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Abstract 

  This review presents an analysis of the hierarchical structures formed in rubber-filler 

systems by using combined scattering methods. The combined scattering methods 

utilize various scattering methods and are powerful tools for the quantitative 

characterization of hierarchical structures over a wide range of length scales, ranging 

from nanometers to micrometers. Scattering theories for the analysis of the 

experimental scattering functions and their applications are described.  

 

Keywords: combined scattering methods/ hierarchical structure/ rubber-filler systems  
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INTRODUCTION 

  Rubber-filler systems have been widely used in industrial applications, such as for 

tires and belts so on
1-6

.  The use of fillers in rubber compounds reinforces the rubber 

material and improves the barrier properties. There are several important factors for 

controlling the efficiency of rubber reinforcement by fillers. The dispersion of filler 

particles in the rubber matrix is one of the most important factors in this process. 

Typically, following the use of conventional compounding processes, the fillers are  

not dispersed homogeneously and form hierarchical structures within the rubber 

matrices. For example, in rubber-carbon black (CB) systems, the CB primary particles 

are not distributed independently but coalesce into aggregates, which are indestructible 

units of CB, during conventional compounding processes
2
. The aggregates of CB, 

which are called aggregates or agglomerates, can also lead to the formation of 

hierarchical structures which consist of higher levels of ordered structure
2
. It is believed 

that the hierarchical structures affect the efficiency of filler reinforcement. Other 

rubber-filler systems also form hierarchical structures; furthermore, the characteristic 

lengths and morphologies of each level of ordered structure, such as agglomerates, vary 

with the specific combination of rubber and filler used in the system in addition to the 

compounding processes. To analyze the hierarchical structure, scattering techniques are 

one of useful techniques. In scattering experiments, we investigated the angular 

dependence of the scattered intensities induced by the incident beam hitting samples. 

Although the interpretation of the scattering intensities is complicated, nonetheless, 

scattering techniques are suitable for obtaining the statistical features of rubber-filler 
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systems. However, the length scales of the hierarchical structures can extend from 

nanometers to micrometers, which prevents the characterization of hierarchical 

structures with a single scattering method.  In particular, we cannot evaluate the 

quantitative features, such as the size and morphology of each level, from the scattering 

intensity obtained by a single scattering method because we cannot eliminate the 

possible effects of higher and lower levels of the hierarchical structure on the scattering 

intensity when limited to a region of small q values.  

  In this review, I focus on the structural analysis of rubber-filler systems by using 

combined scattering methods. The combined scattering approaches utilize various 

individual scattering methods, including wide-angle scattering, small-angle scattering, 

and ultra-small-angle scattering with X-ray and neutron beams. In combination, the 

methods are powerful tools for the quantitative characterization of rubber-filler 

hierarchical structures over a wide range of length scales (from the nanometer to the 

micrometer scale). Thus, we can employ these combined methods to extract useful 

information regarding the hierarchical structures of rubber-filler systems. Moreover, 

combined scattering methods enable us to investigate hierarchical structures under 

various sample environments, such as extension or shear deformation. We can expect to 

identify correlations between the mechanical properties and the respective structures 

during deformation processes by using combined scattering methods. 

  In the next section, we summarize the features of the various scattering techniques 

used in combined scattering methods and present the details of ultra-small-angle 
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scattering instruments using X-ray and neutron beams. Then, the model expressions to 

analyze the experimentally obtained scattering functions are described. In the 

subsequent section, the experimental results of the rubber-filler system scattering data 

are presented. Finally, we conclude the review.  

 

VARIOUS SCATTERING METHODS  

  Figure 1 shows the wavenumbers (q-regions) or length scales that can be observed 

with various scattering techniques and the associated hierarchical structures of the 

rubber-filler systems. Here, q is defined by  

 

         (1) 

 

with  and  defined as, respectively, the wavelength of the incident beam and the 

scattering angle in the medium. The length scale  is expressed by . The 

various scattering methods are summarized in subsequent sections. Before describing 

the method, we must mention the q-region of each scattering method. The q regions 

covered by each scattering method are described in the subsequent parts of this section. 

It should be noted that the region varies with the specific experimental conditions, such 

as the path length, the wavelength of the incident beam, and the detector resolution.  

 

X-ray scattering 

q = 4p
l

sinq

L =2p q
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  Scattering methods with X-ray incident beams include wide-angle X-ray scattering or 

diffraction (WAXS or XRD), small-angle X-ray scattering (SAXS), and 

ultra-small-angle X-ray scattering (USAXS). The scattering of X-rays is induced by 

fluctuations in the electron density, and the scattering power increases with atomic 

number
7
. 

  WAXS or XRD techniques span the range of 7 < q < 30 nm
-1

 and are widely used in 

the analysis of crystalline structures. For rubber-filler systems, we can observe the 

amorphous peaks of the rubber and the filler as well as the crystalline structure of the 

rubber induced by strain
8-10

.  

  The q region observed with SAXS is at 0.05 < q < 7 nm
-1

. Larger q-regions, such as 7 

< q < 4 nm
-1

, in SAXS are dominated by thermal diffusion scattering (TDS), which 

originates in the density fluctuations within rubbers and is related to the free volume of 

the amorphous region. In smaller q regions in SAXS, we can observe the structures of 

the filler aggregates, such as the interfacial structure between the rubber and the fillers, 

the size and distributions of the primary filler particles, and the size of the aggregates as 

well as their internal structures.  It should be noted that scattering from the interfacial 

region can not avoid the effects of TDS; hence we must evaluate the TDS with the 

method given by Ruland
11

 and Vonk
12

.  This method requires that we subtract the TDS 

from the scattering intensity before evaluating any interfacial structures, such as the 

interfacial thickness
13,14

. The specifics of the SAXS and USAXS analytical techniques 

are described later with respect to their application to aggregates.  

  We can observe smaller q regions, such as the range of 0.001 <q < 0.05 nm
-1

, by 
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using USAXS because this range is not accessible with SAXS. Thus, USAXS is useful 

for investigating agglomerates and the dispersion of filler aggregates in rubber.  

 

Neutron scattering 

  For structural analyses of rubber-filler systems, small-angle neutron scattering 

(SANS) and ultra-small-angle neutron scattering (USANS) are widely used neutron 

scattering methods. Rubber–filler systems contain significant quantities of H atoms, 

which make it difficult to analyze the scattering at q > 1.0 nm
-1

 because incoherent 

scattering becomes dominant in this q region. Unlike X-ray scattering, neutron 

scattering power is independent of atomic number because neutrons interact only with 

atomic nuclei
15

. As for typical rubber-filler systems, such as natural rubber/ carbon 

black and poly(styrene-ran-butadiene)/ silica, there exists a significant degree of 

contrast between the phases to allow for the collection of scattering function 

measurements. Thus, it is not necessary to synthesize deuterated polymers for neutron 

scattering to be able to analyze the structures of the aggregates of fillers.   

  SANS covers 0.01 < q < 1 nm
-1

, which is similar to the q region covered by SAXS. 

SANS reflects the structure of the filler aggregations in addition to SAXS. We can 

observe the scattering intensity at 2 10
-4

 < q < 0.01 nm
-1

 with USANS. The q region 

accessed by USANS reflects the agglomerate morphologies and the filler aggregate 

dispersions within the rubber.   

  Although many good reviews and books on the SAXS and SANS techniques have 

been published
7
, there are few reviews of USAXS and USANS. Thus, we provide a 
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brief review of USAXS and USANS in the next section. 

 

ULTRA-SMALL-ANGLE SCATTERING 

Ultra-Small-Angle X-ray Scattering 

  According to the definition of q (eq. (1)), we must measure the angular dependence 

of the scattered intensity with high angular resolution in the small angle region due to 

the inherently short wavelengths of X-rays, such as =0.154 nm for Cu-K.  To attain 

such a small q region (on the order of 10
-3

 nm
-1

), two techniques are available: the 

Bonse-Hart camera and the long path camera, which is used with synchrotron radiation 

X-rays. 

The Bonse-Hart camera for X-ray scattering 

  The camera was originally invented by Bonse-Hart
16

. Figure 2 presents a schematic 

picture of the USAXS instrumentation
17

. The USAXS optics consist of the 

monochromator and the analyzer, both of which are fabricated from either silicon or 

germanium. The sample is placed between the monochromator and the analyzer. The 

monochromator collimates the incident X-ray source. The q-dependence of the scattered 

intensity is measured by rocking the analyzer, which allows the desired high q 

resolution to be attained. We can achieve the minimum q (qmin  1.010
-3

 nm
-1

) when 

using the Bonse-Hart camera in X-ray scattering experiments. The advantage of the 

Bonse-Hart camera is that conventional X-ray sources can be utilized (such as rotating 

anode X-ray generator) as the incident beam. However, the measured intensity is 

significantly affected by the smearing effects, which are caused by the incident beam 

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



 -9- 

profile. Thus, the use of a desmearing procedure is necessary to obtain the true 

scattering profile. Ultimately, based on this approach, the sample should be isotropic. 

Moreover, the scattered intensity is detected stepwise, which indicates that we can not 

follow rapid changes in structure with the Bonse-Hart camera. Recently, Bonse-Hart 

cameras have also been installed at synchrotron facilities
18,19

. In particular, Ilavsky et al. 

succeeded in measuring two-dimensional USAXS images by using two sets of 

monochromators and analyzers, which were positioned both vertically and 

horizontally
20

.  

Long path camera with synchrotron radiation X-ray 

  To attain increased angular resolution, we also can use a long sample-to-detector 

distance. The advantage of using the long sample-to-detector is that its use affords us 

the ability to measure 2D USAXS patterns, which can not be obtained with the 

Bonse-Hart camera. Figure 3 shows a schematic drawing of the USAXS setup at 

BL20XU, SPring-8, Japan
21,22

. The path length at BL20XU is set to be 160 m; with this 

length, the q-range 1.510
-3

 < q < 2.510
-2

 nm
-1

 can be obtained with an X-ray energy 

of 23 keV. For rubber-filler systems, we can collect the scattered images in 2 sec 

intervals by using a CCD detector coupled with an X-ray image intensifier, which 

allows in situ measurements to be carried out under deformation.  USAXS 

measurements also can be obtained at BL19B2, SPring-8, Japan
23

. The path length at 

BL19B2 is approximately 40 m, and the corresponding q-range is 3.010
-3

 < q < 

1.010
-1

 nm
-1

 with an X-ray energy of 18 keV. BL19B2 is a bending magnet beamline, 

which means that the scattered intensity of this beamline is weaker than that measured 
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at the BL20XU undulation beamline. However, the high q region at BL19B2 

significantly overlaps with the typical SAXS region such that we can easily combine the 

USAXS patterns with SAXS patterns. 

 

Ultra-Small-Angle Neutron Scattering 

Bonse-Hart camera for neutron scattering 

 Bonse-Hart cameras for neutron scattering experiments are also available at neutron 

facilities
24-27

. Silicon single crystals are used as the monochromators and the analyzers 

in this technique as well as in the USAXS instruments. Bonse-Hart cameras used in 

neutron scattering experiments can cover 2 10
-4

 < q < 410
-3

 nm
-1

 with an incident 

neutron wavelength of 0.2 nm. The value of qmin  2 10
-4

 nm
-1

 for the Bonse-Hart 

camera in USANS is smaller than that of the Bonse-Hart camera in USAXS (qmin  

1.010
-3

 nm
-1

). This difference originates in the respective differences in the half-width 

at half-maximum values of the Bragg reflections () in neutron scattering and X-ray 

scattering; that is,  limits the qmin. According to the dynamical theory of diffraction, 

 is described by
26

 

 

        (2) 

 

where bc, e
-w

, F, , B, and Vc are, respectively, the coherent scattering length, the 

Debye-Waller factor, the structure factor of the crystal, the wavelength of the incident 

Dq =
bce

- w F l 2

pVc sin 2qB( )
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beam, the Bragg angle, and the volume of unit crystal. For Si, bc of neutron is 

significantly smaller than that of the X-ray; therefore, we can attain a smaller q by using 

neutron. 

Focusing SANS 

  The use of focusing collimators (biconcave MgF2 lenses) enables us to measure a 

lower q region than that accessible by pinhole SANS
28

. Figure 4 shows a schematic 

picture of focusing SANS at SANS-J-II, JRR-3, Japan
29,30

. A high-resolution area 

detector with 0.5 mm positional resolution was installed in addition to a MgF2 lens 

resulting in a value of qmin  3 10
-3

 nm
-1

 is attained; in contrast, the qmin of pinhole 

SANS is 3 10
-3

 nm
-1

. Although the qmin of focusing SANS is larger than that of 

USANS, we can obtain 2D scattering patterns and measure anisotropic structures, such 

as the scattering pattern of rubber-filler systems under extension. Focusing SANS is 

also available at SANS-U, JRR-3, Japan
31

 and several neutron facilities
32-34

.  

  Notably, the smearing effects also affect the scattering function obtained by use of the 

long path camera with synchrotron radiation X-ray and focusing SANS even though the 

effects are weaker than those for the Bonse-Hart camera. 

 

SCATTERING THEORY FOR RUBBER-FILLER SYSTEMS 

The unified Guinier/power-law 

  As described previously, rubber-filler systems form hierarchical structures. By 

combining the various scattering methods described in the previous section, we can 

obtain the scattering profiles over five decades in q scale. To describe the scattering 
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profiles of the rubber-filler systems over five decades, Beuacage proposed a unified 

Guinier/power-law method
35,36

. According to this method, the hierarchical structure 

with an arbitrary number n of hierarchical levels can be described by 

 

   (3) 

 

where Gi, Bi, and Pi are, respectively, the Guinier prefactor of the i-th level structure 

with a radius of gyration Rg,i, a prefactor of the power-law scattering of the i-th level 

structure, and the exponent of the power-law scattering, which characterizes the shape 

of the i-th level structure. i = 1 refers to the largest-size structural level. If the structure 

has a sharp interface, the scattering is proportional to q
-4

 or Pi = 4 and Bi = 2a
2
S, 

where S is the surface area of the i-th level structure and a is the electron density or the 

scattering length density of the i-th level structure
37-40

. If the interface has finite 

interfacial thickness, q
-4

 is modified to be q
-4

exp(-tI
2
q

2
/2), where tI is the interfacial 

thickness. For a surface fractal, 

 

      (4) 

 

and Pi = 6-ds, where ds is the surface fractal dimension
41

. For a mass fractal structure, Pi 

= df, where df is the mass fractal dimension and 1< df < 3. Bi is expressed by 

I q( ) = Gi exp
- q2Rg,i

2

3

æ

èç
ö

ø÷
+ Bi exp

- q2Rg,i+1

2

3

æ

èç
ö

ø÷
erf qRg,i 6( )( )3

q

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Piì

í
ï

î
ï

ü

ý
ï

þ
ïi=1

n

å

Bi = 4p 2Da2Rg,i

6- Pi( )G Pi - 1( )sin p Pi - 3( ) 2( )( ) Pi - 3( )
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        (5) 

 

if the i-th level structure or aggregation is monodisperse
42,43

. In eq. (5), dmin is called the 

minimum dimension and dmin = df if the aggregation is linear. For a Gaussian chain, Bi is 

given by 

 

         (6) 

 

while  

 

         (7) 

 

for a disk. The parameter c is defined by 

 

         (8) 

 

which characterizes the degree of branching and is estimated from Bi, df, and , 

which are determined by fitting the experimental scattering profiles
43

. 

  When the aggregation is polydisperse, Bi is given by 

Bi = Gidmin

Rg,i

d f
G

d f

2

æ
èç

ö
ø÷

Bi = 2Gi

Rg,i

2

Bi = Gi

Rg,i

2

c = dmin

d f

Rg,i
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 (9) 

 

and A characterizes the polydispersity of the aggregation. For the branched  

polydisperse aggregates, it is not possible to isolate the effects of dispersion from 

branching
43

. 

Percus-Yevick approximation with an upper limit 

  In some rubber-filler systems, such as aggregates of silica particles, the primary 

particles interact with each other, and a liquid-like correlation is formed in the 

aggregations. In such cases, we can employ the Percus-Yevick approximation to 

calculate the correlations and the scattering functions of the primary particles. Moreover, 

we must impose the upper limit, which is characterized by the aggregate size, on the 

scattering function. 

  For monodisperse systems with spherically symmetric particle shapes and 

interactions, the scattered intensity can be written as
7,37

 

 

  ,      (10) 

 

where nP is the number density of particles, VP is the volume of the primary particle, 

P(q) is the form factor of the primary particle with radius R, and S(q) is the structure 

Bi = GiA

Rg,i

d f
G

d f

2

æ
èç

ö
ø÷

I q( ) = nPDa2VP

2P q( )S q( )
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factor. For dilute systems, S(q) =1. The form factors for typical structures have been 

calculated and are listed in the review written by Pederesen
44

. For example, the form 

factor P(q,R) for a sphere with radius R is given by 

 

  .     (11) 

 

  We can obtain the analytical form of  using the Percus-Yevick 

approximation for the hard-sphere model with an interaction radius RHS:
45,46

  

 

       (12) 

 

Here, 

   

  (13) 

and 

        (14) 

       (15) 

  .       (16) 

P q( ) =
9 sin qR( ) - qRcos qR( )éë ùû

2

qR( )6

S q, RHS( )

S q, RHS( ) = 1

1+ 24f G RHSq( ) RHSq( )

G A( ) =a sin A - Acos A( ) A2 + b 2Asin A + 2 - A2( )cos A - 2( ) A3

+g - A4 cos A + 4 3A2 - 6( )cos A + A3 - 6A( )sin A +6{ }é
ë

ù
û A5

a = 1- 2f( )2
1- f( )4

b = - 6f 1+f 2( )2
1- f( )2

g =a f 2
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For the polydisperse case, we cannot write the scattered intensity as a product of the 

form factor and the structure factor; hence, it is necessary to calculate the following 

equation: 

  

    

        . (17) 

 

In eq. (17), N(r) is the number density of a particle with radius r, V(r) is the volume of a 

particle with radius r, F(q, r) is the amplitude of the form factor with r, and   

is the partial structure factor. Vrij
47

, Blum and Stell
48

, Salacuse and Stell
49

, and Griffith 

et al.
50

 presented the analytical scattering functions for polydisperse systems. However, 

this scattering function is not suitable for analyzing the experimental data. Thus, the 

approximated equations are usually used to analyze the experimental data. For 

low-volume fractions, the decoupling approximation
51

 given by Chen et al. is 

applicable:  

 

     (18) 

 

where  denotes the first moment with respect to the size distribution and  

is given by eqs. (12) to (16). For dense systems, the local monodisperse approximation 

I q( ) = Da2 N r( )
0

¥

òéëê V r( )2
F q,r( )2

dr

+ N r( )V r( )N ¢r( )V ¢r( )F q,r( )F q,r( )S q,r, ¢r( )dr d ¢r
0

¥

ò0

¥

ò ù
ûú

S q,r, ¢r( )

I q( ) = nPDa2 V r( )2
F q,r( )2 + V r( )F q,r( ) 2

S q, r3 1/3( )é
ëê

ù
ûú

S q, r( )
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proposed by Pedersen
52

 is effective:  

 

      (19) 

 

where  for particles interacting with their actual radius.
 
 

  The scattering functions described above do not include the upper limit of the 

aggregation. Here, we shall introduce the upper limit using paracrystal theory
53

. For 

simplicity, we consider the monodisperse systems with spherical symmetry of the 

particle shapes and the interactions. The structure factor S(q) is expressed with the 

radial distribution function  by 

 

       (20) 

 

Substituting  

 

         (21) 

 

into eq. (20) to separate the scattering of the homogeneous portion, we can then 

obtain
37,54,55

 

 

I q( ) = nPDa2 N r( )V r( )2
F q,r( )2

0

¥

ò S q, RHS r( )( )dr

RHS r( ) = r

g r( )

S q( ) =1+ nP g r( ) sinqR

qr0

¥

ò 4pr2dr,

g r( ) =1+ g r( ) - 1éë ùû
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(22)

 

 

where (q) is the delta function. We usually omit either the homogeneous part or (q) 

and define S(q) as 

 

       (23) 

 

because (q)=0 at q0. However, we must leave the term so that we can include the 

upper limit. Thus, we define S(q) including (q) as ST(q): 

 

  .  (24) 

 

According to paracrystal theory
53

, the scattering function affected by the shape of the 

aggregation is given by 

 

        (25) 

 

where G(q) is the structure factor of the aggregation and * denotes the convolution 

product. Substituting eq. (24) into eq. (25), we obtain 

S q( ) =1+ nP

sinqR

qr0

¥

ò 4pr2dr + nP g r( ) - 1éë ùû
sinqR

qr0

¥

ò 4pr2dr

=1+ nPd q( ) + nP g r( ) - 1éë ùû
sinqR

qr0

¥

ò 4pr2dr,

S q( ) =1+ nP g r( ) - 1éë ùû
sinqR

qr0

¥

ò 4pr2dr,

ST q( ) =1+ nPd q( ) + nP g r( ) - 1éë ùû
sinqR

qr0

¥

ò 4pr2dr = nPd q( ) + S q( )

I q( ) = nPDa2VP

2P q( )ST q( )* G q( )
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        .   (26) 

 

In this equation, G(q) is dominant at smaller q-regions, while  

 

        (27) 

 

at higher q regions because G(q) is approximated by (q) at higher q regions. With G(q), 

we can use the Debye-Bueche equation
56

. If the correlation function of G(q) and S(q) 

are known,  is obtained by taking the Fourier transform of the products of 

the correlation functions.  

   By using the Percus-Yevick approximation with the upper limit, we can calculate 

the scattering function of the aggregations. We can incorporate the scattering function 

into the unified Guinier/power-law as a scattering function for one level of the 

hierarchical structure.  

 

The reverse Monte Carlo method 

  The reverse Monte Carlo method has been effectively used to construct a possible 

structure in real space from its corresponding scattering function. For rubber-filler 

I q( ) = nPDa2VP

2P q( ) nPd q( ) +1+ nP g r( ) - 1éë ùû
sinqR

qr0

¥

ò 4pr2dr
é

ë
ê

ù

û
ú * G q( )

= nPDa2VP

2P q( ) nPd q( )+ S q( )éë ùû * G q( )

= nPDa2VP

2P q( ) nPG q( )+ S q( )* G q( )éë ùû

I q( ) » nPDa2VP

2P q( )S q( )

S q( )* G q( )
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systems, the aggregation of primary silica particles has been investigated with the 

reverse Monte Carlo method, and real space images were obtained for the aggregations 

of silica particles
57-61

.  

  Hagita et al. developed a two-dimensional pattern reverse Monte Carlo method for 

the analysis of two-dimensional scattering patterns
62,63

. They applied the method to the 

investigation of structural changes in silica particle filler under uniaxial elongation. 

From this, they calculated three-dimensional conformations of the spherical silica 

particles using a series of two-dimensional patterns of structure factors obtained by 

Shinohara et al. during elongation. They successfully obtained the deformation of the 

network structure formed by the silica fillers
21,64

. 

  However, all procedures do not consider all levels of the hierarchical structure. Thus, 

we must eliminate the effects of the higher or lower level structures from the scattering 

function to quantitatively analyze the experimental data with reverse Monte Carlo 

methods.    
 

 

Contrast variation SANS for the analysis of adsorption layers around fillers 

  The contrast variation SANS method has been developed by Endo
65-68

. We applied 

contrast variation SANS to the investigation of the adsorbed rubber layer around the 

silica particles and the carbon black
69,70

. To enhance the adsorption layer, we swell the 

rubber-filler systems with solvent. The swollen ratio of the absorbed layers is smaller 

than that of the matrix phase, and the scattering contrast between the adsorption layers 
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and the matrix phase is caused by the difference in the swollen ratio.  The swollen 

rubber-filler system can be treated as a three-component system, and their scattering 

profiles can be described as follows under an incompressible condition:  

 

   

        
.      (28) 

 

Here, ai is the scattering length density of the i-th component (i = R : rubber, F : filler, 

and S : solvent). Sij(q) is the partial scattering function defined by 

 

  ,   (29) 

 

where V is the scattering volume irradiated by the incident beam and  is the 

fluctuation of the volume fraction of i at position .  We can obtain the vector of the 

scattering intensities =[I1(q), I2(q), ... In(q)] from the same samples with n different 

scattering length densities of S. The partial structure factors can be obtained by  
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where the transposed matrix  satisfies  by singular value 
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 is the vector of the partial scattering functions. For three-component systems,  

is expressed by 

 

  ,    (31) 

 

where  

         (32) 

and 

  .       (33) 

 

 is given by 

 

  .       (34) 

 

 is the scattered intensity of the aggregate filler structure, while   and 

 are affected by the adsorption layer. To analyze the adsorption layer, a 

three-phase model consisting of the filler aggregation, the adsorption layer and the 

matrix phase is proposed. The application of this method is shown later. 
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APPLICATIONS 

Analysis of the hierarchical structures of fillers 

  Koga et al. measured the scattering function of carbon black (CB, SHOBLOCK N339, 

Showa Cabot, Chiba, Japan) / poly(styrene-random-butadiene) copolymer (SBR, 

weight-averaged molecular weight Mw=5.010
5
, weight fraction of styrene content 

wPS=0.235) systems using the combined scattering method, including USANS, USAXS 

and SAXS, as shown in Figure 5, in which the volume fraction of CB is 0.20
71,72

. They 

found that the scattering function of CB/SBR can be well-described by the following 

the unified Guinier/power-law equation: 

 

  
 

       

      .        (35) 

 

The fitting results and transmission electron microscope observations of the primary 

particles indicate that the hierarchical structure consists of the following structural 

levels, in increasing order of the length scale: the primary CB particles where the radius 

of the primary particles is 13 nm and the surface fractal structure is DS=2.6; the 

aggregates comprising approximately 9 fused primary CB particles and RSS = 27 nm; 

I q( ) = Aexp - q2Rgg
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the agglomerate or the mass-fractal objects formed by the aggregates with Dm = 2.3 and 

Rgg = 2.0 m; and the bulk rubber composed of a dispersion of the mass-fractal objects 

in the cross-linked bulk rubbers. Moreover, they found either another hierarchical 

structure or dispersible units between the aggregates and the agglomerates and that the 

morphologies of the dispersible units are an ellipsoid of revolution by investigating the 

detail of the scattering profiles around the Guinier region. The hierarchical structure of 

the SBR/CB system is summarized in Figure 6.   

  There are reports on applications of the unified Guinier/power-law method to silica 

rubber systems, precipitated silica powders, and nano-composites
73-78

. Silica-rubber 

systems also form hierarchical structures consisting of agglomerates, aggregates and 

particles, and the size of each structure can be estimated from the scattering function. 

Moreover, we can estimate the size distribution of silica particles
75

.  Schaefer et al. 

investigated the hierarchical structures of the precipitated silica prepared by the 

acidification of water glass using light scattering, USAXS, SAXS, and WAXS, which 

cover the range from 3 10
-6

 to 50 nm
-1

, as shown in Figure 7
77

. By fitting four levels of 

the unified Guinier/power-law equation to the scattering function at 3 10
-6

 < q < 4 nm
-1

, 

they found that the hierarchical structure consists of agglomerate level 2 (Rg = 115 m, 

Dm=1.9, mass fractal), agglomerate level 1 (Rg = 0.9 m, Ds=2.8, rough surface), 

aggregates (Rg = 66 nm, Dm=1.8, mass fractal), and particles (Rg = 4.7 nm, Ds=2 or 

Porod law, smooth surface)
75

.  

In situ measurement of the time-resolved 2D-USAXS of the rubber-filler systems 
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under deformation 

  Shinohara et al. investigated the change in the structures of SBR/silica systems with 

elongation using time-resolved 2D-USAXS
21

. As shown in Figure 8, they successfully 

measured 2D-USAXS patterns and stress-strain curves simultaneously. They found that 

the distance between the silica particles increases with strain but that the distance 

between the silica particles connected with polymer chains remained constant.  As 

mentioned above, Hagita et al. reconstructed the three-dimensional conformations of 

spherical silica particles from 2D-USAXS patterns during elongation using the reverse 

Monte Carlo method
62,63

. 

Analyses of the adsorption layers around fillers with contrast variation SANS 

  We measured the scattering intensities of silica/SBR (systems swollen by mixtures of 

deuterated hexane (d-hex) and hexane (h-hex)) with various scattering length densities, 

as shown in Figure 9
69

. By using eqs. (30) to (33), we obtained partial scattering 

functions, as shown in Figure 10: the scattering function for the polymer-polymer 

correlation SPP(q), the scattering function for the silica-silica correlation SSS(q), and the 

scattering function for the polymer-silica correlation SPS(q). The analyses of SSS(q) 

explored the hierarchical structures formed by silica particles. The analyses of SPS(q) 

and SSS(q) clarified the existence of dense polymer layers around the silica aggregates. 

Several characteristic parameters are estimated from the analysis, such as the size of the 

aggregates, the thickness of the layers, the volume fractions of the polymer layers and 

the matrix, and the correlation length of the matrix network. We compared the volume 

fraction  of polymer in the matrix estimated from the SANS experiment with that f m
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from the degree of swelling and explored the agreement between them. We also estimated 

that the aggregation consists of 91 silica particles. Additionally, we applied this method 

to the SBR/CB systems
70

 and found that the thickness of the dense polymer layers in the 

SBR/CB system is larger than that of the SBR/silica system.  

 

CONCLUSION 

    I have described recent progress in the analysis of the hierarchical structures 

formed in rubber-filler systems using combined scattering methods. Because the 

development of ultra-small-angle scattering has covered 10
-4

 < q < 10
-2

 nm
-1

, we can 

quantitatively characterize hierarchical structures over a wide range of length scales, 

ranging from nanometers to micrometers, by combining SAXS, SANS, and WAXS. It 

should be noted that both USAXS with a long camera path and focusing SANS are 

powerful tools for the analysis of change in the structures under deformation. The 

scattering theories for the analysis of the experimental scattering functions are 

summarized. The unified Guinier/power-law method can describe the scattering profiles 

of the rubber-filler systems with hierarchical structures. In situ 2D-USAXS 

measurements of the rubber-filler system under elongation can explore the deformation 

in the hierarchical structures. Contrast variation SANS can evaluate the interfacial 

properties in the rubber-filler systems.  

  I have not mentioned the analysis of the network structure of rubber by scattering 

methods, but this is an important subject in rubber-filler systems
79-81

. In particular, the 

inhomogeneity of the network at the micron scale should be clarified.  
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  We should explore the relationships among the mechanical properties, the structures 

and the compounding conditions in rubber-filler systems, which are not yet fully 

understood.  
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FIGURE CAPTIONS 

Figure 1 q- and length-scales covered by various scattering methods, and the 

hierarchical structure of rubber-filler systems. 

Figure 2 Side view of the optical set-up of the Bonse-Hart USAXS
17

. 

Figure 3 Schematic view of the experimental set-up of USAXS at BL20XU
21

. 

Figure 4 Schematic diagram for focusing collimation with compound lenses in which 

Ls 1⁄4 9.6 m, L1 1⁄4 8.1–8.7 and L2 1⁄4 11–11.6 m
30

. 

Figure 5 A combination of the USANS, USAXS, and SAXS profiles for CB/ SBR 

(open circles). RSS and Rgg correspond to the sizes of the aggregates and the 

agglomerates, respectively. The solid line is the best-fitted theoretical 

scattering profile expressed by eq. (35)
71

. 

Figure 6 Schematic model of the hierarchical structure of CB/ SBR
71

. 

Figure 7 Scattering profile of precipitated silica. Light scattering (Light), Bonse-Hart 

USAXS (SAXS-BH), SAXS (SAXS-PH), and WAXS (Diffraction) were 

used.  

Figure 8 Stress–strain curve of SBR/silica and the corresponding 2D-USAXS images 

during the deformation process. 

Figure 9 Scattering profiles of SBR/silica swollen by d-hex/h-hex
69

. 
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Figure 10 Partial scattering function of SBR/silica systems and their fitting results 

with model functions (solid lines)
69

. 
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