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ABSTRACT 

Stability analysis of a baseline power system architecture for 
modern aircraft is addressed.  Power electronic converters are 
widely used in modern aircraft power distribution systems.  Due 
to their inherent nonlinear characteristics, instabilities may arise 
while integrating individual subsystems together.  Bifurcation 
analysis is used to identify the type, multiplicity and stability of 
system trajectories.  The complete bifurcation diagram for the 
baseline power system is drawn.  The dependence of the 
parameter values on the bifurcation behavior of the baseline 
system is presented. 

1.  INTRODUCTION 

Considerable attention has been paid in recent years to the 
development of power-by-wire technologies for modern aircraft.  
As a result, modern aircraft power distribution systems have seen 
the widespread use of power electronic converters to drive 
various loads and actuation systems.  Power electronic converters 
are inherently nonlinear systems.  The problem of instability that 
arises due to the integration of these subsystems has been 
addressed in the past.  It is well known that the classical 
impedance ratio criterion [1] relies on linear analysis techniques 
in the determination of stability of the interconnected system but 
it only guarantees local stability in the neighborhood of an 
equilibrium solution.  The application of nonlinear analysis 
techniques to gain a global understanding of the behavior of the 
system thus becomes important.  However, nonlinear analysis 
methods do not immediately appeal to the system designer 
because of their mathematical complexity.  In [2] and [3], 
nonlinear methods were used in the analysis of interaction 
between an input filter and a regulated power converter modeled 
as a constant power load.  The objective of the paper is to extend 
this analysis to a baseline power system architecture by studying 
the bifurcation behavior of the system as a function of a chosen 
critical parameter.  The organization of the paper is as follows: 
Section 2 introduces the sample power distribution system as a 
single source-single load system.  The source subsystem is a 
three-phase boost rectifier that feeds the 270V DC bus of the 
power distribution system.  The load subsystem is a regulated 
DC-DC buck converter with a front-end input filter, which is 
similar to that studied in [1].  The bifurcation analysis of the 
input filter-load converter system is presented in Section 3.  The 
bifurcation behavior of the baseline system is then explained in 
Section 4.  Finally, the dependence of the bifurcation behavior of 

the baseline system on parameter values is presented in Section 
5. 

2.  BASELINE POWER SYSTEM ARCHITECTURE 

The sample power system architecture shown in Figure 1 is used 
as the baseline power system in the analysis of subsystem 
interaction presented in the paper.  The three-phase boost 
rectifier converts the three-phase sinusoidal voltages from the 
generator (modeled as an ideal voltage source) to the regulated 
270V DC required by the bus.  The load subsystem represented 
by Subsystem 2 in Figure 1 is a regulated DC-DC converter with 
a front-end input filter.  The other loads on the DC bus are 
modeled by a current source, negative impedance (other 
regulated power converters) or a simple resistance. 

Rectifier
3-φ -to- DC

Input
Filter

DC-DC
Converter

Ideal 3-Φ 
voltage 
source

Load
(R, -Z, Io)

Subsystem 1

Subsystem 2

270V DC

2 1

 

Figure 1.  Baseline Power System Architecture 

The three-phase boost rectifier is represented by its average 
model in rotating dq-coordinates synchronized with the input line 
voltages [4].  The load converter is also represented by its 
corresponding average model.  These average models neglect the 
switching frequency ripple and hence are valid only at 
frequencies much lower than the switching frequency.  The 
stability analysis of the complete interconnected system starts 
with identifying the critical subsystem interfaces denoted by (1) 
and (2) in Figure 1 and analyzing in turn, the stability of each of 
the interfaces with appropriate terminations. 

3.  BIFURCATION ANALYSIS 

The bifurcation behavior of the input filter-load converter 
interface (denoted by (2) in Figure 1) in subsystem 2 is studied 
[7,8].  The circuit schematic of the average model of a closed 
loop DC-DC buck converter with an input filter is shown in 
Figure 2.  However, the regulated DC-DC converter is 
represented by the average model in contrast to the constant 
power model used in [1].  The resistance Rf, of the input filter is 



 

 

chosen as the control parameter.  The complete bifurcation 
diagram is shown in Figure 3. 

The normal form equations [5] of the system in the neighborhood 
of the Hopf bifurcation point are given by Equation 1. 
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Figure 2.  Closed Loop Buck Converter with Input Filter 
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Figure 3. Bifurcation Diagram of Subsystem 2 

2
21

3
21

aR

aaRa

f

f

ββθ

αα

+∆=

+∆=
 

 

…..  (1) 

The sign of the constant α2 determines whether the bifurcating 
periodic solutions from the Hopf point are stable or unstable (i.e) 
if the Hopf point is supercritical or subcritical respectively.  If 
α2>0, the bifurcation is subcritical and vice versa.  In this case, 
α2=2.93415x10-6 and hence the bifurcation is subcritical as 
expected from the results presented in [1].  The complete 
bifurcation diagram is constructed using the methods presented 
in [5, 6].  The bifurcation diagram in Figure 3 thus provides a 
global picture of the system behavior as a function of the control 
parameter. For example, a stable equilibrium point (say X in 
Figure 3) can be disturbed strongly to drive the system to a 
periodic solution.  On the other hand, an unstable equilibrium 
point (say Y) when perturbed ends up in a stable periodic 
solution.  However, the resulting voltage oscillations may be 
quite unacceptable for the safe operation of the system.  The 
bifurcation analysis is now extended to the baseline system in the 
following section. 

4.  STABILITY ANALYSIS OF THE BASELINE 
POWER SYSTEM 

The circuit schematic of the baseline power system is shown in 
Figure 4. 
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Figure 4.  Circuit Schematic of Baseline Power System. 

The three phase boost rectifier is represented by its dq- average 
model in rotating coordinates synchronized with the input line 
voltages [4].  A multi-loop controller for the three phase boost 
rectifier consists of an outer loop to regulate the output voltage 
and two inner current loops one each for the d- and q- axis input 
currents.  The total power supplied by the boost rectifier is given 
by Pt=voidc (Figure 4). The control block diagram of the three-
phase boost rectifier is shown in Figure 5. 
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Figure 5.  Control Block Diagram of the Three-Phase 
Boost Rectifier. 

The DC-DC converter in subsystem 2 is similar to that presented 
in the previous section.  In order to simplify the analysis, it is 
represented by a constant power load with the same 
modifications as in [1].  The input filter, however, is modified to 
a more practical two-stage configuration with the damping 
resistance in a shunt path to minimize the power loss. 

The first step in the analysis of the baseline system is the 
determination of the control parameter(s) for the bifurcation 
analysis.  The three phase boost rectifier feeds the DC 
distribution bus of the baseline power system with a stiff 
regulated voltage of 270V.  One of the critical performance 
indices of the rectifier is its bandwidth of regulation.  This 
parameter can be related to the transient response and 
disturbance rejection properties of the rectifier.  In addition, the 
bandwidth is intimately related to the stability of the rectifier and 



 

 

hence of the baseline system.  The gain ho of the voltage 
controller Hv(s) (Figure 5) is directly related to the bandwidth of 
the rectifier and hence is chosen as the control parameter for the 
bifurcation analysis of the baseline system. 

The stability analysis proceeds as follows: The stability of the 
equilibrium solutions of the baseline system is determined as a 
function of the control parameter, ho.  The total power Pt, 
supplied by the boost rectifier is divided equally between the 
constant current load io, and the constant power load PL/vf2.  The 
complete bifurcation diagram for the baseline system for Pt=8kW 
is shown in Figure 6.   
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The equilibrium point loses stability through a Hopf bifurcation 
at ho=86.8295 for Pt=8kW.  The normal form equations of the 
system at the Hopf point indicate that the bifurcation is 
supercritical (i.e) the bifurcating periodic solutions are stable as 
shown in Figure 6.  As the branch of periodic solutions is 
followed, their stability is also monitored by observing the 
corresponding Floquet multipliers.  A period doubling 
bifurcation occurs at ho=88.7904 where, one floquet multiplier 
exits the unit circle through (-1,0).  This is followed by another 

period doubling bifurcation to a period-4 solution.  These 
periodic solutions are shown in Figure 7. 

5. DEPENDENCE ON PARAMETER 
VALUES 

The baseline system considered in this paper consists of two 
interconnected nonlinear subsystems namely, the three phase 
boost rectifier and the regulated load converter with input filter.  
The analysis method presented above considers the stability of 
the baseline system as a whole, regardless of the stability of the 
individual subsystems.  To this end, as the control parameter is 
varied, the stability of the three phase boost rectifier as a 
standalone system terminated by the load Pt, is determined, in 
addition to that of the baseline system.  The parameter values that 
yield the results shown in Figures 6 and 7 are such that, the 
equilibrium point of the boost rectifier as a standalone system 
loses its stability before that of the baseline system (i.e) for 
ho<86.8295.  Such a situation is only of academic interest as it 
defeats the entire purpose of subsystem integration in that, an 
unstable system (the boost rectifier) is integrated with a stable 
system (the filter-load converter subsystem) to form the stable 
baseline system.  However, a different set of parameter values 
can result in an unstable baseline system while preserving the 
stability of the individual subsystems.  It is the parameters of the 
boost rectifier that determine the manner in which the baseline 
system loses stability. 

Since, the load on the DC bus is not constant at all times, the 
rectifier should provide “good” regulation of the DC bus voltage 
at all load levels.  Since the baseline system is essentially 
nonlinear, the bandwidth of the regulator can be expected to 
change significantly with the load.  Hence, it becomes important 
to study the effect of the regulation bandwidth of the rectifier on 
the stability of the baseline system for different values of power 
Pt.  The values of ho for which the baseline system loses stability 
were determined for different values of power Pt.  For each value 
of Pt, the type of the Hopf bifurcation was determined by 
obtaining the normal form equations of the baseline system.  The 
values of α2 in the normal form equations are given in Table 1 
for different values of power Pt.  In Table 1, case 1 is identified 
as the situation where the baseline system preserves its stability 
in spite of the boost rectifier being unstable, and that wherein the 
baseline system loses its stability with the individual subsystems 
being stable is identified as case 2. 

Table 1.  α2 for Case 1 and Case 2. 

Case 1 Case 2 Pt 

 (kW) α2 ho(hopf) α2(10-6) ho(hopf) 

8 -0.01213 86.8295 26.9384 19.5325 

16 -0.00818 45.8968 12.6145 8.5091 

24 -0.00733 31.9366 4.6564 5.4051 

32 -0.00854 24.6799 -3.0179 4.0491 

40 -0.00773 19.9758 -6.4271 3.3109 

48 -0.00214 16.5835 4.6585 2.8485 

56 0.005724 14.0965 38.5256 2.5291 

It can be seen from Table 1 that, the type of bifurcation for case 2 
changes from subcritical to supercritical and back as the power is 



 

 

increased.  Further investigation is necessary to identify the 
reasons for such a behavior.  However, the normal form 
equations provide an idea about the post-bifurcation behavior of 
the system, which can be used to design fault-clearing systems in 
the event of an instability.  In addition, it can be seen from Table 
1, that the values of ho for which the baseline system loses 
stability, decrease with increasing power.  Hence, with the 
knowledge of the maximum possible load on the DC bus, ho can 
be chosen such that the equilibrium solutions are stable at all 
load power levels or can be adaptively varied as a function of the 
load for optimal performance of the converter. 

CONCLUSIONS 

Stability analysis of a baseline power system was presented.  A 
single source single load system was considered as the baseline 
system.  The bifurcation behavior of the input filter load 
converter subsystem provided a global picture of possible system 
trajectories. The analysis was extended to the baseline system 
with the controller gain ho as the control parameter.  Two distinct 
cases of loss of stability were identified.  The bifurcation 
behavior of the baseline system was studied for different load 
power levels. 
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APPENDIX 

Parameter Values: 

Three Phase Boost Rectifier 

Variable Name Case 1 Case 2 

ωz 2500 rad/s 500 rad/s 

ωp 25000 rad/s 5000 rad/s 

ω 2π400 rad/s 2π400 rad/s 

L 18µH 258µH 

C 350µF 2400µF 

Input Filter 

Lf 10µH 

Cf1 100µF 

Cf2 10µF 

Rf 0.5Ω 
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