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Analysis of Sum-Product Decoding of Low-Density
Parity-Check Codes Using a Gaussian Approximation

Sae-Young Chungviember, IEEEThomas J. Richardson, and Ridiger L. Urbanke

Abstract—Density evolution is an algorithm for computing the  codes [1], [2], where he used an explicit construction of reg-
capacity of low-density parity-check (LDPC) codes under message- ylar graphs. Lubyet al. generalized this idea to randomly con-
passing decoding. For memoryless binary-input continuous-output  i,cted irregular LDPC codes, showed that irregular codes per-

additive white Gaussian noise (AWGN) channels and sum-product
decoders, we use a Gaussian approximation for message densitiedorm better than regular ones, and also showed that the threshold

under density evolution to simplify the analysis of the decoding phenomenon occurs for these codes [6].
algorithm. We convert the infinite-dimensional problem of itera- In [7], this observation was further generalized by Richardson
tively calculating message densities, which is needed to find the and Urbanke to a large range of binary-input channels, including

exact threshold, to a one-dimensional problem of updating means | . . .
of Gaussian densities. This simplification not only allows us to cal- binary erasure, binary symmetric, Laplace, and AWGN chan-

culate the threshold quickly and to understand the behavior of the Nels, and to various decoding algorithms including belief prop-
decoder better, but also makes it easier to design good irregular agation (sum-product algorithm), which are collectively called

LDPC codes for AVGN channels. . message-passirajgorithms. Richardsoet al. proved a general
For various regular LDPC codes we have examined, thresholds o niration result showing that the decoder performance on

can be estimated within 0.1 dB of the exact value. For rates between .
0.5and 0.9, codes designed using the Gaussian approximation per-"andom graphs converges to its expected value as the length of

form within 0.02 dB of the best performing codes found so far by the code increases, generalizing the result of Labwl. [7].
using density evolution when the maximum variable degree i$0.  Since it is difficult to determine this expected performance for

We show that by using the Gaussian approximation, we can visu- gn ensemble of finite size, they used the expected behavior in the

alize the sum-product decoding algorithm. We also show that the ;s ot infinitely long codes, which can be determined from the

optimization of degree distributions can be understood and done . .

graphically using the visualization. porrespondlng cycle-free graph. They deflped the threshold as
. L . . indicated above for a random ensemble of irregular codes spec-

Index Terms—Density evolution, fixed points, Gaussian approx- ... P .
imation, low-density parity-check (LDPC) codes, stability, sum- ified py degreg dlstrlputlops, and devel'oped an algorithm F:fsllled
product algorithm, threshold. density evolutiorfor iteratively calculating message densities,
enabling the determination of thresholds.

Using this result, they constructed LDPC codes that clearly
beat the powerful turbo codes [8] on AWGN channels. Recently,
OR many channels and iterative decoders of interest, lowis was improved [9], [10], where the threshold for a rafe-

density parity-check (LDPC) codes—first discovered byDPC code on the AWGN channel is within 0.0045 dB of the
Gallager [1], [2] and rediscovered by Spielmanal. [3] and ~ Shannon limit and simulation results are within 0.04 dB of the
MacKayet al.[4], [5]—exhibit a threshold phenomenon: as th&hannon limit at a bit error rate @0~ using a block length of
block length tends to infinity, an arbitrarily small bit-error prob4¢7.
ability can be achieved if the noise level is smaller than a Certai”Calculating thresholds and optimizing degree distributions

threshold. For a noise level above this threshold, on the othgsing density evolution are computationally intensive tasks, and
hand, the probability of bit error is larger than & positive conye often difficult for most channels other than binary-erasure
stant. Gallager first observed this phenomenon for binary sy@hannels (BECs). In BECs, density evolution becomes one-di-
metrical channels (BSCs) in his introduction of regular LDP%ensionaI, and it is possible to do more analysis and even to

construct capacity-achieving codes [11], [30]. For more inter-

Manuscript received January 7, 2000; revised July 10, 2000. This work wasting channels including AWGN channels, however, density
supported in part by Lucent Technologies. The material in this paper was pggy i ; i
sented in part at the 2000 International Symposium of Information Theory, Soéﬁlmmpn IS too comphcated to b? analyzed' )
rento, Italy, June 25-30, 2000. In this paper, we present a simple method to estimate the

S.-Y. Chung was with the Laboratory for Information and Decisioghreshold for irregular LDPC codes on memoryless binary-input

Systems, Massachusetts Institute of Technology, Cambridge, MA . .
USA. He is now with Airvana, Inc., Chelmsford, MA 01824 USA (e-mail:cONtinuous-output AWGN channels with sum-product de-

sae-young.chung@airvananet.com). coding. This method is based on approximating message

T. J. Richardson was with Bell Labs, Lucent Technologies, Murray Hill, Ndensities as Gaussians (for regular LDPC codes) or Gaussian
07974 USA. He is now with Flarion Technologies, Bedminster, NJ 07921 USA . .

(e-mail: richardson@flarion.com). mixtures (for irregular LDPC codes) [12]. We show that,

R. L. Urbanke was with Bell Labs, Lucent Technologies, Murray Hill, Nwithout much sacrifice in accuracy, a one-dimensional quantity,
07974 USA. He is now with the Communications Theory Lab, EPFL, DSChameW, the mean of a Gaussian density, can act as faithful sur-
LTHC, CH-1015 Lausanne, Switzerland (e-mail: Rudiger.Urbanke @epfl.ch). . L s . .

Communicated by B. J. Frey, Guest Editor. rogate for the message density, which is an infinite-dimensional

Publisher Item Identifier S 0018-9448(01)00717-9. vector.

I. INTRODUCTION

0018-9448/01$10.00 © 2001 IEEE



658 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

Since this method is easier to analyze and computationaligrs. Under the “local tree assumption,” namely, that the girth of
faster than density evolution, it can be a useful tool for unddie graph is large enough so that the subgraph forms a tree (i.e.,
standing the behavior of the decoder and for optimizing irrethere are no repeated nodes in the subgraph), we can analyze the
ular codes. For example, we show how to determine the ratedefcoding algorithm straightforwardly because incoming mes-
convergence of the error probability, and why there is an alteyages to every node are independent. Furthermore, by the gen-
nation between fast and slow decoding stages, as noted in [E3hl concentration theorem of [6], which generalizes the results
We also use this method to find good irregular codes using line#r[ 7], we are assured that, for almost all randomly constructed
programming. This algorithm not only optimizes degree distréodes and for almost all inputs, the decoder performance will be
butions several orders of magnitude faster, but it is often as gotldse to the decoder performance under the local tree assump-
as the optimization methods based on the full density evolutidion with high probability, if the block length of the code is long

For turbo codes, a one-dimensional Gaussian approximat&mough. From now on we base our analysis on this local tree
based on extrinsic information transfer chart (EXIT chart) waassumption.
first used by ten Brink [14], where he considered parallel con- It is convenient to use log-likelihood ratios (LLRs) as mes-
catenated codes. Using his EXIT chart methods, he recently dages; i.e., we use
signed a ratd-/2 serial concatenated code with a repetition code _q
and a eight-state rate-one code that is within about 0.1 dB of the v =log M
Shannon limit [15]. A similar Gaussian-approximation method plyle = —1)

based on signal-to-noise ratio (SNR) was later used in [16] fg§ the output message of a variable node, whésthe bit value
turbo codes, which appeared at the same time as [12]. See @Sthe node and/ denotes all the information available to the
[17]in this issue. Divsalaet al.also used a similar approxima-node up to the present iteration obtained from edges other than

tion method based on SNR [18]. the one carrying. Likewise, we define the output message of
Since there is no simple formula for updating messaggecheck node as

densities for turbo decoding, Monte Carlo simulations were 0

i ectori i e =1)
used to analyze approximate trajectories for Gaussian messages u=log—————
under turbo decoding in both papers [14], [16]. Similar to p(y'e’" = =1)

the mean as used in this paper, they used one-dimensiqpgbre, is the bit value of the variable node that gets the mes-
quantities, namely, mutual information [14] and SNR [16], t@age from the check node, aptidenotes all the information

approximate message densities. They showed that the Gausgi@fiiable to the check node up to the present iteration obtained
approximations work reasonably well for turbo decoding, anghy, edges other than the one carrying

argued that the position of the turbo waterfall region can be| gt 4, pe a message from a variable node to a check node.

estimated by visualizing the trajectories. _ Under sum-product decoding,is equal to the sum of all in-
In other related works, the sum-product algorithm wagyming LLRs; i.e.,

analyzed for graphs with cycles when messages are jointly

Gaussian [19]-[21], [31]. Since a Gaussian density is com- 4.1

pletely characterized by its mean vector and covariance matrix, v= Z i 1)
the analysis of the sum-product algorithm becomes tractable. =0

The main purpose of these works is to analyze how welherew;, i =1, ..., d, — 1, are the incoming LLRs from the

decoding works on graphs with cycles. Surprisingly, the meangighbors of the variable node except the check node that gets
converge to the correct posterior means when certain conditiQRé message, anduy is the observed LLR of the output bit
are satisfied, even when there are cycles in the graph. associated with the variable node. The density of the sud of
Let us first consider a regular binafy.,,, d.)-LDPC code, random variables;, i =0, ..., d,—1,can be easily calculated
whered, denotes the number of neighbors of a variable nods convolution of densities of the;’s, which can be efficiently
andd, denotes the number of neighbors of a check node. Undgine in the Fourier domain [6].
the sum-product algorithm, and message passing in generalfthe message update rule for check nodes can be ob-
variable nodes and check nodes exchange messages iterativgilyed from the duality between variable and check nodes
A check node gets messages fromijtgieighbors, processes theand the resulting Fourier transform relationship between
messages, and sends the resulting messages back to its nejghy) and (p + ¢, p — ¢), wherep = p(z = 1Jy) and
bors. Similarly, a variable node receives messages fromits ¢ = p(x = —1|y) [22]. From this, we get the following “tanh
neighbors, processes the messages, and sends messages bags't§23]-[25], [6], [22]:
its neighbors. Each output message of a variable or a check node

is a function of all incoming messages to the node except the in- tanh Y — Lt tanh Y 2
coming message on the edge where the output message will be aniy = H anisy 2)
sent out. This restriction is essential for the sum-product algo- =t

rithm to produce correct marginalposterioriprobabilities for wherev;, j =1, ..., d.—1, are theincoming LLRs frord.—1
cycle-free graphs. neighbors of a check node, ands the message sent to the re-

This two-step procedure is repeated many times. Afrch  maining neighbor. Figs. 1 and 2 show message flows through
iterations, the variable node decodes its associated bit basedomriable node and a check node, respectively, where we use
all information obtained from its depth-subgraph of neigh- normal realizations [22] of variable and check nodes, which be-
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This can be generalized to irregular codes, where a variable
number of degrees is allowed. Let

d
Az) = Z Nt L
=2

and

d
p(z) = Z piz'
~

be the generating functions of the degree distributions for the
variable and check nodes, respectively, wh&reand p; are

the fractions of edges belonging to degiesriable and check
nodes, respectively [11]. Using this expression, the nominal rate
r of the code is given by

B jé p(x)dx

fé Mz) dz
[11]. For detailed density evolution for irregular codes, we refer
© readers to [13].
This two-stage computation, called density evolution, is the
u key step in calculating the thresholds of message-passing de-
m coding in [6]. First, without loss of generality, we assume that
the all-0 codeword was sent. Then, we fix the channel param-
=) eter, namely, noise power, and we run the above algorithm it-
“ d -1 eratively until either the density of tends to the “point mass
at infinity” (equivalently, the probability of error tends to zero),
or it converges to a density with a finite probability of error (the
v | FT H FT l [Fr }Udc—l probability ofv being negative).The threshold is defined as the
©/ é 2 G ee \© maximum noise level such that the probability of error tends to
zero as the number of iterations tends to infidity.

Fig. 1. Message flow through a variable node. r=1

() Original (b) Equivalent message flow II. GAUSSIAN APPROXIMATION FORREGULAR LDPC CODES

Fig. 2. Message flow through a check node. The LLR message, from the channel is Gaussian with mean
2/02 and variance/o2, wheres? is the variance of the channel

o oise. Thus, if all{u;, ¢ > 1} [which are independent and
r%iﬁ_ntically distributed (i.i.d.)] are Gaussian in (1), then the re-
gng sum is also Gaussian because itis the sum of independent

come a repetition and a parity check, respectively. In this r
resentation, half-edges represent variables and full edges
resent states. Under sum-product decoding, constraints becdi : ) } ; .
computation nodes and states become communication links Qussian random variables. Even if the inputs are not Gaussian,

tween constraint nodes. Fig. 2(b) shows how the decoding fo )éthe central limit theorem, the sum would look like a Gaussian

check node can be done on a dual graph (repetition code) uﬁ%any independent random variables are added as noted in

Fourier transforms, which is a special case of a more gen .d d if lize th tout of (1) t
idea of dualizing the sum-product algorithm on a dual graph hdeed, It we hormailze the output o ( )..0 a zero-mean
[22]. unit-variance variable, and iftHer;, ¢« > 1} are i.i.d. with finite

. . variance, then the normalized output converges to a Gaussian
To apply the same Fourier transform technique to (2), we ne o S _y

. . ; Istribution asd,, tends to infinity by the central limit theorem.
to take logarithms on each side to convert the productintoa s

ie UI[Pdwever, due to the interaction between variable and check
o nodes, it does not seem easy to rigorously show how close the
distributions are to the Gaussian in actual density evolution.
Using simulations, Wiberg [26] observed that message dis-
tanh U_JD ®) tributions for AWGN channels resemble Gaussians using a (2,
3)-regular code. Our empirical results using density evolution
show that for a regular graph, the outpuin (1) as well as the
wheres, ands,, are the signs of; andv;, 1 < j < d. — 1, outputw in (2) can be well approximated by Gaussian densi-
respectively. We define the sigp as0 if = > 0 andl otherwise. ties, although: tends to be less like Gaussian, especially when
Thus, the sum for the sign in (3) is performedZinand the sum its mean is near zero. Despite this difference, the approximation
for th_e mag””?‘de IS the ordinary sumfh As in the ﬂrSt Cas_e’ 1A point mass a0 contributes half of its probability mass to the probability
density evolution for this step can be done numerically in thgerror.
Fourier domain [6]. 2|n the limit of infinitely long codes.

do—

U
tanhﬂ) = zzl (s,vj, log

(su, log
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method that we develop in this section works very well for reg- Definition 1:

ular LDPC codes. From this point on, for regular LDPC codes, h (ue i
we assume that the variableswv, ;, v;’s are Gaussian. z) = \/H/ anhge™ 5 du he=0
Since a Gaussian is completely specified by its mean and vari- 1 T

ance, we need to keep only the means and variances durin
erations. There is an important condition, called sigenmetry
condition[13], that is preserved under density evolution for al
messages, which can be expressedi(as = f(—x)e”, where ):
f(z) is the density of an LLR message. By enforcing this corS- ’ 01
dition for the approximate Gaussian densities at every iteration, () = 4+ <1 — [1 —¢ (muo +(d, — 1)m§—1))} ‘ )
we can greatly improve the accuracy of the approximation. For
: . . D ” (6)
aGau53|an with mean and variance, this condition reduces h 0 _ s the initial value f
to o2 = 2m, which means that we need to keep only the mealy. r&Mu IS the inflial value tofm.,.
In [16], the SNR of a Gaussian was used instead of its mean;The following lemma gives upper and lower bounds/gn).
to approximate density evolution for turbo codes. If we define
4 < - ) z > 0.

Qt Is easy to check that(x) is continuous and monotonically
ﬁiecreasmg o0, o), with ¢(0) = 1 and¢(co) = 0. Using
¢(x), we obtain the following update rule fen,, from (4) and

the SNR of a Gaussian with meanand variance? asm?/o?, Lemma 1.

then it becomesn /2 if we assume the symmetry condition for f -% <1 — §> < Plx) <
the approximate messages. Therefore, the SNR becomes equ

&Iﬁ
—
+

. ) ) . @)

alent to the mean. However, since simulations were used in [16] Proof: By expandina—— as follows:
due to a lack of tools for analyzing the density evolution for - By exp Orgen '
turbo codes, the authors of [16] were unable to calculate thresh- i’é (—1)kekn ifu<0
olds for turbo codes with enough precision (up to two digits). 1 ) =0 ’

Since we are concentrating only on regular and irregular 14 v ‘ i} .

' i i . SO (=1)ktemhu if w>0
LDPC codes, we can find analytic expressions for the approx £
imate density evolution and we can calculate the approxim% obtain B
threshold values with arbitrary precision. Our empirical results
show that it is limited to about ten digits due to the precision of ¢(x / Yhhue—(u=n)/4z gy,
the double precision numbers. Using the mean is also intuitive VAL S —eo } 2 o
and physically motivated especially for irregular codes. It needs 1
. K . —1 7ku 7(u x)?/4x du

more steps to show how different SNRs are mixed for irregular + = Nz
codes, which can be done naturally using the mean as we will -
show in the next section. 2 — = Z ko= (b Ry —u? /o g,

We denote the means ofandv by m,, andm,,, respectively. N 0o =
Then (1) simply becomes 0o -

ac X
m'(u[) =My, +(dy — 1)m,§f*1) “4) 42 ) " e <\/;(1 * 2k)>
wherem,,, is the mean of,y and/ denotes théth iteration. We where =0
omit the index; because the;'s are i.i.d. forl < ¢ < d,, and
have the same mean,,. Note thatmgf) = 0 since the initial Qx) = / /2 gt
message from any ch(egk nodedis V2r Ja
[4

The updated meai.,,’ at the/th iteration can be calculatedIS the -function. Using

by taking expectations on each side of (2), i.e. 1 1 1 1 1
_ - —x /2 - —.7:2/2
u® PO 7%t < 3> —=c <Q(x) < < ) e
E { anh—} —E { anh—} ) A A v/ ovem
2 2 [27], we get
where we have omitted the indgxand simplified the product —wja [ oo X 0o
, . ; - ; 4e™* (-1) 2

because the);’s are i.i.d. One complete iteration begins at P(z) < + : -
the variable nodes and then ends at the check nodes. The VTE T 1+ 2k = z(4j — 1)
variables w(® and v© are GaussianV(m{”, 2m{?), and -
N(m (2 2m(é)) respectively, wherdV/'(m, o?) is a Gaussian < \/;e_w/4 < + h)
densny W|th meann and variancer?.

Note that the expectatio®[tanh] depends only on the where we us§_;7 1+12)k = [28land} 7 oty < %
meanm,, of «, sinceu is Gaussian Wlth meaim.,, and variance Similarly, we get
2m,,; 1.e. pp—

c

2
anh e “a :> du Hz) >

> k& 2
\/F : \/ﬁz_:+2kz (45 — 3)3

We define the following functiog(x )forx € [0, o0), which e
will be useful and convenient for further analyses. Tz

E [tanhg}
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Fig. 3. Approximate (- -) and exact (—) thresholds fgr k)-regular LDPC codes.

where we use TABLE |
APPROXIMATE AND EXACT THRESHOLD VALUES FOR VARIOUS
g 37 (4, k)-REGULAR LDPC CoDES FOR THEBINARY -INPUT AWGN CHANNEL
T s <o U AND SUM-PRODUCT DECODING
= @i=3) 8
_ _ _ _ G| k| rate] 0oa | O | error[dB]
The§e bounds, Wh|ch are tight as— o0, will k_Je _u_sed in 31 61 05108747 ] 0.8809 0.06
a_nal_yzm_g the_ behavior of_ the dec_oder and in optimizing degree 2 81 05108323 ]0.8376 0.06
distributions in the following sections. o 5110 | 0.5 107910 | 0.7936 | 0.03
Although itis possible to calculate thresholds and to optimize 3T 51 0410003 | 1.0093 | 0.08
degree distributions using the exact valueg@f), we note that 4| 6| 1/3[1.0035 | 1.0109 | 0.06
the following two approximations can be used instead to speed 31 4102512517 | 1.2667 | 0.10
up the calculations without much sacrifice in accuracy. For small 21101 0.6 0.7440 | 0.7481 0.05
z, sayz < 10, we will use the following approximation, which 3| 9 2/3|0.7051 | 0.7082 0.04
is very accurate and is better than (7) for this range:of 3712 [0.75 | 0.6297 | 0.6320 0.03

px) ~ 27 HP ®)
wherea = —0.4527, 3 = 0.0218, and~ = 0.86 [these values
were optimized to minimize the maximum absolute error bgy G aussiaN APPROXIMATION FORIRREGULARLDPC CODES
tween (8) and)(x)]. We note that there should be other curves
that fit () better than (8), but (8) seems to be good enough for The preceding analysis can be easily extended to irregular
our purposes. For large sayz > 10, we use the average of theLDPC codes.
upper and lower bounds of (7) as an approximationyiar). We again consider an ensemble of random codes with degree
Table | shows approximate thresholgs, calculated using distributionsi(z) andp(x). A node will thus geti.i.d. messages
(6) compared to the exact threshotels.,.; from density evolu- from its neighbors, where each of these messages is a random
tion. There is about 0.3 to 1.2% error (0.03 to 0.1 dB) compar&gixture of different densities from neighbors with different de-
to the exact values. grees. We denote these mixtures from variable nodes and from
Fig. 3 shows differences between approximate and ex&Heck nodes by andw, respectively.
thresholds for various regular LDPC codes, where SNR We assume first that the individual output of a variable or a
is defined as the distance from the Shannon limit in decibef1eck node is Gaussian, as in the preceing section, based on
Note that the accuracy fdy, 5 + 1) codes becomes improvedthe empirical evidence. Therefore, the m@% of the output
asj becomes large, which can be explained because as m@essage of a degréevariable node at théth iteration is given
inputs are added at a variable node, the output becomes meye
Gaussian. Algorithms developed in [9] and [10] were used to
calculate exact thresholds in Table I. m' = m,, + (i — DmED

X
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wherem,,, is the mean ofio andmgf_l) is the mean of; at the The threshold in terms of noise power is therefore equal to
(¢ — 1)st iteration, where: is a Gaussian mixture in general%. Since¢(x) is monotonically decreasing dh < z < oo,
[when p(z) is not concentrated in one degree]. The variansge conclude thaif (s, t) is monotonically increasing on both
of the output density is given bym'",, as in the last section. 0 < s < oo and0 < ¢ < oc. By finite induction, we conclude
Therefore, at théth iteration, an incoming messagéo a check thatforalls > s*,#,(s) > t,(s*) andt,(s) will converge tox.

node will have the following Gaussian mixture densﬁff/): Lemma 2: #,(s) will converge tooc iff

d,
70 =) AN, 2ml) ©) B fle ) (13)
i—2 7 ’ forall t € RY.
e . ) Proof: Let us first assume < f(s, t) V ¢t € RT. Since
Wherem,(v’)i is the mean of the Gaussian output from adegreetbrl > t;, t, will converge tote, € (0, oc]. However,t..
Va“a*?'e node. cannot be finite, because if so theg = (s, teo).
Using (9), we get Now we assume’ = f(s, ') for somet’ € RT. ¢ # 0
(0 d; becauség'(s, 0) > 0. Sincef is continuous, there exists > 0
E [tanh—} =1- Z )\id)(m,(f)i). such that < f(s, t) forV ¢ € (0, to). Now we choose the
2 i=2 7 smallestt’ € Rt such that’ = f(s, ¢) andt < f(s, t) for

Then, we use (5) for a check node to calculate the mean of Ttd € (0, #). Since0 < f(s, 0) < f(s, ) = ¢ and f(s, ) <
s, ) =t forv t € (0,¢), we conclude that, < ¢ for

output. Therefore, the meanffj)j of the Gaussian output mes—é 7> 0 -
sageuy) of a check node with degregeat the/th iteration is -

given by As an alternative expression to (11), for< s < oo and
0 < r <1, we defineh;(s, r) andh(s, r) as

£

td

hi(s,r)=¢ | s+(t—1) Z pj(/)_l(l - (1- 7,)j—l)

=2

d, J-t
mfﬁ)j =¢ 11— [1 - Z A@(mfl)]
i=2

Sinceu = wu; with probability p; for 2 < 5 < d,., uis also a a

Gaussian mixture. Since the output message of a variable nodey, (s ;) = Z Aihi(s, 7). (14)
is characterized by its mean, which is the sum of the means of o

the incoming densities, we need to keep only the mean of tpl%w (12) becomes equivalent to

Gaussian mixture from check nodes to variable nodes. By lin-

early combining these means for degﬂae-.(.), d, check nodes e = h(s, T¢—1) (15)
with vye|ghts{p7;, 2 <4< do}, we getm,” as given inthe \peres — 1y, . The initial valuery is ¢(s). Itis easy to see that
following: t; — oo iff 7, — 0. Thus, the convergence conditier{s) — 0
dr is satisfied iff
@ _ H 1=
my = 22 P <1 r>his,r)  Yre (0, ¢(s)). (16)
=

d; i=1 This will be useful in optimizing\(x), since (14) is linear in the
1= X (m + (i — 1)m§f_1))] ) (10) Ai's.
i=2 Let us take an example to demonstrate how well message
densities are approximated by Gaussian mixtures. The following
rated/2 code (17) was designed using density evolution and
has the thresholf.9669 [10]. The threshold calculated by the
Gaussian approximation 69473.

For0 < s < oo and0 < ¢t < oo, we definef;(s, t) and
f(s, t) as
di J—1
Jits; ) =¢7" [ 1~ [1 - Z i (s + (i = 1)t)1 Az) =0.23403z + 0.212422% + 0.146902° + 0.102842°
d, = + 0.30381z"?
f(s, ) = Z pifi(s, t). (11) p(x) =0.71875z27 + 0.281252°. a7)
j=2

Fig. 4 shows two message densities from variable to check nodes
Using this, we rewrite (10) as when density evolution and the Gaussian approximation are used
forthe codein (17). The noise power was setto be 0.006 dB below
te= f(s, ti—1) (12)  the threshold in each case. Surprisingly, they are very close. Fig.
5 shows corresponding densities from check to variable nodes.
In this case, the exact density has a spiké, athich cannot be
modeled well by a Gaussian approximation. Even though the two
densities look very different, the fact that the two densities in the
Definition 2: The threshold* is the infimum of alls in R other direction are very close suggests that the approximation is
such that,(s) converges tec asf — oo. working well. In fact, even though the exact density in Fig. 5 is

wheres = m,,, andt, = mSP. The initial valuetg is 0. Note
that sincet; = f(s, 0) > 0for s > 0, the iteration (12) will
always start.
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Fig. 5. Approximate (- -) and exact (—) densities at the variable node input.

10

very different from a Gaussian, the output of the variable nodie the nature of check node computations (theh rule), not

will be Gaussian-like again because many i.i.d. inputs are addeetause(z) is irregular.
atthe variable node. Furthermore, when the probability of erroris

small enough, the exact density in Fig. 5 becomes Gaussian-like,
as observed in [13]. We note that such a mismatch between the

IV. STABILITY

exact and approximate densities in Fig. 5 still exists in regularin this section, we find the condition for the convergencg of
cases, too, because the shape of the exact density in Fig. 5 istdue in (12) as? tends to infinity whertg is large enough, also
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known as the stability condition [13]. We also derive the rate aff [13], except thaE‘j;Q p;(7—1)isreplaced bﬂ‘j;Q G—1)r.

convergence of the probability of error using this result. Using Jensen’s inequality, we conclude that
We first prove the following lemma, which gives the behavior dr dr
of (11) whent is large (equivalently, small probability of error). H (-1 < Z pi(3—1)
j=2 j=2

Lemma 3: As¢ — oo, At = f(s, t) — t becomes ) o
for all p(x), with equality iff p,, = 1 for somek > 2. There-

fore, the approximate stability condition is looser than the orig-
inal, which implies that stable degree distributions under the

dr
At=s+(iy — 2)t—4log X;, =4 Y p;log(j — 1)+O(t™)

i=2 18 Gaussian approximation may not be stable under density evolu-
(18) tion. However, stability under density evolution guarantees sta-
where);, is the first nonzero\;. bility under the Gaussian approximation. In any case, these two
Proof: Whent is large in (11),2;11=2 Xi¢(s + (i — 1)t) are the same ip,, = 1 for somek > 2, and are very close if
can be simplified to p(zx) is concentrated at two consecutive degrees, which is the
4 case for most good degree distributions found so far.
Z Nio(s + (i — 1)t) If 0 < A2 < A%, then for larget, we can expresg as
)\*
=2 2
. . ty ~c+4log — 20
= iy @(s + (in — 1)t) + O(Xi, (s + (i — 1)) ‘ ® X (20)

wherec is a constant. The probability of erré} at thefth iter-

where \;, and X;, are the first and the second nonzexgs, L
ation is given by

respectively. If\;, = 1 for somek > 2, then we defing, = .
k+1.Using(1 4+ x)"* = 1 + nz + O(z?), we get PinMQ( /3-4-2m> (21)
Fi(s, t) = ¢7H( = DX ¢(s + (i — 1)t) i=2

14+ O(¢(s + (i — D)) (19) where
where we useegh(s + (i2 — 1)t) < ¢(s+ (i1 — 1)t). By taking Vo= Aift

7

-) on both sides of (19), we get Iz .
$() (19), we g > A/
(fi(s, 1)) = — DA (s + (i — 1)) =2
(14 O(p(s + (i1 — 1)¥))] is the fraction of degreévariable nodes. Whet; is large, we
_ 1 et the following approximation for the probability of error.
s+ (i — 1)t Lemma 4: Whent, is large,P; is approximated by
(s —L)t—4log(i—1)Ai; )/4 or
e () if 0 < Az < A3

where we used(s+ (i; —1)t) < t~! and Lemma 1. By using P~

Lemma 1 again, we get W e~ fE-D i A =0

P(fi(s, 1)) = ¢ (s+ (ip — 1)t — 4log(j — 1)A;, + O(t™")). wherea, b, d, f are positive constants that dependsaand the
degree distributions.

Proof: Whent; is large, the first nonzero term in (21) be-
comes dominant. Whelh < A\s < A%, P, becomes

Finally, by taking$—!(-) and by using (11), we get the result.

If 71 > 2, thent, always converges to infinity regardlesssof
andp(x) asf tends to infinity if¢y is large enough. Otherwise, P~ N0 < s+ 2te>
~ A2

At becomes a constant abecomes large. For this case, using 2
s = 2/a%, we get

At:410g)\—2+0(t_) N/EYARY:
where wherea andb are constants that depend on the degree distribu-
4 tions ands, and we have used
AL = el/2n (j— 1), TN 14O 1)) /4
/1 Q(yf2)=a+o6 -
The following theorem summarizes these two results. and (20). I\, =0, thent, becomes approximatety(i; —1)*,

whered’ is a positive constant that depends on the degree dis-

Theorem 1:1f A, < A3, thent, will converge to infinity a¥  tripytions ands. Using this and the above approximation for the
tends to infinity ift, is large enough. IA; > A3, thent, cannot - ¢ _fynction, the result follows. O

converge to infinity regardless of its initial value. Note thatthis ]

d, probability £, will decrease by a factor ofA»/\%)? at each
Ay < 61/20i/ Z p;i(G—1) iteration, which matches empirical observations using density
=2 evolution very well.



CHUNG et al. ANALYSIS OF SUM-PRODUCT DECODING OF LOW-DENSITY PARITY-CHECK CODES 665

0.2 T T T T T T i T

0.15

T
1

0.1 i

T

0.05 i

og=r“---= e T

1 | 1 | 1

1 | 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
r

Fig. 6. {h:(s, r) —r}fori =2, ..., 20 (top to bottom) and h(s, r) — 7} (- -).

V. OPTIMIZATION OF DEGREEDISTRIBUTIONS To check whether the constraints of the dual problem are satis-

. . i .
Assuming that\(z) ando,, are given, we can optimize(z) €0 We firstobserve that + = log(k — 1), and since

by maximizing the rate of the code. The constraints are 1) nor-<10gj Y ) _ <10g(j - %)
malization: p(1) = 1; and 2) the inequality constraint (13). Jj+1 j

Since this is a linear program, it can be solved efficiently. Alter- 1 k-1 J—

: L : - 1 =——— |k(k+1)log —— — j(j +1)log
natively, however, we can maximize (18) ignoring & 1) G +1) &L I 87
term. As shown in the following theorem, th&z) optimized <0, if j <k
in this way has the formp(z) = pz*~! + (1 — p)a* for some —0, ifj=k

Theorem 2: A concentrated degree distribution we conclude that, + % < log(j — 1), j = 2, by finite
induction. O

p(x) = pet = + (1 = pa*

S 4 ) Note that this solution also maximizes (18) without the
for somek > 2 and0 < p < 1, minimizes) -, p;log(7 — 1) O(¢~1) term, subject to the rate constraint. Experiments show
subject top(1) =1 andfo1 p(x) dz = ¢, wherecis a constant. that this concentrated form @fz) is not much different from

Proof: The dual linear program to the given problem is the optimized degree distributions using linear programming,
and that there is no noticeable performance degradation for
) Yo . . the cases we have examined so far. Thus, we will use only
subjectto y; + = <log(j —1), 2<j<d,. concentrategh(z)’s.

J The optimization ofA(z) can be done similarly to the opti-
mization ofp(x), i.e., assuming(z) ando,, are given, we op-

max 1 + cys

Suppose we choose an integesuch that

T << 1 timize A(x) by maximizing the rate
k+1 ~k fl o(z) dz
We claim that the following are feasible solutions to the primal r=1-0—
and dual problems of equal cost, which are optimal solutions fo M) dx
to both primal and dual problems by the weak duality theorefhie constraints are 1) normalizatiok(l) = 1; and 2) the in-
[29]: equality constraint (16). This can be also done using linear pro-
gramming.
pe=k(k+ e~k Fig. 6 shows{h;(s, ) — r} fori =2, ..., 20 using the de-
Pr+1 =1 — pi gree distributiorp(z) in (17) where the noise level is equal to
y = (k+1)logk — klog(k — 1) the Gaussian approximation threshold of the code in (17). In this

E—1 case, where(z) and the noise power are given, the optimiza-
y2 =k(k +1)log ——. tion of A(z) may be performed by maximizing the rate of the
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Fig. 7. {h(s, r) — r} as a function of- magnified.

code subject to the normalization constraijit) = 1 and the the curve hit$) becomes a fixed point, and the error probability
inequality constraints; > 0,2 < i < d;, and cannot be decreased further.
Figs. 10 and 11 show thresholds in SNR, for some codes

il of rates0.1 to 1 optimized using both density evolution and the

D Ailhi(s, 1) =) <0, 7€ (0, ¢(s)). Gaussian approximation when the maximum variable degree

=2 is 10 or 20, respectively. They show that the difference between
Figs. 6 and 7 show how each curvelin; (s, 7) — r} for i = the exact and gpproxim_ate thresholds_is small (Ie_ss than 0.3dB)
2, ..., 20, is combined to produce the cur\{@(s,'r) —r}, for codes designed using the Gaussian approximation. It also

where the degree distributio{z) in (17) is used. This curve is SNOWs that the optimization based on the Gaussian approxima-
always below) and barely touchesat one point. If it hit®), then  tion is good especially whed) is low and when the rate is high.
the point~* where the curve hitsbecomes a fixed point, and theFor example, for rates higher tharg, the difference is less than
error probability cannot be decreased further. Note that, sirf¢@2 dB ford; = 10 and less than 0.1 dB fal; = 20.

the slope of the curve dfiz(s, ) — »} nearr = 0 is different

from those fori > 2, the stability condition in Theorem 1 is VI. FIXED POINTS

described by only,. We have seen that the Gaussian approximation is useful in
Although we have shown that concentrafelt) are good calculating thresholds and optimizing degree distributions.

enough, we may still want to visualize how the optimization afiowever, it is not clear how accurate the approximation is by
p(x) is done. Fig. 8 shows f;(s, t) — ¢} forz = 2, ..., 10 just looking at a single number, namely, a threshold. In this

usingp(z) in (17) where the noise level is equal to the Gaussiafaction, we show how accurately the Gaussian approximation
approximation threshold of the code in (17). In this case, wheggn predict the locations of potential fixed points of density

A(z) and the noise power are given, the optimizatiorp@f)  evolution, which could show more aspects of the approximation
may be performed by maximizing the rate of the code subjecti#an thresholds.

the normalization constrainf(1) = 1 and the inequality con-  Fijrst observe that in Figs. 7 and 9 there are slow and fast

straintsp; > 0,2 < ¢ < d,, and phases, where the width of the gap between the curve and the
4 horizontal axis determines the iteration speed. This explains
- why there are slow and fast phases in sum-product decoding,
i(Ji(s,t) — ¢ 0, t 0, . .
; pilfils, 1) = 1) > € (0, 00) as noted in [13].

Fig. 12 shows the decrease in the probability of error as a
Figs. 8 and 9 show how two curves correspondingto8 and9 function of the probability of error for thé; = 20 code in (17)
in{f:(s, t)—t} are combined to produce the cudv&(s, ¢£)—t}, using density evolution and the Gaussian approximation, where
wherep(z) in (17) is used. This curve is always abav@nd the noise power is set to be 0.006 dB below the threshold of each
barely touche$ at one point. If it hitD, then the point* where case. It is interesting to observe that there are three estimated
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Fig. 8. {fi(s.t) —t} fori =2, ..., 10 (top to bottom) and f(s, t) — t} (- -).
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Fig. 9. {f(s, t) — t} as a function of magnified.

fixed points under density evolution (including zero probabilityrate= 1/2) (22) using density evolution and the Gaussian ap-
of error) but only two under the Gaussian approximation. Asroximation, where the noise power is set to be 0.006 dB below
we increase the noise power,x 102 (probability of error) the threshold of each case.

becomes_a fixed p_omt under bot_h the Gaugs!an approximation A(z) = 0.30780z + 0.272872 + 04193325

and density evolution. As the noise power is increased further, 3
9 x 102 becomes another fixed point under density evolution. p(x) =04z +0.62°. (22)

Fig. 13 shows the decrease in the probability of error aslmthis case, the number of potential fixed points is estimated
function of the probability of error for the followingy = 7 code correctly using the Gaussian approximation, and the two curves
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Fig. 11. Performance of various codes, designed/evaluated using GA/GA, GA/DE, DE/GA, or DE/DH wae20.

are quite close. In this case, the Gaussian approximation tigtating the number of fixed points exactly when the maximum
only calculates thresholds accurately, but also tracks the exeatiable degree is large, it becomes less useful in this case. How-
probability of error reasonably well. ever, when the maximum variable degree is small, the Gaussian

We note that, from empirical observations, as the maximuapproximation works reasonably well. This seems to contradict
variable degree increases, the number of fixed points often temds previous observations for regular codes, where the accuracy
to increase. Since the Gaussian approximation is not good atefghe Gaussian approximation f@f, j + 1) codes improves as
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7 increases. This seems to suggest that, as the maximum vari-
able degree of the code increases, the Gaussian approximation
becomes less accurate because the irregularity of the code in~or LDPC codes under sum-product decoding, the message
creases, even though the fraction of high-degree variable nodesributions are well approximated by Gaussians or Gaussian
increases. mixtures when memoryless binary-input continuous-output

VII. CONCLUSION
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AWGN channels are used. Using the Gaussian approximationf9] S.-Y. Chung, G. D. Forney Jr., T. J. Richardson, and R. Urbanke, “On
we have simplified density evolution to a one-dimensional

problem, and found simple and analyzable expressions fqgo]
describing approximate density evolution. Because of the

huge reduction in the dimension of the problem without much

sacrifice in accuracy, we can find thresholds faster and optimizb1 2
degree distributions faster and easier. It also enables us to
analyze the behavior of density evolution especially near th&€?2l

zero probability of error, which makes it possible to find the

approximate rate of convergence for the probability of erroni3]
when it is near zero. The Gaussian approximation is also a good
tool to visualize how the mean of densities are updated undgyy
density evolution, which also explains why there are fast and
slow phases in density evolution. It also helps us get some hine{s

on how to optimize degree distributions. Graphically, we hav

demonstrated how the optimization of degree distributions caf6]

be visualized.

Online demonstration of optimization of degree distributions;; ;
using the Gaussian approximation and more results are available
at http://truth.mit.edu/~sychung.
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