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Abstract

Background: We performed a statistical analysis of a previously published set of gene expression
microarray data from six different brain regions in two mouse strains. In the previous analysis, 24
genes showing expression differences between the strains and about 240 genes with regional
differences in expression were identified. Like many gene expression studies, that analysis relied
primarily on ad hoc ‘fold change’ and ‘absent/present’ criteria to select genes. To determine
whether statistically motivated methods would give a more sensitive and selective analysis of gene
expression patterns in the brain, we decided to use analysis of variance (ANOVA) and feature
selection methods designed to select genes showing strain- or region-dependent patterns of
expression.

Results: Our analysis revealed many additional genes that might be involved in behavioral
differences between the two mouse strains and functional differences between the six brain
regions. Using conservative statistical criteria, we identified at least 63 genes showing strain
variation and approximately 600 genes showing regional variation. Unlike ad hoc methods, ours
have the additional benefit of ranking the genes by statistical score, permitting further analysis to
focus on the most significant. Comparison of our results to the previous studies and to published
reports on individual genes show that we achieved high sensitivity while preserving selectivity.
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Conclusions: Our results indicate that molecular differences between the strains and regions studied
are larger than indicated previously. We conclude that for large complex datasets, ANOVA and
feature selection, alone or in combination, are more powerful than methods based on fold-change
thresholds and other ad hoc selection criteria.

Background

Genome-wide expression data such as that obtained with
microarrays presents a significant challenge for analysis. A
frequent goal of expression analysis is to identify genes whose
expression is altered by an experimental condition. In
general, automated methods are needed to accomplish this
task owing to the large amount of data involved. A good

example of an expression dataset requiring detailed, complex
analysis comes from the work of Sandberg et al. [1]. In their
study, the expression of 13,067 genes and expressed sequence
tags (ESTs) was assayed using oligonucleotide arrays [2] for
each of six brain regions in two different inbred strains of
mice, with each condition measured twice. This data is a
potentially rich source of targets for investigating behavioral
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and neurophysiological differences between the mouse
strains (C57Bl/6 and 129SvEv), as well as structural and
functional differences among brain regions.

Both regional and strain variations in gene expression are rele-
vant to questions in neuroscience. Inbred mouse strains are
used in many studies relating to human neurological and neu-
ropsychiatric disorders such as stroke and alcoholism;
however, it has long been recognized that different strains vary
significantly in the results obtained in such studies [3]. Expres-
sion analysis is one approach to exploring the underlying mole-
cular causes of these differences. Similarly, expression analysis
can provide insight into one potential source of functional dif-
ferences between brain regions. Traditional expression analysis
(for example, northern blots and in situ hybridization) can be
used to uncover such expression patterns one gene at a time,
but the high-throughput nature of array technology allows
researchers to take a much wider view.

Given the data of Sandberg et al., and the questions one can
address with it, the issue becomes how to proceed with the
analysis. Many researchers use an ‘ad hoc’ approach: for
example, the ‘fold change’ for each gene is considered, where
fold change is defined as the ratio of gene expression in a test
condition to that in a control condition. Changes in expres-
sion above a certain fold-change threshold are deemed to be
significant. The problem with such methods is that they typi-
cally do not take into account the variability of the measure-
ments being considered. When using the Microarray
Analysis Suite (Affymetrix), one also has the option of using
the ‘absent/present’ calls, determined by the software, to
make discriminations as to whether a gene is expressed in
one set of samples and not others. The trouble with this
method is that the absent/present threshold is essentially
arbitrary, and there is no easy way to estimate the numbers
of false positives and false negatives obtained. Typically in
such studies, genes are identified as ‘changed’ or ‘not
changed’, often without a quantitative estimate of the statis-
tical confidence in that conclusion.

Because of the shortcomings of ad hoc methods, some
researchers have tackled the problem of how to apply more
robust statistical methods to the problem of identifying
changed genes in a dataset [4-6]. Most such methods deal
with the case of a two-way comparison, for example between a
wild-type organism and one that is mutant in a gene of inter-
est. But, many experimenters are studying complex systems
and generate large datasets with more than one experimental
variable. Such is the case for Sandberg et al. [1], where both
strain and brain region were varied in the same experiment.
Here, we investigate methods appropriate for analyzing this
type of dataset and determine how the methods affect the
interpretation of the data of Sandberg et al.

There are several desirable properties of a method for analy-
sis of microarray data. First, it should provide an estimate of

the confidence that the gene-expression pattern observed
would occur by chance, that is, a p-value. Failing the ability
to generate accurate p-values, the method should at least
automatically rank the genes in order of interest. Second,
the method should be flexible enough to allow for complex
experimental designs. Methods that permit us to compare
only two conditions are insufficient. Finally, an ideal
method is computationally simple and fast. Mathematical
simplicity and familiarity are also advantages when the
methods must be used and interpreted by biologists with
little statistical background.

A standard technique for analyzing such multivariate
datasets, which fulfills the above criteria, is analysis of vari-
ance (ANOVA) [7]. For the data of Sandberg et al., the
appropriate method is a two-way ANOVA because two vari-
ables - strain and region - were involved. ANOVA is a well
understood and powerful method, but has two drawbacks
that can make its application difficult in practice. First, when
more than two categories are present for a variable, as in the
case of the work of Sandberg et al., where six brain regions
were studied, additional work must be done to determine
which categories underlie the effects observed. Another
drawback of ANOVA is that in its standard form, the number
of replicates of each condition should be equal. Adjustments
can be made when small differences in the number of repli-
cates occur, but large deviations are difficult to correct for.

We note that some workers have previously applied one-
way ANOVA to expression data [8], and that the use of
t-tests, which is one-way ANOVA for the limiting case of
two replicated conditions, is becoming a more common
method for analyzing expression data [6]. Kerr et al. [9]
applied ANOVA to two-color cDNA arrays in an experiment
involving a single biological variable (tissue type). Their
model encompassed all the genes on the array, as well as
experimental factors such as dye and array effects. Their
complex model differs from the gene-specific application
for experiments with more than one biological variable that
we discuss here.

An alternative way of approaching the analysis problem is
to view it as one of feature selection. In machine learning,
feature selection seeks to identify the data points (here,
expression profiles) that are most informative when trying
to learn a classification problem. In the context of the data
of Sandberg et al., we are seeking genes that differentiate
between the genotypes and/or brain regions in our samples.
While learning to predict this classification is not relevant
here, the underlying task is effectively one of feature selec-
tion. The features in this situation are the individual
samples (arrays). A recent application of feature selection to
microarray data was described by Golub et al. [10]. They
sought to identify genes that best differentiated between
two types of tumor. Because feature selection methods can
be quite simple, can be used to differentiate between any



number of categories, and permit ranking genes in accor-
dance with how well they differentiate between regions or
strains, feature selection fulfills all three criteria for a suit-
able analysis method. A similar method was used by Chu et
al. [11] to perform clustering: they created a set of idealized
expression patterns based on the data from hand-selected
genes and identified additional genes that were similar to
the desired patterns.

Sandberg et al. used criteria based on absent/present calls
and fold-change thresholds for their analysis, and applied
multiple t-tests to each gene to detect additional regional
variations in expression [1,12]. With these methods they
identified 24 genes showing strain variation, and about 240
genes showing some type of regional variation. An examina-
tion of the data and experimental design suggests that
methods such as ANOVA and feature selection could be
profitably applied. Here we describe the identification of
additional genes showing possible strain- and region-
dependent patterns of expression from the data of Sandberg
et al. We find that ANOVA and feature selection are comple-
mentary, and can be combined to form a powerful method
for detecting interesting genes in a complex dataset.

Results

The dataset of Sandberg et al. [1] consists of duplicate analy-
sis of six brain regions (amygdala, cerebellum, cortex,
entorhinal cortex, hippocampus and midbrain) in two
strains of mice (129SvEv and Cs57BL/6), for 13,067 genes
and ESTs. We performed two-factor ANOVA and feature
selection to look for strain- and/or region-specific variation
in gene expression in this data. Our feature-selection strat-
egy, which we call ‘template matching’, is depicted schemati-
cally in Figure 1.

An overview of the results for both the ANOVA and tem-
plate-matching methods is given in Table 1, which shows the
number of genes identified by each method at three different
p-value cut-offs. These cut-offs were selected to represent
varying levels of false-positive risk (described in the Materi-
als and methods section). The least stringent cut-off
(p < 0.001) is almost sure to yield significant numbers of
false positives, whereas the most stringent (p < 10°) will
most probably yield very few false positives. The middle
threshold of p < 1075 is a value we use as a compromise for
the purpose of comparing our results to those of the previous
studies. Table 1 also shows the number of genes identified in
the work of Sandberg et al. A more detailed view of part of
the data is provided in Figure 2, which enumerates some
genes identified by both methods, ranked by template-match
p-value. Some (but not all) genes identified by Sandberg et
al. [1] and Sandberg [12] are also given high scores (low
p-values) by our methods, as indicated in Figure 2. As indi-
cated in Table 1 and Figure 2, even at conservative p-value
cut-offs we identified additional genes not noted in [1].
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One goal of our study was to compare ANOVA and template
matching, and their combination. In many cases the results
from the two methods are comparable, and both methods
give low p-values for many of the genes listed in Figure 2. An
overall comparison of the strain-specific analysis using
ANOVA and template matching is shown in Figure 3, where
we plotted the p-values calculated for each gene by ANOVA
against those calculated for the strain-specific template.
Most points lie near the diagonal, showing that in general,
the p-values agree well, though ANOVA has a tendency to
give more low p-values and there are some significant out-
liers. In agreement with the trend illustrated in Figure 3, the
number of genes that make each cut-off in Table 1 are very
similar for strain specificity. The template-matching
method, however, tends to give low p-values to many more
genes on the basis of region-specificity. For all tissue effects,
at a p-value of 1075, the template method identifies more
than twice as many genes as ANOVA, and at less conserva-
tive cut-offs the difference is even greater (Table 1). An
example of a discrepancy is synuclein (GenBank C79089),
which had a p-value of 8.6 x 107 based on a template match
to the ‘midbrain’ pattern, but only 0.0011 for a region affect
using ANOVA. The relatively poor ANOVA p-value appears
to be due to a lower value for one of the four midbrain
samples (Figure 2, last gene shown for ‘Midbrain enriched’).
Thus under some conditions ANOVA may be more conserva-
tive than template matching.

The combined data shown in Figure 2 takes advantage of
both methods. The genes shown were selected on the basis of
both ANOVA and template-match p-values (see Materials
and methods). By listing both p-values, we can choose to pay
the most attention to genes in which we have good confi-
dence on the basis of two different methods. For example,
the genes listed for ‘cortex enriched or deficient’ in Figure 2
have fairly unremarkable template-match p-values; the
p-values from the generally more conservative ANOVA
method are substantially worse. This leads us to suggest that
few, if any, of these genes are likely to have ‘real’ expression
patterns that are in good agreement with our expectation for
a cortex-specific gene. This is borne out by the visualizations
shown in Figure 2. Compared to the genes shown for other
regions such as cerebellum or hippocampus, the ‘cortex
enriched or deficient’ genes have less striking expression
patterns. Thus the numerical ranking appears to be a rea-
sonable guide to making judgments about the significance of
the expression patterns.

Strain-specific expression

At a p-value cut-off of 1075, we found about 65 probe sets
that show strain-specific variation in expression across all
areas, compared to 24 genes showing overall differences
between strains identified by Sandberg et al. [1]. The genes
near the top of our ranking include many of those chosen by
Sandberg [12], and all 24 genes identified by Sandberg et al.
have p-values less than 103 by either ANOVA, template
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Condition
129SvEv C57BI/6
TATFATTATTANTTANTA TN AN~ AN TN~ AN~ N
LLEESS LSS LLEESSEELEES
I-I I I Midbrain template
| Strain template

Gene 1 (strong strain match)

Gene 2 (medium strain match)

Gene 3 (no match)

Expression (arbitrary units)

Gene 4 (weak midbrain match)

Gene 5 (strong midbrain match)

Figure |

Schematic of the template match method. Hypothetical templates and genes are depicted as graphs of arrays (horizontal axis)
vs expression (arbitrary units, vertical axis). The replicates for each condition are listed as | and 2 (for example, 129SvEv -
Agl and 129SvEv - Ag2 are the two amygdala samples from [29SvEv). Two example templates are depicted schematically, and
represent the profiles of idealized genes showing the patterns of interest. The top template is an idealized profile designed to
select for genes showing midbrain enrichment or depletion, and the lower one is designed to select for genes showing strain
differences across all regions. Each gene in the dataset is then ranked by its correlation with the template. In the hypothetical
examples shown, gene | most closely resembles the strain template, with gene 2 giving the next best match. Gene 4 is a fairly
weak match to the midbrain template. Gene 5 is a strong match to the reverse of the midbrain template; the use of the
absolute value of the correlation coefficient allows the midbrain template to select both genes 4 and 5. Gene 3 resembled
neither template shown here. In the actual implementation, all 13,067 genes are compared to a given template and ranked by
the quality of the match. Ag, amygdala; Cb, cerebellum; Cx, cortex; Ec, entorhinal cortex; Hp, hippocampus; Mb, midbrain.

match, or both. Two examples of strain-specific genes not
identified in the previous work are shown in more detail
Figure 4a. The first is Sparc/osteonectin (testican), which was
detected at lower levels in the C57Bl6 strain. The second is
phosphatase ACP1/ACP2, with the opposite expression
pattern. We rank ACP1/ACP2 and Sparc/osteonectin as
having the 9th and 23rd strongest strain differences, respec-
tively (both ACP1/ACP2 and Sparc/osteonectin are also
shown in Figure 3). For comparison, Figure 4b shows

B-globin, which was identified in [1] and was ranked 67th by
template match. Overall, we rank 46 previously unrecognized
genes as having stronger strain differences than p-globin.

Sandberg et al. [1] also identified an additional 49 genes that
varied between strains for particular regions. We have not
specifically searched for such genes; the ANOVA interaction
effects would correspond most closely to such a category, but
very few genes were found to have significant interaction
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Cerebellum-enriched -2.00  2.00
|

129SVEV C57BI/6

Accession  Unigene ANOVA  Template Sb Description

D83262 Mm.6257 9.24E-13  3.15E-33 -+ Solute carrier family 1, member 6 (neuronal glutamate transporter EAAT4)
X70398 Mm.4919 2.59E-12  5.79E-27 + DNA segment, human D4S114 M.musculus P311 mRNA.
X70398 Mm.4919 1.29E-11 2.72E-25 + DNA segment, human D4S114 M.musculus P311 mRNA.
X51986 Mm.4915 2.80E-12  1.51E-24 + Gamma-aminobutyric acid (GABA-A) receptor, subunit alpha 6
X61448 Mm.4880 6.96E-10 1.94E-24 - Cerebellin 1 precursor protein
U28068 Mm.4636 9.55E-12  6.45E-23 -+ Neurogenic differentiation 1
X59382 Mm.2766 1.68E-12  7.15E-23 < Parvalbumin
AA289572 Mm.21099 3.31E-10  1.19E-22 - ESTs
M21532 Mm.41456 6.61E-11 3.20E-22 + Purkinje cell protein 2 (L7)
L16846 Mm.16596 5.33E-10  8.41E-21 « B-cell translocation gene 1, anti-proliferative
X67141 Mm.2766 6.94E-11 6.72E-19 + Parvalbumin
L12705 Mm.4298 2.21E-08  3.33E-18 « Engrailed 2
M60596 Mm.41296 2.96E-12  5.23E-17 « Gamma-aminobutyric acid (GABA-A) receptor, subunit delta (exon 9)
D32167 Mm.2719 9.73E-18  6.09E-17 -+ Zinc finger protein of the cerebellum 1
AA444931 Mm.30079 8.04E-09  9.63E-17 + Unclassifiable transcript (RIKEN cDNA 2010012F07 gene)
M21531 Mm.354 2.07E-08 1.88E-16 + Calbindin-28K
L16846 Mm.16596 4.77E-08  3.33E-16 + B-cell translocation gene 1, anti-proliferative
U33630 Mm.4734 8.89E-09  8.70E-16 + Myeloid ecotropic viral integration site 1
M69068 Mm.33263 1.71E-08  4.63E-15 Histocompatibility 2, D region locus 1
AA472865 Mm.24719 9.31E-08  5.71E-15 < ADP-ribosylation-like factor 6 interacting protein 2
AA473309 Mm.29910 1.05E-08  7.05E-15 < Ribosomal protein S6 kinase polypeptide 1
X98014 Mm.5173 1.60E-08  9.65E-15 -+ Sialyltransferase 8 (alpha 2, 8 sialytransferase) E
AA008502 Mm.7414 6.61E-10  1.01E-14 -+ Neuron specific gene family member 1
U91483 Mm.15343 2.80E-07 1.61E-14 Calsequestrin 2
X61397 Mm.156583 2.04E-09 2.62E-14 -+ Carbonic anhydrase-like sequence 1
D13266 Mm.57057 6.90E-08  2.65E-14 < Glutamate receptor, ionotropic, delta 2
|_\ 738118 Mm.4564 1.60E-08  3.28E-14 -+ Synaptonemal complex protein 1

AA059527 Mm.7414 1.67E-08  5.11E-14 - Neuron specific gene family member 1
W41032 Mm.181894 1.97E-06 1.21E-13 -« hypothetical protein (RIKEN cDNA 2900092E17 gene) major vault protein
AA390043 Mm.28765 411E-07 1.41E-13 homolog to TRAM protein. (RIKEN cDNA 1810049E02 gene)
X69063 Mm.4789 2.69E-09 1.61E-13 « Ankyrin 1, erythroid
X13605 Mm.18516 5.84E-07  2.07E-13 + H3 histone, family 3B

. L22144 Mm.829 2.36E-08  2.16E-13 -+ S100 protein, beta polypeptide, neural
AA270913 Mm.3116 2.00E-08 2.17E-13 -« ESTs
R74735 Mm.752 3.40E-07 2.20E-13 - ESTs
W45964 Mm.28524 1.46E-06  3.97E-13 + DNA segment, Chr 6, Wayne State University 116, expressed
X51438 Mm.7 4.92E-08  4.70E-13 « Vimentin
L02241 Mm. 1499 1.66E-06 5.09E-13 + Protein kinase inhibitor beta, CAMP dependent, testis specific
M90365 Mm.21990 5.88E-08  6.17E-13 + Junction plakoglobin
X15373 Mm.2726 3.42E-07  8.48E-13 -+ Inositol 1,4,5-triphosphate receptor 1

Cerebellum-deficient

129SvEvV C57BI/6

Accession Unigene ANOVA Template Sb Description
AA220788 Mm.2388 1.15E-09  1.99E-10 + ESTs

. AA259350 Mm.21606 1.28E-06  2.32E-10 M. musculus reticulon 3 (Rtn3) mRNA, complete cds
| | U23184 Mm.31395 1.41E-056  2.52E-10 +« Carboxypeptidase E
L04538 Mm.2381 7.64E-07  3.66E-10 Amyloid beta (A4) precursor-like protein 1
AA031158 Mm.29586 4.32E-07  3.89E-10 + Homologous to sp P13983: extensin precursor (cell wall hyd)
W57404 7.32E-05 4.46E-10 + Homologous to sp P16870: carboxypeptidase H precursor =
731269 Mm.29586 6.82E-07 9.61E-10 + Homolog to brain acid soluble protein 1 (BASP1 protein) 9“
X03151 Mm.3951 3.26E-05  1.96E-09 -+ Thymus cell antigen 1, theta o
X04663 441E-05 5.80E-09 « Mouse mRNA for beta-tubulin (isotype Mbeta 5). 3
AA059763 Mm.31239 2.24E-05 1.01E-08 -« Similar to tubulin, beta 4 o
AA238056 Mm.25154 5.77E-05  1.04E-08 Wilms' tumour 1-associating protein :
X04663 Mm.1703 1.42E-04  1.11E-08 < Tubulin, beta 5 o
AA050852 Mm.1260 9.82E-06 1.18E-08 + Expressed in non-metastatic cells 1, protein (NM23A) 3
W49178 Mm.1703 3.66E-04  4.48E-08 Tubulin, beta 5 o
AA271360 Mm.26680 7.58E-05  5.03E-08 ESTs 2
W40709 Mm.29650 1.44E-06  5.32E-08 < Similar to mitochondrial carrier homolog 1 isoform B. =
AA002366 Mm.2381 1.19E-05  5.63E-08 Amyloid beta (A4) precursor-like protein 1
l W11020 Mm.29455 8.66E-05  6.06E-08 Homolog to HSPCO035 protein
AA155529 Mm.2411 3.12E-06  6.45E-08 Ras-GTPase-activating protein (GAP<120>) SH3-domain-binding protein 2
AA271327 Mm.28422 1.07E-05  6.82E-08 ESTs, Moderately similar to autosomal highly conserved protein [H.sapiens]
AA259350 2.65E-05  8.47E-08
L42463 Mm.1383 4.85E-06 8.68E-08 + Rho GDP dissociation inhibitor (GDI) gamma
J04695 Mm.181021 1.01E-05 9.17E-08 Procollagen, type IV, alpha 2
L04538 1.36E-05  9.61E-08 Mouse amyloid precursor-like protein mRNA, complete cds.
D67016 Mm.34828 7.46E-05  1.02E-07 + Heat shock protein, 105 kDa
I AA217585 Mm.22025 6.62E-04 1.05E-07 Homolog to KIAA0290 (fragment)
AA032557 Mm.21251 2.91E-04  1.09E-07 Deleted in polyposis 1
M20632 Mm.1129 6.77E-05  1.51E-07 Repeat family 3 gene
L04280 Mm.70127 1.10E-04  1.55E-07 Ribosomal protein L12
M19380 Mm. 116941 2.04E-06  2.06E-07 Calmodulin 3
AA167917 Mm.181860 1.10E-05  2.12E-07 Similar to tubulin, beta 4
W76777 Mm.24488 2.28E-06  2.56E-07 <+ PH domain containing protein
AA408475 Mm.13020 1.21E-04  2.78E-07 Ribosomal protein L13a
AA689048 Mm.27923 1.09E-05  2.81E-07 + ESTs, weakly similar to 3BP1 mouse SH3-binding protein 3BP-1
C77776 Mm.5650 2.45E-04  2.84E-07 ESTs
731298 Mm.27897 3.83E-04  2.89E-07 DnaJ (Hsp40) homolog, subfamily A, member 1
u28217 Mm.4654 4.18E-06  3.05E-07 <+ Protein tyrosine phosphatase, non-receptor type 5
D83206 Mm.4766 3.59E-07  3.62E-07 -+ Vesicular membrain protein p24
C77386 Mm.24953 2.26E-04  4.04E-07 ESTs, weakly similar to DNA polymerase zeta catalytic subunit
uU58887 Mm.736 2.86E-06  4.14E-07 +« SH3 domain protein 2 C1

Figure 2 (see the legend on the page after next)
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Amygdala-enriched or deficient

129SvEvV C57BI/6

Accession Unigene
X76653 Mm.16519
L05439 Mm.141936
D31951 Mm.4258
ABO006361 Mm.1008
AA065993 Mm.23522
AA221937 Mm.22154
U69136 Mm.8064

Cortex-enriched or deficient
12! C57BI/6

VEV

©
(7]

Accession Unigene
X55674 Mm.41970
U63337 Mm.118
AA144347 Mm.23884
X57377 Mm.3645
X00619 Mm.157012
W49037

Entorhinal cortex-enriched or deficient
129SvEv C57BI/6

Accession Unigene
D21165 Mm.27005
AF026072 Mm.7316

U44426 Mm.2777
AA183623 Mm.46217
Us6783 Mm.3507
D45208 Mm.6225

AA444282 Mm.28387
AA153748 Mm.24642

Hippocampus-enriched or deficient

129SVEv C57Bl/6

Accession Unigene
AAB00542 Mm.22365
AA590472 Mm.2252
AA409822 Mm.16802
AA030688 Mm.27902
U29086 Mm.5106
D30785 Mm.5193
AAB90887 Mm.22365
R74842 Mm.5249
C81548 Mm.6053
AF009246 Mm.3903
D86238 Mm.1433
AA410148 Mm.24477
AA408470 Mm.21557
AA119245 Mm.9248
U30602 Mm.4294
AA215251 Mm.5181

Accession Unigene
AA272187  Mm.1348
D16847 Mm. 157069
X56518 Mm.3142
AA172673  Mm.7952
X60304 Mm.2314
AA123328  Mm.30204
U71202 Mm.5163
M69042 Mm.2314
W91509 Mm.25316
AA529764  Mm.1782
X70296 Mm.3093
AA178227  Mm.57175
X05640 Mm. 142140
X70393 Mm.4517
AA174394  Mm.826
W13136 Mm.8854
134214 Mm.4032
AF016482  Mm.29210
X99807 Mm.22699
U81317 Mm.3915
ET61571

I c79089 Mm.22231

ANOVA
9.93E-08
2.00E-04

3.19E-06

2.06E-08
9.23E-06

ANOVA
7.11E-04

8.42E-04

ANOVA

9.56E-05
6.23E-04
9.58E-05
1.10E-11
3.37E-04
2.77E-10
7.94E-09
1.03E-07

ANOVA

5.26E-10
1.44E-05
3.44E-08
1.35E-08
9.85E-09
1.04E-05
6.75E-04
1.19E-10
1.47E-06
1.03E-06
9.11E-06
1.85E-06
5.27E-06
7.89E-04
8.98E-06

ANOVA

1.13E-08
1.52E-06
2.08E-06
1.34E-06
5.24E-06
8.58E-09
7.32E-07
1.41E-05
4.46E-05
5.91E-06
4.03E-07
1.59E-04
5.36E-05
4.99E-06
3.39E-04
4.16E-11
1.92E-09
1.44E-05
3.90E-05
3.38E-09
4.62E-04

Template Sb
3.87E-12 -
6.47E-06
1.33E-05
2.33E-05
4.28E-05
6.26E-05
6.63E-05

Template Sb
4.02E-05
7.85E-05
1.26E-04
1.30E-04
1.37E-04
1.46E-04

Template Sb
2.60E-07
3.06E-06
8.97E-06
1.71E-05
1.90E-05
4.01E-05
7.67E-05
8.28E-05

Template Sb
1.69E-12
5.37E-09
5.67E-09
6.70E-09
1.09E-07
1.19E-07
2.81E-07
3.62E-07
6.17E-07
7.19€E-07
9.21E-07
1.02E-06
1.08E-06
1.36E-06
6.65E-06
9.16E-06

Template Sb
6.55E-13
2.48E-12 -
9.45E-11 -
3.35E-10
7.46E-10 -
7.54E-10
2.87E-09
1.04E-08 -
1.04E-08
1.53E-08
4.34E-08
5.72E-08
1.05E-07
1.22E-07 -
1.68E-07
2.22E-07 -
2.78E-07
3.43E-07
6.15E-07
6.48E-07 -
8.43E-07
8.55E-07

Description

Nuclear receptor subfamily 2, group F, member 2 (ARP-1)

Mouse insulin-like growth factor binding protein 2 (IGFBP-2) gene
Osteoglycin

Prostaglandin D2 synthase (21 kDa, brain)

Similar to RAN, member RAS oncogene family

Lymphocyte antigen 6 complex, locus H

Cadherin 9

Description

Dopamine receptor 2

Cyclin-dependent kinase 2

Homolog to signal recognition particle receptor alpha subunit
Myosin Va

T-cell receptor beta, variable 13

Homologous to sp P30936: somatostatin receptor type 3 (SS3R)

Description

Visinin-like 1

Sulfotransferase family, cytosolic, 2B, member 1

Tumor protein D52

ESTs - MEF2C: Myocyte enhancer factor 2C (Mm.24001)

Nuclear receptor subfamily 4, group A, member 2

Syntaxin 1a

ESTs, weakly similar to FH1/FH2 domain-containing protein FHOS
ESTs

Description

E26 avian leukemia oncogene 2, 3' domain

Homolog to plakophilin 2A

DNA segment, Chr 16, Wayne State University 73, expressed
ESTs

Atonal homolog 2 (Drosophila)

Kallikrein 8

E26 avian leukemia oncogene 2, 3' domain

Copine 6

ESTs

RAS, dexamethasone-induced 1

Neuropeptide Y receptor Y2

DNA segment, Chr 14, Wayne State University 89, expressed
DNA segment, Chr 15, Wayne State University 169, expressed
ADP-ribosyltransferase (NAD+; poly (ADP-ribose) polymerase) 1
Adenylate cyclase 9

Ring finger protein (C3HC4 type) 19

Description

Hypothetical protein, 154

Delta-like homolog (Drosophila)
Acetylcholinesterase

Paternally expressed gene 3

Protein kinase C, delta

Dihydropteridine reductase (EC 1.6.99.7)
RAS-like protein expressed in neuron

Protein kinase C, delta

ESTs, highly similar to ATP-Citrate [Rattus norvegicus]
Reticulocalbin 2

Serine (or cysteine) proteinase inhibitor

CD83 antigen

Neurofilament, medium polypeptide

Inter-alpha trypsin inhibitor, heavy chain 3
Phosphatidylinositol glycan, class F
Angiotensinogen

Regulated endocrine-specific protein 18

Aplysia ras-related homolog N (RhoN)
Selenoprotein P, plasma, 1

Myelin-associated oligodendrocytic basic protein
M. musculus putative G protein-coupled receptor Rec1.3 mRNA
Synuclein, gamma

Figure 2 (continued from the previous page, see the legend on the next page)
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Midbrain-deficient
129SvEv C57BI/6

NN N CENTNTN N NN NN TN

228835882822 22885588F 222 Accession  Unigene ANOVA  Template Sb Description
AF026489 Mm.7363 1.13E-05  2.22E-07 Beta-spectrin 3
AA250009 Mm.24059 3.55E-05 1.67E-06 Neurofibromatosis 2 interacting protein

H AB000636 Mm.6252 3.29E-07 1.89E-06 Procollagen, type XIX, alpha 1
N28140 Mm.2104 8.82E-04  2.70E-06 Aortic preferentially expressed gene 1
AF026489 Mm.7363 2.84E-04  2.03E-05 Beta-spectrin 3
X83933 Mm.1334 1.42E-04  4.07E-05 Ryanodine receptor 2, cardiac
AB006714 Mm.22695 5.68E-05 Collapsin response mediator protein 1
C79158 Mm.5794 8.35E-05  9.86E-05 ESTs
. AA185274 Mm.1023 5.38E-06 ESTs
Strain-dependent
129SvEv C57BI/6
vaNfNFNfN;ngvaNFN"N;g
28855 GFEEES2IEESSLEETES pccession Unigene ANOVA  Template Sb Description
. AA138388 Mm.24219 1.51E-10  6.21E-13 + Unclassifiable - probable pol polyprotein-related protein 4

U29055 Mm.2344 5.77E-09  9.70E-13 -+ Guanine nucleotide binding protein, beta 1
U29055 Mm.2344 6.05E-08 1.35E-11 + Guanine nucleotide binding protein, beta 1
AAB74148 Mm.25074 1.11E-07  2.29E-11 + Heterogeneous nuclear ribonucleoprotein C
AA538477 Mm.37624 3.47E-07 2.47E-11 « ESTs, weakly similar to erythroid differentiation regulator
AA114725 Mm.27523 493E-09 3.51E-11 « Homolog to unnamed protein product
AA120636 Mm.28761 4.79E-11 3.50E-10 -« Serine/threonine kinase 25 (Ste20, yeast homolog)
AA711028 Mm.6856 6.78E-09  6.99E-10 -« Pituitary tumor-transforming 1
AA035993 Mm.26166 4.02E-08  7.32E-10 Acid phosphatase 1, soluble
AA409826 Mm.17917 2.63E-10  8.74E-10 -+ Related to CG10641 protein
AAB89927 Mm.29321 8.53E-08 1.92E-09 + Hypothetical protein
AA560507 Mm.30250 5.16E-07  2.12E-09 Similar to phosphorylated adaptor for RNA export
W87094 Mm.28761 1.31E-06  2.56E-09 Serine/threonine kinase 25 (Ste20, yeast homolog)
W33721 Mm.90587 1.28E-06  2.78E-09 Enolase 1, alpha non-neuron
L12367 Mm.8687 4.46E-08  3.73E-09 < Adenylyl cyclase-associated CAP protein homolog 1
D87902 Mm.4996 4.70E-08  4.75E-09 ADP-ribosylation factor 5
AA110732 Mm.27270 1.53E-07  1.06E-08 -+ Dynactin 4
U86090 Mm.3380 5.14E-07  1.16E-08 Kinesin family member 5B
W35778 Mm.16784 6.21E-07 1.44E-08 Phosphatidylethanolamine binding protein
M62766 Mm.2226 5.57E-06  4.15E-08 3-hydroxy-3-methylglutaryl-Coenzyme A reductase
AA154646 Mm.27660 1.09E-07  4.56E-08 ESTs, weakly similar to N-copine [M.musculus]
W51229 9.64E-07 4.58E-08 + Homologous to sp P35465: serine/threonine-protein kinase PAK
X92864 Mm.5091 1.50E-06  6.07E-08 Sparc/osteonectin, cwcv and kazal-like domains proteoglycan 1
AA049118 Mm.16784 2.10E-06  6.83E-08 < Phosphatidylethanolamine binding protein
AA072168 Mm.3380 9.79E-12  7.87E-08 -+ Kinesin family member 5B
U79523 Mm.5121 5.27E-07 1.04E-07 < Peptidylglycine alpha-amidating monooxygenase
AA000892 Mm.30250 4.10E-06 1.22E-07 Similar to phosphorylated adaptor for RNA export
X82067 Mm.42948 5.75E-06  1.42E-07 Peroxiredoxin 2
W08454 Mm.28484 3.72E-05 1.52E-07 Transmembrane 4 superfamily member 8
AA267744 Mm.96671 2.56E-05  2.54E-07 Homolog to microfibrillar-associated protein 1.

Figure 2 (continued from the previous pages)

Visualizations and detailed information about some genes identified in this study. For each region or for the strain distinction,
up to 40 genes are shown (for space considerations), all of which have template-match p-values < 104 The genes are ranked
by template-match p-value. Other rankings are possible on the basis of our data. The p-value cut-off (10-4) was chosen so that
some genes would be listed for all categories; note that the ‘best’ genes in some categories are only comparable in specificity
to the ‘worst’ genes in others. For two categories (cerebellum and midbrain), genes showing enrichment and depletion
expression in the area of interest are separated. The results have been filtered to remove genes having primarily negative
average difference values as described in Materials and methods. Besides the ANOVA and template-match p-values (p-values
greater than 10 are not displayed), for each gene, the GenBank accession number of the sequence used to derive the probes
is shown, along with the UniGene cluster number (if applicable), and annotations drawn primarily from UniGene and
FANTOM databases [29]. UniGene cluster identity and annotations were based on the current information rather than the
annotations originally provided by Affymetrix and may differ from those described in Sandberg et al. [1]. A bullet appears in
the column Sb (Sandberg) if the gene was identified in Sandberg et al. [1] or Sandberg [12]. The need to limit the number of
genes shown may give the misleading impression that relatively few new genes were identified, especially for the cerebellum-
enriched genes. On the basis of accession number, UniGene ID, and annotation, some genes appear more than once on the
same list. This duplication reflects multiple probe sets targeting the same sequence, or multiple probe sets targeting different
sequences in the same UniGene cluster. The visualizations were prepared as described in Materials and methods, and we
emphasize that the scale shown is normalized and thus arbitrary for each gene. Abbreviations are the same as for Figure |I.
The complete lists of genes with annotations and p-values can be obtained from our website [32].

effects (Table 1). Preliminary results (see Materials and  one strain suggest that this strategy will be useful for identi-
methods: Availability of data and software) using templates  fying more complex expression patterns as well as the simple
that select specifically for genes expressed in one region in ~ ones we describe in detail here.
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Figure 3

Comparison between template match and ANOVA p-values
for strain-specific changes. The p-values for all 13,067 genes
are plotted, with template-match p-values on the x-axis and
ANOVA p-values on the y-axis. For most genes, the two
methods are in good agreement.

Region-specific expression

As with the strain-specific genes, we identify a number of
putative region-specific genes in addition to those identified
by Sandberg et al. [1]. The two methods lead to an estimate
that, at a p-value of 105, up to approximately 600 genes
show variability of expression with respect to brain region
(Table 1), or around 6% of the total, compared to the 242
region-specific genes identified by Sandberg [12] and Sand-
berg et al. [1]. As for the strain-specific genes, some genes
identified in [1] do not receive particularly high scores in our
assays (Figure 2, and see Additional data files). For example,
both hippocampal genes identified in [1] have p-values
greater than 0.001 and do not appear in Figure 3. In general,
however, most of the genes selected in [1] appear fairly high
on our lists, although additional genes are often given even
higher scores by our assays.

In agreement with Sandberg et al. [1], we find that the cere-
bellum is by far the most distinct of the brain regions
studied. The bulk of the genes identified as showing region-
specific effects appear to be due to cerebellum enrichment or

depletion (339 out of 595 at template-match p < 1075). The
midbrain was the second most distinct single region
(Table 1). In contrast, the cortex had the least distinct expres-
sion pattern, being very similar to other forebrain regions, as
pointed out by Sandberg et al. When considered together, the
forebrain (represented by cortex, amygdala, hippocampus
and entorhinal cortex) has many genes that distinguish it
from the midbrain and cerebellum (Table 1). Taken sepa-
rately, the cortex, amygdala, hippocampus and entorhinal
cortex had relatively few genes with distinct patterns (Table 1,
Figure 2). The single amygdala-specific gene (ARP-1) identi-
fied by Sandberg et al. appears at the top of our list of amyg-
dala-specific genes, and although we identify a few other
high-scoring genes in that category, none approaches the
specificity of ARP-1 (Figure 2). Details of a few examples of
high-scoring genes we identified for hippocampus and mid-
brain are shown in Figure 4c and d, respectively.

In many cases, the expression patterns we report seem to be
novel, but in others supporting evidence is found in the liter-
ature. We did not attempt a comprehensive literature survey
for each gene, but support was readily found for the hip-
pocampus enrichment of copine 6 [13], neuropeptide Y
receptor Y2 [14], Atonal 2 [15], and kallikrein 8 (neuropsin)
[16]. The same can be said for the midbrain enrichment of
Rin [17], Peg3 [18], and nexin [19]. Some -cerebellar-
enriched genes for which we found supporting evidence
include calsequestrin [20,21] and aldolase 3 (zebrin) [22].

Discussion

Our most important finding is that by using ANOVA and
feature selection at even quite conservative cut-offs, we iden-
tify genes with strain- and region-dependent variation in
gene expression that were not identified in the original
analysis of the data [1]. These newly identified genes expand
the range of genes that can be considered as candidates for
underlying behavioral differences between the two strains
and functional differences among brain regions. We were
able to confirm the expression patterns of some of the genes
we identified by examining the published literature.
Although this examination was not exhaustive, we readily
found supporting evidence for the tissue-specific expression
patterns of a number of genes which were not identified in
the previous surveys of the data. These results also show
that the new patterns we identify with high confidence

Figure 4 (see figure on the next page)

Unadjusted graphs of expression for examples of genes identified in this study. Arrays are plotted along the x-axis, and
expression (average difference) is plotted on the y-axis. Below the x-axis of each graph is a schematic of the corresponding
template. (a) Two typical examples of high-scoring genes showing strain-specific variation. (b) A gene identified by Sandberg
et al. as having strain-specific variation, for comparison with (a). We gave this gene a much lower ranking than the genes
shown in (a). (c) Three high-scoring genes showing hippocampus enrichment. (d) Four high-scoring genes showing midbrain

enrichment.




refereed research

http://genomebiology.com/2001/2/10/research/0042.9

Protein phosphatase ACP1/ACP2

(a) Sparc/osteonectin (testican)

an Zam 2 an 2 an
- qLaw r ran Law Law
- 2 dH r 12 dH 2dH 2dy
. Jeon 2 : Je=a e = oo 2 5
L 103 _D/u - 4103 m _nm 103 m 103
- 2% |15 3 12x0 |15 0 ™ 2x0 |15 2x0
L 1x0 |0 - 11x0 |O ®) [O) 1x0 |O o L X0
L {zao - {290 o 290 n 290
L R - qLa0 <] %) © )
L ez by - {2 by o 2 by O 2 by
L {16y L 1 by o | By S 1 By
L Jeam L Jean [ 2 _H ©° 2 an
L draw L dLaw a Law o Law
L JzdH L Jzdn _H _H o ZdH ZdH
L JrdH | > L JrdH | > > = LdH | > (] | dH
L Jzoa |W L lzoa W L o zo3 (W £ zo3
193 | B 103 |3 2 x 103 | el 103
. 1493 |® . 193 |d %} 3 ) 2
L 12x0 |0 L Jexo [0 o)} 2x0 |O = 2x0
L Jixo |N o~ L Jixo [N © Al > 1x0 |NN Q L X0
L Jeao |7 ol - Jzao | T - © 290 | o 2a0
L dLa0 P Jrao O] c 6] o L a0
L Jz by w I lzby < mm 2 by Eo} 2 by
I By = Y S 2L ey > Y
g2 88888 8 Emmmwwmmo e} ©C §E8E888 88 <
(e0usiayyiq 9Beseny) UoIsseIdXg (0usiepiq sbeieny) uojssaidxa O O " (eousiapa sbeiony) uosseicka a
—_—
(&)
A
Zan Zam Zam Zan Zan
Law - 1 Lan r Tram Law L Jran
2dH F {2dH i 12 dH zdy F {edn
LdH |0 3 11 [0 r TLAH |0 LdH |0 L JLdH
203 |I= L 4zo03 |= r 1zoa |[= o3 |= L 4{2°3
to3 |@ 3 {to3 |@ - o3 |@ ro3 |@ L Jio3
2%0 |15 - 12%0 |15 - 12%0 |15 2x0 |15 L lexo
1x0 |O < I 11x0 O - 11x0 |0 1x0 |O L Jixo
290 Z 12 - 1290 290 L Jeao
190 ar 1190 - 1190 190 L Jrao
2 by F 4 2bvy r 126y 2 by L Je by
1 By W 3 {16y 3 116y 1 By L 116y
Zan =2t Jzan - 12an 2 an L Jean
Law Qi 4 Lan - 4Lam Law L Jran
2dH et {zdH 3 {2 dH ZdH L Jzdn
Ld | > ot JLdH | > 3 dLdH | > LdH | > L JLdH
zo3 | o I 1203 |Y 3 1203 |Y zo3 | L {203
193 [ c 1+93 | 3 1193 |p 193 [ L J1o3
2x0 |0 3t 12x0 [0 3 12%0 |0 2x0 | L lexo
Lx0 |N o r {1xo [N L {1x0 |N Lxo |N L J1x0
290 |™ S {290 |T L dzao |7 290 | L Jzao
190 3 1190 L {190 190 — L Jrao
2 by S ot {2by — {2 by 2 by o | 12 by
| By © | By [} | by £ | By 2 | By
$855R8888°%8 mEEEEEEEE - > 28838888888 Cesssssss O¢gssesss
(sousiayiq sBesany) uoisseidxg —_ (sousiayiq eBeseny) uoissaidxg m " (eousseyiq obesny) uoissaidxg —_ (eoussayyiq aBeseny) uoisseidxy z " (eouesajiq sbesony) uoisseidxa
K] )
N N

C57Bl/6

129SvEvV

C57BI/6

129SvEvV

Figure 4 (see legend on the previous page)



10 Genome Biology Vol 2 No 10 Pavlidis and Noble

Table |

Comparison of numbers of genes identified as showing strain
and/or regional variation in gene expression for different methods

Number of genes selected at each p-value

Condition Method p < 0.001 p<10® p<10t
Strain Sandberg 24 24 24
ANOVA 213 65 36
Template 150 56 34
Strain x region Sandberg 49 49 49
ANOVA 17 | 0
All strain effects ~ Sandberg 73 73 73
ANOVA 230 66 36
Template 150 56 34
Amygdala Sandberg 1(3) 1(3) 1(3)
Template 74 2 0
Hippocampus Sandberg 2(10) 2(10) 2(10)
Template 63 16 I
Cortex* Sandberg 0 0 0
Template 35 0 0
Forebrain* Sandberg 58 58 58
Template 771 191 112
Midbrain Sandberg 13 13 13
Template 181 44 23
Cerebellum Sandberg 150 150 150
Template 890 339 227
Entorhinal cortex Sandberg 2(10) 2(10) 2(10)
Template 37 3 |
Al tissue effectst  Sandberg 242 242 242
ANOVA 874 289 168
Template 2051 595 374

The number of genes identified by each method, and by Sandberg et al.
[1], for each condition or set of conditions is listed if appropriate. For
ANOVA and template match, values for three different p-value thresholds
are shown. For the various brain regions, the template-match counts
include both matches (enriched genes) and anti-matches (genes expressed
at lower levels in the region listed). None of the values given is corrected
for genes dominated by negative average difference values. After filtering
such genes (see Materials and methods) values would be about 5-10%
lower. The values in the ‘Sandberg’ rows are the same in each column
because Sandberg et al. did not generate confidence measures for the
genes they selected. The totals for ‘Sandberg’ include genes listed both in
Sandberg et al. [1] and Sandberg [12], and group together genes that were
‘restricted’, ‘enriched’, ‘absent’ and ‘decreased’. Numbers in parentheses
are the totals obtained if one includes genes mentioned in the text of [1]
but not listed by name. *Genes specific to the cortex alone. Because
Sandberg et al. do not appear to have specifically sought genes expressed
only in the cortex (instead they compared cortex only to cerebellum and
midbrain [12]), the number of genes in this category for Sandberg et al.
are listed as zero. ‘Forebrain’ is the combination of cortex, hippocampus,
entorhinal cortex and amygdala, which most closely matches the ‘Cortex’
group chosen in [1,12]. It is included here to allow a fair comparison to
their methods. TThis category does not include strain x region effects.

are unlikely to be spurious statistical artifacts, and give an
indication that the sensitivity (the ability to avoid missing
significant results) of our methods is higher than the ad hoc
approach. We also note that our criteria are not necessarily
less stringent than those of Sandberg et al. as many genes
they selected do not rank particularly high in our results.
Furthermore, in some cases, such as for the entorhinal
cortex at more conservative p-value cut-offs, we select fewer
genes than Sandberg et al. even though at the same cut-off
for other regions we select more (Table 1). Thus, our increase
in sensitivity does not come at the cost of selectivity (the
ability to avoid spurious positive findings) compared to the
ad hoc approach. In the remaining discussion, we evaluate
our methodology in more detail, and then consider the bio-
logical significance of the results.

Evaluation of methodology

The difference in the genes we selected compared to Sand-
berg et al. [1] seems to depend on two factors: ignoring the
absent/present calls, and using statistical methods that
provide a score for each gene, rather than simply choosing to
assign genes to the group of ‘changed’ genes. Sandberg et al.
appear to have used criteria that were conservative given the
measures used (that is, three out of four absent/present calls
must be ‘present’ to consider a gene expressed). But, the fact
that the standard ANOVA often does not support the evalua-
tion based on absent/present calls supports the idea that
absent/present calls, even if used conservatively, are neither
specific nor sensitive enough.

There are two particular drawbacks to using absent/present
calls for this type of analysis. Most important, each
absent/present call is based on only a single array. If one has
only a single array, such a guideline for the ability to detect a
given gene may be useful. When multiple measurements are
made, however, as in the dataset considered here, there is no
set method for evaluating the data. Is a gene ‘present’ in the
experiment when it is ‘present’ on three of four arrays, or are
two out of four arrays sufficient? Instead of such ad hoc cri-
teria, we used statistical comparisons of the samples. This
means that low-magnitude signals, which might have been
called ‘absent’, can turn out to be reliable and meaningful
when several observations are made. A second problem with
the absent/present calls is that they are based on essentially
arbitrary thresholds, with no simple estimate of the risk of
false positives or false negatives. The use of methods that
provide p-values allows a much finer-grained analysis. For
these reasons, we feel that absent/present calls should gen-
erally not be used to analyze experiments where replicates
were performed.

Despite the advantages of ignoring absent/present calls, the
‘absolute difference’ expression value provided by the
Affymetrix software is not ideal. In particular, large negative
values occur at a much higher rate than expected (data not
shown). These negative values are probably due to problems



with mismatch probes, as described in the Materials and
methods section. A more thorough analysis would remove,
or otherwise correct for, probe pairs containing such prob-
lematic probes from the raw data, which we did not have
access to here. At least two groups have described alternative
methods that start with the ‘perfect match/mismatch’ pair
data [23,24], which may be better at identifying and elimi-
nating such troublesome data points.

The region-specific genes listed in Figure 2 reflect a combi-
nation of the two methods we used. This combination takes
advantage of desirable features of both methods: ANOVA
can detect any effect of region on expression, whereas tem-
plate matching looks specifically for one pattern at a time. By
sorting ANOVA hits into regions based on template-match
p-values, we identify some genes that were missed by tem-
plate matching. In general, this is caused by the ability of
ANOVA to detect significant expression patterns that do not
fit any particular template very well, but when examined
manually reveal interesting patterns related to the template.
We note that other methods of post hoc testing ANOVA data
exist [7]. A benefit of the template-match method is that it is
very simple to apply, and we believe we found some patterns
that would be fairly difficult to find using other methods.
Thus we consider the template-match method a useful com-
plement to standard post hoc tests.

In the search for region-specific genes, ANOVA tended to be
more conservative than template matching. This is probably
because ANOVA retains information about the experimental
design; for the example of synuclein given in the results, it
‘knows’ that there is a large disagreement between two
matched replicates in the midbrain samples, whereas the
template match based on the correlation coefficient consid-
ers all variations to be essentially equivalent. The fact that
there are only four samples for each tissue, while there are
twelve for each strain, means that tests for tissue-specific
genes are even more susceptible to the effect of noise in the
data. This helps explain why the discrepancies between tem-
plate match and ANOVA was larger for the region-specific
genes than for strain-specific genes.

The methods we describe have some limitations. ANOVA
loses power when the number of replicates is not the same
for all the conditions, and the experiment must also follow a
complete block design, where all possible combinations of
factors are tested. Even in cases where these conditions are
not adhered to, multiple t-tests (which are generally pro-
scribed in multivariate statistics in favor of ANOVA) would
be preferable to resorting to ad hoc methods for assessing
statistical significance of the results. The template-match
method has the potential drawback that if used alone, one
would miss potentially interesting patterns that do not
resemble the template(s) being tested. This may be accept-
able if there is a clear idea of what is being sought
in the experiment, but is possibly detrimental in studies

http://genomebiology.com/2001/2/10/research/0042.1 |

relying on exploration and serendipity to find patterns. The
ANOVA/template-match combination ameliorates this
problem as one can choose to be guided primarily by the
ANOVA p-value (which is not pattern specific) while using
the template to reduce the complexity of the analysis by par-
titioning the data into groups based on interesting patterns.

Biological significance

Our results resemble those of Sandberg et al. [1] in that many
of the genes given high scores have previously defined roles
in the function of the nervous system. At the same time, many
of the high scoring genes have ‘housekeeping’ roles or more
general cellular functions that are not specific to the nervous
system. Currently this conclusion is based on a manual exam-
ination of the annotations and the literature associated with
top-scoring genes. In the future, as annotations improve, we
hope to be able to perform such assessments quantitatively
and objectively. Clearly, the ranked list of genes we provide
can only act as an input to further studies of nervous system
function, and does not provide any ready answers to ques-
tions about behavioral or functional differences.

As already indicated, another general conclusion from our
study is that the variation between regions and strains
appears to be greater than originally indicated by the analy-
sis of Sandberg et al. In a commentary on the original study,
Geschwind [25] sought explanations for the apparent
paucity of region-specific and strain-specific gene expres-
sion. Although the sensitivity of the microarray assay itself
may be at issue, our results clearly show that the use of dif-
ferent computational analysis methods has a dramatic effect
on the interpretation of the data. Geschwind [25] also
expressed surprise that the cerebellum, which is histologi-
cally more homogeneous than the other brain regions
assayed, was discovered to have the largest number of
uniquely expressed genes. This interpretation of the data
assumes that the other regions such as cortex and hippocam-
pus, being more complex and heterogeneous, should have
more differences between each other as well as from the
cerebellum. However, because hippocampus, neocortex and
entorhinal cortex are all cortical structures with many cell
types in common, it is not surprising that they have similar
gene expression profiles. In contrast, the cerebellum has a
distinct developmental origin, as well as a unique cellular
composition, compared to all the other regions assayed.
Thus it is not at all surprising that the cerebellum is the most
distinct region. In agreement with this line of logic, the mid-
brain, which is histologically and developmentally distinct
from the cortex and cerebellum, was the next most distinct
region. We also note that, contrary to the suggestion of
Geschwind, the fact that the cerebellum had the largest
number of ‘uniquely expressed genes’ is not equivalent to
stating that the cerebellum has the highest molecular com-
plexity [25]. To assess this type of complexity, the total
number of mRNA species expressed in the tissue would
have to be measured, but such information is not readily
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available. If we take the number of ‘present’ calls provided
by the Affymetrix software as a first approximation of a com-
plexity measure, we find no evidence that the cerebellum
expresses more genes than other regions assayed by Sand-
berg et al. (data not shown).

A recent study by Zirlinger et al. [26] also analyzed region-
specific gene expression in the amygdala, cerebellum and
hippocampus, as well as the olfactory bulb and periaqueduc-
tal gray, for a single mouse strain. Our results, and those of
Sandberg et al., can be compared to theirs, though there
were several important differences in their study that need
to be taken into account. First, unlike the study of Sandberg
et al, no replicates were performed for each region,
although in situ hybridization was used to confirm some of
the array results. In addition, the strain Zirlinger et al. used
was not one used by Sandberg et al., and there were also dif-
ferences in the methods for isolating the tissues used by the
two groups. Finally, Zirlinger et al. assayed a larger number
of genes and ESTs (approximately 34,000) than were in the
dataset we studied (approximately 13,000). Some compar-
isons can be made, however.

In agreement with our results and the results of Sandberg et
al., Zirlinger et al. found that the cerebellum was most dis-
tinct from the amygdala and hippocampus. Some of the
genes they identified are also given high scores by our tests,
adding further support to the validity of our results. Of the
cerebellar genes identified by Zirlinger et al., 35 of the 70
which are on the Mu11K arrays have ANOVA p-values less
than 104, while for the template match the number is
39/70. For the amygdala genes, the numbers are 2/10
(ANOVA) and 1/10 (template match). (None of the hip-
pocampal genes they identified appears to be on the Mu11K
arrays.) One possible source of discrepancies here is that
Zirlinger et al. did not assay neocortex, midbrain or
entorhinal cortex. Expression in these regions would
decrease their significance in our assays but would not
affect their results. The differences in our results suggest
that caution is advisable in making broad interpretations
based on large-scale gene expression data from a limited
sample of tissues and genetic backgrounds, and that confir-
mation by another method is desirable.

In summary, our results expand the number of candidate
genes for investigation of the genetic basis of behavioral
differences between the C57BL/6 and 129SvEv mouse
strains, as well as the number of genes that might be
responsible for structural and functional differences
between brain regions in the mouse. More sophisticated
methods than ours could be envisioned, but ANOVA and
template matching have much to recommend them. They
yield results with high sensitivity and selectivity, and are
fast, simple and based on commonly understood statistical
principles. They should also be readily applicable to other
complex expression datasets.

Materials and methods

Data

Expression data was downloaded from the FTP site estab-
lished by Sandberg et al. [1]. The data had already been nor-
malized and analyzed using the Affymetrix software.
Affymetrix arrays use sets of around 20 pairs of oligonu-
cleotide probes to represent a single gene or EST. Each pair
consists of a ‘perfect-match’ primer and a ‘mismatch’ primer
that has a single base change from the perfect match and is
meant to control for nonspecific hybridization effects. For
each gene (probe set), the Affymetrix software calculates an
‘average difference’ between the intensities of the perfect-
match and mismatch primers, and additionally makes an
overall determination as to the absence or presence of a gene
(absent/present call) in the sample. For our methods, we
used only the average difference measures. We assembled
the average difference data for the 24 arrays into a single
matrix of 24 columns and 13,067 rows. Updated annotations
for the sequences on the arrays were obtained from the
UniGene [27] and the FANTOM [28,29] databases.

Feature selection

A simple method of selecting genes that display particular
characteristics across m experiments is to compare each
profile to a template representing the pattern being sought.
We define a template as a binary vector of length m with a
value of 0 corresponding to one expression value, and a
value of 1 corresponding to a contrasting expression value.
For example, a search for genes showing strain-specific vari-
ation in expression could be performed by comparing each
profile to the following template, given that the data
columns are grouped by strain (12 in 129SvEv, followed by
12 in C57BL/6):

000000000000111111111111

The Pearson correlation coefficient of the profile with the
template was used as a simple measure of the agreement of
the profile with the pattern. For two profiles X and Y, the

correlation coefficient r is calculated using the formula

2 (X~ X)Y,- 7)

D> (X, - XP(v;- 7P

where X and Y are the means of each profile, and sums are
taken for i ranging over all m values in each profile. If in the
template a value of o is interpreted as low expression and 1
as high expression, the example pattern would identify
samples with lower expression in the 129SvEv than
C57BL/6. The correlation is only sensitive to the shape of the
profile, not the amplitude, so all profiles having a shape like
the template will be given higher scores regardless of the
actual expression values. To allow both matches and ‘anti-
matches’, in some cases we used the absolute value of the
correlation coefficient, effectively allowing the meanings of



ones and zeroes in the template to be reversed for any partic-
ular comparison. We note that templates that contain con-
tinuous values instead of binary ones could be applied in the
same way, allowing one to search for specific patterns of
greater complexity, but binary vectors were sufficient for the
purposes of this study. High correlation values correspond to
a good match. The p-values were calculated using a t test on
the correlation coefficient [30]. We prepared templates cor-
responding to each of the regions assayed by Sandberg et al.,
as well as using the strain-distinguishing template shown in
the example above.

Analysis of variance (ANOVA) and combining
ANOVA with feature selection

A standard linear two-way analysis of variance [7,30] was
performed independently on the data for each gene. The
effects examined for each gene were strain, region, and
interactions between strain and region. This is expressed by
the following linear equation:

1=1,2..6
Egk=H+Ri+5}+(R'S)g+3g'k j=12
k=1,2

where E is the measured expression level of the gene in
replicate k from one of six regions 7 in one of two strains j, p
is the overall mean expression level of the gene, and R and S
are effects due to region and strain, respectively. The R-S
term represents interactions between strain and region,
which might be detected if a gene is expressed only in spe-
cific regions in only one strain, for example. The error term
(&) accounts for random variation from replicate to replicate;
that is, any effect not accounted for by the other terms in the
model. Thus this model assumes that the measured expres-
sion level of a gene can be described as a linear combination
of effects due to measurement error, strain, region, and
interactions between strain and region. The null hypothesis
is that a given factor does not have an effect on expression,
meaning that the corresponding term in the equation is zero.
The extent to which the fitted parameters R, S and R-S for a
gene are non-zero provides the basis of the ANOVA. We gen-
erated p-values for each of the three effects for each gene
using a standard F-test [7].

As discussed, ANOVA does not allow one to directly distin-
guish between effects due to particular levels of one parame-
ter. Specifically, ANOVA might indicate that there was a
significant effect of region on expression, but does not
directly reveal which regions show different expression from
any others. Thus, one needs to apply a post hoc test to the
ANOVA results to determine which regions, if any, show dif-
ferences from others. Typically this type of multiple compar-
ison is done using statistical tests such as the Tukey or
Scheffé methods [7]. In our study, each region must be com-
pared to each other region, so 15 comparisons must be made
in total for each gene. In practice, however, interpretation of
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these results is more complicated: an additional stage of
analysis must be performed to generate, for example, genes
expressed at higher levels in the cerebellum than in all other
regions, as opposed to any one other region (as is given by
Tukey or Scheffé methods). For our study we used a simple
strategy suggested by the idea of template matching: we
choose genes fitting a pattern in which we are interested
from a subset of genes with low ANOVA p-values for region
effects. Specifically, we first selected all genes which had
region-effect ANOVA p-values < 0.001, and then applied
template matching to this set to select genes which fit a par-
ticular pattern as described above, at a p-value of 0.0001 or
less. These arbitrary, and fairly lax, thresholds were used
because they proved to give reasonable numbers of genes in
each partition. The resulting groups of genes can then be
ranked according to either their ANOVA p-value or by the
correlation with the template.

Interpretation of p-values

An important issue in interpreting the p-values generated by
tests on single genes is the effect of multiple tests. Specifi-
cally, a test performed with a chosen p-value cut-off of 0.01,
repeated 13,000 times, will on average generate 130 false
positives if each test is independent. Corrections for this
multiple testing problem are well known in statistics but are
somewhat controversial [31]. Methods used by Tusher et al.
[4] and Callow et al. [5] attempt to provide appropriate cor-
rections for microarray experiments, but there is, as yet, no
consensus on which methods to apply. For the purposes of
presenting our data here we report results at three different
thresholds, which would, by the Bonferroni criteria, yield on
average about 13, 0.13, or 0.013 experiment-wide false posi-
tives under the assumptions of our tests (that is, p-values of
0.001, 105 and 107, respectively). Because these cut-offs
assume that each gene is independent, which is clearly not
the case, these false positive estimates are probably conserv-
ative with respect to the multiple testing issue. Because we
assume here that the standard F and ¢ distributions are ade-
quate for describing the statistics we use, however, using a
conservative cut-off provides some additional protection
from type I errors due to potential inaccuracy of the uncor-
rected p-values.

Filtering selected genes

All the analysis described above was performed without
adjusting or filtering the raw average difference values.
But, a difficulty one commonly encounters with Affymetrix
data is that many probe sets yield large negative expression
(average difference) measures. Large negative expression
values occur when one or more mismatch primers in a
probe set have much higher intensities than their corre-
sponding perfect match primers. This may occur because
the mismatch primer is binding to some other nucleotide
in the sample which does not represent the gene for which
a measurement is indented. Because the Affymetrix soft-
ware determines the presence or absence of expression of a
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gene in part on the basis of how many probe pairs give high
intensities, not just the average across the probe pairs,
some genes may be flagged as present despite having nega-
tive average differences. Obviously this is not desirable;
one would like to correct for problematic mismatch probes
before calculating the average difference. A stop-gap
measure, which we used here as we did not have access to
the original raw data files, is to remove from consideration
entire probe sets which have this problem. Specifically,
genes with more than 6 values out of 24 that were less than
-20 were rejected; in practice this method is quite conserv-
ative, removing only the most problematic genes. We note
that a few genes (about 20 of approximately 240) selected
by Sandberg et al. would be removed from consideration
by our filter.

Comparison with the results of Sandberg et al. [1]

A list of the genes identified in the previous work on this
dataset were obtained from Tables 1 and 2 of Sandberg et al.
[1] and Table 4 of Sandberg [12]. A few groups of genes
referred to in these studies are not specifically identified in
the publications: the selection of eight hippocampus-
enriched, two amygdala-decreased, five entorhinal cortex-
enriched and three entorhinal cortex-decreased genes is
mentioned, but the genes are not specifically identified in
[1]. From our other comparisons, it is fairly likely that some
of these genes were given high scores in our analysis, so our
comparison to the results of Sandberg et al. for those areas
should be regarded as incomplete.

Visualization of the data

In several of our figures, microarray data is displayed as a
matrix of rectangles, each corresponding to an individual
measurement of one probe set/gene (rows) in one sample
(columns). The color, using a ‘black-body’ scale (from low
values represented by black to dark red to orange to yellow
to high values represented by white) indicates the relative
level of expression of the gene across the different condi-
tions. The values for each gene have been adjusted to a mean
of zero and a variance of one to facilitate comparisons
between genes, and values > 1 (or < - 1) have been adjusted
to 1 (or - 1), increasing the contrast of the images.

Availability of software
The software used to create the visualizations of the data and
to perform template matching and ANOVA is available on
request from the authors.

Additional data files
The following text files containing the results of our analyses
are available with this article online:

Anova results (the first column is the probe name and the
final results are listed as “ff” (first factor) “sf” (second factor)
and fxsf (interaction); the first factor is strain, the second is

region. The numbers in those columns are F values; the
other columns are intermediate values used to calculate F).

Template match results (each file contains three columns.
The first column is the probe name, the second is the corre-
lation coefficient with the template. The third column is the
p-value): cerebellum; hippocampus; midbrain; cortex; fore-
brain; entorhinal cortex; amygdala; strain.

All data and results, including detailed browseable tables of
the selected genes, and supplementary data and informa-
tion, are also available from our website [32].
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