2 i 1 3 2 k
1 3 knl i 3 2

(1 @ \ ), using

the Taylor expansion for log((1 @ x) 3 1). Since log ai is a sum of these terms,
which decay exponentially in i, it must be upper bounded.

— Growth Under Iteration
Consider one iteration of (2a)—(2e).
For 0 � j � i � K (i.e., away from the state-space boundaries), (2c) is used:

y(1)
i G j� J � 2(1 @ \ 2)� 2 K i 3 K ai

aK o � 2� � � 2� 2
(1 @ \ 2)

ai H 1

ai
bj H 1 � � 2� � bj 3 1 � � 2� � � 2� 2

1
1 @ \ 2 ai 3 1

ai
bj p� y(0)

i G j q � 2� � (1 @ \ 2)
ai H 1

ai
� � 2� � (1 @ [ ( B \ )) � � 2� �sr 1 � [ ( \ 2) t d J ai H 1

ai K 3 1 � [ ( \ ) evu� y(0)
i G j q � 2� � ai H 1

ai
� � 2� � � � 2� � J ai H 1

ai K 3 1 � [ ( B \ )u $
ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.
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According to Lemma A.1 from the appendix, the factor
F 2Exw x �zy 2y w � E 2F w x 3 1 is L 1 for

P&W tilting, and 
 1 otherwise, for any x L 1. Thus, for any non-P&W tilting,
and for all sufficiently small positive \ , we have established that y(1)

i G j 
 y(0)
i G j for

all i L 1 and 0 � j � i.
Next, consider the bottom boundary (j � i), where iterations are calculated
using (2b):

y(1)
i G i � y(0)

i G i � � � � �( � � � )2 J � 2� � (1 @ \ 2)
ai H 1

ai
� � 2� � r 1 @ [ ( B \ ) t KL y(0)

i G i � � � � �( � � � )2 J � 2� � � � 2� � � [ ( B \ ) KL y(0)
i G i q J � � �� � � K 2 � [ ( B \ )u #

where the first L uses (7a) and the last step uses Lemma A.2. Since �{
/� , it
follows that y(1)

i G i 
 y(0)
i G i for \ sufficiently small.

At the left boundary (j � 0), iterations are calculated using (2a):

y(1)
i G 0 � y(0)

i G 0 � � � � �( � � � )2 q � 2� � ai H 1

ai

1
1 @ B \ � � 2� � J ai H 1

ai K 3 1 � [ ( \ )u� y(0)
i G 0 �|� � ���( � � � )2 o � 2� � x � � 2� � x 3 1 � � 2� � x B \ � [ ( \ ) pL y(0)
i G 0 o 1 � � � � � �

( � � � )2

� 2� � B \ � [ ( \ )p}#
with x � ai 8 1

ai
so x L 1, and where the last step uses Lemma A.3. Clearly, for

sufficiently small positive \ , we have y(1)
i G 0 
 y(0)

i G 0.
Finally, boundary condition (2d) is obviously satisfied, and growth at the other
boundary condition (2e) is guaranteed because y(0)

K G j I 1 for all j.
Thus, we have established growth for all i and j.

— Conclusion
Now that we have established that the initial guess (5) grows under the iter-
ations (2a)—(2e) for all i # j, we can conclude from Theorem 2.2 that either a
true stationary, positive, finite solution to (2a)—(2e) does not exist, implying
infinite variance (cf. Section 2.3); or the true solution yi G j exists but is not less
than our initial guess y(0)

i G j. In the latter case:

log mK � log y1 G 1 L log y(0)
1 G 1 � log d J � 2(1 @ \ 2)� 2 K 1 3 K a1

aK
e� 2K log

�� @ K log(1 @ \ 2) � log
� 2(1 @ \ 2)� 2 � log a1 @ log aK $

Then

lim
K 7DC 1

K
log mK L 2 log

�� @ log(1 @ \ 2) 
 2 log
�� #
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which clearly contradicts the necessary condition for asymptotic efficiency (1).

Remark 3.2. In the following, an intuitive motivation for the initial guess
y(0)

i G j is given, which may be of interest for establishing similar proofs for other
models.

First, note that for \s� 0, ai � 1, and bj � 1, expression (5) gives the second
moment a decay rate (in K) that is precisely right for asymptotic efficiency,
since the overflow probability itself is proportional to ( � � � )K . By inserting a
small positive \ 2, we make the decay just a bit slower, making asymptotic effi-
ciency impossible. It is not hard to prove that, away from the boundaries, this
initial guess leads to growth under the iteration scheme.

However, if ai � 1 for all i, there is a problem at i � 1. Recall that y0 G 0 � 0
due to the boundary condition, and inserting this into the iteration equations
for i � 1 leads to a situation in which it is hard or impossible to show that
y1 G j do increase under the iteration scheme. We need a way for yi G j to go to 0
more smoothly at small i, in order not to disturb the growth-under-iteration
property.

The iteration equation for yi H 1 G j expresses yi H 1 G j as a linear function with
positive coefficients in terms of (among others) yi G j. Since, as noted above,
for ai � 1 growth under iteration is easy to prove, one could slightly reduce
yi G j and still have growth (albeit less) for yi H 1 G j. We can do this by choosing
ai slightly smaller than 1. Having done this, take a look at yi G j. We have
just chosen it a bit lower than originally, which means that (if still a ~s� 1 for� a� i) this yi G j experiences even larger growth under iteration than when ai was
still 1. We can exploit this to make yi 3 1 G j smaller, by choosing ai 3 1 � 1; in fact,
we can choose ai 3 1 � ai. This reasoning continues, leading to progressively
smaller ai for i closer to 0. If it is possible to let ai become 0 for some i, a
smooth connection to the boundary condition can be achieved.

Our initial guess proposes a series of ai such that ai
�
aK go to 0 as i goes to 0,

based on the above idea. The parameter \ determines how slowly ai
�
aK go to 0:

the smaller \ , the slower.
Finally, the factor bj just ensures that the initial guess is made slightly

smaller at the left boundary; this is a trick to ensure growth there (without
it, the growth factor could be as small as 1 @ [ ( \ ), which could be less than 1).

4. FURTHER ANALYSIS OF P&W – NO ASYMPTOTIC EFFICIENCY

In this section, we only consider the P&W tilting, and find regions of the pa-
rameter space ( � # � # � ) in which even this tilting does not provide asymptotic
efficiency, thus extending Proposition 4.1 from [Glasserman and Kou 1995].

THEOREM 4.1. For the two-node tandem queue simulation problem defined
in Section 2, a state-independent change of measure according to P&W (i.e.,
with � � ��� , � � �"� , and � � �"� ) is not asymptotically efficient if ��
 3 3 y2 @
1
2 � @ 3 � 2 @ 2 � � 5.

PROOF. The proof uses an approach similar to the one used for Theorem 3.1
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in the previous section: proposing an initial guess, showing that it grows under
iteration in the parameter region mentioned in the theorem, and concluding
that this makes asymptotic efficiency impossible.

— Initial Guess
First, define � as an integer L 2 such that� @ � � ���

1 � � 
 0; (8)

note that such a � always exists since the left-hand side goes to � @ � as �bMON .
Then the initial guess to be used for the proof is the following:

y(0)
i G j � J � 2� 2

(1 @ B \ ) K i 3 K J �� K i 3 j ai H�� j
aK H�� K #

with ai H�� j and aK H�� K defined by (6). From the properties of ai listed in (7a)–(7c),
it follows for i 
 0 that

1 � ai H b

ai
I 1\ b

and
ai 3 c

ai
� J ai H b

ai K 3 c � b � [ ( \ )
for any fixed (i.e., independent of \ , i, j, K) positive integers b and c, with c I i.

— Growth Under Iterations
In the interior, apply (2a):

y(1)
i G j � y(0)

i G j o � (1 @ B \ )ai H�� j H 1 H��
ai H�� j � � ai H�� j 3 �

ai H�� j � � (1 @ B \ ) 3 1 ai H�� j 3 1

ai H�� j p� y(0)
i G j � � (1 @ B \ )x � � i x 3h�

1 8 � � [ ( \ ) l � � r 1 � B \ � [ ( \ ) t i x 3 1
1 8 � � [ ( \ ) l|�� y(0)

i G j � � x � � x 3 �
1 8 � � � x 3 1

1 8 � � B \ i�@ � x � � x 3 1
1 8 � l � [ ( \ )�

where x � ai 8 � j 8 1 8 �
ai 8 � j , so x 
 1. In order to prove growth, we need to show that

the factor between square brackets is larger than 1. For \ sufficiently small,
the partial derivative of this factor w.r.t. x is positive for all x L 1 due to (8);
therefore, the factor in square brackets is always L 1 � B \ ( @ � � � ) � [ ( \ ),
which clearly is 
 1 for any sufficiently small (but nonzero) \ because ��
�� .
At the left boundary, use (2a):

y(1)
i G 0 � y(0)

i G 0 1� � � o � (1 @ B \ )ai H 1 H��
ai

� � (1 @ B \ ) 3 1 ai 3 1

ai
p� y(0)

i G 0 1� � � � � x � � x 3 1
1 8 � � B \ i @ � x � � x 3 1

1 8 � l � [ ( \ ) �
where x � ai 8 1 8 �

ai
, so x L 1. Again, the first derivative w.r.t. x of the factor in

square brackets is positive for � as given by (8), and sufficiently small \ and all
x L 1. For x � 1, the factor in square brackets is 
�� � � for sufficiently small\ , so growth is proven.
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Right of A: P&W is asymptotically efficient according to [Glasserman and Kou 1995].
Right of A’: P&W is asymptotically efficient according to Theorem 6.6.
Above B: Asymptotic efficiency implies bounded relative error [Glasserman and Kou 1995].
Above C: P&W is not asymptotically efficient according to [Glasserman and Kou 1995].
Above C’: P&W is not asymptotically efficient according to Theorem 4.1; and according to Theo-

rem 3.1, no state-independent tilting is asymptotically efficient here.
Left of D: P&W gives infinite variance according to Theorem 5.1.

Fig. 2. Analytically found boundaries in ����� space.

At the bottom boundary, (2b) applies:

y(1)
i G i � y(0)

i G i � � �
( � � � )2 o � (1 @ B \ )ai H�� i H 1 H��

ai H�� i � � ai H�� i 3 �
ai H�� i p� y(0)

i G i � � �
( � � � )2 � � x � � x 3 �

1 8 � � B \ ( @ � x) � [ ( \ )�
where x � ai 8 � i 8 1 8 �

ai 8 � i , so x L 1. Again, the first derivative w.r.t. x of the factor
in square brackets is positive for sufficiently small \ and all x L 1. Thus,
growth is guaranteed for all x L 1 and sufficiently small \ , if

F H y( E H y )2 ( � � � ) 
 1 $
Substituting � � ��� 1 @ � and rearranging makes this a quadratic equation
in � , which can be solved for � leading to��
 3 @ �

2 @ 1
2
? @ 3 � 2 @ 2 � � 5 $

This is precisely the condition stated in the theorem.
Finally, at the diagonal boundary we have y(0)

K G j � ( � � � )K 3 jaK H�� j � aK H�� K I 1,
using j I K. Comparing with (2e), we see that growth is also guaranteed at
the diagonal boundary.

— Conclusion
As in the proof of Theorem 3.1, it follows from the above that either the vari-
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ance is infinite, or the estimator’s second moment is lower-bounded as follows:

lim
K 7DC 1

K
mK L lim

K 7�C 1
K

log y(0)
1 G 1 � 2 log

�� @ log(1 @ B \ ) 
 2 log
�� ;

hence, the resulting simulation indeed is not asymptotically efficient.

Figure 2 illustrates the result of Theorem 4.1. The large triangle in this
figure represents the ranges of the parameters � (horizontal axis) and � (ver-
tical axis) that satisfy the conditions from Section 2 (i.e., both queues stable,
and second server is the bottleneck). The area above line C’ is the area in
which P&W is not asymptotically efficient according to Theorem 4.1; note that
Theorem 3.1 implies that no state-independent tilting can be asymptotically
efficient there. Clearly, in this area ���/� ; this corresponds nicely with earlier
observations that P&W does not work well when the service rates are roughly
equal.

The other lines in the figure illustrate Theorems 5.1 and 6.6 proved later in
this article, and results from [Glasserman and Kou 1995] for comparison.

5. FURTHER ANALYSIS OF P&W – INFINITE VARIANCE

The following theorem specifies a region of the parameter space in which P&W
leads to an infinite-variance estimator as K M�N . Note that for any finite K,
the variance in parts or all of this region is still finite; see also Section 7.3 and
Figure 4.

THEOREM 5.1. For the two-node tandem queue simulation problem defined
in Section 2, a state-independent change of measure according to P&W (i.e.,
with ������� , ������� , and ���|��� ) leads to infinite variance if

M2 � 4 �����
1 @ M # (9)

where M is defined as

M � ( � � � )2� � � $ (10)

PROOF. The proof for this theorem uses the same approach as the previous
two proofs (initial guess, establishing growth, conclusion). However, there is a
significant difference in the form of the initial guess. Previous initial guesses
were such that at the boundary corresponding to the overflow (i � K), they
were nonzero. The present initial guess is such that y(0)

K G j � 0 for all j. Clearly,
after one iteration, we will see y(1)

K G j � 1 due to (2e), so proving growth under
iteration at this boundary is no problem. The important consequence however,
is that if this initial guess is such that it provides growth under iteration ev-
erywhere, then we can multiply it by an arbitrary (positive) factor, and obtain
a new, arbitrarily large, initial guess which also grows under iteration. From
this it follows (see below) that the true yi G j cannot be upper bounded, and that
the variance is infinite.
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— Initial Guess
Define ai and bi by

ai � RWT WU 0 if i � 0
ai H 1i \ if 1 I i � 1

� \
1 if i L 1

� \ bi � RWT WU 0 if i � 0
bi H 1i \ 2 if 1 I i � 1

� \ 2
1 if i L 1

� \ 2
$ (11)

The purpose of these ai and bi is the same as that of the ai defined in (6), and
for small i, the new ai is almost equal to the old ai except for a constant factor.
The difference is that the new ai equal 1 for i L 1

� \ , whereas the earlier ai
never reach their limit value as i MSN . The new ai and bi have the following
properties, for i L 1, which are rather similar to those of the old ai:

1 I ai H 1

ai
I 1\ 1 I bi H 1

bi
I 1\ 2

ai 3 1

ai
� ai

ai H 1
� [ ( \ ) bi 3 1

bi
� bi

bi H 1
� [ ( \ 2)

Now we consider the following family of initial guesses, parameterized by the
positive constant � :

y(0)
i G j ��� J � 2� 2 � �

1 @ M K i i �M l j
ajbK 3 i $ (12)

Note that this initial guess y(0)
i G j is zero both at j � 0 (which includes the origin

at i � 0 # j � 0) and at i � K.
In the sequel, we assume K 
 1

� \ � 1
� \ 2; this is not really a restriction, since

we are interested in the asymptotic behavior for large K. Due to this, we have
for any i that either ai 3 1 � ai � ai H 1 � 1 or bK 3 i 3 1 � bK 3 i � 1 (or both), as can
easily be verified.

— Growth
Next, we show that substitution of the initial guess into the iteration equations
leads to growth.
The interior: apply (2c) for 0 � i � K and 0 � j � K:

y(1)
i G j� y(0)

i G j d � �
1 @ M

�
M

aj H 1

aj

bK 3 i 3 1

bK 3 i
� � i �M l 3 1 aj 3 1

aj
� � J �

1 @ M K 3 1 bK 3 i H 1

bK 3 i
e� y(0)

i G j d �����
M(1 @ M) J bK 3 i H 1

bK 3 i K 3 1 aj H 1

aj
� M J aj H 1

aj K 3 1 � (1 @ M)
bK 3 i H 1

bK 3 i
� [ ( \ ) e

For guaranteeing that y(k)
i G j increases in the iterations for all sufficiently small \ ,

it is sufficient if �����
(1 @ M)M

xy � My 3 1 � (1 @ M)x 3 1 L 1 � c (13)
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for all 0 � x I 1 and all y L 1, and for some positive constant c. To prove that
the condition (13) is indeed satisfied, start by rewriting its left-hand side:�����

M (1 @ M)
xy � My 3 1 � (1 @ M)x 3 1 �� J �|���

M (1 @ M) @ M
4 K xy � M

4
xy � My 3 1 � (1 @ M)x 3 1L Cx � Mx1 � 2 � (1 @ M)x 3 1 #

where the last step follows from straightforward analysis of the function xy
�
4 �

1
�
y, and C is defined as

C � �����
M (1 @ M) @ M

4 #
so C 
 0 by (9).
Consider Mx1 � 2 � (1 @ M)x 3 1 as a function of x: for x � 1 it equals 1, while its
first derivative w.r.t. x is negative for x � 1 if M I 2

�
3. Thus we find

Cx � Mx1 � 2 � (1 @ M)x 3 1 L�f M ? 1
2 � 2(1 @ M) 
 1 if x � 1

2
C
2 � 1 if x L 1

2

;

so (13) follows with 1 � c equal to the minimum of the above two expressions.
In the above calculation, we have assumed that M I 2

�
3. Lemma A.4 formally

establishes this everywhere where (9) holds; but graphically, it is obvious by
noting that in Figure 2 the area to the left of curve D clearly has � L 1

�
3, so

M � (1 @ � )2 � (1 @ � ) I 1 @ ��I 2
�
3.

Next, consider the bottom boundary. Substituting our initial guess, (2b) be-
comes:

y(1)
i G i � y(0)

i G i 1
M J �����

M(1 @ M)
ai H 1

ai

bK 3 i 3 1

bK 3 i
� M

ai 3 1

ai K� y(0)
i G i JvJ C

M � 1
4 K ai H 1

ai

bK 3 i 3 1

bK 3 i
� ai 3 1

ai K $
As noted before, either ai 3 1 � ai � ai H 1 � 1 or bK 3 i 3 1 � bK 3 i � 1 (or both). In
the former case, one sees from the above that y(1)

i G i L y(0)
i G i . In the latter case, we

have:

y(1)
i G i � y(0)

i G i d J C
M � 1

4 K ai H 1

ai
� J ai H 1

ai K 3 1 � [ ( \ ) eL y(0)
i G i J C

M � 1 � [ ( \ ) K #
where the last step uses the fact that ai H 1 L ai, and the fact that the function
x
�
4 � 1

�
x has a minimum of 1 at x � 2, as follows from straightforward analysis.

Since C and M are positive and independent of \ , we have y(1)
i G i L y(0)

i G i for \
sufficiently small.
Finally, at the left boundary (j � 0), the initial guess is 0. Since all coeffi-
cients in the iteration equations, as well as all y(0)

i G j values, are nonnegative, the
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resulting y(1)
i G 0 will also be nonnegative, thus ensuring that y(1)

i G 0 L y(0)
i G 0.

— Infinite Variance
Suppose the variance is finite. In that case, some nonzero stationary solu-
tion ỹi G j to (2a)—(2e) must exist. One can choose � in (12) such that for ex-
ample y(0)

1 G 1 
 ỹ1 G 1. However, by Theorem 2.2 and the growth-under-iteration
proven above, this contradicts the assumption that ỹi G j is the stationary solu-
tion. Therefore, no such finite solution ỹi G j can exist, and the variance must be
infinite.

6. EXTENSION OF THE SUFFICIENT CONDITION FOR ASYMPTOTIC EFFI-
CIENCY

Theorem 5.7 in [Glasserman and Kou 1995] gives a sufficient condition for
asymptotic efficiency of the P&W estimator in the problem we consider in this
article. Below, we derive a stronger condition. The proof from [Glasserman and
Kou 1995] will henceforth be referred to as the “original proof”; the present
proof is heavily based on it.

Before starting the derivation, define the following convenient notation:
Q(n1 G n2) is the probability of ever reaching a state in the set A (which, as in
the original proof, is the set of states with n1 
 0 and n2 � 0), starting from
state (n1 # n2), before the system empties (i.e., reaches state (0 # 0)). Further-
more, define R(n1 G n2) as the probability of ever reaching any state with n2 � 0,
starting from state (n1 # n2). Obviously, Q(n1 G n2) I R(n1 G n2) for any n1 and n2. Both
Q and R are in the P&W-tilted system; that is, the arrival rate is � , and the
service rates are � at the first and � at the second queue; thus, the system is
unstable and R is not trivially equal to 1.

In the proofs below, the shorthand notation ( ¡ # i) is used to identify sets of
states with n2 � i and any value for n1.

LEMMA 6.1. For any i L 0, it holds that R(i G 2) L R(i H 1 G 2).

PROOF. Compare two sample paths, one starting in (i # 2) and one starting in
(i � 1 # 2). One easily sees that, given the same arrival and service times, on the
second sample path there will never be fewer customers in either of its queues
than on the first sample path. Consequently, the probability of ever reaching
( ¡ # 0) is not higher for the second sample path.

LEMMA 6.2. CV
i 6 0

R(i G 2) J �� K i J 1 @ �� K � J �� K 2 $
PROOF. Noting that i Fy l i i 1 @ Fy l is the stationary probability distribution

of the number of customers in the first queue, this is a straightforward exten-
sion of Lemmas 5.3 and 5.4 from the original proof.
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LEMMA 6.3. The following upper bound holds for all j L 1:

R(j G 1) I �� � � � �� � � J �� K 2 J 1 @ �� K 3 1

(1 @ � ) $
PROOF. Consider starting the P&W-tilted two-node tandem queue in state

(j # 1), with j L 1. Clearly, the probability that it leaves the set ( ¡ # 1) by going
into ( ¡ # 0) is � � ( � � � ), while the probability of leaving via ( ¡ # 2) is � � ( � � � ).
Before leaving ( ¡ # 1), external arrivals may occur, causing n1 to increment; the
number of such arrivals is geometrically distributed with parameter � , so the
probability distribution of n1 upon entrance into ( ¡ # 2) is given by

Pr(entrance in (i # 2)) � f � i 3 (j 3 1)(1 @ � ) for all i L j @ 1
0 otherwise $

Denoting this distribution by ¢ < , we can upper bound the probability of ever
returning from ( ¢ < # 2) to ( ¡ # 0) as follows:

R( £�¤'G 2) � V
i ¥ j 3 1

R(i G 2) � i 3 (j 3 1)(1 @ � ) I V
i ¥ 0

R(i G 2) � i(1 @ � )I V
i ¥ 0

R(i G 2) J �� K i

(1 @ � ) J 1 @ �� K J 1 @ �� K 3 1

� J �� K 2

(1 @ � ) J 1 @ �� K 3 1 $
The first I sign uses Lemma 6.1, the second I sign uses �¦I 1, and the last
equality uses Lemma 6.2. (Note that this calculation uses the same technique
as used in the bounding of p

<
in the original proof.)

Combining all of the above completes the proof of the lemma.

LEMMA 6.4. The following upper bound holds for all j L 0:

Q(j G 1) I �� � � � �� � � J �� K 2 J 1 @ �� K 3 1

(1 @ � ) � �� � � � � 2 � 2

( � @ � ) � 2 $
PROOF. For j L 1, the result follows immediately from Lemma 6.3. (Note

that the equals sign uses the fact that 1 @ �§��� � � .)
From state (0 # 1), only two immediate transitions are possible: to (0 # 0) and

to (1 # 1). Since (0 # 0) is not in A, the transition to this state does not contribute
to Q(0 G 1). Hence, Q(0 G 1) I Q(1 G 1).

LEMMA 6.5. The following upper bound holds for all j L 1:

Q(j G 0) I �� � � � �� � � J �� � � � � 2 � 2

( � @ � ) � 2 K $
PROOF. Straightforward calculation, by noting that the first term repre-

sents moving from (j # 0) to (j � 1 # 0), that is, staying in A, and the second term
represents all paths that first go through (j @ 1 # 1), using Lemma 6.4.
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THEOREM 6.6. For the two-node tandem queue simulation problem defined
in Section 2, the P&W change of measure is asymptotically efficient if� � �

( � � � )2 J � � ��� J 1� � � � ��� 2

( � @ � ) � 2 K¨K � 1 $
PROOF. Define q as

Fy H F � yy H F i EE H y � E 2 y 2

( y 3 F ) F 2 l . By Lemma 6.5, the num-
ber of visits N to states in A is stochastically bounded by a geometric random
variable with parameter q, so Pr ! N � n )©I Pr ! N L n )©I = Ci 6 n(1 @ q)qi � qn.
Hence, we can upper bound Ē ª a2N ; TK � T0 « (see the original proof for the
meaning of this) as follows:

Ē ¬ a2N ; TK � T0 ­ � CV
n 6 1

a2n Pr ! N � n )DI CV
n 6 1

a2nqn � a2q
1 @ a2q $

This bound is finite and uniform in K if a2q � 1; substituting a and q completes
the proof.

Remark 6.7. As shown in Figure 2, the sufficient condition for asymptotic
efficiency from Theorem 6.6 (line A’) is substantially stronger than the one from
[Glasserman and Kou 1995] (line A); this is due to two factors. First, the new
proof uses a more direct calculation of

; ª a2N « based on the stochastic bounding
of N by a geometric random variable, rather than just the mean of N; second,
the new proof explicitly considers what happens at n2 � 1 separately.

One might be tempted to take this approach further and consider also n2 � 2
separately, but that is not so easy, due to the boundary at n1 � 0; at n2 � 1,
from this boundary state one has a lower probability of ever reaching A (due to
the absorbing state (0,0)), but at n2 
 1 this is not trivially true.

Remark 6.8. Note that the necessary condition for asymptotic efficiency per
Theorem 4.1 and the sufficient condition from Theorem 6.6 become identical at�]� 0 (i.e., � � � � 1). This meeting point is at �/� 1

2 B 5 @ 1
2 (note that this

number is the inverse of, or 1 less than, the classical “golden ratio” 1
2 B 5 � 1

2 )
and ��� 3

2 @ 1
2 B 5. Furthermore, the slopes of these two curves also become

identical here, so the boundaries of the sufficient and necessary areas touch.

7. NUMERICAL STUDY OF P&W

For a relatively simple model like the two-node tandem queue, it is feasible to
numerically calculate the expectation of the second moment (and of the first
moment, that is, the overflow probability itself) for a given tilting and a given
overflow level. By repeating this for several overflow levels and studying the
dependence of the resulting variance on the overflow level, one can classify the
simulation as asymptotically efficient or not. Furthermore, cases of infinite
variance can be identified. Doing this on a grid of points in the � # � param-
eterspace for the P&W tilting allows us to produce a complete picture of the
behavior of P&W, also in the areas where neither of the Theorems 4.1, 5.1
and 6.6 apply (i.e., the white area in Figure 2).
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7.1 Numerical Calculation of the Relative Error

In order to calculate the relative error, we need to find the expectation of the
first and the second moment of the estimator, that is, pK � ; <

LI and mK �; <
L2I respectively (cf. Section 2.2; for brevity, the dependence of L and I on the

sample path X is now implicit), on sample paths that start at n1 � 1 # n2 � 0
and continue until either n1 � n2 � K (overflow) or n1 � n2 � 0 (system empty).
Here

;_<
denotes the expectation in the tilted system. Since L is the likelihood

ratio between the original and the tilted system, this is equivalent to finding;
Lk 3 1I for k . ! 1 # 2 ) .
Consider sample paths starting in the starting state n1 � 1 # n2 � 0, and

continuing until either n1 � n2 � i or n1 � n2 � 0. For these sample paths,
define w(k)

i G j � ;
Lk 3 1Ii G j, where Ii G j is the indicator of ending in the state n1 � n2 �

i, n1 � j. Then clearly pK � = K
j 6 0 w(1)

K G j and mK � = K
j 6 0 w(2)

K G j. Note the difference
in perspective between yi G j as defined in Section 2.3, and w(2)

i G j defined here: both
are concerned with the expectation of the second moment, but the former has
an explicit (in the subscript) starting state and an implicit target (overflow)
set, while the latter has an implicit starting and an explicit target state. Next
we define vectors wi as follows, omitting the superscript (k) for brevity:

wi � r wi G 0 # wi G 1 # wi G 2 #�$%$&$'# wi G i # 0 # 0 #�$%$&$ t $
It turns out to be quite straightforward to calculate these vectors, iteratively
starting from i � 1 (which is trivial because it is the initial level) for all i, as
shown below. For convenience, we henceforth refer to the index i � n1 � n2 as
the “level”, and to a state with n1 � n2 � i and n1 � j as “state j at level i”, and
we omit the superscript (k).

Define a matrix Qi in which the
� # m element is (for k � 1) the probability that

starting from state
�

at level i, level i � 1 will be reached before level 0, and the
first state at level i � 1 will be state m. For k � 2, instead of these probabilities,
the expected contributions to the second moment are put into the matrix. Then
clearly

wi H 1 � wi Qi $
Hence,

wi � w1 Q1 Q2 $%$&$ Qi 3 1 #
where w1 � (0 # 1 # 0 # 0 #%$&$%$ ), so the problem has been reduced to that of calculat-
ing the Q matrices.

Next, we express Qi in terms of the elementary transition probabilities of
the Markov chain and (for k � 2) the corresponding contributions to the second
moment. These contributions are summarized in three groups of matrices:
Ai, Bi, and Ci. The

� # m element of Ai is the probability, multiplied by the
likelihood ratio to the power k @ 1, of a transition from state

�
at level i to

state m at level i � 1 (i.e., an arrival to the first queue). Similarly, Bi represents
the transitions in which the level stays the same (i.e., service completion at the
first queue), and Ci represents the transitions in which the level decreases by
1 (i.e., service completion at the second queue, after which the customer leaves
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the system). One easily finds:

Qi � Ai � BiQi � CiQi 3 1Qi $
This can be solved for Qi, yielding

Qi � r Id @ Bi @ CiQi 3 1 t 3 1 Ai # (14)

where Id is the identity matrix. Note that at level i � 1, the matrix C1 is
0 since any transition to the lower level empties the system, which ends the
sample path.

Composing the A, B, and C matrices by inspection is straightforward. As an
example, this is A3 for both k � 1 and k � 2:

A3 �
®¯¯¯¯¯¯¯¯¯¯¯°
0 i EE H F l k i E w H F wE w l k 3 1

0 0 0 0 �%�%�
0 0 � k r 1E w t k 3 1 0 0 0 �%�%�
0 0 0 � k r 1E w t k 3 1 0 0 �%�%�
0 0 0 0 i EE H y l k i E w H y wE w l k 3 1

0 �%�%�
0 0 0 0 0 0 �%�%�...

...
...

...
...

...
. . .

±³²²²²²²²²²²²´ $
Unfortunately, the matrices to be inverted in (14) for the calculation of the

second moment under the P&W tilting often turn out to be ill-conditioned. The
conditioning can be improved significantly by multiplying the matrix compo-
nents by numbers of the form P d, where d is the distance from the diagonal,
and P is some constant to be chosen suitably (e.g., iteratively such that the
condition number is small enough). One easily sees that the influence of this
multiplication can be undone by multiplying the inversion result by P 3 d.

The numerical results presented later in this section were checked for any
remaining numerical errors by repeating some of them at a much higher nu-
merical precision (40 decimal digits). It was found that the results obtained
using machine-precision (IEEE double precision, i.e., about 16 decimal digits)
agreed to at least 10, but in most cases 12 to 14 decimal places with those
found in the (very much slower) high-precision calculation, so apparently the
machine precision combined with the above conditioning technique is suffi-
ciently accurate (note though, that due to the CPU and memory requirements,
this verification was not feasible for overflow levels higher than 160).

Note: the method for calculating
; <

LkIk described in this section is an exten-
sion of the methods developed in Appendix A.2 of [Garvels and Kroese 1999]
and Chapter 2 of [de Boer 2000].

7.2 Classification

In the analysis in Sections 3 through 6, we have distinguished between three
fundamentally different kinds of asymptotic behavior of the importance sam-
pling simulation: asymptotic efficiency (possibly with bounded relative error),
exponential (or faster) growth of the relative error, and infinite variance. We
ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 3, July 2006.



Analysis of State-Independent Importance-Sampling Measures � 245

would like to classify the results of numerical calculation of the estimator’s
variance using the same categories.

Infinite variance is easy to detect: if for some level i (and k � 2) the matrix
inversion in (14) is not possible, or the resulting inverse is such that it yields
negative numbers in the subsequent calculation of w, then apparently no (pos-
itive) vector w

(2)
i exists, so no (finite, real, positive) values exist that satisfy

the equations governing the second moment. (Note that this has only been
observed for k � 2, which is good, since for k � 1 probabilities are calculated,
which exist always.)

In order to recognize asymptotic efficiency (or its absence), one needs to cal-
culate the relative error at several overflow levels K and compare them. For
comparing the relative errors, the following measure can be used (denoting by
REK the relative error at overflow level K, defined1 as ? mK @ p2

K
�
pK):

r(K) � log REK @ log REK � 2
log REK � 2 @ log REK � 4 $

One easily verifies that if the RE grows exponentially with K, then r(K) � 2 for
all K. Similarly, if the RE grows polynomially or, for example, logarithmically,
then limK 7DC r(K) � 1.

On the other hand, if limK 7DC r(K) � 0, the RE is bounded. Actually, the RE
is bounded under a more general condition, namely if r(K) Ij\ for all K 
 m,
for some m and some \�� 1. To prove this, note that it follows from r(K) Ih\
that log REK @ log REK � 2 I�\ (log REK � 2 @ log REK � 4). Repeated application of
this leads for any positive integer i to

log REm µ 2i I log REm � r log REm @ log REm � 2 t r \ � \ 2 � \ 3 � �%�&� � \ i t� 1
1 @ \ log REm @ \

1 @ \ log REm � 2 $
Thus, we have2 an upper bound for REK for large K.

7.3 Results

The result of a scan of the entire � # � parameter space for the two-node tandem
queue with P&W tilting is shown in Figure 3. Note that, in contrast to other
results in this article, this scan also covers the case in which the first queue is
the bottleneck (i.e, �]� � ).

At every point in a grid with a stepsize of 0.0025 (and 0.0008333 in the mag-
nified area), the value of r as defined above was calculated, and indicated in
the graph using a shade of gray. Points having r � 0 got the darkest gray (la-
beled as “bounded RE”, although actually any r � 1 corresponds to bounded
RE), points having r � 2 got middle gray (“exponential growth”); points having
r values in between got a proportional intermediate shade. Points at which the

1normalized to 1 replication; cf. Section 2.2 with N 
 1.
2Strictly speaking, this is not a bound for all K, but only for those that can be written as m ¶ 2i for
all positive integers i and for a fixed integer m, since the bound is expressed in terms of REm and
REm · 2. However, there is little reason to believe that REK would not be a monotone function of K.
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Fig. 3. Behavior of the two-node tandem queue simulation under P&W tilting.

calculation of the second moment was not possible, so for which the variance
was apparently infinite as discussed above, got the lightest shade. The over-
flow level K used for each of these points varies, from K � 160 for most points
up to K � 1280 for a few. The higher overflow levels were used at points where
a lower K yielded an r value that was not close to 0 or 2; in such cases r indeed
became closer to 0 or 2 (or infinite variance occurred) at higher K, suggesting
that the asymptotic behavior was not yet dominant at the lower K.

Theorems 4.1 and 5.1 provide sufficient conditions for exponential growth
and infinite variance; these curves (i.e., curves C’ and D from Figure 2) have
also been drawn in the figure, for comparison with the numerical results.
Clearly, these curves are pretty close to the actual boundaries of the respec-
tive regions, but there are some points with infinite variance that are outside
the areas delineated by the curves (some of these points were verified as dis-
cussed at the end of Section 7.1, so it seems very unlikely that this is due to
numerical inaccuracies). Thus, the conditions in Theorems 4.1 and 5.1 are in-
deed only sufficient and not necessary conditions. However, outside the infinite
variance area, the curve from Theorem 4.1 does seem to be the true boundary
between the areas of asymptotic efficiency and exponential growth, although
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Fig. 4. A closer look at the infinite variance region:
black points in center: infinite variance for K 
 7;
light gray: infinite variance for K 
 10 but not for K 
 7;
medium: infinite variance for K 
 20 but not for K 
 10;
dark: infinite variance for K 
 160 but not for K 
 20.

this has not been formally proven.
Furthermore, note that although the proofs only imply bounded relative er-

ror above line B in Figure 2, the numerical results suggest that wherever the
simulation is asymptotically efficient, it also has a bounded relative error. In
other words, r � 1 was never observed.

It is remarkable that the figure has a partial symmetry under exchange of� and � (i.e., making the first or the second queue the bottleneck): the infi-
nite variance region seems to be symmetric, while the asymptotically efficient
region clearly is not symmetric. Since the problem is not symmetric under
exchange of � and � , it is in principle not to be expected that the behavior
should be symmetric. One can verify that for every cyclic path sufficiently far
away from the absorbing states (n1 � n2 � 0 and n1 � n2 � K), a cyclic path
with the same probability and likelihood ratio exists in the system obtained by
exchanging � and � ; and since infinite variance is related to cyclic paths (cf.
Lemma 3.2 in [Randhawa and Juneja 2004]), this makes it plausible that the
infinite variance region should indeed be symmetric. Furthermore, note that
the asymmetry of the exponential growth region confirms the empirical ob-
servation of [Parekh and Walrand 1989] that importance sampling simulating
with ��� � performs better than with ��
	� .

Finally, it should be noted that the classification in Figure 3 is purely based
on the asymptotic behavior for high overflow levels. Thus, equal shades in the
figure do not mean equal simulation performance at a given value of K. For
example, infinite variance already occurs for all K L 7 in the center of the infi-
nite variance region near �{����� 0 $ 416; but the closer to the boundary of the
region one gets, the higher K can be without infinite variance, as illustrated in
Figure 4. Similarly, the exponential growth rate can be very different among
points within the exponential growth area.

8. CONCLUSIONS

In this article, a detailed analysis of simulating a Markovian two-node tandem
queue using importance sampling with a state-independent change of mea-
sure has been presented. The main conclusion is that the only such change of
measure that may be asymptotically efficient, is the one proposed in [Parekh
and Walrand 1989]. Furthermore, the performance of this change of measure
has been characterized further, thus extending the results from [Glasserman
and Kou 1995]. Although these results have been obtained for one particular
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model, they do have implications for research in the general area of efficient
simulation of queueing models, as follows.

First, the results emphasize the importance of state-dependent tilting. It
is now certain that no state-independent tilting can be asymptotically effi-
cient for the two-node tandem model at certain parameter values; given the
model’s simplicity, this is presumably also true for almost any other nontrivial
queueing model. This means that methods for finding a state-independent tilt-
ing have limited applicability (although when they do work, they still may be
preferable due to their simplicity), which strongly motivates further research
into state-dependent tilting.

Second, results from this article are useful for evaluating other importance
sampling measures. The complete characterization of P&W for the two-node
tandem queue allows one to select the most interesting parameter settings
for testing a newly proposed importance sampling measure. Furthermore, the
techniques introduced in this article (for proving the absence of asymptotic
efficiency and for numerically characterizing an importance sampling estima-
tor’s performance) may also be used to characterize other importance sampling
measures.

Future extensions of this work could be the following. It would be of in-
terest to see whether a stronger version of Theorem 3.1 could be proved, as-
serting that P&W is the only possibly asymptotically efficient state-indepen-
dent change of measure for a larger class of models. Also, analysis of state-
independent exponential tilting of a non-Markovian queueing network would
be an interesting extension.

APPENDIX

In this appendix, we prove some auxiliary lemmas; these give upper or lower
bounds on some functions of the original ( � , � , and � ) and tilted ( �_� , ��� , and ��� )
rates. It is assumed that these rates satisfy the conditions listed in Sections
2.1 and 2.2.

LEMMA A.1. The following expression holds for all x L 1:� 2� � x � � 2� � � � 2� � x 3 1 L 1 #
with strict equality only possible (but not necessary) for P&W tilting.

PROOF. Apply the Cauchy-Schwarz inequality to the two vectorsd �B � � B x # �� � � # �B � � � x 3 1 e and i � � � # � � � # B � � l
to find J � 2� � x � � 2� � � � 2� � x 3 1 K � r � � � � � � � � t L r � x1 � 2 � � � � x 3 1 � 2 t 2 $
Substitute ��� � ��� � ����� 1 to obtain� 2� � x � � 2� � � � 2� � x 3 1 L r � x1 � 2 � � � � x 3 1 � 2 t 2 $
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One easily sees that the first derivative of the r.h.s. w.r.t. x is 
 0 for all x 
 1,
so its minimum (on the domain) is 1 and attained only at x � 1. Equality in the
Cauchy-Schwarz inequality is only attained when the two vectors are parallel;
with x � 1 this implies � � �½� , � � �h� , and � � �½� ; that is, P&W tilting. This
completes the proof.

LEMMA A.2. For each allowable (per Section 2) set of rates, the following
holds:

( � � � � � ) J � 2� � � � 2� � K L ( � � � )2 $
PROOF. Calculate the first partial derivative with respect to � � of the left-

hand side: ¾¾ � � ( � � � � � ) J � 2� � � � 2� � K � � 2� � @ � 2 � �� � 2 � � 2 � � 2 @ � 2 � � 2� � � � 2 $
This implies that the left-hand side attains its minimum at � � ����� � � � , and
substitution shows that this minimum is ( � � � )2.

LEMMA A.3. For each allowable (per Section 2) set of rates, the following
holds for all x L 1: � � � � �

( � � � )2 J � 2� � x � � 2� � x 3 1 K L 1 $
PROOF. By setting the derivative with respect to � � of the left-hand side to

zero, one finds that this left-hand side has its minimum at � � ����� � x � � (this
sole extremum cannot be a maximum because the left-hand side goes to infinity
as � � M 0). Substituting this, we calculate� � � � �
( � � � )2 J � 2� � x � � 2� � x 3 1 K L � �

( � � � )2 i 1 � �� x l J ���� � � � 2� � x 3 1 K � ( � � � x)2

( � � � )2x
L 1 #

where the last step follows from ( � � � x)2 @ ( � � � )2x � ( � 2x @ � 2)(x @ 1) L 0
since ��L � and x L 1.

LEMMA A.4. For each allowable (per Section 2) set of rates, and with M
defined as

M � ( � � � )2� � � � (1 @ � )2� � � � (1 @ � )2

1 @ �
the following holds: if

M2 @ M3 � 4 ����� (15)

then

M � 2
�
3 $

PROOF. Since
¾ r 4 � (1 @ � @ � ) � t � ¾ �{� 4 � (1 @ � @ 2 � ) � 4 � ( � @ � ) L 0, the

right-hand side of (15) will decrease monotonically as � decreases from � to 0
at constant � .

Considering M2 @ M3 as a function of M on its domain ª 0 # 1 « , one sees that it is
continuous and has a single maximum at M � 2

�
3; furthermore, one trivially
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sees that
¾

M
� ¾ �§
 0 (at constant � ). Thus, as � decreases from � to 0, the left-

hand side of (15) will not decrease until � is small enough to make M � 2
�
3.

At �z��� , condition (15) is not satisfied because M2 @ M3 @ 4 �����§� (1 @ � )2 @
(1 @ � )3 @ 4 � 2(1 @ 2 � ) �¿� (1 @ 3 � )2 L 0. Thus, it follows that (15) cannot be
satisfied until M � 2

�
3.
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