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Abstract. There are many factors leading to construction safety accident. The rule presented under the influence of these 
factors should be a statistical random rule. To reveal those random rules and study the probability prediction method of 
construction safety accident, according to stochastic process theory, general stochastic process, Markov process and normal 
process are respectively used to simulate the risk-accident process in this paper. First, in the general-random-process-based 
analysis the probability of accidents in a period of time is calculated. Then, the Markov property of the construction safety 
risk evolution process is illustrated, and the analytical expression of probability density function of first-passage time of 
Markov-based risk-accident process is derived to calculate the construction safety probability. In the normal-process-based 
analysis, the construction safety probability formulas in cases of stationary normal risk process and non-stationary normal 
risk process with zero mean value are derived respectively. Finally, the number of accidents that may occur on construc-
tion site in a period is studied macroscopically based on Poisson process, and the probability distribution of time interval 
between adjacent accidents and the time of the nth accident are calculated respectively. The results provide useful reference 
for the prediction and management of construction accidents.

Keywords: civil engineering construction, safety accidents, probability prediction, Markov process, Normal process, Pois-
son process.

Introduction

Civil engineering construction has the characteristics of 
open air, high altitude and cross operation. Safety acci-
dents occur from time to time because of the influence 
of site conditions, natural environment, temporary facili-
ties, external environment and other factors, which has 
become a serious problem (Faber, 2003; Tang et al., 2012; 
de Lamos et al., 2004; Stewart, 2001). How to reduce the 
safety accidents in the process of civil engineering con-
struction is more and more widely concerned by people, 
thus, the research of safety risk prediction method in civil 
engineering construction has important practical signifi-
cance. 

In recent years, scholars have conducted extensive re-
search on the safety accidents in civil engineering con-
struction. Golizadeh et al. (2018) created a comprehensive 
list of accident causes from the Loughborough Construc-
tion Accident Causation model to determine the causes of 
building construction accidents and related these causes to 
the digital engineering which has the potential to address 
the root causes of accidents. Irumba (2014) investigated 

the causes of construction accidents in Kampala, Uganda 
using ordinary least squares regression and spatial regres-
sion modeling, and found that the most prevalent causes 
of accidents are mechanical hazards, being hit by falling 
objects and falls from height. Zhang et  al. (2019a) ana-
lyzed a typical construction accident based on four con-
temporary accident causation models: STAMP, AcciMap, 
HFACS, and the 2-4 Model, and found that the 2-4 Model 
could provide detailed causes of the accident and reveal a 
dynamic analysis and developing process. Kang and Ryu 
(2019) built random forest model to predict construction 
accident, and extracted important factors that affect the 
construction accident types at construction sites using fea-
ture importance. Choe and Leite (2020) proposed a safety 
risk generation and control model which addresses how 
the inherent safety risk of a worker can be transformed by 
different measurable risk factors. Zhang et al. (2020a) es-
tablished a construction accident causation system model 
using accident causation theory and the system think-
ing method to determine critical causes of construction 
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accidents in China and proposed recommendations for 
construction safety management and accident preven-
tion in practice. Chen et al. (2010) investigated the char-
acteristic factors responsible for construction accident 
occurrence for small construction enterprises in Taiwan 
using methodologies of descriptive statistics, correlation 
coefficient analysis and ANOVA. Winge and Albrechtsen 
(2018), Winge et al. (2019) analyzed 176 relatively severe 
construction accidents using the Construction Accident 
Causation framework and found that risk management, 
immediate supervision and worker actions were key caus-
al factors and the distribution of accident types varied re-
garding severity and different construction types. Chi and 
Han (2013) combined the systems theory with Heinrich’s 
domino theory to explore the interrelationships of risks, 
and broke the chain of accident causation to analyze re-
lationships between accidents and risks, then further 
identified key risk factors and risk combinations causing 
accidents. Besides the studies of the primary causes lead-
ing to construction accident, how to recognize safety and 
health hazards in advance of accidents in a construction 
site was also studied furtherly. Isaac and Edrei (2016) pro-
posed a statistical model that can support a more dynamic 
form of safety control, the model can provide proactive 
alerts before potential accidents exposure and addresses 
risks that are the result of concurrent activities on the con-
struction site. Lee et al. (2020) developed an audio-based 
event detection system which can automatically provide 
construction workers with prenotifications regarding safe-
ty hazards at a work zone and significantly improve the 
detection accuracy. Andolfo and Sadeghpour (2015) cre-
ated an accident warning system that consists of an Ultra 
Wideband Real-Time Locating System and probabilistic 
accident prediction model. The probabilistic accident pre-
diction model predicts the future construction accident by 
analyzing the information provided from Ultra Wideband 
Real-Time Locating System. Yang et al. (2012) proposed 
an identification system design for proactive accident pre-
vention based on ZigBee enabled wireless sensor network 
(WSN), radio frequency identification (RFID) technology 
and an integrated ZigBee RFID sensor network struc-
ture, which greatly improved the safety of construction 
sites. Ayhan and Tokdmir (2019) categorized the real data 
about construction incidents using the Delphi method 
and predicted the outcome of construction incidents us-
ing conventional and artificial intelligence techniques, and 
proposed an effective mechanism to prevent incidents uti-
lizing data through incident collection systems. Zhu et al. 
(2016) proposed novel Kalman filters for predicting the 
movements of the workers and mobile equipment on the 
construction sites so as to avoid the workers being struck 
by mobile equipment on sites and the effectiveness of the 
filters has been tested with real site videos. Based on the 
EUROSTAT accident model, Hoła and Szóstak (2014) pro-
posed a comprehensive general model of the development 
of an accident situation that can assess the probability of 
various scenarios of accident events and determine the 
necessary preventive actions. Some research works were 

also done on using management methods and strategies to 
prevent construction accidents (Nnaji & Karakhan, 2020; 
Mwakali, 2006; Shao et al., 2019; Shohet et al., 2018).

In the aspect of risk analysis and assessment, some 
foundational work has been done on this important 
topic, specifically risk-based asset integrity assessment 
and management. Hassan and Khan (2012) proposed a 
hierarchical framework used to characterize the asset and 
related it to an organization’s strategic goal for asset in-
tegrity monitoring and assessment. Khakzad et al. (2014) 
proposed a methodology based on hierarchical Bayesian 
analysis and accident precursor data to analyze the risk of 
major accidents. Khakzad et al. (2012) used bow-tie (BT) 
approach to perform the analysis of the risk in a dynamic 
environment, in which the occurrence probability of acci-
dent consequences changes. Bhatia et al. (2019) presented 
a method to assess risk for a dynamically changing system 
based on continuously monitored system parameters, the 
calculated dynamic risk can be used to plan optimal in-
spection and maintenance intervals more efficiently. Ding 
et al. (2020) proposed a framework combining uncertainty 
reasoning approach and deterministic modeling approach 
to assess the fire accident probability before a primary ac-
cident occurs and to model the domino evolution pro-
cess after a primary accident occurs, respectively. Jamot 
and Park (2019) compared two risk analysis methods in 
construction sites: System-Theoretical Process Analysis 
and Probabilistic Risk Analysis, and found that System-
Theoretical Process Analysis can simulate more construc-
tion scenarios and predict construction accidents more 
accurately. 

The above research studied the causes of construc-
tion accidents, the development process of accidents, 
the methods to predict accidents and reduce them, etc. 
According to the characteristics of randomness, latency, 
independence and inheritance of construction accidents 
(Zhou et  al., 2020; Li et  al., 2010; Sanni-Anibire et  al., 
2020), this work considers the development and evolu-
tion of safety risk in the future as a random process and 
then study the process from risk to accident from the per-
spective of random process. Although great progress has 
been made in probabilistic risk assessment theory (Ang & 
Tang, 2007; Li et al., 1993; Zhou & Ding, 2017; William-
son & Winget, 2005) and they have been widely used in 
the prediction and assessment of construction accidents, 
the current used probability theory is based on stochastic 
variable (Kang & Ryu, 2019; Choe & Leite, 2020; Zhang 
et al., 2020b; Isaac & Edrei, 2016; Andolfo & Sadeghpour, 
2015; Jamot & Park, 2019; Nnaji & Karakhan, 2020), while 
using stochastic process theory to analyze construction 
safety risk problem is very rare. But actually, stochastic 
processes theory was widely used in many applications, 
such as asset integrity, fault detection and diagnosis. Don 
and Khan (2019) introduced a methodology for dynamic 
process fault detection and diagnosis based on a combined 
approach of hidden Markov and Bayesian network mod-
el. Arunthavanathan et al. (2020) proposed a framework 
combining unsupervised learning with cognitive model-
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ling to detect and diagnose unknown fault conditions. Yu 
et al. (2015) raised a Nonlinear Gaussian Belief Network 
(NLGBN) based fault diagnosis technique for industrial 
processes, and constructed and trained a three-layer NL-
GBN to extract useful features from noisy process data. 
Amin et al. (2019) proposed a dynamic Bayesian network 
(DBN) based fault detection, root cause diagnosis, and 
fault propagation pathway identification scheme. Amin 
et al. (2018) presented a hybrid methodology to detect and 
diagnose the faults in dynamic processes based on princi-
pal component analysis with T2 statistics and a Bayesian 
network. Therefore, it can be thought the studies combin-
ing stochastic process and construction risk process are 
meaningful and reasonable. 

Various security incidents basically can be classified 
into two sources, unsafe state of objects and unsafe be-
havior of persons on construction site. For the safety ac-
cident caused by unsafe state of things, such as collapse of 
falsework, the stress state of key component changes dur-
ing the construction process and once the stress exceeds a 
safety threshold the collapse accident happens. Therefore, 
it is reasonable to regarding the state of object such as the 
stress of key component of falsework as a stochastic pro-
cess. Using stochastic process theory to reveal the stochas-
tic law of how risk developing into accident is important. 
According to the types and characteristics of safety ac-
cidents, stochastic process models with special properties 
are established to simulate the development and evolution 
of safety risk until accident happens. This work can help 
to deepen our understanding of the process from risk to 
accident and establish theoretical basis for the prediction 
and control of construction accidents.

1. Construction safety accident process 
simulation based on general random process

1.1. The analysis of construction safety probability 
under construction risk-accident random process

Any future construction risk-accident process could be 
regarded as a random process X(t) (Figure 1) because of 
its obvious randomness (Jin et al., 2020; Rey et al., 2011). 
If X(t) exceeds a certain safety limit in a period of time 
an accident happens. The probability that X(t) never ex-
ceeds the safety threshold in a given period of time (0,T] 
is just the construction safety probability. The parameters 
in the stochastic process model describing the future risk-

accident process should be determined by the statistics of 
past accidents.

For the characteristics of construction accident phe-
nomenon, it is easily observed that the occurrence of an 
accident is rare event, and the occurrences of any two ac-
cidents are independent of each other because there is no 
mutual influence between arbitrary two accidents. Thus, 
the event of the occurrence of an accident would satisfy 
the characteristics of a Poisson process, which can be seem 
as below (denote N(t) as the number of construction ac-
cidents in the period of [0, t)).

1. At initial time no construction accident occurs, i.e., 
N(0) = 0;

2. For any s ≥ t ≥ 0, Δt > 0, the number of accidents 
in a period of [t + Δt, s + Δs) only depends on the 
time interval (s + Δs) – (t + Δt) = s – t, and are not 
associated with the starting point of the time period;

3. The numbers of accidents occurred in any non-
overlapping time periods are independent of one 
another;

4. In a sufficiently small time interval Δt the probabil-
ity of occurrence of one accident is proportional to 
Δt, and the probability of occurrence of above two 
accidents is higher order infinitesimal of Δt – o(Δt).

It is obvious that the first three properties above are 
all consistent with the facts of accidents. And the fourth 
property is also a reasonable assumption for construction 
accident. Therefore, it can be assumed that the occur-
rences of accidents, corresponding to the crossings of the 
risk process and safety threshold (Figure 1), are in accor-
dance with Poisson process. That is, the total number of 
the crossings of X(t) and the threshold b nb(t) in a given 
period of time (0,T] is a Poisson process.

Generally, suppose process X(t) be a non-stationary 
random process with a safety range of –b2, b1. The prob-
ability that total number 1( )bn T+  of X(t) crossing the posi-
tive boundary b1 with a positive slope in (0,T] equals i is

1 1 1
1{ } [ ( ) ] exp[ ( ) ]
!

T T
i

b b bo o
P n i v d v d

i
+ + += = t t − t t∫ ∫ ,  (1)

where 1( )bn+ t  is the expectation of the number of the cross-
ings of X(t) and the positive boundary b1 per unit time at 
time t , which is called crossing rate.

The probability that total number 2( )bv T− of X(t) cross-
ing the negative boundary –b2 with a negative slope in (0, T]  
equals i is

2 2 2
1{ } [ ( ) ] exp[ ( ) ]
!

T T
i

b b bo o
P n i v d v d

i
− − −= = t t − t t∫ ∫ ,  (2)

where 2( )bv− t  is the expectation of the number of the cross-
ings of X(t) and the negative boundary –b2 per unit time 
at time t.

Obviously, the safety probability of X(t) in (0, T] is 
equal to the probability that X(t) never exceeds the region 
(b1, –b2), i.e.

2 1 2 1 2( , ) {max ( ) min ( ) ,0 }.sP b b P X t b X t b t T− = ≤ ∩ ≥ − < <  

(3)
Figure 1. Future risk development process could be regarded 

as a random process
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Using Poisson crossing hypothesis (Zhang et  al., 
2019b), any two crossing events are independent of each 
other, then Eqn (3) can be further expressed as

2 1 2 21( , ) { ( ) 0 ( ) 0}s bbP b b P n T n T+ −− = = ∩ = =

21{ ( ) 0} { ( ) 0}bbP n T P n T+ −= ⋅ = =

210 0
exp[ ( ) ] exp[ ( ) ]

T T
bbv d v d+ −− t t ⋅ − t t =∫ ∫

210
exp[ [ ( ) ( )] ].

T
bbv v d+ −− t + t t∫   (4)

Equation (4) is the calculation formula of the con-
struction safety probability of random process X(t) in pe-
riod (0, T] under Poisson assumption.

When the safety limit is symmetric two-sided bound-
ary, i.e. 1 2( )b b b= = , Eqn (4) can be simplified as

2 1 2 0
( , ) exp[ 2 ( ) ].

T
s bP b b v d− = − t t∫ ,                           (5) 

where 2 1( ) ( ) ( )b b bv v v− +t = t = t .
For the case of unilateral safety boundary, let 1 2 and b b b= →∞ 

1 2 and b b b= →∞, then 

2 1 2 0
( , ) exp[ ( ) ].

T
s bP b b v d+− = − t t∫  (6)

If the random process X(t) is stationary, the crossing 
rates 1( )bv+ t  and 2( )bv− t  are independent of time, that is 

2 2 1 1( ) , ( )b b b bv v v v− − + +t = t = , the corresponding Eqns (4)–(6) 
become 

2 1 2 21( , ) exp[ ( ) ].s bbP b b v v T+ −− = − + ; (7)

2( , ) exp( 2 ).s bP b b v T− = − ; (8)

1( ) exp( ).s bP b v T+= − . (9)

It can be seen from Eqns (4)–(9) that the crossing rates 
1( )bv+ t and 2( )bv− t  is the key to calculate the construction 

safety probability.

1.2. Calculation of the rate of crossing of  
risk-accident process and safety boundary

It is the basis of safety probability calculation to study the 
crossing of the random risk-accident process and a cer-
tain safety boundary. The events of random risk-accident 
process X(t) exceeding the threshold b in a period of time 

0 0( , )t t T+ can be expressed as follows:

{ ( ) , }.X t b t Tθ = > ∀ ∈

Suppose X(t) ( 0 0( , )t T t t T∈ = + ) is a mean square dif-
ferentiable random process. Define a new random process 
as follows:

( ) [ ( ) ] ( ).Y t X t b t T= e − ∈ ,  (10)

where e(⋅) is unit step function. Therefore, the formal de-
rivative of Y(t) is

( ) ( ) [ ( ) ] ( ).Y t X t X t b t T= d − ∈  ,  (11)

where e(⋅) is Dirac –d function.

Random process Y(t) is a 0–1 process, i.e. 

1 ( )( ) .0 ( )
X t bY t X t b

≥=  <
  (12)

Therefore, Y(t) can be regarded as a counting function, 
and every time X(t) crosses the boundary b with a positive 
or negative slope, the corresponding value is 1 or 0. As a 
function of t, d in Eqn (11) has weight function 1/ ( )X t  , 
so ( )X t is a transcendence functional. Use a unit pulse to 
represent a transcendence event. The sign of the pulse de-
pends on the sign of ( )X t . 

So
0

0
( ) ( ) [ ( ) ] .

t T
b t

n t X t X t b dt
+

= d −∫    (13)

( )bn t is the total number of the crossings of X(t) and 
the threshold b in time period T, which is a random vari-
able. So, the mathematical expectation of ( )bn t can be ob-
tained as

0

0
( ) [ ( )] { ( ) [ ( ) ]}

t T
b b t

N t E n t E X t X t b dt
+

= = d − =∫ 

0

0
( ) ( , , )

t T
xxt

X x b f x x t dxdxdt
+ ∞ ∞

−∞ −∞
d − =∫ ∫ ∫ 



 

0

0
( , , ) .

t T
xxt

x f b x t dxdt
+ ∞

−∞∫ ∫ 

  

 
 (14)

( , , )xxf x x t


  is the joint probability density function of 
X(t) and ( )X t .

In Eqn (14), let 

( ) ( , , ) .b xxv t x f b x t dx
∞

−∞
= ∫ 

  

 
 (15)

Clearly,vb(t) is the mathematical expectation of the 
number of the crossing of X(t) and the threshold b per 
unit time at time t (t ∈ T), that is the crossing rate.

If X(t) is a stationary process, due to ( , , ) ( , )xx xxf x x t f x x=
 

  
( , , ) ( , )xx xxf x x t f x x=
 

  , Eqn (15) becomes 

( ) ( , , ) .b xx bv t x f b x t dx v
∞

−∞
= =∫ 

  

 
 (16)

So, the crossing rate of X(t) is constant, which is inde-
pendent of time.

2. Construction safety accident process 
simulation based on Markov process

2.1. Markov characteristics of construction  
safety accident process

Given the present state and all the past states of a sto-
chastic process, the conditional probability distribution 
of its future state only depends on the present state. This 
type of stochastic process is Markov process. In other 
words, when the state of the process at time tm (present) 
is known, the probabilistic characteristics of the state of 
the process at time later than tm (future) will depend only 
on the state at time tm, and be independent of the state at 
time earlier than tm (past). So, Markov process is without 
aftereffect for the past states. Non-aftereffect is an impor-
tant property of Markov process. 



Journal of Civil Engineering and Management, 2021, 27(2): 87–99 91

The non-aftereffect property is just the feature in the 
process of safety risk gradually evolving into safety acci-
dent in civil engineering construction (Winge et al., 2019). 
That is, in the process of safety risk event evolution, the 
status of a risk event at the present moment will affect 
the status of the risk event at the next moment, while the 
previous status of the risk event has no influence on the 
future status (the status after the present moment) of the 
risk event. According to the characteristics of the evolu-
tion process of safety risk event, it is obviously reasonable 
to adopt Markov process to simulate the development and 
evolution process of safety risk in civil engineering con-
struction. The non-aftereffect property is a general char-
acteristic of a safety risk-accident process.

When a random process X(t) is adopted to simulate a 
safety risk-accident process, the occurrence of a safety ac-
cident corresponds to the random process X(t) exceeding 
the safety threshold. Thus, the occurrence probability of a 
safety accident in a period of time (0,T] is equivalent to 
the probability that the process X(t) exceeding the safety 
threshold once within (0,T].

When a random process X(t) is adopted to simulate a 
safety risk-accident process, the occurrence of a safety ac-
cident corresponds to the random process X(t) exceeding 
the safety threshold. Thus, the occurrence probability of a 
safety accident in a period of time (0,T] is equivalent to 
the probability that the process X(t) exceeding the safety 
threshold once within (0,T].

Assuming that the safety threshold is x = b and it is 
fixed and does not change with time (Figure 2). Then the 
construction safety probability 1( )sP b within the time pe-
riod (0,T] can be calculated by the following formula:

1 { ( ) ,0 }.sP P X t b t T= ≤ < ≤   (17) 

Equation (17) can be expressed as:

1 {max ( ) ,0 }sP P X t b t T= ≤ < ≤ ,  (18)

where max X(t) is the maximum value of random process 
X(t) within the time period (0,T].

The time Tf1 when the risk-accident process X(t) first 
exceeds the safety threshold (x = b) is a random variable, 
the probability distribution function 

1
( )

fTF T can be ex-
pressed as:

1 1( ) { ,0 }.
fT fF t P T t t T= ≤ < ≤   (19)

Obviously, the maximum value of 
1
( )

fTF t  is 
1
( )

fTF T , 
which is actually the failure probability. Therefore, the re-
lation between 1( )sP b  and 

1
( )

fTF T is as follows:

11( ) 1 ( ).
fs TP b F T= −   (20)

It shows that calculating the construction safety prob-
ability is equivalent to calculating the probability distribu-
tion function of the time when the risk process X(t) first 
exceeds the safety threshold.

The following is to solve the first-passage problem of a 
continuous Markov process.

2.2. The first passage probability  
of continuous Markov process

The continuous Markov process can be determined by its 
initial conditions and the transition probability distribu-
tion function (or density). The transition probability dis-
tribution function plays a leading role in the probability 
distribution of the Markov process. Therefore, solving the 
first-passage problem of continuous Markov process is to 
establish the internal relation between the transition prob-
ability distribution function of Markov process and the 
first-passage time probability distribution (Yang & Zhang, 
2011). The relation between them can be used to solve the 
probability distribution of the first-passage time.

As shown in Figure 3, the transition probability from 
the state X(0) = x0 of the process at time zero to the state 

( )X t b≤  at time t is 0 0{ ( ) | (0) } ( , | ,0)P X t X x F b t x= = . 
0( , | ,0)F b t x  is a binary function of b and t. It’s easy to 

know that the derivative of 0( , | ,0)F b t x  with respect to 
time variable t means the rate of change of probability 

0{ ( ) | (0) }P X t b X x≤ =  at time t under the condition of 
X(0) = x0. 

Consider the small time increment Δt at time t. The 
probability of 0{ ( ) | (0) }P X t t b X x+ Δ ≤ =  at time t  + Δt 
will also produces a smaller increment than the probabil-
ity of 0{ ( ) | (0) }P X t b X x≤ =  at time t. Then the difference 
between the probability at time t + Δt and the probability 
at time t (i.e., the change of probability),

0 0{ ( ) | (0) } { ( ) | (0) }.P X t t b X x P X t b X x+ Δ ≤ = − ≤ = ,

is equivalent to the difference between the probability of 
the state ( )X t b≤  at time t turning to the state ( )X t t b+ Δ >  
at time t + Δt, { ( ) | ( ) }P X t t b X t b+ Δ > ≤  and the probabil-
ity of from the state ( )X t b>  at time t turning to the state 

( )X t t b+ Δ ≤  at time t  + Δt, { ( ) | ( ) }P X t t b X t b+ Δ ≤ >  ,
{ ( ) | ( ) } { ( ) | ( ) }.P X t t b X t b P X t t b X t b+ Δ ≤ > − + Δ > ≤  

That is, 

0 0{ ( ) | (0) } { ( ) | (0) }
{ ( ) ) | ( ) } { ( ) ) | ( ) }.

P X t t b X x P X t b X x
P X t t b X t b P X t t b X t b

+ Δ ≤ = − ≤ = =
+ Δ ≤ > − + Δ > ≤

 

(21)

Figure 2. Fixed safety threshold
Figure 3. The relationship between the transition probability 

distribution and the first-passage time distribution
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Equation (21) can be expressed using transition prob-
ability distribution function as below.

0 0( , | ,0) ( , | ,0)
{ ( ) ) | ( ) } { ( ) ) | ( ) }.

F b t t x F b t x
P X t t b X t b P X t t b X t b

+ Δ − =
+ Δ ≤ > − + Δ > ≤

 

(22)

Consider the term { ( ) | ( ) }P X t t b X t b+ Δ > ≤  on the 
right of Eqn (22). Because the time interval Δt is suffi-
ciently small, it can be considered that process X(t) crosses 
the safety threshold x  = b at most once during Δt. This 
means that the probability of returning to state ( )X b⋅ ≤  af-
ter X(t) has crossed the threshold x = b is zero (Figure 4).  
So, during Δt if X(t) goes beyond the threshold it has to 
go into interval ( )X b⋅ > . On the other hand, according to 
the non-aftereffect property of Markov process, the state 
at time t  + Δt only depends on the state at time t. So, 
the probability { ( ) | ( ) }P X t t b X t b+ Δ > ≤  should be equal 
to the probability of the first passage in period (t, t + Δt), 
namely,

{ ( ) ) | ( ) } { } .
ff TP X t t b X t b P t T t t f t+ Δ > ≤ = < ≤ + Δ = Δ

 (23)

( )
fTf t

 
is the probability density function of the first over-

time Tf .
Then consider the term { ( ) | ( ) }P X t t b X t b+ Δ ≤ >  on 

the left of Eqn (22). Regard X(t  + Δt) and X(t) as two-
dimensional random vectors (X(t + Δt), X(t)). According 
to the conditional probability formula:

{ ( ) , ( ) }{ ( ) ) | ( ) } .
{ ( ) }

P X t t b X t bP X t t b X t b
P X t b
+ Δ ≤ >

+ Δ ≤ > =
>

 

(24)

And the molecular term on the right side of Eqn (24) 
can be converted into (see Figure 5):

{ ( ) ) | ( ) } { ( ) , ( ) }P X t t b X t b P X t t b X t+ Δ ≤ > = + Δ ≤ < ∞ −

{ ( ) ), ( ) } { ( ) } [ { ( )P X t t b X t b P X t t b P X t t+ Δ ≤ ≤ = + Δ ≤ − + Δ ≤

, ( ) } { ( ) , ( ) }] { ( ) }X t b P X t t b X t b P X t t b∞ ≤ − + Δ > ≤ = + Δ ≤ −

{ ( ) } { ( ) ) | ( ) } { ( ) }P X t b P X t t b X t b P X t b≤ + + Δ > ≤ ⋅ ≤ =

{ ( ) } { ( ) } ( ) { ( ) }.
fTP X t t b P X t b f t t P X t b+ Δ ≤ − ≤ + Δ ⋅ ≤

(25)

The last equal sign in the above equation utilizes the 
result of Eqn (22). Then, substitute the result of the above 
equation into Eqn (24), and yields:

{ ( ) ) | ( ) }P X t t b X t b+ Δ ≤ > =

{ ( ) )} { ( ) } ( ) { ( ) }
.

{ ( ) }
fTP X t t b P X t b f t t P X t b

P X t b

+ Δ ≤ − ≤ + Δ ⋅ ≤

>
 

(26)

By substituting Eqn (23) and Eqn (26) into Eqn (22) it 
can be obtained that:

0 0( , | ,0) ( , | ,0)F b t t x F b t x+ Δ − =

{ ( ) )} { ( ) } ( ) { ( ) }
( ) .

{ ( ) }
f

f

T
T

P X t t b P X t b f t t P X t b
f t t

P X t b

+ Δ ≤ − ≤ + Δ ⋅ ≤
− Δ

> { ( ) )} { ( ) } ( ) { ( ) }
( ) .

{ ( ) }
f

f

T
T

P X t t b P X t b f t t P X t b
f t t

P X t b

+ Δ ≤ − ≤ + Δ ⋅ ≤
− Δ

>
                                                            (27)

Divide both sides of Eqn (27) by Δt, and then take the 
limit by Δt → 0,

0 0
0

( , | ,0) ( , | ,0)
lim
t

F b t t x F b t x
tΔ →

+ Δ −
=

Δ

0

{ ( ) )} { ( ) } ( ) { ( ) }
lim [ ( )]

{ ( ) }
f

f

T
Tt

P X t t b P X t b f t P X t b
t f t

P X t bΔ →

+ Δ ≤ − ≤
+ ≤

Δ − =
>

0

{ ( ) )} { ( ) }lim ( ) { ( ) }
( ).

{ ( ) }
f

f

Tt
T

P X t t b P X t b f t P X t b
t f t

P X t b
Δ →

+ Δ ≤ − ≤
+ ≤

Δ −
>

 

(28)

According to the definition of derivative, it is noted 
that:

0 0
00

( , | ,0) ( , | ,0)
lim ( , | ,0);
t

F b t t x F b t x
F b t x

t tΔ →

+ Δ − ∂
=

Δ ∂

0

{ ( ) } { ( ) }lim
t

P X t t b P X t b
tΔ →

+ Δ ≤ − ≤
=

Δ

0

( , ) ( , )lim ( , ).
t

F b t t F b t F b t
t tΔ →

+ Δ − ∂
=

Δ ∂
 

Figure 4. The probability of returning after exceeding  
within Δt is zero
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Thus, Eqn (28) can be expressed as:

0

( , ) ( ) { ( ) }
( , | ,0) ( ).

{ ( ) }
f

f

T
T

F b t f t P X t b
tF b t x f t

t P X t b

∂
+ ≤∂ ∂= −

∂ >
 

(29)

Equation (29) shows the relation between the prob-
ability density of first-passage time and the transition 
probability distribution function of Markov process. From 
the formula, the analytical expression of the probability 
density function ( )

fTf t  of the first passage time Tf can be 
conveniently solved as follows:

0( , | ,0) [1 ( , )] ( , )
( ) .

2 ( , ) 1f
t t

T
F b t x F b t F b t

f t
F b t

′ ′⋅ − −
=

−
,  (30)

where 0 0( , | ,0) ( , | ,0)tF b t x F b t x
t

′ ∂
=
∂

 is the partial deriva-
tive of the transition probability distribution function of 
Markov process with respect to t under the condition of 
x0, ( , )F b t  is the one-dimensional distribution function 

( , ) |x bF x t =  of Markov process, ( , )tF b t′  is the partial de-
rivative of the one-dimensional distribution function with 
respect to t, ( , ) |t x bF x t′

= .

2.3. Safety probability during construction period 
based on continuous Markov process simulation

Suppose the safety threshold is x = b, and the length of time 
period to be examined is T. It is easy to know that the time 
Tf when the random process X(t) first exceeds the safety 
threshold in the time period (0,T] is a continuous ran-
dom variable. So the probability distribution function is:

( ) { ,0 }.
fT fF t P T t t T= ≤ < ≤   (31)

Obviously, the maximum value of ( )
fTF t is ( )

fTF T  
when t = T. According to Eqn (31) it can be obtained that:

( ) { }.
fT fF t P T t= ≤   (32)

Equation (32) indicates that ( )
fTF T  represents the 

probability that the first passage time Tf is within the time 
period (0,T], so it is actually the failure probability. There-
fore, the construction safety probability ( )sP b  and ( )

fTF T  
have the following relationship:

( ) 1 ( ).
fs TP b F T= −   (33)

That is, the reliability can be obtained from the prob-
ability distribution function of the first passage time.

After obtaining the probability density function ( )
fTf t  

of the first-passage time of the continuous Markov process 
from Eqn (30), the construction safety probability ( )sP b  
in the period of (0,T] can be calculated according to the 
relationship between ( )

fTf t  and the probability distribu-
tion function of the first-passage time.

0
( ) 1 ( ) .

f

T
s TP b f t dt= − ∫   (34)

2.4. Application example

Assuming that a construction risk process is Markov pro-
cess X(t), the transition probability density function is

2
0 0

0 0 2 2
0 0

( )
( , | , ) exp[ ],

( ) 2 ( )
x x x x

f x t x t
t t t t
− −

=
s − s −

  (35)

where t ≥ 0 , and s  = 1 is distribution parameter. The 
initial condition is 

( ,0 |0,0) ( ).f x x= d   (36)

The mathematical expectation and variance of the ran-
dom process X(t) are

1
24

4[ ( )] , [ ( )] .
2 2

E X t t D X t tπ − π
= s = s   (37)

According to Eqn (30), ( )
fTf t  can be obtained as:

2 2 2

2

[exp( ) 1] exp( )
2 2 2( ) .

2exp( ) 1
2

fT

b b b
t t tf t

b
t

− − −
s s s=

− −
s

  (38)

To verify the correctness of the conclusion in detail, 
the results are discussed in two cases of infinite and finite.
1) Infinite threshold situation

Consider the case of infinite threshold. Order b → ∞ 
and solve the limit of Eqn (38). According to the limit 
algorithm and l ‘hopital’s rule it can be gotten that

lim ( ) 0.
fTb

f t
→∞

=   (39)

Therefore,

0
( ) 0.

f

T
f TP f t dt= =∫   (40)

Equation (40) indicates that when the safety limit ap-
proaches infinity, the probability of safety accidents is 
zero, which is consistent with reality.
2) Finite threshold situation

When the safety threshold is finite, the occurrence 
probability of construction accident is solved according to 
the integral 

0
( )

f

T
Tf t dt∫ . Several increasing period lengths 

are selected for calculation based on the safety threshold 
b = 10, as shown in Figure 6. It can be seemed that the 
probability of accidents increases with time. This is con-
sistent with the reality.

Figure 6. The failure probability of different length periods  
in finite threshold case
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3. Construction safety risk-accident process 
simulation based on normal random process

3.1. Normal characteristics of construction  
safety risk-accident process

Some types of construction accidents are generated by the 
combination and development of multiple risk factors. In 
multiple risk factors, each risk factor is irrelevant to each 
other and does not play a leading role. Such construction 
risk-accident process can be simulated by normal stochas-
tic process.

If arbitrary n-dimensional random vector 1 2{ ( ), ( ) ( )}nZ t Z t Z t⋅ ⋅ ⋅ ⋅ 
1 2{ ( ), ( ) ( )}nZ t Z t Z t⋅ ⋅ ⋅ ⋅  of random process { ( ), }X t t T∈ is n-dimensional 

normal random vector, the process is normal process. Its 
probability density function is

1 2 3 1 2 3( , , , , , ,n nf Z Z Z Z t t t t⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =

1
1

2 2

1 1exp{ ( ( )) ( ( ))},
2

2 | |

T
n

z m t C z m t

C

−− − −

π          

(41)

where:

1
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⋅  ⋅ 
     

 

11 12 1
21 22 2

1,
1 2

N
N

N N
N N NN

K K K
K K K

C
K

K K K
−

⋅
⋅

⋅ ⋅ ⋅ ⋅= =
⋅ ⋅ ⋅

⋅

1 1 2 1

2 1 2

1

1

2
1 1 2 1

2
2 1 2

1
2

1

(( ) ) (( )( )) (( )( ))
(( )( )) (( ) )

.
(( )( ))

(( )( )) (( ) )

N

N N

N N

z z z z N z

z z z

N z N z

N z z N z

E Z m E Z m Z m E Z m Z m
E Z m Z m E Z m

E Z m Z m
E Z m Z m E Z m

−−

− − − ⋅ − −
− − − ⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ − −

− − ⋅ ⋅ −

If 1 2 3( ), ( ), ( ) ( )nZ t Z t Z t Z t⋅ ⋅ ⋅  are independent of each 
other, then

2
11

2
22

2

0

.

0 0 nn

C

 s ⋅ ⋅
 ⋅ s ⋅ ⋅ =
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                                     (42)

Thus the probability density function is

1 2 3 1 2 3( , , , , , , )n nf Z Z Z Z t t t t⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =
2

1
2

11

( ( ))1 exp{ }.
2[ ( )]2 ( )

n
i i

i iii

z m t
tt=

−
−

sπs∏
 

(43)

3.2. Analysis of construction safety probability 
based on normal process simulation

When the risk-accident process X(t) is a stationary normal 
process with zero mean value, the rate of the crossing of 
the process and the safety threshold can be obtained by 
Eqn (16):

2

2
exp( ).

2 2
x

bb
x x

bv v+ − s
= = −

πs s
   (44)

Substituting Eqn (44) into Eqn (7), the calculation for-
mula of construction safety probability in the time period 
(0,T] is obtained as follows:

2 2
1 2

1 2 2 2
( , ) exp{ [exp( ) exp( )]}.

2 2 2
x

s
x x x

T b b
P b b

s
− = − − + −

πs s s
  

(45)

Under the condition of unilateral safety threshold, Eqn 
(45) is simplified as:

2

2
( ) exp[ exp( )].

2 2
x

s
x x

T bP b
s

= − −
πs s
   (46)

If the risk-accident process X(t) is a nonstationary 
normal process with zero mean value, the crossing rate 
becomes

2
1

1 2
( ) exp[ ];

2 2 ( )
x

b
x x

T b
v t

t
+ s

= − −
πs s


2
2

2 2
( ) exp[ ],

2 2 ( )
x

b
x x

T b
v t

t
− s

= − −
πs s
  (47)

where ( )x ts  is the root mean square of the normal process 
at time t.

Substitute the crossing rate into Eqn (4), and yields 
the calculation formula of safety probability of the risk-
accident process X(t) in the time period (0, T].

1 2( , )sP b b− =
2 2
1 2
2 20

( )1exp{ exp[ ] }.
2 ( ) 2 ( ) 2 ( )

T x

x x x

t b b
dt

t t t
s

− − −
π s s s∫ 

     
(48) 

If the number of the crossing of the process and the 
safety boundary conforms to Markov process, the calcu-
lation formula of construction safety probability of the 
process X(t) in the time period (0, T] can be concluded 
from Eqn (17). 

1 20
( , ) exp[ ( ) ]  ( = = ),

T
sP b b t dt b b b− = − a∫   (49)

where a(t), r(t) and w2(t) are respectively

2
2

2

1 exp[ ( ) ( )]( ) ( ) 2( ) exp[ ] ;
2 ( )1 exp[ ]

2

q t r tw t r tt
r t

π
− −

a = −
π

− −

2
( )

( ) ; ( ) .
( ) ( )

x

x x

tbr t w t
t t

s
= =
s s

   

The probability distribution of a normal process can 
be completely determined by mathematical expectation 
and covariance functions. Therefore, first, it is necessary 
to obtain the sample data of n-dimensional random vec-
tor 1 2 3{ ( ), ( ), ( ) ( )}nZ t Z t Z t Z t⋅ ⋅ ⋅  of the normal process 
through observation and record in past practical en-
gineering, then the mean value and covariance of joint 
probability density function can be calculated by mathe-
matical statistics method. That can provide a reference for 
the risk assessment and prediction of similar construction 
risk-accident process in the future.
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4. Analysis of macroscopic statistical law  
of construction accidents

4.1. Poisson process simulation

For practical engineering problems simplifying assump-
tions need to be made to establish theoretical model and 
make problem easy. Therefore, to explore the regularity of 
accidents in civil engineering construction should focus 
on the main characteristics of the construction phenom-
enon and discard the secondary factors to establish the 
model. This section makes statistics of different kinds of 
safety accidents in civil engineering construction site and 
analysis the regulation from a macroscopic perspective 
(Forteza et al., 2016; Zhang et al., 2020). Obviously, on the 
macro level, the number of accidents on the construction 
site is a counting process. According to the independent 
characteristics of construction accidents, it is reasonable 
to directly assume that the counting process is a Poisson 
process. Based on Poisson process, the total number of 
safety accidents during the whole construction period can 
be predicted.

Assuming that the state of random process {X(t), t ≥ 0} 
take only non-negative integers, if it satisfies (Ross, 1996):

1.  N(0) = 0;
2. {N(t), t ≥ 0} has independent increment;
3. For any s, t > 0,

{ ( ) ( ) }P N s t N s k+ − = =

0 0

1 [ ( ) ] exp[ ( ) ],  0,1,2,...., 0.
!

t t
kd d k

k
l t t − l t t = l >∫ ∫  (50)

Then {N(t), t ≥ 0} is called Poisson process. Param-
eter l(t) represents the mathematical expectation of the 
number of random points per unit time at time t, and this 
kind of Poisson process is called inhomogeneous Poisson 
process. If l(t) = l is constant and independent of time 
t, this kind of Poisson process is called the homogeneous 
Poisson process. In this case, Eqn (50) changes to the fol-
lowing equation:

{ ( ) ( ) } { ( ) }P N s t N s k P N t k+ − = = = =

( ) , 0,1,2..., 0.
!

k
tt e k

k
−ll

= l >
 

(51)

Poisson process is a time continuous but state discrete 
random process. N(t) represents the number of random 
points appear in the time period of [0, t]. Corresponding 
to the construction accidents, N(t) represents the num-
ber of construction accidents in the whole construction 
period (denote construction period as T, then t ∈ [0, T]).

4.2. The probability distributions  
of the time interval between adjacent  
accidents and the waiting time

T1 represents the time of the first accident. For n > 1, Tn 
represents the interval time between the (n  – 1)-th ac-
cident and the nth accident. Sequence { , 1, 2, 3,...}nT n =  is 
the time series between accidents.

Now solve the distribution of Tn. Notice that the event 
1{ }T t>  happens only if no accident happens in the inter-

val [0, t]. Therefore,

1{ } { ( ) 0} .tP T t P N t e−l> = = =   (52)

So, T1 follows an exponential distribution with the 
mean of l. Then,

2 2 1{ } [ { | }].P T t E P T t T> = >   (53)

However,

2 1 1{ | } {zero accident in ( , ) | }P T t T s P s s t T s> = = + = =

{zero accident in ( , )} .tP s s t e−l+ = , (54)

which is obtained using the independent increment prop-
erty and stationary increment property. Therefore, it can 
be seen that T2 also follows an exponential distribution 
with the mean of l, and T2 is independent of T1. Thus, by 
repeating the above steps it can be concluded that, Tn(n = 
1, 2, 3, …) is an exponential random variable that is in-
dependently and identically distributed with a mean of l. 
So, the probability density function of Tn is 

( ) , 0.
n

t
Tf t e t−l= l >   (55)

The above conclusion shows that the state of Poisson 
process is independent of everything that happened before 
(i.e. independent increment) and has the same distribution 
as the original process (i.e. stationary increment). These 
two characteristics also coincide with the characteristics 
of construction accident events. That is, the construction 
process is memoryless, construction accidents are inde-
pendent of each other, an accident is not associated with 
another one. So, the exponential interval is exactly what 
is expected.

The time when the nth accident happens is denoted 
as Sn, and it is also called the waiting time for the nth ac-
cident. To solve the distribution of Sn, notice that the nth 
accident occurs at time t only if the number of accidents 
until t is at least n, that is

( ) .nN t n S t≥ ↔ ≤   

Therefore,

  

( )( ) { } { ( ) } .
!n

j
t

S n j n
tF t P S t P N t n e
j

∞ −l
=

l
= ≤ = ≥ =∑   (56)

The above equation is differentiated and yields
1( ) ( )( )

! ( 1)!n

j j
t t

S
j n j n

t tf t e e
j j

∞ ∞ −
−l −l

= =

l l
= − l + l =

−∑ ∑
1 1

1

( ) ( ) ( )
( 1)! ( 1)! ( 1)!

n j j
t t t

j n j n

t t te e e
n j j

∞ ∞− −
−l −l −l

= + =

l l l
l + l − l =

− − −∑ ∑
1( ) .

( 1)!

n
t te

n

−
−l l

l
−

 (57)

Thus, it can be concluded that the random variable Sn 
follows the gamma distribution with parameters n and l, 
i.e.

1( )         0( ) .( 1)!
0                         0

n

n
t

S

te tf t n
t

−
−l ll ≥=  −

 <

  (58)
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Using Poisson process to predict the total number of 
safety accidents during the whole construction period, 
the key is to determine the parameter l of the Poisson 
process. l represents the average strength of construction 
accidents. Therefore, to determine its value, a large num-
ber of construction site safety accident investigation and 
statistics should be conducted. Then substitute the average 
intensity of construction accidents obtained from previous 
construction site statistics into the Poisson process model 
to predict the situation of safety accidents in similar con-
struction site.

5. Discussion and example

This work first made the connection of stochastic process 
model to the construction safety accident conceptually, 
then derived the formulas of calculating the stochastic 
processes exceeding safety threshold, which is the key to 
judge whether a risk factor would evolve into an accident. 
And thus, stochastic process-based construction safety 
risk prediction and management theory framework was 
established. This work is important and necessary because 
it can reveal the dynamic stochastic law from risk to ac-
cident. Specifically, general process, Markov process, nor-
mal process and Poisson process were used to simulate 
future risk-accident process, for the purpose of prediction 
and management of safety risk. It should be pointed out 
that, to determine the parameters of the stochastic process 
model proposed, the corresponding data of previous con-
struction accidents are needed. And in general, the more 
date, the more accurate the model.

Take the Poisson process model regarding the macro-
scopic statistical law of construction accidents presented 
in Section 5 as an example. Table 1 shows the statistical 
data of collapse accidents in China during 2004–2013.

The average number of collapse accidents is 103 per 
year. This means that under the current economic, tech-
nical and management level the intensity of such accident 
per unit time is 103 times a year. Parameter l represents 
the mathematical expectation of the number of random 
accidents per unit time, so parameter l =103. According 
to Eqn (51):

103(103 ){ ( ) } , 0,1,2....
!

k
ttP N t k e k

k
−= = =   (59)

According to Poisson process theory, { ( ) }P N t k=
means the probability of k accidents in period of (0,t). 
Thus, we can use this equation to predict the occurrence 
of accidents. For instance, let t = 1 and k = 100,

100
103(103 1){ (1) 100} 3.81%.

100!
P N e−×

= = =

This means the probability of 100 accidents in the pe-
riod of (0,1) (1 year) is 3.81%. We can also use Eqn (59) 

to predict the accident probability in another period. For 
instance, let t = 0.5 and k = 50,

500
103 0.5(103 0.5){ (0.5) 50} 5.51%.

50!
P N e− ××

= = =   

It means that the probability of 50 accidents in the 
period of (0,0.5) (half a year) is 5.51%. More calculation 
results are shown in Figures 7 and 8.

Further, we can get more accident prediction informa-
tion according to Eqns (55) and (58). According to Eqn 
(55), the probability density function of the time interval 
between adjacent accidents is 

103( ) 103 ( 0).
n

t
Tf t e t−= >   

Then, we can make the probabilistic prediction, for 
instance,

0.2
103 5

0.1
{0.1 0.2} 103 3.36 10 .t

nP T e dt− −< < = = ×∫   

It means the time interval of two adjacent accidents 
is 0.1~0.2 year (i.e., 36.5~73 days) with the probability of 
3.36×10–5. We can decrease the time interval to obtain 
more accurate probability prediction, for example, change 
(0.1,0.2) to (0.1,0.15).

Using Eqn (58) we can predict by probability the oc-
currence time of the n-th accident. For example, the prob-
ability density function of the time when the second ac-
cident happens S2 is 

2

103103 (103 )      0( ) .0                         0
t

S
e t tf t t
− ≥=  <

  

Then,

2 2
103

2 0
( ) { } ( ) 1 (1+103 )

t
t

S SF t P S t f u du e t−= < = = −∫ , 

which is the probability of two accidents occurring in the 
period (0,t). For instance, let t = 0.03,

2
103 0.03(0.03) 1 (1+103 0.03)=0.81.SF e− ×= − ×   

This indicates that the probability of two accidents 
occurring before 0.03 year (11 days) is 0.81. More cal-
culation results are shown in Figure 9. It can be seemed 
that the probability of the second accident occurring in-
creases with time period. Especially, when t reaches 0.08, 

2
(0.08)SF  is close to 0.99, which indicates that the prob-

ability of the second accident occurring before 0.08 year 
(29.2 days) is very large. Actually, this result is very mean-
ingful. It enlightens us that under the original situations 
(including construction environment, safety management, 
safety technology, etc.) it’s almost certain that a second 
accident would happen before the 29th day (from the day 
when the prediction is made on). So, if the managers pay 
more attention to this problem based on the prediction 
result and strengthen safety management or strengthen 

Table 1. Number of collapse accidents in China from 2004 to 2013

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 average
Number of the accidents 125 133 129 117 106 97 93 86 57 90 103
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the investigation of potential risk sources, the probability 
of potential accident might be greatly reduced.

Based on Poisson process model, the occurrence prob-
ability of k accidents in period of (0,t), the probabilistic 
prediction of the time interval between adjacent accidents 
and the probabilistic prediction of the occurrence time of 
the n-th accident can provide useful information of acci-
dents to the project manager or the industry management 
government department in a region. In addition, it should 
be noted that the application of Markov process and nor-
mal process need much more detailed data of construc-
tion accidents. So, we need to make detailed statistics and 
records from now on.

Conclusions

1. The occurrence and evolution process of construc-
tion safety risk can be regarded as a random process. 
The random process exceeding the safety threshold 
corresponds to safety accidents happening. Firstly, 
the construction risk-accident process is regarded 
as a general random process, then the probability of 
accidents in a certain period is calculated and the 
corresponding formulas are derived.

2. The non-aftereffect of Markov process is just the fea-
ture of the process of safety risk gradually evolving 
into an accident in civil engineering construction. 
According to Markov property, the development 
and evolution process of construction safety risk 
can be modeled and corresponding warning meas-
ures can be established to avoid the occurrence of 
construction accidents. And the expression of prob-
ability density function for the first-passage time of 
Markov process is derived to calculate the probabil-
ity of accidents.

3. Among the various risk factors leading to con-
struction accident, if each risk factor is irrelevant 
and does not play a leading role, such construction 
risk-accident process can be simulated by normal 
process. The construction safety probability formu-
las of stationary normal process and non-stationary 
normal process with zero mean value are derived 
respectively. These provide a reference for the risk 
assessment and prediction of the similar type of 
construction risk-accident process in the future.

4. Different kinds of safety accidents occurring on the 
construction site of civil engineering are analyzed 
from a macro perspective. The total number of safe-
ty accidents in the whole construction period can be 
predicted based on Poisson process. Moreover, the 
interval time between the (n –1)-th accident and the 
nth accident and the waiting time for the nth acci-
dent are obtained. These will play a macro guiding 
role in the prediction of construction accidents.
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