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Abstract

This paper presents a method for stability analysis of
switched and hybrid systems using polynomial and piece-
wise polynomial Lyapunov functions. Computation of
such functions can be performed using convex optimiza-
tion, based on the sum of squares decomposition of multi-
variate polynomials. The analysis yields several improve-
ments over previous methods and opens up new possibili-
ties, including the possibility of treating nonlinear vector
fields and/or switching surfaces and parametric robust-
ness analysis in a unified way.

1 Introduction

Many systems have dynamics that are described by a set
of continuous time differential equations in conjunction
with a discrete event process. Such systems are usually
referred to as switched or hybrid systems. Stability anal-
ysis of switched and hybrid systems has been treated e.g.
in [8, 2, 5, 4]. See also [3] for a recent survey of the field.

One way of proving stability of switched and hybrid sys-
tems is by using piecewise quadratic Lyapunov functions
[8, 5, 4], which are constructed by concatenating sev-
eral quadratic Lyapunov-like functions. This approach is
quite effective, as the search for such Lyapunov functions
can be performed by solving linear matrix inequalities
(LMIs). However, in some cases it can be conservative.

The present paper provides a new approach to stabil-
ity analysis of switched and hybrid systems. For prov-
ing stability, polynomial and piecewise polynomial Lya-
punov functions are constructed using the sum of squares
decomposition [7], which can be efficiently computed us-
ing semidefinite programming, e.g. using the software [9].
The method generalizes previous analysis methods using
quadratic and piecewise quadratic Lyapunov functions.
Some features of the new approach are:

1This work was supported by AFOSR “Unified Theory for Com-
plex Biological and Engineering Networks”, NIH/NIGMS AfCS
(Alliance for Cellular Signalling), DARPA “Enlightened Multiscale
Simulation of Biochemical Networks”, the Kitano ERATO Systems
Biology Project, and URI “Protecting Infrastructures from Them-
selves”.

• it provides a less conservative test for proving sta-
bility under arbitrary switching,

• stability can be proven with a smaller number of
Lyapunov-like functions, eliminating the need of re-
fining the state space partition,

• the method can be applied to systems with nonlin-
ear subsystems and nonlinear switching surfaces,

• parametric robustness analysis can be performed in
a straightforward manner.

2 Preliminaries

2.1 Switched and Hybrid Systems
In this section, we present some preliminaries on switched
and hybrid systems, and establish the notation for later
use. The systems considered in this paper are of the
following form:

ẋ = fi(x), i ∈ I = {1, ..., N}, (1)

where x ∈ R
n is the continuous state, i is the discrete

state, fi(x) is the vector field describing the dynamics of
the i-th mode/subsystem, and I is the index set. With-
out loss of generality, we assume that the origin is an
equilibrium of the system.

Depending on how the discrete state i evolves, a system
like (1) can be categorized as a switched system, if for
each x ∈ R

n only one i ∈ I is possible, or as a hybrid
system, if for some x ∈ R

n multiple i are possible. The
former type of systems includes systems with saturation
and variable structure systems, whereas the latter type
includes systems with hysteresis, systems with finite au-
tomata, etc.

More specifically, in the case of switched systems, the
system is in the i-th mode at time t if x(t) ∈ Xi, where
Xi ⊂ R

n is a region of the state space described by

Xi = {x ∈ R
n : gik(x) ≥ 0, for k = 1, ...,mXi

}, (2)

for some gik : R
n → R. Additionally, the state space

partition {Xi} must satisfy
⋃

i∈I Xi = R
n and int(Xi) ∩

int(Xj) = ∅ for i 6= j. A switching surface between the
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i-th and j-th modes, i.e. a boundary between Xi and Xj ,
is given by

Sij = {x : hij0(x) = 0, hijk(x) ≥ 0, k = 1, ...,mSij
}, (3)

for some hijk : R
n → R. Note that the transition be-

tween modes on this surface can occur in both directions.
Although in principle the direction of transition for a par-
ticular x ∈ Sij can be determined from the vector fields
fi(x) and fj(x), it is assumed in our analysis that such
a characterization is not performed a priori.

On the other hand, the evolution of the discrete state in
a hybrid system is governed by

i(t) = φ(x(t), i(t−)), (4)

with φ : R
n × I → I. Corresponding to the transition

law φ, there exists a region of the state space where a
particular mode can be active. For the i-th mode, the
active region is denoted by Xi, and is given by1

Xi = {x ∈ R
n : gik(x) ≥ 0, for k = 1, ...,mXi

}. (5)

In the hybrid system case,
⋃

i∈I Xi = R
n still holds, but

int(Xi)∩ int(Xj) is not necessarily empty for i 6= j. The
transition set from the j-th mode to the i-th mode in a
hybrid system is described by

Sij = {x : i = φ(x, j)}

= {x : hij0(x) = 0, hijk(x) ≥ 0, k = 1, ...,mSij
}. (6)

In contrast to switched systems, the transition between
modes on Sij for a hybrid system occurs only in one di-
rection, namely from j to i.

Throughout the paper, it is assumed that the discrete
state i(t) is piecewise continuous. Systems with infinitely
fast switching, such as those that have sliding modes, are
excluded from our discussion. We also assume that the
functions fi, gik, and hijk are polynomials. For the case
in which any of these functions is nonpolynomial, see the
comment at the end of Section 3.3.

2.2 Sum of Squares Decomposition
Our analysis in the later sections is based on the sum
of squares decomposition of multivariate polynomials.
A multivariate polynomial p(x) is a sum of squares if
there exist polynomials p1(x), ..., pm(x) such that p(x) =
∑m

i=1
p2

i (x). This in turn is equivalent to the existence of
a positive semidefinite matrix Q, and a properly chosen
vector of monomials Z(x) such that p(x) = ZT (x)QZ(x).

What makes the sum of squares decomposition attrac-
tive is the fact that such a decomposition can be com-
puted using semidefinite programming, since the compu-
tation of Q is nothing but a search for a positive semidef-
inite matrix subject to some affine constraints. Coupled

1A notation similar to (2) is chosen here for simplicity; the in-
terpretation should be clear from the context.

with the property that p(x) being a sum of squares im-
plies2 p(x) ≥ 0, the sum of squares decomposition pro-
vides a computational relaxation for proving polynomial
positivity, which belongs to the class of NP-hard prob-
lems. Three kinds of polynomial positivity and their cor-
responding sum of squares computational relaxations are
shown in Table 1.

The sum of squares decomposition has been exploited
to algorithmically construct Lyapunov functions for non-
linear systems [7, 6]. For this purpose, real coefficients
c1, ..., cm are used to parameterize a set of Lyapunov func-
tions in the following way:

V = {p(x) : p(x) = p0(x) +

m
∑

i=1

cipi(x)}, (7)

where pi(x) are some polynomials; for example they could
be monomials of degree up to some number. The search
for a Lyapunov function V (x) ∈ V, or equivalently some
ci, such that V (x) is positive definite and dV

dt is nega-
tive definite can still be formulated as a sum of squares
problem and solved using semidefinite programming.

For brevity, the theorems in the subsequent sections will
be formulated in terms of inequalities such as V (x) ≥ 0 or
V (x) > 0. In fact, these theorems hold when the inequal-
ities are interpreted in the usual manner. However, if the
computation of Lyapunov functions is to be performed
using semidefinite programming, then these inequalities
have to be interpreted as sum of squares conditions, in
the way summarized in Table 1.

3 Stability Analysis

3.1 Stability Under Arbitrary Switching
We will first consider stability of the system (1) under ar-
bitrary switching. A sufficient condition for such stability
is the existence of a global common Lyapunov function
for all fi’s, as summarized in the following theorem.

Theorem 1 Suppose that for the set of vector fields {fi}
there exists a polynomial V (x) such that V (0) = 0 and

V (x) > 0 ∀x 6= 0, (8)

∂V

∂x
fi(x) < 0 ∀x 6= 0, i ∈ I, (9)

then the origin of the state space of the system (1) is
globally asymptotically stable under arbitrary switching.

Notice in particular that if the vector fields are linear, i.e.
fi(x) = Aix, and if V (x) is chosen to be quadratic, say
V (x) = xT Px, then the conditions in Theorem 1 corre-
spond to the well-known LMIs P > 0, AT

i P + PAi < 0
for all i, which prove quadratic stability of the system.
For higher degree polynomial vector fields and Lyapunov

2Note that the converse implication is true only in special cases.
One of such instances is when the polynomial is quadratic.

2



Positive semidefinite: p(x) ≥ 0 ∀x ∈ R
n. p(x) is a sum of squares.

Positive definite: p(x) > 0 ∀x 6= 0; p(0) = 0.
• If p(x) is homogeneous of degree N . (p(x) − ǫ

∑n
i=1

xN
i ) is a sum of squares.

• If p(x) is of degree N , but nonhomogeneous.

{

(p(x) −
∑n

i=1

∑N/2

j=1
ǫijx

2j
i ) is a sum of squares;

∑N/2

j=1
ǫij ≥ ǫ ∀i; ǫij ≥ 0 ∀i, j.

Strict positivity: p(x) > 0 ∀x ∈ R
n. (p(x) − ǫ) is a sum of squares.

Table 1: Three kinds of polynomial positivity (on the left) and the corresponding sum of squares conditions (on the right).
Conditions on the right are sufficient for those on the left. The polynomial degree N is assumed to be even, otherwise
the polynomial will be negative for some x. Here the ǫ are some positive real numbers.

functions, the search for V (x) can also be performed us-
ing semidefinite programming by formulating the condi-
tions as sum of squares conditions, as described in Sec-
tion 2.2. The higher degree test is generally less conser-
vative than the quadratic test, as in many cases global
higher degree Lyapunov functions exist for systems that
do not possess a global quadratic Lyapunov function. At
worst, these two tests have the same conservatism.

Example 2 Consider the system ẋ = fi(x), x =
[

x1 x2

]T
, with

f1(x) =

[

−5x1 − 4x2

−x1 − 2x2

]

, f2(x) =

[

−2x1 − 4x2

20x1 − 2x2

]

.

It can be proven using a dual semidefinite program that
no global quadratic Lyapunov function exists for this sys-
tem [5]. Nevertheless, a global sextic Lyapunov function

V (x) = 19.861x6

1
+ 11.709x5

1
x2 + 14.17x4

1
x2

2

+ 4.2277x3

1
x3

2
+ 8.3495x2

1
x4

2
− 1.2117x1x

5

2

+ 1.0421x6

2

exists, and therefore the system is asymptotically stable
under arbitrary switching (cf. Figure 1).

3.2 Piecewise Polynomial Lyapunov Functions
Most switched and hybrid systems come with a pre-
scribed switching scheme or a discrete transition rule.
In this case, there is no need to use the global analysis
method presented in Section 3.1. Stability can be proven
in a more effective way using piecewise polynomial Lya-
punov functions. Such functions are patched from sev-
eral polynomial functions Vi(x) (also termed Lyapunov-
like functions), typically corresponding to the state space
partition {Xi}. The Lyapunov-like function Vi(x) and its
time derivative along the trajectory of the i-th mode are
required to be positive and negative respectively, only
within Xi.

The conditions in the previous paragraph can be accom-
modated using a method similar to the S-procedure [1]
as follows. To incorporate the fact that Vi(x) only needs
to be positive on Xi, where Xi is described by (2), we
impose the relaxed condition

Vi(x) −

mXi
∑

k=1

aik(x)gik(x) > 0, (10)

−4 −2 0 2 4

−4

−2

0

2

4

x
1

x 2

 

Figure 1: Trajectories of the system in Example 2 under ar-
bitrary switching. Dashed curves are level curves
of the common Lyapunov function.

for some aik(x) ≥ 0. Since gik(x) is nonnegative on Xi,
the above condition implies that Vi(x) is positive on Xi.
An analogous condition can be imposed on dVi

dt . Note
that there is no requirement in our method that the mul-
tipliers aik(x) be constants (as in the S-procedure); they
can also be polynomials of higher degree. Thus, our con-
dition is generally less conservative than the S-procedure.

3.2.1 Switched Systems: As mentioned in the
preliminaries, for a switched system the transition be-
tween modes on a switching surface is not characterized
a priori. Without characterizing the direction of switch-
ing, it is essential that the piecewise Lyapunov function
used to prove stability be continuous on every Sij . For
Sij as in (3), imposing Vi(x) + cij(x)hij0(x)− Vj(x) = 0,
where cij(x) is an arbitrary polynomial, will guarantee
the continuity of V (x) on Sij . To this end, we have the
following theorem for switched systems.

Theorem 3 Consider the switched system (1)–(3). As-
sume that there exist polynomials Vi(x), cij(x), with
Vi(0) = 0 if 0 ∈ Xi, and sums of squares3 aik(x) ≥ 0,
bik(x) ≥ 0, such that

3The theorem actually holds as long as aik(x) and bik(x) are
nonnegative, even if they are not sums of squares (cf. footnote 2 on
the previous page and the remark at the end of Subsection 2.2).
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Vi(x) −

mXi
∑

k=1

aik(x)gik(x) > 0 ∀x 6= 0, i ∈ I, (11)

∂Vi

∂x
fi(x) +

mXi
∑

k=1

bik(x)gik(x) < 0 ∀x 6= 0, i ∈ I, (12)

Vi(x) + cij(x)hij0(x) − Vj(x) = 0 ∀i, j. (13)

Then the origin of the state space is globally asymptoti-
cally stable. A Lyapunov function that proves this is the
piecewise polynomial function V (x) defined by

V (x) = Vi(x), if x ∈ Xi. (14)

Even though the switched system is stable, low degree
(e.g. quadratic) Vi(x) that satisfy the above conditions
may not exist, as those conditions are only sufficient for
stability. In this case, an improved test can be performed
by dividing the state space into a more refined partition
than the original partition {Xi}, and then constructing a
piecewise Lyapunov function (of the same degree as be-
fore) based on this new partition. For systems with more
than two state variables, this refinement is obviously not
an easy matter. A simpler way for obtaining an improved
test is to use a higher degree Lyapunov function based
on the original partition, as illustrated by the following
example.

Example 4 Consider the switched system ẋ = fi(x)
with four state variables and two modes:

f1(x) =









−x1 − 23x2 + 12x3 − 2x4

−0.5x1 + 8.5x2 − 6x3 + 0.5x4

0.5x1 + 26x2 − 9.5x3 + 5x4

−3x1 − 35x2 + 12x3 − 6x4









,

f2(x) =









−1.4x1 − 18.6x2 + 8x3 − 1.6x4

−0.3x1 + 8.3x2 − 4x3 + 1.3x4

1.7x1 + 20.6x2 − 5.7x3 + 3.6x4

−3.4x1 − 28.6x2 + 8x3 − 4.6x4









,

X1 = {x ∈ R
4 : g(x) ≥ 0},

X2 = {x ∈ R
4 : g(x) ≤ 0},

where g(x) = (x1 + 0.5x2 + 1.5x3 + 0.5x4)(x1 − 0.5x2 +
0.5x3−0.5x4). No piecewise quadratic Lyapunov function
(using the original state space partition) exists for this
system. Refining the partition for this system is not easy,
thus we resort to higher order Lyapunov function instead.
A homogeneous piecewise quartic Lyapunov function can
be found by solving the optimization problem correspond-
ing to the conditions in Theorem 3. This proves that the
origin of the state space is globally asymptotically stable.

3.2.2 Hybrid Systems: Mode transitions in a
hybrid system are characterized a priori. Because of this,
a piecewise Lyapunov function for a hybrid system need
not be continuous, and it is enough to have Vi(x) ≤ Vj(x)
on Sij . This is taken into account in condition (17) of
the theorem below.

Theorem 5 Consider the hybrid system (1), (5)–(6).
Assume that there exist polynomials Vi(x), cij(x), and
aik(x) ≥ 0, bik(x) ≥ 0, dijk(x) ≥ 0, such that Vi(0) = 0
if 0 ∈ Xi, and

Vi(x) −

mXi
∑

k=1

aik(x)gik(x) > 0 ∀x 6= 0, i ∈ I, (15)

∂Vi

∂x
fi(x) +

mXi
∑

k=1

bik(x)gik(x) < 0 ∀x 6= 0, i ∈ I, (16)

Vi(x) + cij(x)hij0(x) +

mSij
∑

k=1

dijk(x)hijk(x)...

− Vj(x) ≤ 0 ∀i, j. (17)

Then the origin is globally asymptotically stable.

3.3 Nonlinear Vector Fields and Switching Sur-
faces/Transition Sets
So far, the systems we have considered in the examples
have linear subsystems and linear switching surfaces. As
mentioned previously, the sum of squares conditions can
be applied directly to systems with nonlinear vector fields
and nonlinear switching surfaces or transition sets. To
illustrate this, consider the following example.

Example 6 Let the hybrid system ẋ = fi(x) be com-
posed from two subsystems

f1(x) =

[

−2x1 − x3

1
− 5x2 − x3

2

6x1 + x3

1
− 3x2 − x3

2

]

,

f2(x) =

[

x2 + x2

1
− x3

1

4x1 + 2x2

]

,

with its transition rule given by

φ(0) = 1,

φ(t) =

{

1, if i(t−) = 2 and x2

2
(t) = x3

1
(t),

2, if i(t−) = 1 and x2(t) = 0, x1(t) ≥ 0.

Figure 2 depicts some trajectories of the system. The ac-
tive regions corresponding to the two modes are X1 = R

2

and X2 = {x ∈ R
2 : (x3

1
− x2

2
) ≥ 0}, while the tran-

sition sets are S12 = {x ∈ R
2 : x2

2
= x3

1
} and S21 =

{x ∈ R
2 : x2 = 0, x1 ≥ 0}. Using Theorem 5, the origin

can be proven globally asymptotically stable with a sextic
piecewise polynomial Lyapunov function given by

V (x(t)) = Vi(x(t)), if φ(t) = i,

for some Vi(x)’s.

In fact, even for a system with a rational or nonpolyno-
mial vector field, a system embedding can sometimes be
made such that a Lyapunov function that proves stability
can be computed using the sum of squares decomposition.
This has been presented in [6] and will not be discussed
in this paper. The same technique can also be applied to
nonpolynomial switching surfaces or transition sets.
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Figure 2: Trajectories of the system in Example 6. Dash-
dotted line and dashed curves show S21 and S12,
respectively.

4 Robust Stability Analysis

In this section we consider robust stability analysis of
switched or hybrid systems with uncertainty. Uncer-
tainty in a switched or hybrid system can be present in
the vector fields describing the flow of the system and/or
in the switching scheme/transition law. The uncertainty
can be of parametric nature, or caused by perturbation
of the vector field, switching delays, etc.

A method for robustness analysis has been proposed in
[8]. The approach is based on bounding Sij by an uncer-
tain switching set, and Xi by a bigger set where the cor-
responding Lyapunov-like function is decreasing. Since
this analysis is carried out using conditions similar to
those given in Section 3, it can be immediately general-
ized to make use of polynomial functions. The method
is well-suited for robustness analysis with respect to non-
parametric uncertainty, but unfortunately, although in
principle parametric uncertainty can be handled in a sim-
ilar fashion, it is not treated in a direct and efficient way.

We now present an analysis technique for handling para-
metric uncertainty in a direct way, based on param-
eter dependent Lyapunov-like functions and multipli-
ers. Computation of parameter dependent quadratic
Lyapunov-like functions using LMIs had been previously
difficult, since such functions are nonquadratic polynomi-
als in the state and parameter variables. Using the sum
of squares decomposition, computation of even higher de-
gree functions is straightforward.

Let us denote the uncertain parameters by p ∈ R
ñ, and

let the set of admissible parameters be given by

P = {p ∈ R
ñ : qk1

(p) ≥ 0, k1 = 1, ...,K1;

rk2
(p) = 0, k2 = 1, ...,K2}, (18)

for some polynomials qk1
(p) and rk2

(p). Furthermore,

assume that the vector fields fi and polynomials describ-
ing Xi and Sij depend on p. Theorems 1, 3, and 5 can
be modified to accommodate parameter dependent Lya-
punov functions and multipliers. For brevity, we only
present the parameter dependent version of Theorem 5.

Theorem 7 Consider the hybrid system (1), (5)–(6),
which has unknown parameters p ∈ P , where P is as
in (18). Assume that there exist polynomials Vi(x, p),

cij(x, p), âik(x, p), b̂ik(x, p), d̂ijk(x, p), and aik(x, p) ≥ 0,

ãik(x, p) ≥ 0, bik(x, p) ≥ 0, b̃ik(x, p) ≥ 0, dijk(x, p) ≥ 0,

d̃ijk(x, p) ≥ 0, such that Vi(0, p) = 0 if 0 ∈ Xi and Equa-
tions (19)–(21) on the next page are satisfied. Then the
origin of the state space is robustly asymptotically stable
with respect to the unknown parameters p ∈ P .

Example 8 Let us consider the hybrid system ẋ = fi(x),
with vector fields

f1(x) =

[

−x1 − 100x2

10x1 − x2

]

, f2(x) =

[

x1 + 10x2

−100x1 + x2

]

,

and transition law

i(0) = 1,

i(t) =

{

2, if i(t−) = 1 and −px1(t) − x2(t) = 0,
1, if i(t−) = 2 and 2x1(t) − x2(t) = 0.

Notice the dependence of the first switching surface on
the unknown parameter p ∈ R. Stability of the system
depends on the value of p. In this example, we have
deliberately chosen a system with linear subsystems, so
that robust stability of the system can also be analyzed
in a purely analytical way for comparison purposes. By
computing the flows of the subsystems, it can be proven
that the system is stable for p > 2.165 and unstable for
p < 2.163. At p ≃ 2.164 it exhibits a limit cycle (see Fig-
ure 3). With parameter dependent Lyapunov-like func-
tions of the form

Vi(x, p) = Vi,1(x) + pVi,2(x), (22)

robust stability of the system with respect to p ∈ P =
{p : p − C ≥ 0}, where C is a constant, can be proven.
Using quadratic Vi,1(x) and Vi,2(x), we can prove robust
stability for C = 5.86. Tighter robustness bounds can
be obtained by increasing the degree of the Lyapunov-like
functions, as depicted in Table 2.

5 Conclusions

A new method for stability analysis of switched and hy-
brid systems has been presented. The method is based
on polynomial and piecewise polynomial Lyapunov func-
tions, whose computation can be efficiently performed
using the sum of squares decomposition and semidefinite
programming.
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Vi(x, p) −

mXi
∑

k=1

aik(x, p)gik(x, p) −
K1
∑

k=1

ãik(x, p)qk(p) −
K2
∑

k=1

âik(x, p)rk(p) > 0 ∀x 6= 0, i ∈ I, (19)

∂Vi

∂x
fi(x, p) +

mXi
∑

k=1

bik(x, p)gik(x, p) +

K1
∑

k=1

b̃ik(x, p)qk(p) +

K2
∑

k=1

b̂ik(x, p)rk(p) < 0 ∀x 6= 0, i ∈ I, (20)

Vi(x, p) + cij(x, p)hij0(x, p) +

mSij
∑

k=1

dijk(x, p)hijk(x, p) − Vj(x, p) +

K1
∑

k=1

d̃ijk(x, p)qk(p) +

K2
∑

k=1

d̂ijk(x, p)rk(p) ≤ 0 ∀i, j.

(21)

−15 −10 −5 0 5 10
−15

−10

−5

0

5

x
1

x 2

p = 1

(a) p = 1

−15 −10 −5 0 5 10
−15

−10

−5

0

5

x
1

x 2

p ≈ 2.164

(b) p ≃ 2.164
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Figure 3: Trajectories of the system in Example 8 for different values of p. Dashed lines represent the transition sets.

Degree of Vi,k(x) C

2 5.86
4 2.50
6 2.23
8 2.18
...

...

Table 2: Relation between the degree of Vi,k(x), k = 1, 2,
and the value of C for which robust stability can
be proven. Recall that the system is stable for
p > 2.165.

Using this approach, higher degree Lyapunov functions
can be constructed, thus reducing the conservatism of
searching for only quadratic candidates. In the same
way parametric uncertainty can be incorporated in the
search. Several examples have been provided to illustrate
the benefits of the new approach.
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