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SUMMARY

Mechanicalpropertiesand stress-strainbehaviorwere evaluatedfor

severaltypes of commerciallyfabricatedaluminummatrix composites,containing

up to 40 vol % discontinuousSiC whisker, nodule,or particulatereinforcement.
lhe elasticmodulusof the compositeswas found to be isotropic,to be inde-

pendentof type of reinforcement,and to be controlledsolelyby the volume

percentageof SiC reinforcementpresent. The yield/tensilestrengthsand duc-

tility were controlledprimarilyby the matrix alloy and temper condition.

lype and orientationof reinforcementhad some effecton the strengthsof com-

posites,but only for those in which the whisker reinforcementwas highly ori-
o

ented. Ductilitydecreasedwith increasingreinforcementcontent,howeverthe
!

fracturestrainsobservedwere higher than those reportedin the literature

for this type of composite. This increasein fracturestrainwas attributed

to cleanermatrix powderand increasedmechanicalworkingduring fabrication.

Comparisonof propertieswith conventionalaluminumand titaniumstructural
alloys showed that the propertiesof these low-cost,lightweightcomposites

demonstratedvery good potentialfor applicationto aerospacestructures.

IN1RODUCTION

The majority of effort in aluminummatrix compositeshas been directed

toward developmentof high performancecomposites,with very high strengths

and moduli, for use in specializedaerospaceapplications. However,there are

a number of other applicationsin aircraftenginesand aerospacestructures

where these very high propertiesmay not be required,and where it could be
cost effectiveto use other metal matrix composites. For example,cost-,

weight- and stiffness-criticalcomponents,such as engine static structures,

do not requirethe very high directionalpropertiesavailablewith composites

reinforcedwith alignedcontinuousfibers. Replacementof such currentalumi-
num, titanium,or steel structuresby low cost compositesoffers the potential

of significantweight and cost savings.

For these reasons,effortswere initiatedto assess the potentialof ap-

plying low cost aluminummatrix compositesto these structures,using low cost

: reinforcementsand low cost compositefabricationprocesses,includingpowder

metallurgy,direct castingand hot moldingtechniques(ref. l). As part of

this assessment,panelsof aluminummatrix compositescontainingdiscontinuous

siliconcarbidewhisker (SiCw),nodule (SiCn),or particulate(SiCp)
reinforcementwere fabricatedunder contractand deliveredto NASA-Lewisfor
evaluation.
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Resultsfrom preliminarymechanicalpropertytestingof these SiC/AI com-
posites (ref. l) indicatedthat they had significantlyhigher elasticmoduli
than conventionalaluminumalloys and deserved furtherevaluation. Stress-

strain and fractureresults,with particularemphasison modulus, strength,

ductilityand microstructure,were reportedin reference2. It is the purpose

of this currentpaper to analyzethese resultsin terms of the principalfac-

tors influencingthe stress-strainbehaviorand mechanicalpropertiesof this
type of SiC/A1 composite.

MATERIALS

Three types of aluminummatrix compositescontainingdiscontinuousSiC
reinforcementhave recentlybecome commerciallyavailableand were studiedin

our investigations. Two types, containingSiC reinforcementsproducedfrom

rice hulls (ref. 3), are being producedby ARCO Metals (formerlySilag Div. of

Exxon Corp.). These compositescontainedeither a predominatelySiC whisker

reinforcement(Type F-9, nominalmixtureof 80 percentwhiskers/20percent

nodules)or a predominatelySiC nodule reinforcement(Type X-O, nominalmixture
of 80 percentnodules/20percentwhiskers). A third type of aluminummatrix

compositecontainingdiscontinuousSiC particulatereinforcementis being pro-

duced by DWA CompositeSpecialties,Inc. This type of compositeis made with
reinforcementobtainedfrom single crystalsof abrasive-gradeSiC that have

been crushed into fine powderand separatedby size (ref. 4).

Similarmethodswere used to fabricatecompositescontainingeach type of
SiC reinforcement(refs.4 and 5). In each case, the SiC reinforcementwas

blendedwith aluminumalloy powder,compactedinto billetsand sintered. The
sinteredbilletswere extrudedand then cross-rolledinto 2.54 mm thick flat

plates. Compositescontaining6061, 2024/2124,?0?5 or 5083 Al matriceswere
fabricatedin this manner and deliveredto NASA Lewis for evaluation.

The microstructureof each type of SiC/AI compositewas examinedby heav-
ily etchingthe surfaceswith HCI to remove some of the aluminummatrix to

expose the SiC reinforcementdistributionbelow the original surface. Scanning

electronmicroscope(SEM) photographs(fig. l) show the structureof a typical

SiCw/6061Al compositeand indicatesthat three types of particlesare pres-
ent: whiskers,nodules,and agglomerates. The equiaxedacicularwhiskerswere

hexagonalin cross sectionand rangedin width from 0.2 to 0.9 _m. The whis-

kers tended to have a generalorientationperpendicularto the final rolling
direction,and parallelto the extrusiondirection. Some nodule reinforcement

and ribbon-likewhiskerswere also observed. Areas of differentialetching

were also observed,indicatingeithera differencein chemicalcompositionor

in internalstrain energy states. It is probablethat these areas are un-

stringeredagglomeratedmatrix particles,since the less heavilyworked areas
of the compositewould tend to be less anodic,and thus would etch at a slower

rate than the more anodic,more heavilyworked regions.

Figure 2 shows the structureof a typicalSiCn/6061Al compositeand
indicatesthat the reinforcementprimarilyconsistsof SiC nodules. These
noduleswere irregularlyshaped platelets,l to 5 _m in width, and tended to

be equiaxed in cross section. A few whiskerswere also visible,again having

a generallytransverseorientation. In addition,some agglomeratedareas were
also visible.



Figure 3 shows the structureof a typicalSiCD/6061Al compositeand

indicatesthat the SiCp reinforcementis very angularand tends to have an
irregularlyjagged wedge shape. Most of the SiCp reinforcementtended to be

2 to 7 #m in width, although40 vol % SiCp/6061Al compositesshoweda
largerSiC particulatesize, rangingup to lO by 21 #m across their extreme
axes.

Tensiletests were used to evaluatethe stress-strainbehaviorand me-

chanicalpropertiesof the compositesand to relatethe effectsof the type of

SiC reinforcement,SiC reinforcementcontent,matrix alloy and temper condition

on the propertiesof the composites,in both the longitudinaland transverse
directions. Compositeswith 2024/2124,6061 and 7075 Al matriceswere tested
in both the as-fabricated(F-temper)and the heat-treated(T6-temper)condi-

tion, using heat treatmentsbased upon those given in reference6. Composites
with a 5083 Al matrixwere tested in the F-temperonly.

RESULTSAND DISCUSSION

FactorsInfluencingModulusof Elasticity

The modulus of elasticityof 6061Al matrix compositesincreasedwith

increasingreinforcementcontent(fig. 4). Resultsfrom tests on the other Al
matricesstudiedfollowedthese same trends. This increase,however,was not

linear,as in the case of compositeswith continuousfibersaligned in the

testingdirection. The modulusof the compositeswas below that expectedfrom
isostrain-typerule-of-mixturesbehavior,and tended to approachan isostress-

type hyperbolicfunctionwith reinforcementcontent,similarto that observed
for transversemodulusbehaviorof continuousfiber composites.

The reinforcementcontentwas the dominantfactor in the improvementof

modulus of elasticityin these SiC/AI composites. For a given reinforcement

content,the modulustended to be isotropic,with nearlyequal values obtained

from tests in both the longitudinaland transversedirections. In addition,

the modulus appearedto be independentof type of reinforcement,with modulus

values being within 5 percentof the averagevalue for all compositestested

at any given reinforcementcontent,regardlessof type of reinforcement.

The modulusof the compositeswas also independentof the matrix alloy.

Heat treatmentof the compositesmay have had a slight effect on modulus. The

modulusof compositein the T6-temperappearedto be slightlylower than the

modulusmeasuredon compositesin the as-fabricatedF-temper. This reduction

was slight (about3 to 4 percent)and was not consistentamong all the matrix

alloys tested,and may have been due to scatterin the data.

Factors InfluencingStrength

: The factorsinfluencingthe yield and tensile strengthsof SiC/AI com-

positesare complexand interrelated,and the best way to evaluatethis
behavioris throughisolationof variablesand analysisof stress-straincurves
and fracturebehavior.



Effectof Al matrix alloy. - The Al matrix used for the SiC/Al composites
was the most importantfactor affectingyield strengthand ultimatetensile

strengthof these SiC/AI composites. Stress-strainbehavior is summarizedin

figure 5, with the other parametersheld constant. In this case 20 vol % SiCW
reinforcement,T6-temper(whereapplicable)and testingin the longitudinal
directionwere used as the analysisconditions. These curves show that SiC/AI

compositeswith higher strengthaluminummatrix alloys,such as 2024/2124or
7075 Al, had higher strengthsbut lower ductilities. Compositeswith a 6061

Al matrix showed good strengthand higher ductility. Compositeswith a 50B3

Al matrix failed in a brittlemanner,with untimatestrengthrelatedto failure

strain. The 5083 Al alloy is not heat-treatableand has been optimizedto gain

maximumpropertiesby solid solutionstengtheningin the strain-hardenedH-

temper. The additionof the SiC reinforcementprobablyoverstrainedthe lat-

tice and thus the alloy no longer had sufficientstrain energy remainingto
gain its potentialstrengthand ductility.

While heat treatmenthad little,if any, effect of the modulusof elas-
ticity of the composites,it did affect the transitioninto plasticflow.

Compositesin the F-temperstrainedelasticallyand then passed into a normal
decreasing-slopeplasticflow. Compositestested in the T6-temperexhibiteda

slightlygreateramount of elasticstrain,with the elasticproportionallimit

being increasedfrom about O.lO to 0.15 percentstrainto about 0.15 to 0.25

percent,but the greaterinfluencewas a steepeningof the slope of the stress-

strain curve at the inceptionof plasticflow, relativeto that observedfor

compositesin the F-temper. The inceptionof plasticflow was marked by a

continuationof a slope that, while no longerelasticand startingto become

plastic,approachedthat of the elasticportion. This slope decreasedwith

increasingstrain,until eventuallyreachingnormal plasticflow leadingto

fractureat the ultimatetensilestrength.

This increasein elasticproportionalstrain limit and steepeningof the
stress-straincurve were reflectedby the higher yield and ultimatetensile

strengthsobservedin the heat-treatedcomposites. The increasein flow stress

of compositeswith each heat-treatablematrix probablyindicatedthe additive

effectsof dislocationinteractionwith both the naturalalloy precipitates
and the syntheticSiC reinforcement. The combinationincreasedthe lattice

strain in the matrix,causinggreaterdislocationtanglingand requiringhigher
flow stressesfor deformation,resultingin the higher strengthsobserved.

lhe effectsof matrix alloy and heat treatmenton the ultimatetensile

strengthof SiC/AI composites,in both the F and T6 tempers,are summarizedin

figure6. The propertiesfor the unreinforcedmatrix alloys were taken from
the values for maximumstrengthtempers listedin reference6. The results

showedthat the yield and ultimatetensilestrengthsof the SiC/AI composites,

with other parametersbeing constant,were primarilycontrolledby the intrin-

sic yield/tensilestrengthsof the matrix alloys. These resultsalso showed

that, in general,the yield and ultimatetensilestrengthsof the composites,

with 20 vol % SiCW reinforcement,were higher than those of the same heat
treatedmatrix alloyswithout reinforcement. The same trends of increased

yield/tensilestrengthswere also observedfor compositeswith these matrices
using other types of SiC reinforcementand at other reinforcementcontents.

The largestincreasein yield/tensilestrengthsover the unreinforcedmatrix

alloy, was achievedby the SIC/6061Al composites.



Effect of reinforcement content. - Reinforcement content is another im-

portant factor controlling the strength of SiC/At composites. The effect of
reinforcement content of a given type of SiC reinforcement, is shown in the
yield/ultimate tensile strength histograms in figure 7 for each alloy, tested
in the 16-temper if applicable. The data shown are the range of results of
all tests conducted in both the longitudinal and transverse testing direction,
with the average value from each testing direction indicated by the "L" and
"T" ticks. These figures show that, for a given matrix alloy and reinforce-
ment, the yield and ultimate tensile strengths generally increased with in-
creasing reinforcement content.

Part of the explanation for the strength increase observed can be seen
from the stress-strain curves for SIC/6061 A1 composites containing different
reinforcement types and contents (fig. 8). These curves show that the propor-
tional limit stress, where the composite entered plastic flow, increased as
the reinforcement content was increased, for each alloy tested. As the rein-
forcement content was increased, the elastic modulus increased and caused the
stress-strain curves to enter plastic flow at a higher flow stress. The slope
of the stress-strain curve also increased as the composite entered plastic
flow, and a higher flow stress was required to reach a given plastic strain
until either a stable plastic flow was reached (ductile failure) or the speci-
men failed (brittle failure), lhis indicated that the strength increase was
probably caused by closer packing of the reinforcement and smaller interpar-
ticle spacing in the matrix. This would cause increased interaction of dis-
locations with the SiC reinforcement, resulting in increased strain-hardening.

The strengthincreasedwith increasingreinforcementcontentonly as long

as the compositewas able to exhibitenough ductilityto attain full strength.

As the content reached30 to 40 vol % SiC, the strengthincreasetended to

taper off becausethe compositesfailedwhile still in the steeplyascending

portionof the stress-straincurve. In this region,the matrix probablydid
not have sufficientinternalductilityto redistributethe very high localized

internalstressesand the compositesfailed before being able to reach stable

plastic flow and normal ultimatestrength.

Effectof reinforcementtype and directionality.- Compositescontaining

acicularSiCW, irregularequiaxedSiCn, or irregularjagged SiC reinforcements
were studiedin this investigation. Stress-straincurvesfor 6B61At matrix

compositeswith 20 vol % of variousSiC reinforcementsindicatedthat the yield

and ultimatetensilestrengthsof the SiCW and SiCp reinforcementswere
similar,while compositeswith SiCn reinforcements-wereabout lO percent
lower in yield and ultimatetensilestrengths(fig. 8). No significanteffect
of directionalityon strengthpropertieswas observedwith 6061 At matrix com-

posites for any of the SiC reinforcementsat contentsfrom tO to 40 vol %.

The orientationof the SiCW reinforcementin all matriceswas generally
in the transversedirectionindicatingthat the whiskerorientationwas estab-

lishedduring the initialextrusionphase of fabrication. The compositeswere

then cross rollednormal to the extrusiondirection,but the cross rollingdid

not appear to change the originalwhiskerorientationand thus the whisker

alignmenttended to be perpendicularto the final rollingdirection.

Some orientationaldifferenceswere observed in compositeswith SiCw/Al

composites. Normally,any differencesin yield strengthwith orientationwere



minor (fig. 7(a)), althoughsignificantdifferenceswere observedin ultimate
tensilestrengthin 7075 and 2124 Al matrices (fig. 7(b)). In these cases,

with 20 vol % SiCW reinforcement,the yield and ultimatetensile strengths
of the T6-tempercompositeswere about 20 percenthigherwhen tested in the

transversedirection,comparedto the longitudinal(fig. 9). Etched surfaces

of these composites(fig. 10(a)) showeda greaterdegree of preferredwhisker
orientationthan that of the 6061Al matrix composites(fig. l).

Comparisonof the microstructureof the fracturesurfacesof the 20 vol %

SiCw/7075Al compositesshoweddifferentbehaviorfor specimenstested in
the longitudinaland transversedirections. The 7075 Al matrix compositeshad

an ultimatetensilestrengthof 648 MPa (94.0 ksi) in the transversedirection,

but only 542 MPa (?8.6 ksi) in the longitudinaldirection. The fracturesur-

face (fig. lO(b)) of the transversespecimensshow that many more whiskers are

projectingout of the surfaceof the compositespecimenthan were observed in

similarspecimenstested in the longitudinaldirectionor in the 6061Al com-
posites. Similartrendswere observed in the transversefracturesurfacesof

the 20 vol % SiCw/2124Al composites.

It appearedthat where directionalstrengtheningdid occur with SiCW
reinforcement,the fracturesurfaceindicatedprotrudingwhiskers (7075 and
2124 Al) with the whiskerbase still adherentto the matrix and no crater found

at the base. In cases where no directionalitywas observed(6061 and 5083 Al),
the matrix appearedto have pulled away from the whisker and formeda crater,

possibly fracturingthe whisker,but more probablyestablishinga fracturepath

throughthe matrix just beyond the ends of the whiskers. In both situations

however,no matrix appearedto be adheringto the exposedwhiskers,and there-

fore, it appearedthat the whiskersmerely pulledout of the matrix through
interracialshear. If shear pull-outoccurred,it would be improbablethat

the whiskersfailed in tensionand thus the full strengtheningpotentialof
the whiskerswas not realized.

The tensilepropertiesof all the compositeswith SiCW reinforcement

tested in the longitudinaldirection,regardlessof the Al matrix,appear to
have strengthsfairly comparablewith those of compositeswith the equiaxed

SiCp and SiCn reinforcements.While some strengthincreaseswere observed
in the directionof the reinforcementorientationfor the SiCw/Alcomposites,
the effectwas not universal. Since the modulusand the yield/tensilestrength

values for the SiCw/Alcompositeswere comparableto those of the SiCn and

SiCp composites,in all cases in the directionperpendicularto the SiCW
reihforcement,and in some cases parallelto the reinforcement,then it appears
that, at the currentstate of the art, the reinforcingprocess in these com-

positestends to be more of a dispersoidstrengthenerthan a fiber strength-

ener. With the currentstate of the art of SiC reinforcementproductionand

compositefabrication,it may be more beneficialto considerall SiC/AI com-

posites,regardlessof reinforcementtype, as a single class of isotropic

materialsand to utilizetheir commonalitywith conventionalaluminumalloys

as a major advantage,allowingestablishedaluminumcomponentdesign to be

used, and allowingconventionalaluminummetalworkingand formingprocessesto
be used.

With furtherdevelopment,the SiCw/AIcompositesmay prove more advan-
tageous for specializedapplications. However,for whisker reinforcementto

be effective,assumingadequate bondingand sufficientwhisker length,the



whiskersmust be preferentiallyorientedwithin a few degreesof the loading
axis and the whisker surfacemust remainperfect. The fabricationprocesses

used to produceSiCw/AIcompositesinherentlysets up conditionsthat work
against effectiveutilizationof full whiskerpropertiesin these composites.
First, in the reinforcement/powderblendingprocess,the whisker surfaceswill

probablybecome flawed and their intrinsic,as-producedstrengthand aspect
ratio will be reduced. Second,the extrusionof the sinteredSiC/AI billets

will cause furtherbreakingup of the whiskersand furtherflawingof their

surfaces. In addition,conventionalextrusioncan, at best, give only a par-

tial orientationof the SiCW reinforcement.

FactorsInfluencingDuctility

Ductilityof SiC/AI composites,as measuredby strain to failure,is again

a complexinteractionof parameters. However,the prime factorsaffecting
these propertiesare reinforcementcontent,matrix alloy, and orientation.

With increasingreinforcementcontent,the failurestrain of the com-

posites is reducedand the stress-straincurves also reflecta change in the
fracturemode. Failurestrainsfor the variouscompositestested are plotted

in figure ll(a) as a functionof reinforcementcontentfor 6061Al matrix com-

positesfor both the F- and T6-tempers. Figurell(b) shows a similarplot for
the other Al matrix alloys tested in their optimizedtemper. Photographsof
the fracturemodes observedare shown in figure12.

Preliminarytensiletests, conductedon wroughtaluminum specimenswith
no SiC reinforcement,exhibitedfailurestrainsof about 15 percent,with a

smooth 45° chisel-pointshear fractureacross the thicknessof the specimen.
There was also a contractionin the width of the specimenat the fracture

plane.

Compositespecimenswith low reinforcementcontentsof lO to 15 vol % SiC
in 6061Al exhibitedthe same type of a smooth45° chisel point shear fracture
across the thickness,but without the width contraction(fig. 12(a)). Failure

strainsof 6 to 12 percentwere observedwith this type of fracture. SEM

photographsof lO vol % SiCw/6061Al compositesshoweda ductilefracture

with a fine lacy dimple network (fig. 13(a)). Fracturesurfaces in the more
ductile orientationsshoweda finer dimple networkstructure,while the dimple

networkstructureswere slightlycoarserin the less-ductiledirection.

At intermediatereinforcementcontents (20 vol %), the failurestrainwas

reducedto the 5 to 2 percentrange,and the fracturebehaviorunderwenta

transition(fig. 12 (b)). At the higherstrain portionof this range,the
fracturehad a 45° shear lip formedat each side of the width and intersected

to form a "V". At the lower strain portionof this range, a smooth45° chisel
formed at one edge and extendedabout half-waythroughthe width of the speci-

men, but then became flat and granularfor the remainderof the sectionthick-

ness. Fracturesurfacesof compositesin this intermediatereinforcementrange

showeda coarseningof the dimple network(fig. 13(b)).

At reinforcementcontentsof 30 to 40 vol %, the fracturebecame flat and

granularacross the entirewidth, with no evidenceof a chisel point shear lip

(fig. 12 (c)). Compositesexhibitingthis type of fracturemode failed in a



brittlemanner,with a failurestrain of 2 percentor less. This type of
fractureshowed cleavagefractureswith some coarsedimple networksstill vis-

ible. As the reinforcementcontentincreased,the ductilitydecreasedand

more of the fracturesurfacearea failed by cleavage(fig. 13(c)).

Resultsreportedin the literaturefor SiC/AI compositestended to show
lower failurestrainsthan were observedin this currentstudy. Failure

strainsof <l to 2.5 percentfor severalAl matrix compositescontaining
variousSiC reinforcements,were reportedin references4, 5 and 7. However,

reference8 reportedfailurestrainsof about 4.5 percent in 20 vol % SiCw/6061

Al composites. This increasein ductilitywas attributedto improvedhomoge-

neity of the SiCW reinforcementby rollingafter extrusion.

The increasein failurestrainobservedwith the SiC/AI compositestested

in this currentinvestigationcan probablybe attributedto two main factors.

First, the fabricatorsof the compositesare constantlystrivingfor cleaner,

more uniformAl alloy powders,and for more uniformcontrolof fabrication

variables. Cleaner,purer alloy powderscan reducethe amount of impurities

that can potentiallyform brittleintermetallics,and more uniformpowdersand
reinforcementsallow better controlof powder size distribution,interparticle

spacingand homogeneityof the structure. In addition,the evolutionary

developmentof the compositesalso includesbetLerbeneficiationprocessingto

separateout debris and unwantedparticlesfrom the reinforcement, lhus, when

comparingdata reportedfor SiC/AI composites,the date that the composites
were fabricatedbecomes important,since this helps to define the fabrication

state of the art of the composites,which in turn helps determinethe state of

evolutionof strengthand ductilitybehavior.

The second factoraffectingthe improvementof the ductilityof the SiC/AI

compositesstudiedin this investigationis that the compositeswere made from

larger billetsand were probablymore heavilyworked than most of the com--

positespreviouslyreported. The higherdegree of reductionby mechanical
working helps increasecompositeductilityin three ways: it reducesmatrix

porosityto a greaterdegree; it breaks up inclusionsand more effectively

stringersthem; and it makes the dispersionof reinforcingparticlesfiner and
more uniform. All of these factorswould have a beneficialeffect on composite

ductility, lhe SEM study showed that the particlesize of the SiCp and SiCn
reinforcementswas rathercoarse in comparisonwith the SiCw reinforcement.

Furtherwork should be devotedto study the effectsof finer particle sizes of

the SiCD and SiCn reinforcementsto see if a finer dispersionof these rein-
forcemehtscould increasethe strengthand ductilityof these composites.

ElevatedTemperatureProperties

DiscontinuousSiC/AI compositescontinuedto show an advantageover con-
ventionalaluminumalloys at elevatedtemperatures. Resultsof tensile tests

conductedon 20 vol % SiCw/6061Al compositesare plottedin figure 14 for
temperaturesup to 316° C (600° F). These tests were conductedby allowing

the specimento stabilizeat temperaturefor about lO minutesprior to test.

Specimenstested at temperaturesof 149° to 204° C (300° to 400° F) exhib-

iting the same type of V-shaped,double shear lip transitionfractureobserved
in tests at room temperature. Specimenstestedat 260° C (500° F) showeda



slight increasein plasticstrain. While still transitional,the fracture
showed more of a tendencyfor the formationof a more ductile,single shear lip

and was basicallythe same as that observedat lower temperatures. Failure

strain appearedto increaseslightlyat 316° C (600° F), howeverthe fracture

behaviorchangedmarkedly. The fractureshoweda great deal of necking in
both the width and thicknessdirectionof the specimen,and all four surfaces

of the fracturearea necked in a ductilemanner. This change in fracture

behaviorcoincidedwith the marked drop in ultimatetensilestrengthobserved

at 316° C (600° F).

Reference9 reportedthat 20 vol % SiCw/2024Al compositesshoweda
similarstrengthadvantageover unreinforced2024 Al at elevatedtemperatures.
In that work, round tensiletest specimenswere used, thus allowing reduction
in area measurementsto be made at the necked fracturearea. It was found

that, at temperaturesof less than 240° C (460° F), the compositesfailed with

relativelylittle plasticflow and no necking. At 240° C (460° F), the com-

positesshowed an abrupt change in behaviorand exhibitedsignificantnecking

and failed at plasticstrainsof about lO percent. Furthertests at tempera-

tures up to about 400° C (752° F) showedsimilarbehavior.

The resultsobtainedin this investigation,as well as those results
reportedin reference9, show that SiC/AI compositesoffer about a Ill° C

(200° F) increasein use temperatureover conventionalaluminumalloys. The

resultsalso indicatethat SiC/AI compositescan be used effectivelyat tem-

peraturesup to at least 204° C (400° F)

Applicationof SiC/AI Compositesto AircraftLngineand AerospaceStructures

The resultsof this study showedthat these low cost SiC/AI matrix com-

posites,currentlyprojectedto sell for about $20/Ib,demonstrateda good

potentialfor applicationto aerospacestructuresand aircraftengine compo-

nents, lhe compositesare formablewith normal aluminummetalworkingtech-

niques and equipmentat warm workingtemperatures. They can also be made

directlyinto structuralshapesduring fabrication. These compositesmerit

additionalwork to determinefatigue,long-termstability,and thermalcycle

behaviorto more fully characterizetheir propertiesand allow their con-

siderationfor structuraldesign for a varietyof aircraftand spacecraft

applications.

The most significantaspect of these data was the increasein modulus over

that of competitivealuminumalloys. At 20 vol % reinforcement,the modulus of
SiC/AI compositeswas about 50 percentabove that of aluminumand approached
that of titanium. This increasein moduluswas achievedwith a material hav-

ing a densityone-thirdless than that of titanium. Comparisonof the proper-

ties of the variouscompositestested in this study (fig. 15) shows that the

modulus/densityratio of 20 vol % SiC/AI compositeswas about 50 percent
greaterthan that of Al or Ti alloys,while at 30 vol % SiC the advantagewas

increasedto about 70 percent,and at 40 vol % SiC the moduluswas almost

double that of unreinforcedAl or Ti structuralalloys.

The Boeing Co. has reported(ref. lO) that it expectsto save about

lO percentof the structuralweight of advancedtransports,currentlyunder

design,throughthe use of new AI-Li alloys, lhe resultsobtainedin this



currentstudy showed that discontinuousSiC/Al compositesofferedsignificantly
better modulus,modulus/density,and ductilitypropertiesthan do the AI-Li

alloys reportedin referencesII and 12. The SiC/AI compositeshad about the
same yield and ultimatetensile strengthsand so the use of these SiC/AI com-

positescould save appreciablymore weight in airframeand engine structures,

and offer the potentialto reduceaircraftweight by possiblyas much as twice
that projectedwhen using the AI-Li alloys.

CONCLUSIONS

Studieswere undertakento evaluatethe tensilebehaviorof low-costdis-

continuousSiC/Al composites,containingSiC-whisker,-nodule,or-particulate

reinforcement. The effectsof reinforcementtype, matrix alloy, reinforcement

content,and orientationwere determinedby analysisof stress-straincurves

and by SEM examination. This investigationled to the followingconclusions:

(1) Discontinuous SiC/AI compositesoffer a 50 to lO0 percent increase

over the modulusof unreinforcedaluminumand offer a modulus equivalentto

that of titanium,but at a third less density. The SiC/AI compositeshad
modulus/densityratiosof up to almost twice those of titaniumand aluminum

structuralalloys. The modulusof SiC/AI compositestended to be isotropic
and was controlledby the amount of SiC reinforcement.

(2) The yield and tensilestrengthsof SiC/Al compositesdemonstratedup
to a 60 percent increaseover those of the unreinforcedmatrix alloys. Yield

and ultimatetensilestrengthsof the compositeswere controlledby the type

and temper of the matrix alloy, and by reinforcementcontent. In general,

these propertieswere independentof the type of reinforcement. This suggests

that, with the presentstate of the art of materialsand fabrication,SiCp
or SiCn reinforcementsappear equallyeffectiveas SiC-whiskers.

(3) Ductilityof SiC/AI composites,as measured by strain to failure,

was dependentupon reinforcementcontentand matrix alloy. Compositeswith
ductilematrix alloys and lower reinforcementcontentsexhibiteda ductile

shear fracturewith a 5 to 12 percentfailurestrain. As reinforcementcontent

increased,the fractureprogressedthrougha transitionand became brittle,
reachinga <l to 2 percentfailurestrain,at higher reinforcementcontents.

The increasein ductilityover that reportedpreviouslywas attributedto

cleanermatrix alloy powdersand increasedmechanicalworking.

(4) A fine dimple networkwas observed in the fracturesurfacesof com-

positeswith higher strains. At lower fracturestrains,a coarserdimple net-

work was observed. Compositesfailingin a brittlemanner showed increasing
amountsof cleavagefracture.

(5) The SiC-whiskerreinforcementwas generallyorientedin the extrusion

direction. Compositeswith a higher degree of preferredorientationtended to
have higher ultimatetensilestrengthin the directionof whiskerorientation.

Compositeswith a more randomwhisker orientationtended to be isotropicin
strength.

lO
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(a) Equiaxed whisker. (b) Ribbon whisker. (e) Nodule. (dl Agglomerate.

Figure 1. - Structure of etched SiCw/6061 AI composites.



Figure 2. - Structure of etchedSiCn/6061AI composites.

Figure3.- Structureof etchedSiCp/0061AI composites.
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(a)Generalstructureof etchedtop surface.

(b) Transverseorientation fracture edge.

Figure 10. - SEMphotographsof 20vol %SiCw/7075AI composites(T6temper).
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Figure 12. - Fracture modes of SiC/AI composites. Range of failure strains; (a) brittle flat, 0 to 2%; (b) transitional, 2to 5%; (cl ducti Ie chisel, >5%.



(a) 10vol %SiCw/6061AI, Ef = 12.0%.

(b) 20vol%SiCw/6061AI, Ef : 5.3"/o.

Figure 13. - Fracturesurfacesof SiCw/6061AI composites(testedin long-
itudinal orientation).



(c)30vol %SiCw/6061AI, Cf = 2.6%.

Figure13. - Concluded.
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