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Abstract—An analysis of a second order sliding mode 

algorithm known as the super-twisting algorithm is carried 
out in the frequency domain with the use of the describing 
function method. It is shown that in the presence of an 
actuator, the transient process converges to a periodic 
motion. Parameters of this periodic motion are analyzed. A 
comparison between the periodic solutions in the systems 
with higher order sliding mode controllers and the 
oscillations that occur in classical sliding mode systems with 
actuators is done. 

I. INTRODUCTION 

H IGHER order sliding modes (SM) have received a lot of 
attention from the control research community over 

the last decade (see bibliography in [1-11]. The main 
reasons for the use of the higher order sliding mode 
algorithms are: a higher accuracy of resulting motions; the 
possibility of using a continuous control law  (super 
twisting or twisting as a filter); the possibility of utilizing 
the Coulomb friction in the control algorithm [7]; the finite 
time convergence for the systems with arbitrary relative 
degree [1]. 

 It is known that the first order SM in systems with 
actuators of relative degree two or more is realized as 
chattering [10,11]. For the same reason, it would be logical 
to expect a similar behavior from a real second order SM, 
as the second order SM algorithms contain the sign 
function or the infinite gain. The modes that occur in a 
relay feedback system with the plant being the order 1, 2, 3, 
etc. dynamics were studied in publications [12,13]. It has 
been proven in those works that for the plant of order 3 and 
higher the point of the origin cannot be a stable equilibrium 
point. A similar behavior, therefore, can be expected from a 
system with a second order SM algorithm. Thus, the 
objective of this paper is to analyze the motions that occur 
in a system with the super-twisting algorithm, to show the 
existence of the periodic motions, to assess the parameters 

of those motions to be able to generate requirements to the 
actuator dynamics, and to compare those parameters with 
the parameters of chattering in the corresponding first order 
SM [14] algorithms. 
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Given the objective of the outlined analysis and the facts 
that the introduction of an actuator increases the order of 
the system, and at least two nonlinearities are present in a 
second order SM algorithm, the analysis of corresponding 
Poincare maps becomes very complicated. In this case the 
describing function (DF) method [15] seems to be a good 
choice as a method of analysis, as it provides a relatively 
simple and efficient solution of the problem. 

The paper is organized as follows. At first the model of 
the system involving the super-twisting algorithm suitable 
for the frequency domain analysis is obtained. Then the DF 
model of the algorithm is obtained. After that it is shown 
that a periodic motion occurs and the problem of finding 
the parameters of this periodic motion is considered. 
Finally, a number of examples are considered and a 
comparison is done page limits.  

II. SUPER-TWISTING ALGORITHM AND ITS DF ANALYSIS 

The super-twisting algorithm is one of the popular 
algorithms among the second order sliding mode 
algorithms. It is used for the plants with relative degree 
one. Let the plant (or plant plus actuator) be given by the 
following differential equations: 
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where A and B are matrices of respective dimensions, y can 
be treated as either the sliding variable or the output of the 
plant. We shall also use the plant description in the form of 
a transfer function W(s), which can be obtained from the 
formulas (1) as follows: 
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The control u for the super-twisting algorithm is given as 
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a sum of two components [8,9]: 
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where  γ, ρ and s0 are design parameters. In the formula for 
u2, ρ is suggested to be within the range from 0 to 1. The 
typical values would be 0.5 and 1. With ρ being 1, the 
second component of the control: u2(t) becomes a linear 
function of the output y at small departures ( y≤s0):      
u2=-λ y sign y=-λy, and the system can be analyzed as a 
conventional relay system. 

   

where A is the amplitude and A≤s0 (that is considered the 
most important range of the amplitude values for the 
analysis of the steady state) and Γ is the gamma-function. 
With the nonlinearity given by Fig. 2 the DF formula can 
be derived as: 

The system under analysis can be represented in the form 
of the block diagram as follows: 
 

 
Fig.1. Block diagram of the system with the 

super-twisting algorithm 
 

With ρ being 0.5 the function u2= u2 (y) would be 
presented as shown in Fig. 2.  

 
Fig. 2 

 
Let us find the DF of the nonlinear function Fig. 2. By 

definition, a DF is given by the following formula: 
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where F(ψ) is the nonlinear function. With the square root 

nonlinearity (ρ=0.5) the DF formula can be derived as: 
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where Ay is the amplitude of the variable y. For an arbitrary 
value of the power ρ in (2) and the amplitude Ay≤s0, the 
formula of the DF of such nonlinear function can be given 
as follows: 
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where the integral can be computed numerically. 
The DF of the first component of the super-twisting 
algorithm can be written as follows: 
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which is a result of the cascade connection of the ideal 
relay with the DF equal to 4γ/(πAy) [15] and the integrator 
with the transfer function 1/s. Taking into account both 
control components, the DF of the super-twisting algorithm 
can be written as: 
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Let us note that the DF of the super-twisting algorithm 

depends on both: the amplitude and the frequency values. 
The parameters of the limit cycle can be found via the 
solution of the following complex equation [15]: 
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where the DF N is given by (6). For solution of equation 
(7) the Laplace variable s in (6) can be replaced with jω. 
The function at the left-hand side of (7) can be represented 
by the following formula: 
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The function –1/N is a function of two variables: the 
amplitude and the frequency. It can be depicted as a 
number of plots representing the amplitude dependence, 
with each of those plots corresponding to a certain 
frequency. The frequency range that is of interest lies 
below the frequency corresponding to the intersection of 
the Nyquist plot and the real axis. The plots of function 
-1/N are depicted in Fig. 3. The plots 1,2,3,4 correspond to 
four different frequencies, with the following relationship: 
ω1>ω2>ω3>ω4. Each of those plots represents the 
dependence of the DF on the amplitude value. 
 

 
Fig.3. Plots of function -1/N 

 

Function –N-1(Ay) (where ω=const) has two asymptotes. 
One of them is the imaginary axis, and the other one is the 
horizontal line –j1.1329 γ /(λ2ω).  Considering the location 
of the plots of function –N-1(Ay) (including the asymptotic 
behavior) the following conclusion regarding the 
possibility of the periodic solution to take place can be 
made. The Nyquist plot of any system with relative degree 
higher than one will have a point of the intersection with 
the plot        -N-1(Ay) because the former is located in the 
third quadrant of the complex plane and has a high-
frequency asymptote coinciding with the real axis (for 
relative degree two) or goes through the third quadrant (for 
relative degrees higher than two). It is important that the 
point of the intersection is located in the third quadrant of 
the complex plane. Therefore, if the transfer function of the 
plant (or plant plus actuator) has relative degree higher 
than one a periodic motion may occur in such a system. 
For that reason, if an actuator of first or higher order is 
added to the plant with relative degree one driven by the 
super-twisting controller a periodic motion may occur in 
the system. From Fig. 3, it also follows that the frequency 
of the periodic solution for the super-twisting algorithm is 
always lower than the frequency of the periodic motion in 
the system with the classical first order SM relay 
controller, because the latter is determined by the point of 
the intersection of the Nyquist plot and the real axis. 

The solution of equation (7) can be iterative with 
possible application of various techniques.  However, 
complex equation (7) with two unknown variables: Ay and 
Ω can be reduced to one real equation having only one 
unknown variable Ω: 
 
 

0
(jΩReW
λ1.1128

(jΩImW
1

Ωπ
4γΨ(Ω)

2

1

1

=







−

=

−

−

)

)
          (9) 

 
 

Once equation (9) has been solved the amplitude Ay can 
be computed as follows: 
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Therefore, if a periodic motion occurs its parameters can 

be found from (9) and (10).   



 
 

 

III. EXAMPLES OF ANALYSIS AND COMPARISON OF RESULTS 

Example 1. Let the plant be given by the following 
equations: 
 

21 xx =&  
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and the actuator by: . Carry out analysis 
of periodic motions in the systems with the super-twisting 
controller if the parameters of the algorithm are given as: 
ρ=0.5, γ=0.8, =0.6.  The transfer function W(s) of the 
actuator-plant can be derived from the original equations 
as: 
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λ

 

1ss
1s

1s0.01
1W(s) 2 ++

+
+

=         (11) 

 
Equation (9) has a solution: Ω=66.16s-1. The amplitude 

Ay can be computed with the use of formula (10): 
Ay=2.33⋅10-4. The graphical illustration of the application 
of formula (7) to the analysis of the periodic motion is 
presented in Fig. 4. The plot –N-1(Ay) is drawn for the 
frequency of the periodic motion ω=66.16s-1 obtained 
above. 

 
Fig.4. Negative reciprocal of DF –N-1(Ay) and the 

Nyquist plot W(jω) 
 

Figure 4 provides a picture of the DF and the Nyquist 
plot location on the complex plane. The point of the 
intersection, however, cannot be seen from this picture, 
which is the result of the small value of the actuator time 
constant. A zoomed picture of the same plots in the vicinity 
of the intersection point is presented in Fig. 5. 

 

 
Fig.5. Negative reciprocal of DF –N-1(Ay) and the 

Nyquist plot W(jω) (zoomed) 
 

It is clearly seen in the Fig. 5 that the point of the 
intersection exists and the asymptotic behavior of the 
functions is in accordance with the above analysis. 
The simulations of the original equations of the system 
with the super-twisting algorithm produce the following 
trajectory (Fig.6). 

 
Fig. 6. Super-twisting trajectory 

 
Figure 6 displays the trajectory typical of the super-

twisting algorithm. The periodicity of the steady state 
motion is clearly seen in Fig. 7 where the control is 
presented as a function of time. 

The frequency of the periodic motion obtained as a result 
of the simulation is Ωsim=64.96s-1. One can see that the 
simulation result matches very well to the result of the DF 
analysis. 

Some other examples of analysis are presented in Table 
1. The actuator transfer function is denoted as Wa(s), the 
plant transfer function as Wp(s), and the transfer function 
from the plant input to the sliding variable is denoted as 



 
 

 

Wσ(s). As a result, the transfer function of the linear part 
W(s) is the product of Wa(s) and Wσ(s). 
 

 
Fig. 7. Control  u(t) at t→∞ 

 
One can see that the results of the DF analysis very well 

match to the results of the simulations. Also, the following 
properties are observed. A periodic motion occurs if the 
combined relative degree of the actuator and of the plant is 
higher than one. The frequency of the periodic motion in a 
system driven by the super-twisting controller is lower than 
the frequency of the periodic motion in the classical first 
order relay control – the fact that was predicted by the 
above analysis. The amplitudes of the chattering reflect the 
relationship between the frequency of the periodic motion 
and the decreasing character of the amplitude frequency 
response W(jω) of the actuator-plant.  

IV. CONCLUSIONS 
A second order SM algorithm known as super-twisting is 

analyzed with the use of the describing function method. It 
is shown that if the combined relative degree of the 
actuator and the plant is higher than one a periodic motion 
may occur in the system with the super-twisting algorithm. 
An algorithm of finding the parameters of this periodic 
motion is presented. The performed analysis shows that the 
frequency of the periodic motion in the system with the 
super-twisting algorithm is always lower and the amplitude 
is higher than the respective parameters of the periodic 
motion in the first order SM system having the same plant. 
A few examples of analysis are provided.  
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TABLE I 
EXAMPLES OF ANALYSIS AND SIMULATIONS 

 

 Super-twisting 
controller (ρ=0.5) 

Super-twisting 
controller (ρ=0.5) 

First order SM 
controller 

First order SM 
controller 

Plant Wp(s) 
1

1)( 2 ++
=

ss
sWp  1

1)( 2 ++
=

ss
sWp  1

1)( 2 ++
=

ss
sWp  1

1)( 2 ++
=

ss
sWp  

Actuator Wa(s) 
101.0

1)(
+

=
s

sWa
 

101.00001.0
1)( 2 ++

=
ss

sWa
 

101.0
1)(

+
=

s
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101.00001.0

1)( 2 ++
=
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Wσ(s) 
1

1)(
2 ++

+
=

ss
ssWσ  1

1)(
2 ++

+
=

ss
ssWσ  1

1)(
2 ++

+
=

ss
ssWσ  1

1)(
2 ++

+
=

ss
ssWσ  

W(s) 
aWWW σ=  aWWW σ=  aWWW σ=  aWWW σ=  

Ω (DF analysis) 66.16 55.18 Infinite 100.00 

Ω (simulations) 64.96 54.14 Converging to 

infinity 

99.26 

Amplitudes of 
chattering of plant 
output 

2.33e-4 4.81e-4 0 1.30e-4 

 


