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Abstract

We used high throughput pyrosequencing to characterize stomach and gut content microbiomes of Crassostrea virginica,
the Easter oyster, obtained from two sites, one in Barataria Bay (Hackberry Bay) and the other in Terrebonne Bay (Lake
Caillou), Louisiana, USA. Stomach microbiomes in oysters from Hackberry Bay were overwhelmingly dominated by
Mollicutes most closely related to Mycoplasma; a more rich community dominated by Planctomyctes occurred in Lake
Caillou oyster stomachs. Gut communities for oysters from both sites differed from stomach communities, and harbored
a relatively diverse assemblage of phylotypes. Phylotypes most closely related to Shewanella and a Chloroflexi strain
dominated the Lake Caillou and Hackberry Bay gut microbiota, respectively. While many members of the stomach and gut
microbiomes appeared to be transients or opportunists, a putative core microbiome was identified based on phylotypes
that occurred in all stomach or gut samples only. The putative core stomach microbiome comprised 5 OTUs in 3 phyla,
while the putative core gut microbiome contained 44 OTUs in 12 phyla. These results collectively revealed novel microbial
communities within the oyster digestive system, the functions of the oyster microbiome are largely unknown. A comparison
of microbiomes from Louisiana oysters with bacterial communities reported for other marine invertebrates and fish
indicated that molluscan microbiomes were more similar to each other than to microbiomes of polychaetes, decapods and
fish.
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Introduction

The Eastern oyster, Crassostrea virginica, is well known for its

commercial value and importance as an ‘‘ecosystem engineer’’ [1–

3]. Volumes have been written about its biology and ecology,

including interactions with bacteria and other microbes. Much of

this literature has emphasized diseases [4,5] and the presence of

human pathogens, especially Vibrio parahaemolyticus and V. vulnificus

[6–9].

Many studies have addressed other aspects of oyster-bacteria

interactions. Cristispira has been identified as a symbiont

associated with the crystalline style, a molluscan digestive

structure [10]. Stappia (now Labrenzia) has been isolated from

C. gigas and C. virginica, and in the latter implicated as an

antagonist for the etiological agent of Juvenile Oyster Disease

[11]. Culture-dependent studies have characterized Vibrio and

other genera associated with bulk animals and specific tissues

[6–8,12,13] including identification of ‘‘indigenous’’ bacteria in

C. gigas haemolymph [14,15]. Such studies have also shown that

an Eastern Mediterranean oil spill did not affect oyster-

associated bacteria [16]. Culture-independent studies have

documented patterns of diversity among different populations

and tissues, compared hatchery-raised and wild animals, and

identified the e-Proteobacterium, Arcobacter, as a major contrib-

utor to the microbial community of the Chilean oyster, Tiostrea

chiliensis [17].

Despite the pathogen-associated and fingerprinting studies

summarized above, and the potential importance of bacteria for

oyster nutrient acquisition, surprisingly little information exists

on oyster stomach and gut microbiome diversity. Although pH

values of stomach and gut tissues are similar, and particle transit

times relatively short (about 1–2 h) during active feeding [18], it

is unclear whether characteristic communities exist in the

contents of these tissues; it is equally uncertain how micro-

biomes might vary within a population or across populations.

To address these questions, we obtained two sets of triplicate

animals, one set each from Hackberry Bay and Lake Caillou in

coastal Louisiana during summer, 2010. These two geograph-

ically distinct sites (Barataria Bay and Terrebonne Bay,

respectively) represent economically important sources of

oysters, and experience similar salinity regimes and variability

[19]. We separately collected stomach and gut contents, and

sequenced PCR-amplified 16S rRNA genes using a pyrosequen-

cing platform (Roche Diagnostics 454 Titanium). The results

revealed substantial differentiation between stomach and gut

microbiomes of animals from one site (Lake Caillou), but
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somewhat less differentiation for the second site (Hackberry

Bay). Notably, Mollicutes accounted for .80% of all bacterial

sequences in the stomach microbiomes of Lake Caillou oysters,

but ,10% of Hackberry Bay oysters. Stomach OTUs also

included Actinobacteria, Chloroflexi, Firmicutes, Planctomy-

cetes, Proteobacteria, and Spartobacteria. Chloroflexi, Molli-

cutes, Planctomycetes and Spartobacteria might comprise

a putative core stomach microbiome, while Chloroflexi,

Firmicutes, a-Proteobacteria and Verrucomicrobia might con-

tribute to a putative core gut microbiome.

Materials and Methods

Sample Collection
Oysters were collected on August 4, 2010 from Hackberry Bay,

a small bay adjoining Barataria Bay, Louisiana, USA. This site

was unaffected by oil from the Deepwater Horizon oil spill [20].

Triplicate oysters were held on ice (,6 h) for initial processing at

the Louisiana Sea Grant Oyster Hatchery, Grand Isle, LA, USA.

The external valves were thoroughly cleaned to remove surface

contamination, and then carefully opened leaving the animal

intact. Stomach contents of individual animals were sampled using

23-gauge needles and 1-cm3 syringes, yielding about 0.2 cm3 of

fluid, which was transferred to sterile 1.5 cm3 microfuge tubes.

Gut contents were obtained by locating the intestine of individual

animals and then carefully extruding hindgut material from the

anus into sterile 1.5 cm3 microfuge tubes. Stomach and gut

contents were transported on ice to a laboratory at Louisiana State

University (LSU) where DNA was extracted using a MoBio

PowerMax soil extraction kit (MoBio Laboratories, Inc., Carlsbad,

CA) following the manufacturer’s instructions with the addition of

a freeze (at 280uC, 10 min)/thaw (at 60uC, 5 min) cycle repeated

three times. A second set of oysters collected on September 1, 2010

from Caillou Bay (Caillou Lake), Louisiana, USA were processed

similarly with the exception that animals were transported on ice

to the LSU laboratory prior to sampling stomach and gut contents.

This site was also unaffected by the Deepwater Horizon oil spill.

Sampling permits were not required for either site.

DNA Analysis
DNA extracts from all samples were amplified by PCR with

Platinum high-fidelity DNA polymerase (Life Technologies Corp,

La Jolla, CA) in 25 ml reactions using standard protocols with the

exception of a 68uC extension temperature, and primers 515f and

806r modified with barcodes and adaptors for sequencing using

the Roche 454 pyrosequencing platform with titanium chemistry

[21]. Each reaction mixture contained 11.5 ml water, 2.5 ml 10X

high-fidelity buffer (Life Technologies Corp, La Jolla, CA), 0.75 ml

of 100 mM dNTPs, 1 ml MgSO4, 5 ml of 0.5 mg ml21 BSA,

1.5 ml for each of 515f and 806r primers, 0.2 ml high-fidelity DNA

polymerase (Life Technologies Corp, La Jolla, CA), and 1 ml of

extracted DNA. Reaction mixtures were denatured for 3 min at

94uC, followed by 26 cycles of 94uC for 1 min, 1 min at 54uC, and

2 min at 68uC, with a 10 min extension step at 68uC after the

cycles were complete. Triplicate reactions for each sample were

pooled, and then a final mixture was prepared for sequencing by

adding amplicons from each sample in equal masses. Pyrosequen-

cing was conducted by the Los Alamos National Laboratory

sequencing facility, resulting in a total of 237,842 raw reads with

an average length of 295 bp. Sequences have been submitted to

the MG-RAST server as 4501864.3-4501873.3 (http://

metagenomics.anl.gov/linkin.cgi?project = 1994).

Sequence Analysis
Raw sequences with quality scores were processed using three

pipelines. PANGEA [22] was used to compare the phylogenetic

composition of samples for which OTUs were classified using

MEGABLAST with a reference database containing 170,273

full-length 16S rRNA gene sequences from Bacteria and

Archaea isolates. Raw reads were screened using default values

(average quality score, 20; minimum length, 100 bp) [22].

Reads were binned based on barcodes, which were trimmed

prior to MEGABLAST. Sequences were assigned to domain/

phylum, class/order/family and genus and species levels,

respectively, using similarity threshold values of 0.8, 0.9, 0.95

and 0.99 for [22]. Sequences not classified by MEGABLAST

were clustered into OTUs based on the same similarity

thresholds. PANGEA also created a second analysis in which

all samples consisted of an equal number of reads; these

normalized sample datasets were constructed using sequences

randomly chosen without replacement from the original

screened sample files. The compositions of stomach and gut

samples were compared using principal components analysis

after eliminating singletons (sequences represented only once in

the full dataset), and after removing cyanobacterial and

eukaryotic sequences (chloroplast and mitochondrial 16S rRNA

from algal cells in stomachs and guts). Of the remaining

sequences identified at a phylum level or lower, representative

sequences for OTUs accounting for $0.1% of the total were

curated manually using MEGABLAST in GenBank. Any

sequences misidentified by PANGEA were reclassified as

necessary.

The CloVR pipeline [23] was used with its default settings (e.g.,

average quality score, 25; minimum length, 100 bp) to create

analyses based on taxonomic affiliations (i.e., sample composition)

and sequence phylogeny. For this purpose, CloVR used a hybrid

pipeline consisting of Mothur sub-routines that classified sequences

with the RDP database, and QIIME sub-routines for various

statistical analyses. After removing cyanobacterial and eukaryotic

sequences, OTUs classified by CloVR that accounted for $0.1%

of the total remaining reads were subjected to manual curation as

above. Aligned representative sequences for classified, curated

OTUs were then used for a Fast UniFrac analysis (http://bmf2.

colorado.edu/fastunifrac/) based on a neighbor-joining tree as

input.

The Mothur pipeline [24] was used with more stringent values

than the other platforms for sequence trimming (i.e., a moving

window of 50 bp with an average quality score of 35; minimum

length, 100 bp). The ‘‘classify’’ function of the Mothur pipeline

was used to identify sample composition for OTUs representing

$0.1% of the database after removing cyanobacterial and

eukaryotic sequences. The remaining sequences were curated as

above. These curated sequences plus the minor OTUs excluding

singletons were used to generate diversity indices for the samples

independent of taxonomic identifications (e.g., Shannon, inverse

Simpson’s and evenness indices).

Results

The pre-processing routines of the three pipelines employed in

this study resulted in markedly different sequence numbers for

analysis (Table S1). PANGEA yielded the greatest read number

(199,592), and Mothur yielded the least (45,626). Sequences most

closely related to cyanobacteria and eukaryotes (chloroplasts and

mitochondrial 16S rRNA genes) dominated the trimmed data sets

(.70%) irrespective of their size (Table S1). These sequences were

eliminated from further analyses. Singleton sequences represented

Stomach and Gut Microbiomes of the Eastern Oyster
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from 0.5% (CloVR) to 5.9% (PANGEA) of the data sets after pre-

processing; these sequences were also eliminated to minimize

impacts of sequencing error. Chimeric sequences were not

identified in by PANGEA, but appeared to constitute only a small

fraction (,0.2%) of the total sequence set (Table S1) based on

results from CloVR and Mothur.

Several patterns appeared consistently. The relative abun-

dance of OTUs as a percentage of the number of sequences

analyzed showed that Lake Caillou oyster stomach and gut

microbiome compositions differed substantially (Fig. 1a; Tables 1,

2). A small number of Mollicute OTUs dominated the former,

while Chloroflexi (mostly Caldilineae), Firmicutes, c-Proteobac-
teria and Verrucomicrobia (Spartobacteria) dominated the later.

All three pipelines also revealed differences between Hackberry

Bay oyster stomach and gut microbiomes (Fig. 1a; Tables 1, 2),

but the differences were less pronounced than those for Lake

Caillou oysters. Differences among the Hackberry Bay stomach

and gut microbiomes resulted primarily from modest changes in

multiple lineages (e.g., Chloroflexi, Firmicutes, a-Proteobacteria,
d-Proteobacteria, Planctomycetes and Spartobacteria). In addi-

tion, each of the pipelines revealed distinct differences between

the microbiomes of the two populations from Hackberry Bay

and Lake Caillou. The most notable differences occurred

between the two sets of stomach microbiomes, with somewhat

less differentiation between the gut microbiomes (Fig. 1a,

Tables 1, 2).

In spite of many similarities, PANGEA, CloVR and Mothur

output differed in important respects. Relative to CloVR and

Mothur, PANGEA identified fewer Proteobacteria, Mollicutes and

Verrucomicrobia in Hackberry Bay oyster stomach microbiomes,

and fewer Actinobacteria, Chloroflexi, Planctomycetes, and

Verrucomicrobia in gut microbiomes. PANGEA also consistently

recorded a larger percentage of ‘‘unclassified’’ sequences than did

CloVR or Mothur; PANGEA did not identify 60% of the

Hackberry Bay oyster stomach sequences beyond the domain level

(Tables 1, 2).

Differences were also observed in the taxonomic affiliations of

the most abundant OTUs (Table 3). PANGEA, CloVR and

Mothur all reported Planctomycetes as one of two equally most

abundant OTUs in Hackberry Bay oyster stomach microbiomes,

but the specific affiliations within the Planctomycetes differed. The

affiliations of the second OTU also differed, including a Firmicute

(PANGEA), Spartobacteria (CloVR) and Mollicute (Mothur). In

addition, PANGEA reported a sequence related to Mycoplasma

mobile as the most abundant OTU for Hackberry Bay oyster gut

microbiomes, while the other pipelines reported a Chloroflexi

strain (Table 3). In contrast, the three pipelines showed much

closer agreement for Lake Caillou samples: all found that an OTU

closely related to M. mobile was most abundant in stomach

microbiomes, and an OTU closely related to a Shewanella sp. was

most abundant in gut microbiomes. The two Shewanella isolates

reported, MOLA 59 (PANGEA) and THt8-1 (CloVR and

Mothur), were identical over the nucleotide positions analyzed.

However, Shewanella sp. THt8-1 and Shewanella sp. MOLA 59 were

isolated from terrestrial plant and marine sources, respectively.

Analyses of the composition (phyla and classes) of the 284

classified OTUs (Fig. 1b) revealed patterns that diverged

somewhat from those based on relative abundance of phyla and

classes among all sequences (Fig. 1a). First, differences between

stomach and gut microbiomes within a site and across sites based

on OTU composition were less pronounced than those based on

frequencies of occurrence (Fig. 1a vs. 1b). This was evident for

major (e.g., Chloroflexi, Firmicutes, c-Proteobacteria, d-Proteo-

bacteria and Planctomyces) and minor (e.g., Archaea, b-Proteo-

bacteria, and Spartobacteria) contributors to OTU composition

(Fig. 1b). Second, the percentage contribution of some phyla and

classes to the classified OTUs was substantially overrepresented

relative to their abundance in the sequence data set, while other

phyla and classes were substantially underrepresented (Fig. 1a, b).

Mollicutes were greatly overrepresented in Hackberry Bay and

Lake Caillou stomach microbiomes, but underrepresented in gut

microbiomes. Chloroflexi and Planctomyces were also over-

represented in Lake Caillou oyster gut and Hackberry Bay oyster

stomach and gut microbiomes, while a-, and b-Proteobacteria

were underrepresented in all microbiomes (Fig. 1a, b).

Figure 1. Composition of oyster stomach and gut microbiomes. A. Phylogenetic composition (phyla and classes) of Hackberry Bay (HB) and
Lake Caillou (LC) stomach and gut microbiomes based on frequencies of occurrence within the set of all classified sequences. B. As for A, but
composition is based on the unweighted abundance of phyla and classes with the 284 classified OTUs (all results from CloVR analysis).
doi:10.1371/journal.pone.0051475.g001
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An analogous pattern was observed when the phylogenetic

composition of all OTUs that occurred in pooled Hackberry Bay

and Lake Caillou stomach microbiomes was compared with the

composition of OTUs that occurred in or were shared (SHR-S)

across both sites. In particular, Chloroflexi, Mollicutes, Plancto-

myces and Spartobacteria were overrepresented among the SHR-

S OTUs (Fig. 2). Similarly, a comparison of OTUs occurring in

pooled Hackberry Bay and Lake Caillou gut microbiomes with the

shared gut OTUs (SHR-G) showed that Chloroflexi, Firmicutes,

a-Proteobacteria, Planctomyces and Verrucomicrobia were over-

represented (Fig. 2). The number of SHR-S OTUs (44) was much

smaller than the number of SHR-G OTUs (112), the latter of

which accounted for almost 40% of all classified OTUs, and an

even larger percentage of those found in the gut microbiomes

(Table 4).

OTUs that occurred uniquely in stomach or gut microbiomes of

both Hackberry Bay and Lake Caillou oyster populations (SHRU-

S, SHRU-G) represented another distinct sub-group. The SHRU-

S microbiome was represented by just 5 of the 44 SHR-S OTUs in

only 3 phyla/classes, and accounted for only 2.1% of the 284 total

OTUs identified in the collective stomach and gut microbiomes

(Table 4). In contrast, the SHRU-G microbiome were represented

by 44 of the 112 SHR-G OTUs in 12 phyla/classes, and

accounted for 15.5% of all identified OTUs (Table 4). The

composition of SHR-S and SHRU-S microbiome OTUs differed

markedly, while differences between the SHR-G and SHRU-G

microbiomes were confined to fewer phyla and classes (Fig. 2).

In addition to variability between stomach and gut phylogenetic

composition, the microbiomes varied among the replicate oysters

from each site. For some phyla and classes, relative abundances

were similar among replicates, and variability (expressed as the

standard error of the mean) was similar for each of the three

pipelines (see for example Mollicutes and a-Proteobacteria in

stomach and gut microbiomes, respectively; Table 1, 2). However,

in many cases replicates varied substantially, and the extent of

variability differed among pipelines. Mollicutes in the Hackberry

Bay gut microbiome, for example, were observed in only 1 of 3

replicates by CloVR and Mothur, and were disproportionately

abundant in one replicate according to PANGEA (Table 2).

Variability among replicates was captured by cluster analysis

(Fig. 3) and principal components analysis (PCA) of CloVR results

using UniFrac distances (Fig. 4a, b), and also by PCA of the

relative abundances of classified OTUs (Fig. S1). Results from

a cluster analysis using the weighted UniFrac metric showed that

the Lake Caillou stomach replicates and Hackberry Bay gut

replicates each formed distinct clusters, and that the individual

Table 1. Stomach microbiome compositions of C. virginica from Hackberry Bay and Lake Caillou, Louisiana determined by three
pipelines.

HB-S LC-S

Phylum/Class PANGEA CloVR Mothur PANGEA CloVR Mothur

Actinobacteria 2.6562.12 1.5260.25 1.2960.14 0.1560.04 0.3660.18 0.3060.17

Bacteroidetes 0.0960.04 0.1560.08 – 0.0460.02 0.0760.07 0.0460.04

Total Firmicutes 11.41 8.86 11.37 1.15 1.90 2.09

Bacilli 9.6266.80 8.0261.19 9.1761.81 1.1160.52 1.8460.35 1.9660.45

Clostridia 1.7961.21 0.8460.42 2.2060.92 0.0460.02 0.0660.02 0.1360.07

Mollicutes 5.3763.05 8.3767.83 9.1167.97 79.0767.47 86.0964.34 88.1263.76

Total Proteobacteria 5.11 10.35 11.97 1.91 1.53 1.71

alpha-Proteobacteria 1.7960.66 5.8363.44 6.0464.32 1.3060.56 0.4060.14 0.4060.15

beta-Proteobacteria 1.1960.67 1.2360.68 1.0360.84 0.0660.03 0.0960.02 0.0560.01

delta-Proteobacteria 1.1460.32 1.8160.73 2.5860.35 0.1760.03 0.2860.14 0.5360.22

gamma-Proteobacteria 0.9960.31 1.4860.36 2.3260.44 0.3860.09 0.7660.38 0.7360.35

Total Chloroflexi 8.03 8.02 7.74 0.23 0.68 0.54

Anaerolineae 0.1160.04 – – 0.0160.00 – 0.0460.02

Caldilineae 0.1260.10 8.0261.34 7.7460.56 0.0260.02 0.6860.29 0.5060.19

Planctomycetes 23.29618.08 32.7469.51 29.3169.27 1.6560.43 2.0760.52 1.7660.42

Total Verrucomicrobia 3.49 12.53 13.56 0.43 1.12 0.97

Spartobacteria 3.1561.01 – 12.7861.70 0.3260.06 – 0.8760.33

Verrucomicrobiae 0.3360.11 12.5361.37 0.6560.34 0.1160.03 1.1260.45 0.0660.03

Crenarchaea 0.1560.14 – 0.1360.13 0.0260.02 – 0.0260.02

Euryarchaea – 0.2160.11 0.3960.00 – 0.0860.04 –

Deinococci 0.1160.03 0.5260.20 0.6560.34 0.0360.02 0.0460.02 0.0960.07

Fusobacteria 0.2360.23 – – – – –

Unclassified 39.65610.54 16.5862.18 14.4963.97 15.3067.70 5.9762.53 4.2562.07

Total 99.58 99.85 99.87 99.96 99.92 99.84

Values for each class or phylum are percentages of the total non-eukaryotic sequences for triplicate samples with standard errors for taxa represented at more than
0.1% in at least one pipeline. These taxa account for .99.5% of all bacterial sequences. Rare occurrences were noted for Chlamydiae, Chlorobi, Dictoglomia,
Lentisphaerae, Spirochaeta, Synergistes and Thermomicrobia. Bold indicates that comparisons of HB and LC for the CloVR pipeline are statistically different at p,0.05.
doi:10.1371/journal.pone.0051475.t001
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replicates were relatively close in distance. The remaining stomach and gut samples were much less coherent, with replicates resolved

Table 2. Hackberry Bay and Lake Caillou oyster gut microbiome compositions and values as in Table 1.

HB-G LC-G

Phylum/Class PANGEA CloVR Mothur PANGEA CloVR Mothur

Acidobacteria 0.0360.02 0.3260.08 0.2160.03 0.0260.01 0.4060.10# 0.0660.03

Actinobacteria 1.0060.69 2.3260.68 2.2760.46 2.5160.55 2.9660.57# 3.3760.81

Bacteroidetes 0.2960.13 0.2060.10 0.6060.04 0.6260.51 0.6960.47 1.0160.71

Chlamydiae 0.0760.03 0.1960.15 – 0.1960.02 0.1360.03# 0.0860.08

Ktedonobacteria – – – – – 0.1260.06

Lentisphaerae – – 0.0660.06 – – 0.3660.09

Spirochaeta – – 0.2060.20 0.3860.27 0.6660.50 1.1760.76

Synergistes – – – – – 0.9360.79

Total Firmicutes* 3.16 3.17 7.11 4.78 6.40 9.93

Bacilli 1.8261.48 1.7461.11# 1.7160.28 4.2562.64 6.0964.04 7.5160.45

Clostridia 1.3460.65 1.4360.18 5.4060.17 0.5360.06 0.3160.08# 0.8660.09

Mollicutes 5.0464.80 0.0360.03 0.0760.07 1.4860.43 1.5760.44# 0.7560.44

Total Proteobacteria 11.26 14.44 17.86 21.12 23.57 19.10

alpha-Proteobacteria 3.5760.88 5.3660.58 4.9960.70 2.6460.49 2.8660.22# 3.7460.09

beta-Proteobacteria 0.2360.07 0.8460.04 0.7160.15 0.7360.23 0.8660.20# 0.6060.16

delta-Proteobacteria 2.7460.51 6.4560.57# 8.5260.64 2.4660.33 1.5560.63 2.9560.82

gamma-Proteobacteria 4.6063.01 1.7960.33 3.6460.77 15.2069.36 17.97611.03 11.4166.43

epsilon-Proteobacteria 0.0260.02 – – 0.0960.07 0.3360.17 0.4060.21

Total Chloroflexi* 5.90 22.13 23.96 6.68 9.79 10.92

Anaerolineae 0.0660.02 – 0.3860.15 0.5760.29 – 0.6060.16

Caldilineae 0.0660.03 22.1361.90# 23.5861.77 0.2260.13 9.7961.81# 10.2661.94

Planctomycetes 7.1962.28 22.4860.29 21.3960.83 15.4261.76 19.9862.35# 22.7762.67

Total Verrucomicrobia 5.55 9.31 10.80 7.22 9.47 10.96

Spartobacteria 4.9361.35 – 9.3461.37 5.9861.23 – 8.9361.58

Verrucomicrobiae 0.6260.17 9.3160.82 0.5960.34 1.2460.12 9.4761.98# 0.8060.40

Crenarchaea 0.0160.01 – 0.4460.12 0.0560.04 – 0.0860.08

Euryarchaea – 0.0360.03 0.2060.20 – 0.1460.05 0.2160.02

Deinococci 0.0560.05 0.0360.03 – 0.0960.06 0.1160.07 0.2160.16

Fusobacteria 0.0260.01 0.1660.12 0.2060.20 0.2960.11 0.3060.09# 0.3160.17

Unclassified 60.4363.34 25.1861.21# 14.6960.12 38.8968.07 23.8266.37 17.5262.42

Total 100.00 99.99 99.99 99.64 99.99 99.86

Taxa shown account for .99.6% of all bacterial sequences. Rare occurrences were noted for Chlorobi, Dictoglomia, Desferribacters, Nitrospirae, Thermobaculum, TM7
and WS3. Bold indicates statistical significance as in Table 1. Asterisks indicate that totals include unclassified members of a phylum. A superscript # indicates
a statistically significant difference (p,0.05) between stomach and gut compositions using the CloVR pipeline.
doi:10.1371/journal.pone.0051475.t002

Table 3. Taxonomic affiliation of the most abundant OTUs (evolutionary distance = 0.03) in Crassostrea virginica stomach (S) and
gut (G) microbiomes for Hackberry Bay (HB) and Lake Caillou (LC) as determined by three different sequence analysis pipelines.

Group PANGEA CloVR Mothur

HBS Pirellula sp. Schlesner 139 (96%) Planctomycete MS1316 (93%) Planctomycete str. 116 (90%)

Falklamia sp. H119 (89%) Bacterium Ellin507 (92%) Mycoplasma mobile (92%)

HBG M. mobile (93%) Chloroflexi str. ET-1 (93%) Chloroflexi str. ET-1 (93%)

LCS M. mobile (93%) M. mobile (93%) M. mobile (93%)

LCG Shewanella sp. MOLA 59 (99%) Shewanella sp. THt8-1 (99%) Shewanella sp. THt8-1 (99%)

Bacterium Ellin507 belongs to the Spartobacteria and Falklamia sp. H119 to the Firmicutes (Bacilli).
doi:10.1371/journal.pone.0051475.t003
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at greater distances. Unweighted UniFrac PCA showed that Lake

Caillou gut microbiomes clustered together on axis one and two,

but that replicates for the other microbiomes were much more

dispersed, even though the distinctions between sites and between

gut and stomach remained evident (Fig. 4a). Weighted UniFrac

PCA, which considered the relative abundances of OTUs, showed

that Lake Caillou stomach and Hackberry Bay gut replicates each

formed relatively tight clusters on both axes, while replicates for

the other microbiomes were dispersed (Fig. 4b). The two stomach

microbiomes remained well separated on PCA axis 1, but the gut

microbiomes clustered together (Fig. 4b).

Discussion

We present here the first detailed analyses of Crassostrea virginica

stomach and gut microbiome compositions. The sample size

(triplicate animals for each of two sites) and single sampling time

limit extrapolation of the results, but provide a number of new

insights. Previous studies have emphasized cultivable members of

the gut community, whole animals, pathogens (human and oyster),

or specific groups that might contribute to digestion, e.g., Cristispira

[5,8–11,13,25]. Cultivation-free approaches have revealed Arco-

bacter (e-Proteobacteria) as a major contributor to microbial

communities of whole Chilean oysters, Tiostrea chilensis, but whole

tissue specific associations have not been reported [17]. Hernádez-

Zárate and Olmos-Soto [26] have used group-specific FISH and

PCR to identify bacteria in C. gigas tissues, but they did not

sequence PCR amplicons or report relative abundances of specific

phylogenetic groups. Recently, a PCR and DGGE study of C.

virginica has reported spatial and seasonal differences of whole

animal microbiomes for two populations from Maine (USA), but

phylogenetic composition has not been assessed qualitatively or

quantitatively [27], nor have variations among individual animals

been described.

Partial 16S rRNA gene sequences derived from high through-

put pyrosequencing as used in this study reveal differences in

oyster microbiome composition at several levels, although some of

the details of composition vary with the pipeline chosen for

sequence analysis (e.g., Tables 1, 2). See Supporting Information

S1 for additional discussion of these differences, which do not

Figure 2. Phylogenetic composition (phyla and classes) of all OTUs found in pooled Hackberry Bay (HB) and Lake Caillou (LC)
stomach or gut microbiomes; OTUs found in (shared among) all stomach replicates or all gut replicates for both sites (SHR-S and
SHR-G, respectively); OTUs found exclusively in all stomach or gut replicates (SHRU-S and SHRU-G, respectively). See text for further
details.
doi:10.1371/journal.pone.0051475.g002

Table 4. Numbers of OTUs observed for Hackberry Bay (HB)
and Lake Caillou (LC) stomach and gut (S, G) microbiomes,
and numbers of OTUs shared among samples based on
sequences classified through the Mothur pipeline.

HBS HBG LCS LCG

OTU total 138 243 172 304

Classified OTUs 95 166 121 214

% Unclassified 31.2 31.7 29.7 29.6

HBS-HBG LCS-LCG HBS-LCS HBG-LCG

Total Shared 64 95 44 112

% of Total Classifieda 22.5 33.5 15.5 39.4

aTotal classified refers to the sum for all gut and stomach samples (284).
Among all samples, 401 bacterial OTUs were observed at an evolutionary
distance of 0.05–0.10, of which 284 were classified to at least the level of class.
Values for HBS-HBG, LCS-LCG, HBS-LCS, and HBG-LCG represent classified OTUs
shared between HB stomach and gut microbiomes, Lake Caillou stomach and
gut microbiomes, HB and LC stomach microbiomes, and HB and LC gut
microbiomes, respectively.
doi:10.1371/journal.pone.0051475.t004
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affect the patterns of variation between stomach and gut

microbiomes or variations between sites.

Overall, the results show substantial differences between

stomach and gut microbiomes, and between the stomach

microbiomes of animals from Hackberry Bay and Lake Caillou

(e.g., Fig. 1a, b and 2; Tables 1, 2). In addition, the microbiome

compositions of individual replicate animals vary (Fig. 3, 4).

Variations between stomach and gut microbiomes likely reflect

details of the digestive system, but differences between sites and

among replicates suggest that microbiome composition might

respond to local factors, and perhaps to genetic differences among

individuals. Analogous variability has been reported for other

animals [28,29].

Oyster Stomach Microbiome
Based on the frequency of OTU occurrence, the stomach

microbiome of oysters from Louisiana can exist in at least two

states. Mollicutes most closely related to Mycoplasma overwhelm-

ingly dominate the classified sequences (.80%) of a state

represented by Lake Caillou oysters (Fig. 1a; Tables 1, 3). No

other class contributes more than about 2%. Planctomycetes

dominate (23%–33%) the alternate state- that of Hackberry Bay

oysters (Fig. 1a; Tables 1, 3)- but several other groups also occur in

the stomachs of these oysters at modest abundances, e.g.,

Chloroflexi (8%), Firmicutes (9%–11), Mollicutes (5%–9%),

Proteobacteria (5%–12%), and Verrucomicrobia (3%–14%). In

addition, two similarly abundant OTUs that belong to different

phyla (Planctomyces and either Firmicutes, Tenericutes or

Verrucomicrobia) dominate Hackberry Bay oyster stomachs at

a species level (evolutionary distance = 0.03; Table 3). The

proportion of classified OTUs accounted for by various phyla

and classes is also consistent with two distinct states for the

stomach microbiome (Fig. 2), although the differences are less

pronounced for this metric than for frequency-based estimates of

composition. UniFrac PCA (weighted and unweighted) and cluster

analyses provide additional support for the ‘‘two state’’ concept

(Fig. 3, 4).

The physiological and ecological significance of these oyster

stomach microbiomes is uncertain. Dominance by Mollicutes or

Planctomycetes is somewhat unusual relative to other microbiomes

[28,30–32], although Mollicutes appear abundant in the digestive

gland of the Sydney rock oyster (Saccostrea glomerata) and in the

intestine of the abalone, Haliotis discus hannai [33,34]. Mollicutes

have also been reported in oyster gut goblet cells based on

microscopic evidence [25], and documented for other inverte-

brates and fish guts by culture-based and molecular ecological

methods [30,35–42]. Otherwise relatively little is known about

their associations with invertebrate digestive systems. Indeed, the

ecological roles of Mollicutes more generally remain uncertain,

with some reports of pathogenesis in selected fish and invertebrates

[43–46], but other reports indicating some form of commensalism

[30,39].

Thus far, genomic evidence offers few insights, since the genetic

repertoire of Mycoplasma mobile, the taxon most closely related to

the oyster OTUs, is limited in its scope [47]. M. mobile congenerics

in oyster stomachs might simply proliferate using substrate

produced by the host or other microbes during digestion; similar

suggestions have been made to account for Mollicute associations

with cold-water corals [39]. Nonetheless, the possibility that

Figure 3. Cluster analysis based on UniFrac distances for sequences derived from the CloVR pipeline for each of the replicate
Hackberry Bay (HB) and Lake Caillou (LC) stomach (S) and gut microbiomes (G).
doi:10.1371/journal.pone.0051475.g003
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Mollicutes might contribute symbiotically to their hosts cannot be

dismissed.

The role of Planctomyces in digestive systems is also uncertain.

Although they are ecologically important members of the marine

bacterioplankton, functionally diverse and associated with algae,

invertebrates and vertebrates [48,49], they usually occur at

relatively low abundances in gut microbiomes (, about 5%)

[30–32]. However, results from this study suggest that unknown

conditions in the Hackberry Bay oyster stomach favor Plancto-

mycete proliferation (Table 1).

It is tempting to speculate here, as others have elsewhere [50],

that Pirellula-like members of the oyster microbiome exploit

sulfated algal polysaccharides for growth, since numerous genes

putatively coding for sulfohydrolase enzymes have been observed

in the Rhodopirellula baltica genome [51], and since sulfated

polysaccharides might be commonly ingested by oysters as

a consequence of phytoplankton consumption. The ability to use

sulfated polysaccharides would thus provide an explanation for

Planctomycete abundance. Unfortunately, the phylogenetic rela-

tionships between R. baltica and planctomycete OTUs identified in

this study are insufficient to support such inferences. Nonetheless,

all Blastopirellula, Pirellula, and Rhodopirellula isolates characterized to

date use a wide range of simple non-sulfated sugars [48,49,52], at

least some of which are likely to occur in the oyster digestive tract

as algal biomass is hydrolyzed.

Oyster Gut Microbiome
The oyster gut microbiome harbors a more speciose or OTU-

rich community than does the stomach microbiome based on

observed species (Sobs) and ACE and Chao1 diversity estimators

(Table 5). These indices also indicate that stomachs and guts of

Lake Caillou oysters harbor fewer OTUs than Hackberry Bay

oysters. Thus, OTU richness varies between oyster tissues (e.g.,

stomach and gut) as has been well documented for the human

microbiome [53], but also appears to vary among populations.

The source of variations in richness among oyster populations is

unknown.

Variations in richness notwithstanding, the gut microbiome is

not necessarily more diverse than the stomach microbiome based

on Shannon and inverse Simpson’s indices and the evenness

estimator, each of which are similar for the Lake Caillou gut

microbiome and the two Hackberry Bay microbiomes (Table 5).

This similarity indicates that in some cases the structure of oyster

microbiome diversity (richness and evenness) is independent of the

digestive system and phylotype composition. In contrast, all

diversity indices for the Lake Caillou stomach microbiome are

substantially lower than for Hackberry Bay stomachs, and lower

than for both gut microbiomes as well. This can be attributed to

Figure 4. Principal components analysis of unweighted (A) and weighted (B) UniFrac distances for sequences derived from the
CloVR pipeline for each of the replicate Hackberry Bay (HB) and Lake Caillou (LC) stomach (S) and gut microbiomes (G).
doi:10.1371/journal.pone.0051475.g004

Table 5. Diversity indices for Hackberry Bay and Lake Caillou
stomach and gut microbiomes at an evolutionary distance
D= 0.03.

Hackberry Bay Lake Caillou

Variable Stomach Gut Stomach Gut

Sobs 79610 121620 1865 98618

Ace 148627 4426140 36614 252687

Chao1 232641 9486315 54627 4116168

Shannon 3.63160.222 4.05260.255 1.26960.240 3.95760.268

1/D 24.9167.92 29.4067.77 2.3260.62 35.56616.47

Evenness 0.4060.08 0.3460.05 0.1660.04 0.4960.13

Coverage 0.8360.02 0.6860.04 0.9660.01 0.7460.05

Values are means and standard errors derived from triplicates for each sample,
based on analyses by Mothur (excluding singleton and eukaryotic sequences).
doi:10.1371/journal.pone.0051475.t005
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the dominance in Lake Caillou oyster stomachs of Mollicute

OTUs (e.g., Table 5 and Fig. 1a).

The composition of gut microbiomes from Louisiana oysters

differs from that of other mollusks and from that of other marine

and non-marine animals (Fig. 5). Gruenthal [54] has shown that

Proteobacteria dominate (.80%) the gut microbiomes of

California black (Haliotis cracherodii) and white abalone (H. sorenseni);

Actinobacteria, Chloroflexi, Planctomyces and Verrucomicrobia

appear to be absent from both. Huang et al. [41] indicate that

Mollicutes and d-Proteobacteria dominate the intestine of the

small abalone. Cardoso et al. [55] report that Bacteroidetes and

Firmicutes dominate the gut of the gastropod snail, Achatina fulica.

Firmicutes along with Bacteroidetes, Proteobacteria and Actino-

bacteria dominate the guts of other invertebrates (e.g., soil-feeding

termites [56] and cockroaches [57]) and vertebrates (e.g.,

herbivorous marine fishes [58]; grass carp, [31,59] and primates

[60]), while Mollicutes dominate the guts of some fish [30,36]. In

contrast, Proteobacteria account for only about 20% of the gut

composition of the oysters in this study, Chloroflexi, Planctomyces

and Verrucomicrobia are each relatively abundant, and Actino-

bacteria, Bacteroidetes, Firmicutes, and Mollicutes each contribute

about 10% or less (Fig. 1a; Table 3).

These differences in composition among gut systems arise from

the effects of multiple interacting variables, including gut

architecture, digestive physiology, diet, and the extent to which

hosts and microbiomes have evolved symbiotically [61–63]. While

the effects of some variables, e.g., diet, have clear impacts on some

microbiomes [36,64,65] the variables that most affect oyster

microbiome composition have not been identified. Other than

general contributions to heterotrophic metabolism and polymer

hydrolysis, the functions of the major members of the oyster gut

microbiome are also largely unknown. However, as Mouchet et al.

[66] have noted, some functions are likely conserved across

microbiomes independent of phylogenetic composition. Thus, the

relatively unique composition of the oyster gut microbiome might

be functionally similar to the microbiomes of other animal guts.

Figure 5. Cluster analysis based on unweighted (A) and weighted (B) UniFrac distances obtained for C. virginicamicrobiomes (HB-S,
HB-G, LC-S, LC-G as above; this study) and microbiome compositions derived from 16S rRNA gene clone libraries (accession
numbers in parenthesis) of an herbivorous coral reef surgeon fish, Acanthurus nigrificans (gut sequences FJ653927–FJ65392774
[68]); the carnivorous mitten crab, Eriocheir sinensis (gut sequences DQ856498–DQ856562 [69]); a detritivorous/phytophagus
polychaete, Neanthes glandicincta (gut sequences FJ618851–FJ618896 [70]); the macroalgae-consumng gastropod small abalone,
Haliotis diversicolor (gut sequences GU070680–GU070693 [41]); and the filter-feeding Sydney rock oyster, Saccostrea glomerata
(digestive gland sequences FM995169–FM995191 [33]). All sequences were aligned with the NAST Aligner; a BioNJ tree was used as input for
UniFrac. Weighted UniFrac was conducted with normalized sequence abundances. Note that oyster microbiomes form a distinct cluster based on the
unweighted analysis (A), while in a weighted analysis (B) all mollusk microbiomes are distinct from crab, fish and polychaete microbiomes; also Lake
Caillou oyster stomach microbiomes cluster with the Sydney rock oyster and small abalone microbiomes. Mollicutes dominate all of the latter [Table 1;
33, 41] and account for the observed association.
doi:10.1371/journal.pone.0051475.g005

Stomach and Gut Microbiomes of the Eastern Oyster

PLOS ONE | www.plosone.org 9 December 2012 | Volume 7 | Issue 12 | e51475



Putative Core Microbiomes
Stomachs and guts of oysters in Louisiana harbor a diverse

community of bacteria. However, much of this diversity might be

due to transient populations that arrive with food sources. During

passage through the digestive system OTU abundances might

change, in part due to digestion [67], but such changes need not

produce or reflect a core community. Although the concept of

phylogenetically distinct core microbiomes is controversial [63], to

explore its applicability to oysters, we have identified OTUs that

are shared among all replicate stomach or gut microbiomes (SHR-

S, SHR-G). Note that SHR-S OTUs can occur in some or all of

the gut microbiomes, and SHR-G OTUs can occur in some or all

stomachs. In addition, we have identified OTUs that are shared

among all replicate stomachs or guts and occur uniquely in one

type of microbiome or the other (SHRU-S, SHRU-G).

A comparison of SHR and SHRU OTUs reveals that the

putative core stomach microbiome consists of only a small fraction

of all OTUs (about 2%) representing just three phyla (Firmicutes,

Planctomycetes and c-Proteobacteria). A larger fraction of all

OTUs (about 16%) occurs in the putative core gut microbiome,

which encompassing 12 phyla and classes (Fig. 2). Mollicutes are

notably absent from the putative core microbiome based on

SHRU OTUs, which reflects the fact that Mollicutes occur in both

the stomach and gut.

The differences between core stomach and gut microbiomes

suggest that the stomach might support fewer specific symbiotic

interactions, while the gut appears suitable for more phylogenet-

ically and presumably physiologically divergent groups, e.g.,

Chloroflexi, Crenarchaea, Proteobacteria and Spirochaeta

(Fig. 2). Greater niche differentiation in the gut than the stomach

might reflect a decrease in bacterial digestion by the host and an

increase in the availability and diversity of heterotrophic substrates

subsequent to the initial processing of phytoplankton cells in the

stomach and diverticula.

The richness of the putative core gut microbiome contrasts with

the more limited core microbiomes proposed for zebrafish, an

herbivorous bird (the hoatzin, Opisthocomus hoazin) and humans

[28,29,63]. For example, the core zebrafish gut microbiome [28] is

comprised of half the number of major phyla and classes that

occur in the putative oyster gut microbiome (e.g., 5 versus 10). The

core microbiomes of the human gut and hoatzin crop are even

more limited, with some arguing that a core gut microbiome for

humans might not exist [63]. These observations suggest the

possibility that the diversity of core microbiomes might vary

systematically among host phyla (e.g. vertebrates and inverte-

brates), and between terrestrial and aquatic hosts.

Summary and Conclusions
Relatively deep sequencing of Louisiana oyster stomach and gut

contents revealed novel microbiomes that differ from those of

other mollusks and other invertebrates and vertebrates. Micro-

biome composition varied at three levels: between stomach and

gut, among replicates at a site, and between sites. These results

provide a basis for developing future biogeographically informed

analyses based on more extensive temporal and spatial sampling,

and comparisons among bivalves and gastropods. Roles for some

of the more prominent phylotypes observed, including Chloroflexi,

Mollicutes, Planctomycetes and Spartobacteria are unknown, but warrant
attention, as some of these taxa appear to contribute to a core

microbiome that might be conserved within C. virginica and

perhaps other shellfish. Additional effort should also be directed

towards understanding the roles of environment variables (e.g.,

temperature salinity, phytoplankton and bacterioplankton re-

gimes) as factors that shape stomach and gut microbiomes.
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