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Analysis of Sum-Product Decoding of Low-Density
Parity-Check Codes Using a Gaussian Approximation

Sae-Young Chung, Member, IEEE, Thomas J. Richardson, and Rüdiger L. Urbanke

Abstract—Density evolution is an algorithm for computing the
capacity of low-density parity-check (LDPC) codes under message-
passing decoding. For memoryless binary-input continuous-output
additive white Gaussian noise (AWGN) channels and sum-product
decoders, we use a Gaussian approximation for message densities
under density evolution to simplify the analysis of the decoding
algorithm. We convert the infinite-dimensional problem of itera-
tively calculating message densities, which is needed to find the
exact threshold, to a one-dimensional problem of updating means
of Gaussian densities. This simplification not only allows us to cal-
culate the threshold quickly and to understand the behavior of the
decoder better, but also makes it easier to design good irregular
LDPC codes for AWGN channels.

For various regular LDPC codes we have examined, thresholds
can be estimated within 0.1 dB of the exact value. For rates between
0.5 and 0.9, codes designed using the Gaussian approximation per-
form within 0.02 dB of the best performing codes found so far by
using density evolution when the maximum variable degree is10.
We show that by using the Gaussian approximation, we can visu-
alize the sum-product decoding algorithm. We also show that the
optimization of degree distributions can be understood and done
graphically using the visualization.

Index Terms—Density evolution, fixed points, Gaussian approx-
imation, low-density parity-check (LDPC) codes, stability, sum-
product algorithm, threshold.

I. INTRODUCTION

FOR many channels and iterative decoders of interest, low-
density parity-check (LDPC) codes—first discovered by

Gallager [1], [2] and rediscovered by Spielmanet al. [3] and
MacKayet al.[4], [5]—exhibit a threshold phenomenon: as the
block length tends to infinity, an arbitrarily small bit-error prob-
ability can be achieved if the noise level is smaller than a certain
threshold. For a noise level above this threshold, on the other
hand, the probability of bit error is larger than a positive con-
stant. Gallager first observed this phenomenon for binary sym-
metrical channels (BSCs) in his introduction of regular LDPC
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codes [1], [2], where he used an explicit construction of reg-
ular graphs. Lubyet al.generalized this idea to randomly con-
structed irregular LDPC codes, showed that irregular codes per-
form better than regular ones, and also showed that the threshold
phenomenon occurs for these codes [6].

In [7], this observation was further generalized by Richardson
and Urbanke to a large range of binary-input channels, including
binary erasure, binary symmetric, Laplace, and AWGN chan-
nels, and to various decoding algorithms including belief prop-
agation (sum-product algorithm), which are collectively called
message-passingalgorithms. Richardsonet al.proved a general
concentration result showing that the decoder performance on
random graphs converges to its expected value as the length of
the code increases, generalizing the result of Lubyet al. [7].
Since it is difficult to determine this expected performance for
an ensemble of finite size, they used the expected behavior in the
limit of infinitely long codes, which can be determined from the
corresponding cycle-free graph. They defined the threshold as
indicated above for a random ensemble of irregular codes spec-
ified by degree distributions, and developed an algorithm called
density evolutionfor iteratively calculating message densities,
enabling the determination of thresholds.

Using this result, they constructed LDPC codes that clearly
beat the powerful turbo codes [8] on AWGN channels. Recently,
this was improved [9], [10], where the threshold for a rate-
LDPC code on the AWGN channel is within 0.0045 dB of the
Shannon limit and simulation results are within 0.04 dB of the
Shannon limit at a bit error rate of using a block length of

.

Calculating thresholds and optimizing degree distributions
using density evolution are computationally intensive tasks, and
are often difficult for most channels other than binary-erasure
channels (BECs). In BECs, density evolution becomes one-di-
mensional, and it is possible to do more analysis and even to
construct capacity-achieving codes [11], [30]. For more inter-
esting channels including AWGN channels, however, density
evolution is too complicated to be analyzed.

In this paper, we present a simple method to estimate the
threshold for irregular LDPC codes on memoryless binary-input
continuous-output AWGN channels with sum-product de-
coding. This method is based on approximating message
densities as Gaussians (for regular LDPC codes) or Gaussian
mixtures (for irregular LDPC codes) [12]. We show that,
without much sacrifice in accuracy, a one-dimensional quantity,
namely, the mean of a Gaussian density, can act as faithful sur-
rogate for the message density, which is an infinite-dimensional
vector.
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Since this method is easier to analyze and computationally
faster than density evolution, it can be a useful tool for under-
standing the behavior of the decoder and for optimizing irreg-
ular codes. For example, we show how to determine the rate of
convergence of the error probability, and why there is an alter-
nation between fast and slow decoding stages, as noted in [13].
We also use this method to find good irregular codes using linear
programming. This algorithm not only optimizes degree distri-
butions several orders of magnitude faster, but it is often as good
as the optimization methods based on the full density evolution.

For turbo codes, a one-dimensional Gaussian approximation
based on extrinsic information transfer chart (EXIT chart) was
first used by ten Brink [14], where he considered parallel con-
catenated codes. Using his EXIT chart methods, he recently de-
signed a rate- serial concatenated code with a repetition code
and a eight-state rate-one code that is within about 0.1 dB of the
Shannon limit [15]. A similar Gaussian-approximation method
based on signal-to-noise ratio (SNR) was later used in [16] for
turbo codes, which appeared at the same time as [12]. See also
[17] in this issue. Divsalaret al.also used a similar approxima-
tion method based on SNR [18].

Since there is no simple formula for updating message
densities for turbo decoding, Monte Carlo simulations were
used to analyze approximate trajectories for Gaussian messages
under turbo decoding in both papers [14], [16]. Similar to
the mean as used in this paper, they used one-dimensional
quantities, namely, mutual information [14] and SNR [16], to
approximate message densities. They showed that the Gaussian
approximations work reasonably well for turbo decoding, and
argued that the position of the turbo waterfall region can be
estimated by visualizing the trajectories.

In other related works, the sum-product algorithm was
analyzed for graphs with cycles when messages are jointly
Gaussian [19]–[21], [31]. Since a Gaussian density is com-
pletely characterized by its mean vector and covariance matrix,
the analysis of the sum-product algorithm becomes tractable.
The main purpose of these works is to analyze how well
decoding works on graphs with cycles. Surprisingly, the means
converge to the correct posterior means when certain conditions
are satisfied, even when there are cycles in the graph.

Let us first consider a regular binary -LDPC code,
where denotes the number of neighbors of a variable node
and denotes the number of neighbors of a check node. Under
the sum-product algorithm, and message passing in general,
variable nodes and check nodes exchange messages iteratively.
A check node gets messages from itsneighbors, processes the
messages, and sends the resulting messages back to its neigh-
bors. Similarly, a variable node receives messages from its
neighbors, processes the messages, and sends messages back to
its neighbors. Each output message of a variable or a check node
is a function of all incoming messages to the node except the in-
coming message on the edge where the output message will be
sent out. This restriction is essential for the sum-product algo-
rithm to produce correct marginala posterioriprobabilities for
cycle-free graphs.

This two-step procedure is repeated many times. Aftersuch
iterations, the variable node decodes its associated bit based on
all information obtained from its depth-subgraph of neigh-

bors. Under the “local tree assumption,” namely, that the girth of
the graph is large enough so that the subgraph forms a tree (i.e.,
there are no repeated nodes in the subgraph), we can analyze the
decoding algorithm straightforwardly because incoming mes-
sages to every node are independent. Furthermore, by the gen-
eral concentration theorem of [6], which generalizes the results
of [7], we are assured that, for almost all randomly constructed
codes and for almost all inputs, the decoder performance will be
close to the decoder performance under the local tree assump-
tion with high probability, if the block length of the code is long
enough. From now on we base our analysis on this local tree
assumption.

It is convenient to use log-likelihood ratios (LLRs) as mes-
sages; i.e., we use

as the output message of a variable node, whereis the bit value
of the node and denotes all the information available to the
node up to the present iteration obtained from edges other than
the one carrying . Likewise, we define the output message of
a check node as

where is the bit value of the variable node that gets the mes-
sage from the check node, anddenotes all the information
available to the check node up to the present iteration obtained
from edges other than the one carrying.

Let be a message from a variable node to a check node.
Under sum-product decoding,is equal to the sum of all in-
coming LLRs; i.e.,

(1)

where are the incoming LLRs from the
neighbors of the variable node except the check node that gets
the message, and is the observed LLR of the output bit
associated with the variable node. The density of the sum of
random variables can be easily calculated
by convolution of densities of the ’s, which can be efficiently
done in the Fourier domain [6].

The message update rule for check nodes can be ob-
tained from the duality between variable and check nodes
and the resulting Fourier transform relationship between

and , where and
[22]. From this, we get the following “tanh

rule” [23]–[25], [6], [22]:

(2)

where are the incoming LLRs from
neighbors of a check node, andis the message sent to the re-
maining neighbor. Figs. 1 and 2 show message flows through
a variable node and a check node, respectively, where we use
normal realizations [22] of variable and check nodes, which be-
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Fig. 1. Message flow through a variable node.

Fig. 2. Message flow through a check node.

come a repetition and a parity check, respectively. In this rep-
resentation, half-edges represent variables and full edges rep-
resent states. Under sum-product decoding, constraints become
computation nodes and states become communication links be-
tween constraint nodes. Fig. 2(b) shows how the decoding for a
check node can be done on a dual graph (repetition code) using
Fourier transforms, which is a special case of a more general
idea of dualizing the sum-product algorithm on a dual graph
[22].

To apply the same Fourier transform technique to (2), we need
to take logarithms on each side to convert the product into a sum,
i.e.

(3)

where and are the signs of and ,
respectively. We define the sign as if and otherwise.
Thus, the sum for the sign in (3) is performed inand the sum
for the magnitude is the ordinary sum in. As in the first case,
density evolution for this step can be done numerically in the
Fourier domain [6].

This can be generalized to irregular codes, where a variable
number of degrees is allowed. Let

and

be the generating functions of the degree distributions for the
variable and check nodes, respectively, whereand are
the fractions of edges belonging to degree-variable and check
nodes, respectively [11]. Using this expression, the nominal rate

of the code is given by

[11]. For detailed density evolution for irregular codes, we refer
readers to [13].

This two-stage computation, called density evolution, is the
key step in calculating the thresholds of message-passing de-
coding in [6]. First, without loss of generality, we assume that
the all- codeword was sent. Then, we fix the channel param-
eter, namely, noise power, and we run the above algorithm it-
eratively until either the density of tends to the “point mass
at infinity” (equivalently, the probability of error tends to zero),
or it converges to a density with a finite probability of error (the
probability of being negative).1 The threshold is defined as the
maximum noise level such that the probability of error tends to
zero as the number of iterations tends to infinity.2

II. GAUSSIAN APPROXIMATION FORREGULAR LDPC CODES

The LLR message from the channel is Gaussian with mean
and variance , where is the variance of the channel

noise. Thus, if all [which are independent and
identically distributed (i.i.d.)] are Gaussian in (1), then the re-
sulting sum is also Gaussian because it is the sum of independent
Gaussian random variables. Even if the inputs are not Gaussian,
by the central limit theorem, the sum would look like a Gaussian
if many independent random variables are added as noted in
[26].

Indeed, if we normalize the output of (1) to a zero-mean
unit-variance variable, and if the are i.i.d. with finite
variance, then the normalized output converges to a Gaussian
distribution as tends to infinity by the central limit theorem.
However, due to the interaction between variable and check
nodes, it does not seem easy to rigorously show how close the
distributions are to the Gaussian in actual density evolution.

Using simulations, Wiberg [26] observed that message dis-
tributions for AWGN channels resemble Gaussians using a (2,
3)-regular code. Our empirical results using density evolution
show that for a regular graph, the outputin (1) as well as the
output in (2) can be well approximated by Gaussian densi-
ties, although tends to be less like Gaussian, especially when
its mean is near zero. Despite this difference, the approximation

1A point mass at0 contributes half of its probability mass to the probability
of error.

2In the limit of infinitely long codes.
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method that we develop in this section works very well for reg-
ular LDPC codes. From this point on, for regular LDPC codes,
we assume that the variables ’s are Gaussian.

Since a Gaussian is completely specified by its mean and vari-
ance, we need to keep only the means and variances during it-
erations. There is an important condition, called thesymmetry
condition[13], that is preserved under density evolution for all
messages, which can be expressed as , where

is the density of an LLR message. By enforcing this con-
dition for the approximate Gaussian densities at every iteration,
we can greatly improve the accuracy of the approximation. For
a Gaussian with mean and variance , this condition reduces
to , which means that we need to keep only the mean.

In [16], the SNR of a Gaussian was used instead of its mean,
to approximate density evolution for turbo codes. If we define
the SNR of a Gaussian with meanand variance as ,
then it becomes if we assume the symmetry condition for
the approximate messages. Therefore, the SNR becomes equiv-
alent to the mean. However, since simulations were used in [16]
due to a lack of tools for analyzing the density evolution for
turbo codes, the authors of [16] were unable to calculate thresh-
olds for turbo codes with enough precision (up to two digits).

Since we are concentrating only on regular and irregular
LDPC codes, we can find analytic expressions for the approx-
imate density evolution and we can calculate the approximate
threshold values with arbitrary precision. Our empirical results
show that it is limited to about ten digits due to the precision of
the double precision numbers. Using the mean is also intuitive
and physically motivated especially for irregular codes. It needs
more steps to show how different SNRs are mixed for irregular
codes, which can be done naturally using the mean as we will
show in the next section.

We denote the means ofand by and , respectively.
Then (1) simply becomes

(4)

where is the mean of and denotes theth iteration. We
omit the index because the ’s are i.i.d. for , and
have the same mean . Note that since the initial
message from any check node is.

The updated mean at the th iteration can be calculated
by taking expectations on each side of (2), i.e.

(5)

where we have omitted the indexand simplified the product
because the ’s are i.i.d. One complete iteration begins at
the variable nodes and then ends at the check nodes. The
variables and are Gaussian , and

, respectively, where is a Gaussian
density with mean and variance .

Note that the expectation depends only on the
mean of , since is Gaussian with mean and variance

; i.e.

We define the following function for , which
will be useful and convenient for further analyses.

Definition 1:

if

if
It is easy to check that is continuous and monotonically
decreasing on , with and . Using

, we obtain the following update rule for from (4) and
(5):

(6)
where is the initial value for .

The following lemma gives upper and lower bounds on .

Lemma 1:

(7)
Proof: By expanding as follows:

if

if

we obtain

where

is the -function. Using

[27], we get

where we use [28] and .
Similarly, we get
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Fig. 3. Approximate (- -) and exact (—) thresholds for(j; k)-regular LDPC codes.

where we use

These bounds, which are tight as , will be used in
analyzing the behavior of the decoder and in optimizing degree
distributions in the following sections.

Although it is possible to calculate thresholds and to optimize
degree distributions using the exact values of , we note that
the following two approximations can be used instead to speed
up the calculations without much sacrifice in accuracy. For small

, say , we will use the following approximation, which
is very accurate and is better than (7) for this range of:

(8)

where , , and [these values
were optimized to minimize the maximum absolute error be-
tween (8) and ]. We note that there should be other curves
that fit better than (8), but (8) seems to be good enough for
our purposes. For large, say , we use the average of the
upper and lower bounds of (7) as an approximation for .

Table I shows approximate thresholds calculated using
(6) compared to the exact thresholds from density evolu-
tion. There is about 0.3 to 1.2% error (0.03 to 0.1 dB) compared
to the exact values.

Fig. 3 shows differences between approximate and exact
thresholds for various regular LDPC codes, where SNR
is defined as the distance from the Shannon limit in decibels.
Note that the accuracy for codes becomes improved
as becomes large, which can be explained because as more
inputs are added at a variable node, the output becomes more
Gaussian. Algorithms developed in [9] and [10] were used to
calculate exact thresholds in Table I.

TABLE I
APPROXIMATE AND EXACT THRESHOLD VALUES FOR VARIOUS

(j; k)-REGULAR LDPC CODES FOR THEBINARY-INPUT AWGN CHANNEL

AND SUM-PRODUCT DECODING

III. GAUSSIAN APPROXIMATION FORIRREGULARLDPC CODES

The preceding analysis can be easily extended to irregular
LDPC codes.

We again consider an ensemble of random codes with degree
distributions and . A node will thus get i.i.d. messages
from its neighbors, where each of these messages is a random
mixture of different densities from neighbors with different de-
grees. We denote these mixtures from variable nodes and from
check nodes by and , respectively.

We assume first that the individual output of a variable or a
check node is Gaussian, as in the preceing section, based on
the empirical evidence. Therefore, the mean of the output
message of a degree-variable node at theth iteration is given
by
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where is the mean of and is the mean of at the
st iteration, where is a Gaussian mixture in general

[when is not concentrated in one degree]. The variance
of the output density is given by , as in the last section.
Therefore, at theth iteration, an incoming messageto a check
node will have the following Gaussian mixture density :

(9)

where is the mean of the Gaussian output from a degree-
variable node.

Using (9), we get

Then, we use (5) for a check node to calculate the mean of its
output. Therefore, the mean of the Gaussian output mes-

sage of a check node with degreeat the th iteration is
given by

Since with probability for , is also a
Gaussian mixture. Since the output message of a variable node
is characterized by its mean, which is the sum of the means of
the incoming densities, we need to keep only the mean of the
Gaussian mixture from check nodes to variable nodes. By lin-
early combining these means for degree- check nodes
with weights , we get as given in the
following:

(10)

For and , we define and
as

(11)

Using this, we rewrite (10) as

(12)

where and . The initial value is . Note
that since for , the iteration (12) will
always start.

Definition 2: The threshold is the infimum of all in
such that converges to as .

The threshold in terms of noise power is therefore equal to
. Since is monotonically decreasing on ,

we conclude that is monotonically increasing on both
and . By finite induction, we conclude

that for all , and will converge to .

Lemma 2: will converge to iff

(13)

for all .
Proof: Let us first assume . Since

, will converge to . However,
cannot be finite, because if so then .

Now we assume for some .
because . Since is continuous, there exists
such that for . Now we choose the
smallest such that and for

. Since and
for we conclude that for

.

As an alternative expression to (11), for and
, we define and as

(14)

Now, (12) becomes equivalent to

(15)

where . The initial value is . It is easy to see that
iff . Thus, the convergence condition

is satisfied iff

(16)

This will be useful in optimizing , since (14) is linear in the
’s.
Let us take an example to demonstrate how well message

densities are approximated by Gaussian mixtures. The following
rate- code (17) was designed using density evolution and
has the threshold [10]. The threshold calculated by the
Gaussian approximation is .

(17)

Fig. 4 shows two message densities from variable to check nodes
when density evolution and the Gaussian approximation are used
for thecode in (17).Thenoisepowerwasset tobe0.006dBbelow
the threshold in each case. Surprisingly, they are very close. Fig.
5 shows corresponding densities from check to variable nodes.
In this case, the exact density has a spike at, which cannot be
modeled well by a Gaussian approximation. Even though the two
densities look very different, the fact that the two densities in the
other direction are very close suggests that the approximation is
working well. In fact, even though the exact density in Fig. 5 is
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Fig. 4. Approximate (- -) and exact (—) densities at the check node input.

Fig. 5. Approximate (- -) and exact (—) densities at the variable node input.

very different from a Gaussian, the output of the variable node
will be Gaussian-like again because many i.i.d. inputs are added
at the variable node. Furthermore,when the probabilityoferror is
small enough, the exact density in Fig. 5 becomes Gaussian-like,
as observed in [13]. We note that such a mismatch between the
exact and approximate densities in Fig. 5 still exists in regular
cases, too, because the shape of the exact density in Fig. 5 is due

to the nature of check node computations (the rule), not
because is irregular.

IV. STABILITY

In this section, we find the condition for the convergence of
to in (12) as tends to infinity when is large enough, also
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known as the stability condition [13]. We also derive the rate of
convergence of the probability of error using this result.

We first prove the following lemma, which gives the behavior
of (11) when is large (equivalently, small probability of error).

Lemma 3: As , becomes

(18)

where is the first nonzero .
Proof: When is large in (11),

can be simplified to

where and are the first and the second nonzero’s,
respectively. If for some , then we define

. Using , we get

(19)

where we used . By taking
on both sides of (19), we get

where we used and Lemma 1. By using
Lemma 1 again, we get

Finally, by taking and by using (11), we get the result.

If , then always converges to infinity regardless of
and as tends to infinity if is large enough. Otherwise,

becomes a constant asbecomes large. For this case, using
, we get

where

The following theorem summarizes these two results.

Theorem 1: If , then will converge to infinity as
tends to infinity if is large enough. If , then cannot
converge to infinity regardless of its initial value. Note that this
condition is similar to the stability condition

of [13], except that is replaced by
Using Jensen’s inequality, we conclude that

for all , with equality iff for some . There-
fore, the approximate stability condition is looser than the orig-
inal, which implies that stable degree distributions under the
Gaussian approximation may not be stable under density evolu-
tion. However, stability under density evolution guarantees sta-
bility under the Gaussian approximation. In any case, these two
are the same if for some , and are very close if

is concentrated at two consecutive degrees, which is the
case for most good degree distributions found so far.

If , then for large we can express as

(20)

where is a constant. The probability of error at the th iter-
ation is given by

(21)

where

is the fraction of degree-variable nodes. When is large, we
get the following approximation for the probability of error.

Lemma 4: When is large, is approximated by

if

if

where are positive constants that depend onand the
degree distributions.

Proof: When is large, the first nonzero term in (21) be-
comes dominant. When , becomes

where and are constants that depend on the degree distribu-
tions and , and we have used

and (20). If , then becomes approximately
where is a positive constant that depends on the degree dis-
tributions and . Using this and the above approximation for the

-function, the result follows.

This implies that when and is small, the error
probability will decrease by a factor of at each
iteration, which matches empirical observations using density
evolution very well.
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Fig. 6. fh (s; r) � rg for i = 2; . . . ; 20 (top to bottom) andfh(s; r) � rg (- -).

V. OPTIMIZATION OF DEGREEDISTRIBUTIONS

Assuming that and are given, we can optimize
by maximizing the rate of the code. The constraints are 1) nor-
malization: ; and 2) the inequality constraint (13).
Since this is a linear program, it can be solved efficiently. Alter-
natively, however, we can maximize (18) ignoring the
term. As shown in the following theorem, the optimized
in this way has the form for some

and .

Theorem 2: A concentrated degree distribution

for some and , minimizes

subject to and , where is a constant.
Proof: The dual linear program to the given problem is

max

subject to

Suppose we choose an integersuch that

We claim that the following are feasible solutions to the primal
and dual problems of equal cost, which are optimal solutions
to both primal and dual problems by the weak duality theorem
[29]:

To check whether the constraints of the dual problem are satis-
fied, we first observe that , and since

if
if
if

we conclude that , , by finite
induction.

Note that this solution also maximizes (18) without the
term, subject to the rate constraint. Experiments show

that this concentrated form of is not much different from
the optimized degree distributions using linear programming,
and that there is no noticeable performance degradation for
the cases we have examined so far. Thus, we will use only
concentrated ’s.

The optimization of can be done similarly to the opti-
mization of , i.e., assuming and are given, we op-
timize by maximizing the rate

The constraints are 1) normalization: ; and 2) the in-
equality constraint (16). This can be also done using linear pro-
gramming.

Fig. 6 shows for using the de-
gree distribution in (17) where the noise level is equal to
the Gaussian approximation threshold of the code in (17). In this
case, where and the noise power are given, the optimiza-
tion of may be performed by maximizing the rate of the
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Fig. 7. fh(s; r) � rg as a function ofr magnified.

code subject to the normalization constraint and the
inequality constraints , , and

Figs. 6 and 7 show how each curve in for
, is combined to produce the curve ,

where the degree distribution in (17) is used. This curve is
always below and barely touchesat one point. If it hits , then
the point where the curve hitsbecomes a fixed point, and the
error probability cannot be decreased further. Note that, since
the slope of the curve of near is different
from those for , the stability condition in Theorem 1 is
described by only .

Although we have shown that concentrated are good
enough, we may still want to visualize how the optimization of

is done. Fig. 8 shows for
using in (17) where the noise level is equal to the Gaussian
approximation threshold of the code in (17). In this case, where

and the noise power are given, the optimization of
may be performed by maximizing the rate of the code subject to
the normalization constraint and the inequality con-
straints , , and

Figs. 8 and 9 show how two curves corresponding to and
in are combined to produce the curve ,
where in (17) is used. This curve is always aboveand
barely touches at one point. If it hits , then the point where

the curve hits becomes a fixed point, and the error probability
cannot be decreased further.

Figs. 10 and 11 show thresholds in SNR for some codes
of rates to optimized using both density evolution and the
Gaussian approximation when the maximum variable degree
is or , respectively. They show that the difference between
the exact and approximate thresholds is small (less than 0.3 dB)
for codes designed using the Gaussian approximation. It also
shows that the optimization based on the Gaussian approxima-
tion is good especially when is low and when the rate is high.
For example, for rates higher than , the difference is less than
0.02 dB for and less than 0.1 dB for .

VI. FIXED POINTS

We have seen that the Gaussian approximation is useful in
calculating thresholds and optimizing degree distributions.
However, it is not clear how accurate the approximation is by
just looking at a single number, namely, a threshold. In this
section, we show how accurately the Gaussian approximation
can predict the locations of potential fixed points of density
evolution, which could show more aspects of the approximation
than thresholds.

First observe that in Figs. 7 and 9 there are slow and fast
phases, where the width of the gap between the curve and the
horizontal axis determines the iteration speed. This explains
why there are slow and fast phases in sum-product decoding,
as noted in [13].

Fig. 12 shows the decrease in the probability of error as a
function of the probability of error for the code in (17)
using density evolution and the Gaussian approximation, where
the noise power is set to be 0.006 dB below the threshold of each
case. It is interesting to observe that there are three estimated
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Fig. 8. ff (s; t) � tg for i = 2; . . . ; 10 (top to bottom) andff(s; t) � tg (- -).

Fig. 9. ff(s; t) � tg as a function oft magnified.

fixed points under density evolution (including zero probability
of error) but only two under the Gaussian approximation. As
we increase the noise power, (probability of error)
becomes a fixed point under both the Gaussian approximation
and density evolution. As the noise power is increased further,

becomes another fixed point under density evolution.

Fig. 13 shows the decrease in the probability of error as a
function of the probability of error for the following code

(rate ) (22) using density evolution and the Gaussian ap-
proximation, where the noise power is set to be 0.006 dB below
the threshold of each case.

(22)

In this case, the number of potential fixed points is estimated
correctly using the Gaussian approximation, and the two curves
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Fig. 10. Performance of various codes, designed/evaluated using GA/GA, GA/DE, DE/GA, or DE/DE whend = 10, where GA denotes the Gaussian
approximation and DE denotes density evolution.

Fig. 11. Performance of various codes, designed/evaluated using GA/GA, GA/DE, DE/GA, or DE/DE whend = 20.

are quite close. In this case, the Gaussian approximation not
only calculates thresholds accurately, but also tracks the exact
probability of error reasonably well.

We note that, from empirical observations, as the maximum
variable degree increases, the number of fixed points often tends
to increase. Since the Gaussian approximation is not good at es-

timating the number of fixed points exactly when the maximum
variable degree is large, it becomes less useful in this case. How-
ever, when the maximum variable degree is small, the Gaussian
approximation works reasonably well. This seems to contradict
our previous observations for regular codes, where the accuracy
of the Gaussian approximation for codes improves as
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Fig. 12. The probability of error versus decrease in the probability of error of thed = 20 code in (17) using density evolution (—) and the Gaussian approximation
(- -).

Fig. 13. The probability of error versus decrease in the probability of error for thed = 7 code in (22) using density evolution (—) and the Gaussian approximation
(- -).

increases. This seems to suggest that, as the maximum vari-
able degree of the code increases, the Gaussian approximation
becomes less accurate because the irregularity of the code in-
creases, even though the fraction of high-degree variable nodes
increases.

VII. CONCLUSION

For LDPC codes under sum-product decoding, the message
distributions are well approximated by Gaussians or Gaussian
mixtures when memoryless binary-input continuous-output
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AWGN channels are used. Using the Gaussian approximation,
we have simplified density evolution to a one-dimensional
problem, and found simple and analyzable expressions for
describing approximate density evolution. Because of the
huge reduction in the dimension of the problem without much
sacrifice in accuracy, we can find thresholds faster and optimize
degree distributions faster and easier. It also enables us to
analyze the behavior of density evolution especially near the
zero probability of error, which makes it possible to find the
approximate rate of convergence for the probability of error
when it is near zero. The Gaussian approximation is also a good
tool to visualize how the mean of densities are updated under
density evolution, which also explains why there are fast and
slow phases in density evolution. It also helps us get some hints
on how to optimize degree distributions. Graphically, we have
demonstrated how the optimization of degree distributions can
be visualized.

Online demonstration of optimization of degree distributions
using the Gaussian approximation and more results are available
at http://truth.mit.edu/~sychung.
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