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Analysis of System Imperfections in a

Photonics-Assisted Instantaneous Frequency

Measurement Receiver Based on a Dual-Sideband

Suppressed-Carrier Modulation
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Abstract—Instantaneous frequency measurement receivers are
a well-established technology that is used for the ultrafast
characterization of pulsed microwave signals over a broad band-
width. Recently, numerous photonic approaches to instantaneous
frequency measurement (IFM) have been proposed and experi-
mentally demonstrated, with the ultimate aim of leveraging the
benefits of optical technology to improve the performance of al-
ready existent electronic solutions. Despite the numerous results,
not so much attention has been paid so far to understand the
subtle implications that system imperfections can have on realistic
photonics-based IFM receivers. Here, we focus our attention in
one of the most promising among these IFM techniques, which is
based in optical power monitoring of a dual-sideband suppressed-
carrier modulation after a Mach-Zehnder interferometer (MZI)
filter. We develop a time domain model for the rigorous analysis
of all major optical and electrical effects, including amplitude
imbalance and phase errors in the modulator and the MZI, as
well as on-pulse RF phase/frequency modulation. Simulations are
then used to illustrate the substantial effect that a non-perfectly
suppressed optical carrier can have on system performance. More
importantly, it is shown that in a non-ideal situation the system
amplitude comparison function critically depends with input RF
power, thus greatly limiting the dynamic range of the photonics-
based receiver. Some approaches to solve these issues are also
discussed.

Index Terms—Frequency measurement, Integrated optoelec-
tronics, Microwave measurements, Optical planar waveguides,
Optical waveguide filters.

I. INTRODUCTION

DETECTING and characterizing electromagnetic activity

in nearly real-time is of critical importance for many

modern electronic warfare (EW) systems [1], [2]. For example,

radar warning receivers (RWR) installed in military aircrafts

continuously intercept and process radar signals during tactical

operations. Trains of detected RF pulses are usually classified

according to their physical characteristics, and these are then

used to estimate the type and origin of the received waveforms.

By doing so, potential threats can be identified (such as hostile
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surveillance radars and radar guided weapons), and counter-

measures can be either manually or automatically taken, if

needed.

Due to the wide range of existent radar equipment, RWR

must be able to perform pulse measurements over a very

broad bandwidth (typically tens of GHz) while still offering a

quasi-instantaneous response. These stringent requirements are

typically met by means of dedicated instantaneous frequency

measurement (IFM) subsystems [3], [4]. Thanks to their spe-

cial architecture, which usually combines a sophisticated mix

of high-speed digital and analog electronics, IFM receivers

can be used to estimate a wide range of RF pulse parame-

ters with sub-microsecond response times, including: Center

frequency (fRF ), pulse width (PW), pulse amplitude (PA)

and pulse repetition frequency (PRF). Furthermore, since IFM

systems directly measure the instantaneous frequency of the

RF signal, on-pulse phase/frequency modulation can also be

detected.

While electronic solutions are well established in the EW

and signals intelligence (SIGINT) markets, the past few years

have seen a remarkable increase in the proposal and develop-

ment of photonic approaches to IFM [5]–[20]. Similarly to the

well-known field of microwave photonics, which seeks to take

advantage of the unparalleled benefits that optical technology

can bring to microwave applications, all these techniques are

aimed at improving the performance of current electronics-

based IFM products. In fact, the exploding telecom growth

has imparted significant momentum in the development of

different photonic integration platforms, which have already

reached considerable levels of maturity in terms of functional-

ity and performance of their basic building blocks [21]–[23].

By exploiting the benefits of these technologies, integrated,

light-based systems hold the promise for potentially low

cost, compact footprint and high-bandwidth IFM equipment.

Among all the reported photonic approaches to IFM, those

based on detection and processing of optical powers stand out

as the most promising for a near and short term practical

implementation [6], [8], [9], [11], [12], [14], [15], [19],

[20], [24]. These avoid the need of microwave components

and circuits (such as detection logarithmic video amplifiers),

and only require the use of high sensitivity (i.e, low dark

current) photodiodes and high dynamic range transimpedance

amplifiers.

So far, most reported results have focused on proof-of-
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Fig. 1. Schematic diagram of the photonic IFM system under analysis.
TL: Tunable laser. MZM: Mach-Zehnder Modulator. MZI: Mach-Zehnder
Interferometer. BC: Bias Controller. PD: Photodetector. ACF: Amplitude
Comparison Function.

principle experimental demonstrations, with little in-depth

discussions on the subtleties and trade-offs associated with im-

perfect system operation. Besides, just continuous wave (CW),

frequency domain analyses under highly ideal conditions

have been provided in order to exemplify the main working

principle behind each technique, as well as to provide a

theoretical basis for the experimental data. This approach has

two important shortcomings. First, frequency domain analyses

are only able to compute the response of an IFM system under

CW operation. This means that they can not capture temporal

trade-offs, which are of great importance in practical systems

where very short (and possibly chirped) RF pulses need to be

measured. Second, idealistic theoretical analyses often neglect

key effects that can impose severe performance constraints.

For example, in one of our previous works we pointed out

to the fact that the presence of a residual optical carrier in

the modulator output can induce a significant bias error on

the estimated central frequency of the received signal, and

that this error is in fact dependent on input RF power [24].

Since residual optical carrier power arises from amplitude

imbalance and phase errors in the modulator, it is obvious then

that their impact on system performance needs to be carefully

considered. A notable exception is a recent work by Harmon

et al. [25], where a model for analog photonic links that can

be applied to some IFM approaches is presented. This model

accounts for some realistic effects like amplitude imbalance

in the Mach-Zehnder interferometer (MZI) as well as bias

phase errors in the modulator and the MZI. However, other

important parameters (such as modulator amplitude imbalance

and photodiodes dark currents) are not included, and only CW

operation is considered.

Here, and to the best of our knowledge, the first time-

domain-based theoretical analysis of an already reported

IFM technique based on a double-sideband suppressed-

carrier (DSB-SC) optical modulation and a MZI filter is

presented [12]. We focused on this particular architecture

because, contrary to similar techniques based on more com-

plex filter structures [24], an MZI only requires a single

bias electrode, which eliminates the need of complex control

electronics for the continuous adjustment of the filter transfer

function. This makes this architecture particularly suited for its

implementation as an application specific photonic integrated

circuit (ASPIC) with current state-of-the-art technology [26].

Furthermore, the simplicity of this filter naturally lends itself

to be described by closed-form formulas, helping to better

ascertain its intrinsic limitations, as well as to perform calibra-

tion corrections after appropriate measurements. Our analysis

allows to compute the impact of amplitude imbalance and

phase errors in both the Mach-Zehnder modulator (MZM) and

the MZI, as well as the effect of temporal phase/frequency

modulation in an incoming RF pulse, among other impair-

ments (such as insertion losses and non-zero dark currents).

Thus, it can serve as a powerful analysis and design tool for

the development of IFM systems based on this particular tech-

nique, as well as for better understanding experimental data.

Moreover, the results of our analysis show that great attention

must be paid to the dependence of system performance with

input RF power, since it can be significantly degraded when

considering realistic parameter values on the photonic system.

This is an important consideration that must be addressed

with care when comparing photonics-based IFM systems with

their electronic counterparts, which typically boast outstanding

dynamic range specifications.

This work is organized as follows: First, a short description

of the operation principle behind the analyzed IFM technique

is presented, followed by the main assumptions and formulas

of the time domain analysis. Second, some temporal trade-offs

that follow from these equations are discussed. Third, numer-

ical simulations are performed to evaluate the relative impact

of each considered parameter on system performance. Fourth,

realistic values extracted from state-of-the-art components are

employed to illustrate the significant effect of input RF power

in the frequency bias error. Finally, possible techniques for

mitigating this effect are proposed along with a summary of

the main results and conclusions.

II. IFM THEORY

A. Operation principle

Before going into a detailed theoretical description, it is

illustrative to first review the basic idea behind this particular

photonic approach to IFM. For that purpose, it is best to resort

to a simplified frequency domain model, which gives a quick

and visual interpretation of the underlying mechanism. The

readers are nevertheless referred to the original work by Zou

and coworkers for a more detailed explanation [12].

A system diagram of the technique can be seen in Fig. 1.

It can be briefly described as follows. First, a CW laser

source is introduced into a push-pull MZM, whose bias has

been previously set at the minimum transmission point. The

MZM is being fed by a continuous RF tone of unknown

frequency (fRF ) and amplitude (ARF ). Under ideal circum-

stances (no amplitude imbalance and bias phase error), the

MZM bias forces the optical carrier to perfectly interfere

destructively with itself at the output of the interferometer,

self-cancelling out. If the input RF power is low, then mainly

the first order sidebands are present in the signal power

spectrum, creating what is commonly known as a DSB-SC

optical modulation. Finally, the signal is introduced into a

MZI whose maximum/minimum transmission point (upper and

lower branch, respectively) has been set to match the laser
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Fig. 2. Difference between single-drive and series push-pull operation in
a MZM. Note that in the former case the carrier amplitude in each arm is
different, while in the latter it remains balanced since the modulation process
affects both arms equally.

central wavelength. Because of the complimentary nature of

the spectral response of the MZI outputs, the first-order optical

sidebands experience different levels of optical attenuation

at each output. Finally, the powers are measured with two

photodiodes (PD1 and PD2 in Fig. 1). Their ratio, also known

as Amplitude Comparison Function (ACF), is only dependent

on the spectral shape of the filter (which either has been

previously characterized or is known by design), and the RF

modulation frequency. As a result, an estimation ( ˆfRF ) of the

unknown RF frequency can be found by just measuring two

DC photocurrents, calculating their ratio and then computing

the mathematical operation below:

ˆfRF =
FSR

2π
arccos

(

± 1

γ

(ACF − 1)

(ACF + 1)

)

(1)

where FSR stands for the Free Spectral Range of the MZI, γ is

the measured peak-to-notch optical power ratio of the MZI

transfer function (see [12]) and ACF stands for the measured

DC photocurrent ratio (PD1 divided by PD2). Notice that there

are two possible solutions (+ and −), depending on which

definition of ratio is chosen. If the ACF is defined as PD1/PD2,

then the positive solution must be computed, and viceversa.

As a final remark, note that due to the non-injective proper-

ties of the arccos() function, only frequency values between 0

and FSR/2 can be recovered without ambiguity. Besides, the

MZI transfer function must be well known (FSR and γ) in

order to avoid frequency errors during the estimation process.

These errors arise due the fact that different input frequency

estimations ( ˆfRF ) are obtained for different values of γ
and FSR even if the same photocurrent ratio is measured.

Thus, either these variations (caused due to manufacturing

tolerances) are kept low in order to set an upper limit on the

frequency error, or hardware-embedded calibration curves are

employed to compensate for systematic errors, of course at the

expense of an increase in cost and computational complexity.

B. Time domain analysis

We now start by assuming that at the input of our system

there is an arbitrary, real, passband microwave signal of the

form

VRF (t) = ARF p(t) cos (2πfRF t+ φRF (t)) (2)

where ARF is the amplitude, p(t) is a normalized pulse

shape (that is, p(t) ≤ 1), fRF is the central frequency of

the RF signal and φRF (t) accounts for a possible on-pulse

phase/frequency modulation (such as those of chirped radars).

This unknown waveform, of which we wish

to estimate its instantaneous frequency (defined

as f(t) = fRF + (1/2π)∂φRF (t)/∂t), is then employed

to modulate a CW laser. From now on, optical signals will

be described by low-pass, analytic (i.e. complex-valued)

functions of time. These will be written with an upper tilde,

in order to distinguish them from the real-valued signals

associated with input RF pulses and detected photocurrents.

As an example, a CW laser can be simply described

as Ẽo(t) =
√
Poe

jφo(t), where Po is the output power

and φo(t) models the laser phase noise. For the sake of

simplicity, phase noise will not be considered (φo(t) = 0).

It has been stated in the previous section that the purpose

of the MZM is to encode the microwave signal information

into a DSB-SC modulation, from which its instantaneous

frequency can be estimated after appropriate optical and

electrical processing. As it will be shown later, the ability

of the MZM to reduce the power of the optical carrier is

crucial for obtaining a RF power independent estimation of

the instantaneous frequency. Due to its critical role, appropriate

modelling of possible non-ideal effects is mandatory. In fact,

not only non-ideal parameters can affect the quality of the

DSB-SC modulation, but also the topology of the MZM itself.

As shown in the system diagram of Fig. 2, it is important for

the modulation process to take place inside a push-pull MZM.

The main reason is that by differentially driving both arms of

the MZM (push-pull operation) one can ideally achieve perfect

carrier suppression. On the contrary, if only one arm is modu-

lated, then the powers of the optical carriers travelling on each

branch are no longer different (due to energy conservation, a

certain fraction of the carrier power in the modulating arm is

diverted to create the sidebands). Since they have no equal

amplitudes, the two optical carriers can no longer perfectly

interfere destructively, even if they are exactly out of phase and

no power imbalance exists in the modulator branches. Thus,

differentially driving the MZM is of fundamental importance

for achieving perfect carrier suppression. For that purpose,

either a series push-pull architecture or a dual-drive MZM

with an external 180◦ RF hybrid can be employed. The latter

implies that external RF imperfections in the hybrid (power

imbalance and phase errors) must be additionally accounted

for, whereas the former avoids the use of external, expensive

RF circuits, reducing costs and simplifying the set-up. This

implies that series push-pull MZMs are the optimal choice

for this particular application. Fortunately, this is one of the

most typical topologies found in both LiNbO3 (x-cut) and

InP modulators, so off-the-shelf high-performance components

are readily available [27]–[29].

We will subsequently assume that a series push-pull MZM is

being employed, which can be characterized by the following

parameters (see Fig. 3):

• φM : Modulator bias phase.

• βo(t): Arbitrary time-varying phase modulation index due

to the RF signal (this is, (1/2)(π/V AC
π )VRF (t)). Here,
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V AC
π stands for the dynamic voltage required in one arm

of the MZM to induce a π phase shift on the travelling

optical wave, and the 1/2 factor is due to the push-pull

operation. Also notice that V AC
π normally depends on the

frequency of the modulating signal. It thus accounts for

all those physical processes that can affect modulation

efficiency, such as RF losses, as well as impedance and

velocity mismatch.

• κUp
MZM and κDown

MZM : Electric field attenuation factors

as seen by the laser field when it propagates trough

the upper/lower arms of the interferometer, respec-

tively (see Fig. 3). These only account for losses and

imbalance, and thus exclude the phase shifts in the optical

couplers.

In practice κUp
MZM and κDown

MZM can not be directly mea-

sured. Typically, only the optical transmission curve versus

DC voltage is available. This curve is indeed defined by the

maximum and minimum optical power transmission points

(Tmax and Tmin), as well as by the DC bias voltage pe-

riodicity. We can however relate the two electric field at-

tenuation factors to the measured MZM transmission curve

by noting that Tmax = (κUp
MZM + κDown

MZM )2 and

Tmin = (κUp
MZM − κDown

MZM )2. In order to simplify the

notation, we will rewrite these factors as

κUp
MZM = αM + βM (3)

κDown
MZM = αM − βM (4)

where αM and βM are defined as

αM =
κUp
MZM + κDown

MZM

2
(5)

βM =
κUp
MZM − κDown

MZM

2
(6)

Now, it is easy to see that

Tmax = 4α2
M Tmin = 4β2

M (7)

which are directly related to the optical extinction ratio (ER)

and insertion losses (IL) of the device, in linear units:

ERM =
Tmax

Tmin
=

α2
M

β2
M

(8)

ILM = Tmax = 4α2
M (9)

Thus, by just measuring both the ER and IL of the MZM,

αM and βM can be computed through Eqs. (8) and (9). Ideally,

ER = ∞ and IL = 1, so αM = 1/2 and βM = 0. Also

note that there are two possible values of βM (either positive

or negative) that result in the same ER. This is due to the fact

that it is in general not possible to know which arm is causing

more attenuation than the other.

While the electric field attenuation factors are essentially

constant with time, the modulator bias phase will slowly drift

as a result of changes in the operating conditions of the system,

including temperature changes, ageing and static electrical

charge accumulation. As a consequence, the bias phase of the

modulator needs to be carefully monitored and adjusted. Here,

we assume that an automatic bias control circuit is keeping

the upper output at the minimum transmission point except

for a possible phase error (φM = 0 + φe
M ), as shown in

Fig. 3. This phase error arises from possible limitations in the

technique employed by the bias controller, which typically are

in the order of ±1◦ [30]. In that case, the electric field at the

output of the MZM can be finally expressed as

ẼMZM (t) = Ẽo(t)
[

(αM + βM )ejβo(t) (10)

−(αM − βM )ejφ
e

M e−jβo(t)
]

The non-ideal DSB-SC modulation is then introduced into

an MZI. Making similar assumptions as in the previous case,

we have that the MZI can be described by the following

parameters:

• τI : Time delay difference between the upper and lower

arms of the interferometer, which is related to the FSR of

the filter by FSR = τ−1
I . It is assumed that the dispersion

of the interferometer delay line is first-order only, since

second-order effects (pulse broadening and distortion) are

negligible given the low propagation distances of practical

integrated devices.

• κUp
MZI and κDown

MZI : Real-valued constants that model the

electric field attenuation as seen by the laser when it

propagates through the branches of the MZI. As ex-

plained before, the related parameters αI and βI can

be computed by first measuring ERI and ILI , and then

using Eqs. (8) and (9). Please note that, if the output

coupler is not perfectly balanced, the MZI would need to

be modelled using 4 different electric field attenuation

constants. These would correspond to the 4 different

optical paths that the light follows within the device

before it recombines at the output ports. In that case,

both outputs of the MZI would need to be individually

characterized, yielding different insertion losses and ex-

tinction ratios for each port. In most practical devices,

however, the imbalance of the MZI is mainly due to

the extra loss caused by the longer propagation distance

in the upper arm (which can be significant if the FSR

is small), and not due to the imbalance of the output

coupler. In fact, integrated MZIs typically use MMIs as

output couplers, which are well-known for their inher-

ent robustness to manufacturing deviations. If properly

designed, these devices show outstanding performance

(see for example [31]), and thus their contribution to
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the overall imbalance can be considered of second order.

For simplicity, we will assume that this asymmetry in

the output coupler is negligible, so both outputs can be

characterized using just two parameters. Nevertheless,

these extra variables could be easily incorporated into

the model if they were required.

• φI : Interferometer bias phase. It is also assumed to be

continuously adjusted so that the wavelength of maximum

(minimum) transmission when coming out by the upper

(lower) output matches the emission wavelength of the

laser. That is, φI = π + φe
I , where φe

I is a possible

phase error due to an imperfect control of the bias point.

As a result, the electric field at the upper/lower output of the

MZI can be written down as

ẼUp
MZI (t) =

[

(αI + βI)ẼMZM (t− τI)

+(αI − βI)ẼMZM (t)ejφ
e

I

]

(11)

ẼDown
MZI (t) = (−j)

[

(αI + βI)ẼMZM (t− τI)

−(αI − βI)ẼMZM (t)ejφ
e

I

]

(12)

Finally, both optical signals are detected in a couple of

low-speed, high sensitivity photodiodes (PD1 and PD2). The

photodetection process will be described as a current source

whose output linearly depends with the input, instantaneous,

time-averaged optical power (Po(t) = 1
T

∫ t+T/2

t−T/2
|Ẽ(t)|2dt)

impinging upon the pin junction. This averaging time is

assumed to be much higher than the period of the optical

signal, but lower than the temporal variations of the RF pulse

amplitude (p(t)), so that

i(t) ≃ R
∫ t

−∞

|Ẽ(s)|2h(t− s)ds+ IDark (13)

where R stands for the photodiode’s responsivity, IDark is the

photodiode’s dark current, and h(t) is the current impulse

response of the whole output circuit. Since we are inter-

ested in low-speed operation (small bandwidth photodiodes),

h(t) can be modelled to first-order as a simple RC circuit:

H(ω) = (1+ jωRC)−1. Its 3 dB RF bandwidth is given by

f3dB = (2πRC)−1, where R is the total output resistance

(series + load) and C is mainly dominated by the junction

capacitance.

Substituting Eq. (10) into both (11) and (12) yields

the electric fields at the input of the photodiodes.

Their time-averaged optical power is easily computed as

Po(t) = |Ẽ(t)|2 = Ẽ(t)Ẽ∗(t), from which output

photocurrents can be finally obtained through (13). Alterna-

tively, this last step can also be done by eliminating those RF

beating terms which are not below the cut-off frequency of

the photodiode.

C. Temporal trade-offs

Now, and prior to developing on the exact formulas of the

detected photocurrents, it is instructive to have a look at their

general form. Due to the multiplication (or beating) among

all possible combinations of the delayed and non-delayed

modulated electric fields, these electrical signals are made of

a linear combination of quasi-DC (low speed) and RF (high-

speed) terms. However, it is important to note that, out of all

beating terms, only those formed by a multiplication between

a delayed and non-delayed signal contain information about

the instantaneous frequency that is to be measured. To see

this, we can write down the general formula for one of these

beating terms as

i′(t) ∝ ℜ{ejβo(t)e−jβo(t−τI)} = (14)

= ℜ{ejz(t) cos (θ(t))e−jz(t−τI) cos (θ(t−τI))}
where by simple identification

z(t) = (1/2)(π/V AC
π )p(t)ARF , θ(t) = 2πfRF t+ φRF (t)

and ℜ{} stands for the real part of a complex number.

After employing the well-known Jacobi-Anger expansion

(ejz(t) cos (θ(t)) =
∑+∞

n=−∞
jnJn

(

z(t)
)

ejnθ(t)) and assuming

that the photodiode RC circuit perfectly filters all high-order

RF terms, this equation can be reformulated as

i′(t) ∝ Jo(z(t))Jo(z(t− τI))+ (15)

+ 2

+∞
∑

n=+1

Jn(z(t))Jn(z(t− τI)) cos (n(θ(t) − θ(t− τI))

Equation (15) has some important consequences. First, it

tells us that the amplitude of the detected quasi-DC pho-

tocurrent is dependent on the first-order difference between

time-delayed copies of the RF instantaneous phase (2πfRF t+
φRF (t)). Given that both τI and z(t) are sufficiently small, this

difference provides a good estimate (f̂(t)) to the instantaneous

frequency of the RF signal (f(t)) that we want to measure.

This is,

f̂(t) =
1

2π

θ(t) − θ(t− τI)

τI
= (16)

= fRF +
1

2π

φRF (t)− φRF (t− τI)

τI
≃

≃ fRF +
1

2π

∂φRF (t)

∂t
= f(t)

Thus, the instantaneous frequency of the RF signal (and not

only central frequency) can indeed be extracted by measuring

the amplitude of the quasi-DC photocurrent. Ultimately, this

means that chirped RF signals can be measured and charac-

terized, provided that the variation time of the chirped signal
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IDC = 4(1 +
1

ERI
)(1 +

1

ERM
) (22)

iζ(β) = 4(1 +
1

ERI
)(1− 1

ERM
) cos (φe

M )Jo(2β) (23)

σ = 4(1− 1

ERI
) cos (φe

I) (24)

i∆(β) =

[

(1− cos (φe
M )) +

1

ERM
(1 + cos (φe

M ))

]

J2
o (β) (25)

iΣ(β, fRF , φRF (t)) = 2

+∞
∑

n=+1

[

(1 − (−1)n cos (φe
M )) +

1

ERM
(1 + (−1)n cos (φe

M ))

]

J2
n(β) cos (n[2πfRF τI + φRF (t)− φRF (t− τI)])

(26)

is slow enough to be detected by the low-pass response of the

photodiodes.

Second, z(t) (which is related to the amplitude of the RF

waveform), needs to be kept low. Otherwise, contributions

due to higher-order terms in the Bessel expansion will start

to dominate, inducing an error in the estimated instantaneous

frequency. This can be more easily seen by employing the

frequency domain formalism mentioned before. When the

input RF power is high enough, higher-order harmonics in

the signal spectrum dominate over both the carrier and the

first-order ones.

Third, the instantaneous frequency can not be obtained

unless the temporal duration of the input RF pulse is at least

longer than the interferometer time delay (Tmin ≥ τI ), as

shown in Fig. 4. Otherwise, the product J1(z(t))J1(z(t−τI))
will be zero and the instantaneous frequency of the signal

will have no impact on the detected photocurrent. Last but not

least, the finite response time of the photodiode implies that

the steady-state value of the beating term is not reached until a

certain time after the RF pulse enters the MZM. Settling times

of RC circuits are typically specified as multiples (κ1) of the

RC time constant (τRC = RC), where the exact value of κ1

depends on the level of convergence to the final steady-state

value specified in %. As a consequence, a reliable estimation

of f(t) implies that the minimum duration of an RF pulse

must satisfy

TON
min ≥ τI + κ1τRC (17)

where κ1 is an arbitrary real constant (typically, κ1 ≥ 5 for a

convergence value better than 99%).

Usually, τI is much lower than κ1τRC , so that

TON
min ≃ κ1τRC . Also, since we are only interested in the

quasi-DC beating terms, the photodiode 3 dB bandwidth must

be much lower than the minimum instantaneous frequency

(fmin) in order to filter out all unwanted RF contributions.

This is, f3dB = (2πτRC)
−1 = κ2fmin, being κ2 an arbitrary

constant much lower than 1. Substituting these relations and

defining κ = κ1/(2πκ2), we finally have that

TON
min ≥ κ

fmin
(18)

Thus, it can be seen that there exists an intrinsic trade-

off between the minimum temporal width of an input pulse

and the minimum measurable instantaneous frequency. As a

consequence, quasi-DC instantaneous frequencies (fmin → 0)

can not be measured except for very long input RF pulses

(Tmin → +∞).

Using similar arguments, it is also easy to see that

TOFF
min ≥ κ1τRC = TON

min. As a result, an approximate upper

limit on the maximum measurable pulse repetition frequency

(PRF) of the input pulses is obtained:

PRFmax ≤ 1

2TON
min

=
fmin

2κ
(19)

D. Non-ideal Amplitude Comparison Function

So far, just the general form of the detected low-speed

photocurrents has been analyzed in order to get a deeper un-

derstanding of their intrinsic temporal trade-offs. Now, we turn

to their exact expressions, which will allow us to compute the

effect of each parameter on system performance. To do this,

we will assume for simplicity that the amplitude of an input RF

pulse has reached a steady state after a certain time (as seen in

Fig. 4), so that z(t) = β = (1/2)(π/V AC
π )ARF . Appropriate

substitutions and a considerable amount of algebra yield the

following equations:

iUp = η
(

IDC − iζ(β) + σ[i∆(β) + iΣ(β, fRF , φRF (t))]
)

+ IDark

(20)

iDown = η
(

IDC − iζ(β) − σ[i∆(β) + iΣ(β, fRF , φRF (t))]
)

+ IDark

(21)

where iUp and iDown are the detected quasi-DC photocurrents

in the upper/lower photodiodes (PD1 and PD2, respectively),
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η = (ILM ILIRPo/16), IDark is the photodiode’s dark

current, and the definition of all the other terms can be found in

Eqs. (22) to (26). Note that both extinction ratios (ERM , ERI )

and insertion losses (ILM , ILI ) are given in linear units.

The exact form of the ACF when the currents are sampled

by a couple of ideal analog-to-digital converters (ADC) can

now be immediately computed as

ACF(β, fRF , φRF (t)) =
iUp

iDown
(27)

Although complex at first sight, the final ACF is made of

mainly three types of terms. The first one (IDC ) does not

depend on the characteristics of the RF signal, but only on

the parameters of the optical system. The second and third

ones (iζ(β) and i∆(β)) are dependent on RF power through

the parameter β (phase modulation index). The last one,

iΣ(β, fRF , φRF (t)), depends on RF power, central frequency

and RF instantaneous phase, and contains the contributions

from first and high-order harmonics in the signal spectrum.

Under a first-order approximation most of these residual terms

can be usually neglected, leading to an ACF which is essen-

tially independent of RF power. However, as we shall see in the

next section, the impact of a combination of realistic parameter

values induces significant deviations in its shape. Furthermore,

they introduce a non-negligible RF power dependence of the

ACF curve that should be carefully taken into account in the

design stage of any photonics-assisted IFM system based on

this particular technique.

III. SIMULATION RESULTS AND DISCUSSION

Thanks to the developed theoretical analysis, it is now

easy to quantitatively assess the influence of each parameter

on system performance. As it has been stated, the core of

this particular IFM technique relies on establishing a direct

one-to-one relationship between the ratio of two detected

optical powers (quasi-DC photocurrents) and the instantaneous

frequency of an arbitrary RF signal. In order for the system

to yield accurate results, this mapping must be unique and

independent of any other characteristic of the RF signal (such

as power), which means that the ACF should not vary for RF

pulses of different amplitudes. Furthermore, the exact shape of

the ACF must be precisely known. Otherwise, systematic bias

errors are introduced in the instantaneous frequency recovery

process. Under perfect system operation, the measured ACF

should fit a curve of the form:

ACF(f(t)) =
1 + cos (2πf(t)/FSR)

1− cos (2πf(t)/FSR)
(28)

In practice, realistic parameter values in the optical system

(such as finite extinction ratios in both the MZI and MZM),

significantly deviate the measured ACF from its ideal response.

Thus, insight into the relative impact of each individual

parameter can be gained by just looking at how much the

non-ideal ACF deviates from its perfect response when these

parameters fluctuate around their ideal values. Higher ACF

deviations for similar parameter fluctuations will mean higher

system sensitivity, helping us to determine the most critical

ones. From now on, we will assume for simplicity that the

input signal is not chirped, so that f(t) = f = fRF .

A. Impact of individual parameters in system performance

As a first example, consider the effect of a non-zero phase

error due to imperfect operation of the bias controllers in

both the MZI and the MZM. In the MZI case (Fig. 5a),

this phase error induces a wavelength offset between the MZI

spectral transfer function and the optical carrier. As a result,

the ACF shape changes, since the optical attenuations seen

by the first-order sidebands as the RF frequency is being

swept are now different. For example, a value of φe
I = 90◦

would yield a completely flat ACF. This is due to the fact that

the optical carrier would be now situated at the quadrature

bias point of the MZI, where the attenuation induced by the

upper/lower MZI outputs at different RF frequencies is exactly

the same, independently of modulation frequency. A value of

φe
I = 180◦ would be equivalent to computing the inverse

ratio (iDown/iUp), which is an horizontally mirrored image of

the original ACF. In the MZM case (Fig. 5b), the existence

of a bias phase error leads to a non-infinite suppression of

the optical carrier, even if ERM = +∞. This is due to the

fact that the upper/lower branch of the MZM are no longer

perfectly ouf ot phase. Now the ACF is modified asymetrically,

which can be easily understood by noting that there exists a

contribution to the total photocurrent due to the residual optical

carrier. In the lower branch (minimum transmission point of

the MZI) this residual carrier is completely suppressed since

it is located at the MZI notch, and thus does not affect iDown.

However, in the upper branch (maximum transmission point

of the MZI) the relative contribution of this term to iUp gets

higher as the first-order optical sidebands get more and more

attenuated (higher normalized frequencies). Thus, the ACF

gets more distorted at higher normalized frequencies, as it is

shown in Fig. 5b. Also note that this effect is very sensitive

in the MZM case. Phase deviations of a few degrees (2◦, 4◦)

yield the same amount of distortion as deviations of tens of

degrees (18◦, 36◦) in the MZI.

Next, the impact of a non-infinite ER in the Mach-Zehnders

can be examined. For the MZI case, it is well-known that this

implies an upper bound on the ratio between the maximum and

minimum transmission points of the transfer function. Thus,

a finite ER yields an upper/lower bound on the ACF, which

in fact occurs when the first-order sidebands are located at

either the notch of the lower branch (fRF = 0) or at the

notch of the upper branch (fRF = FSR/2). As a result,

the ACF symmetrically deviates from the ideal one, and its

maximum/minimum values match the ER of the MZI (see

Fig. 5c). In the MZM (Fig. 5d), the effect of a finite ER is

essentially equal to that of a bias phase error: Because of the

imperfect amplitude imbalance in the MZM arms, the optical

carrier is not perfectly suppressed, and this basically leads to

an asymmetrical deviation of the ACF due to the same reasons

as those mentioned in the previous paragraph. Again, note that

the impact of a residual optical carrier is significantly higher

than that of a finite ER in the MZI. Similar ACF deviations

are obtained in the MZM case for extinction ratios that are

20 dB higher than those in the MZI.

Last, it is also important to analyze how and why the ACF

shape changes for different input RF power levels. As an
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Normalized frequency (fRF/FSR)

0.5

(a)

Normalized frequency (fRF/FSR)

0.5

(b)

Normalized frequency (fRF/FSR)

0.5

(c)

Normalized frequency (fRF/FSR)

0.5

(d)

Fig. 5. Simulated ACFs for different system imperfections. (a) Bias phase error in the MZI. (b) Bias phase error in the MZM. (c) Finite extinction ratio in
the MZI. (d) Finite extinction ratio in the MZM. Simulation values for all four figures are: Zin = 50 Ω, PRF = 0 dBm, V AC

π = 3 V, Po = 20 mW
and R = 0.9 A/W. All other parameters, except that under analysis, are assumed ideal.

example, two extreme situations are plotted in Fig. 6. Fig. 6a

illustrates the effects of an extremely high input RF power,

while Fig. 6b shows the effect of very low powers. In the

first case, the ACF gets considerably distorted because of

the high value of the phase modulation index (β). At this

point, the contributions to the total photocurrent due to the

high-order harmonics (J2
2 (β), J

2
3 (β) . . . ) dominate over the

first-order ones (J2
1 (β)), which is a direct consequence of

the behaviour of the Bessel functions at high β values. For

illustration purposes, the contribution of these terms to the

upper photocurrent is shown in Fig. 7 for an RF power of

+25 dBm. It can be seen that the third-order term is already

significant. Only odd orders (n = 1, 3, 5) are shown because,

under ideal conditions, all even order terms are zero. In

the second case (Fig. 6b), the amplitude of the first-order

sidebands goes to zero as β decreases. Neglecting all other

system parameters, this implies that the relative contribution

of this term to the total photocurrent decreases as compared to

that of the dark current, which is constant and does not depend

on RF power. As a result, the ACF gets flatter and flatter as the

RF power decreases, and the ratio approaches that of the two

residual dark currents, which is 1 (0 dB) assuming that they

are equal. These two examples show that, even considering

almost perfect operation, there exists an optimum RF power

at which the ACF is closest to the ideal response.

B. Combined impact of parameters in system performance

So far, all simulations have considered only one parameter

at time. While this served our purpose of understanding their

individual impact, it does not provide a complete vision on

the interaction and combined effect of all of them at the same

time. Consequently, we now consider a more realistic situation,

where reasonable values for all system parameters based

on state-of-the-art devices and integration technologies are

included. These can be found in Table I along with appropriate

references, when needed. Simulation results are plotted in

Fig. 8. Fig. 8a shows the evolution of the measured ACF over

the whole frequency range ([0-FSR/2]) when the input power

varies between +10 dBm and -20 dBm, a typical range for

commercial, electronics-based IFM systems (which normally

reach down to -50 dBm [32]). It can be seen that the ACF at

+10 dBm is near the optimum point mentioned in the previous

paragraph, where just a small deviation at both high and low

frequencies is observed due to optical system imperfections

(phase errors, amplitude imbalance, etc.). When the power is

reduced, though, the ACF flattens and asymptotically tends to

a constant value of +25 dB. This can be understood by noting

that the photocurrents generated by the residual optical carrier
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Normalized frequency (fRF/FSR)

0.5

(a)

Normalized frequency (fRF/FSR)

0.5

(b)

Fig. 6. Effect of (a) high powers and (b) low powers in ACF. Simulation values are: Zin = 50 Ω, V AC
π = 3 V, Po = 20 mW, R = 0.9 A/W and

IDark = 1 nA. All other parameters are ideal.

now dominate over the dark current contribution, which is

fairly small in state-of-the-art, low-speed InGaAs photodiodes.

As a consequence, when RF power is very low the ACF

approximates the extinction ratio of the MZI (25 dB in this

case), which is in fact the optical power ratio between the

carrier at the maximum transmission point (MZI upper branch)

and the minimum transmission point (MZI lower branch).

It can also be observed that in all cases the maximum

deviation from the ideal response takes place at high fre-

quencies. Thus, if no calibration curves are employed and

Eq. (28) is directly used to estimate the input instantaneous

frequency, the error introduced by this distortion will reach

its maximum at FSR/2. In other words: When an RF signal

with f = FSR/2 enters the IFM system, the normalized

bias error of the measurement process (defined as fe =
|f̂−f |/FSR) is maximum. This value provides an upper limit

on performance and can be easily computed as follows. First,

the non-ideal photocurrent ratio when f = FSR/2 is computed

using Eq. (27) (ACF (β, FSR/2, 0)). Afterwards, this ratio is

inserted into Eq. (28), which can be solved to get an estimate

Norm. frequency (fRF/FSR)

 order

 order

 order

Fig. 7. Contribution of different order harmonic terms (n = 1, 3, 5) to the
upper photocurrent (iup). Simulation values are the same of those of Fig. 6a,
with PRF = + 25 dBm.

of the instantaneous frequency (f̂ ). Finally, the difference

between this estimate and 0.5 (normalized frequency when

f = FSR/2) is calculated, which gives the normalized bias

error (fe). The whole process is described by the equation

below:

fe = | 1
2π

arccos

(

(ACF(β, FSR/2, 0)− 1)

(ACF(β, FSR/2, 0) + 1)

)

− 0.5| (29)

The dependence of fe versus RF power is shown in Fig. 8b

for three different values of both ERM and ERI . At high

RF powers, the ACF is closest to the optimum point, and a

normalized error below 0.05 is obtained for the three cases. As

RF power goes below 0 dBm, the bias error rapidly increases

until it reaches the maximum possible value (0.5), due to the

fast evolution of the ACF as the first-order sidebands approach

the residual optical carrier level. The threshold at which this

happens is lower for higher extinction ratios, though errors are

still significant over the whole power range.

From the previous simulations it can be concluded that, even

when using state-of-the-art equipment, stringent limitations

exist on the dynamic range of this photonics-assisted IFM

technique. As a first approach to solve this issue, a calibration

procedure at a fixed RF power is usually employed [24].

This basically entails characterizing the ACF after fabrication

and then embedding it into the system hardware. Afterwards,

the parametrized curve is used during the estimation process

instead of Eq. (28), which eliminates the non-zero bias error

that exists even near the optimum working point. However,

this approach only yields accurate results over a limited RF

power range, as the ACF significantly worsens at low RF

powers and thus the parametrized curve is no longer valid.

In that case, multiple ACF calibration curves measured at

different input RF powers would be needed. This approach

would in turn require a way to quickly measure the RF power

of the input pulse previous to the estimation process, and then

choosing the curve that was calibrated at a similar RF power.

Another option, that could even be used in combination with

the previous ones, would be to add a limiting amplifier at
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Normalized frequency (fRF/FSR)

0.5

(a)

RF Power (dBm)

20

(b)

Fig. 8. (a) Evolution of ACF with different RF powers. (b) Normalized frequency bias error versus input RF power, assuming different values of both ERM

and ERI . All other simulation parameters are listed in Table I.

the input RF stage. Limiting amplifiers basically provide a

constant RF power signal at their output even if the input

power fluctuates over a wide dynamic range. In fact, they are

commonly employed in electronic-based IFM receivers [3].

With an auxiliary limiting amplifier, the system could be

optimized in such a way that the output RF power of the

amplifier would be near the optimum working point of the

photonic IFM system, thus minimizing error degradation over

a wider dynamic range. In any case, complexity and cost would

be added to the final solution.

IV. CONCLUSION

We have developed a time domain analytical model for

the analysis of system imperfections in a photonics-assisted

IFM technique based on a DSB-SC optical modulation and

a MZI filter. Unlike previous works, our model considers

all major optical and electrical effects, such as amplitude

imbalance and phase errors in the MZM and the MZI, as

well as dark currents in the photodiodes. Furthermore, it

includes the effect of phase/frequency modulation in the RF

pulse, which is an essential feature for the analysis of modern

TABLE I
SIMULATION PARAMETERS

Name Value Units References

Zin 50 Ω

V AC
π 3 V [28], [29]

ILM 5 dB [29]

ERM 25 dB [29]

φe

M
±1◦ degrees [30]

ILI 5 dB

ERI 25 dB

φe

I
±1◦ degrees [30]

Po 20 mW

R 0.9 A/W [33]

IDark 1 nA [33]

radar signals. Numerical simulations indicate that a finite

carrier suppression arising mainly from imperfections in the

MZM leads to significant degradation of the IFM system

performance. In particular, it has been shown that both the

extinction ratio and the bias phase error in the MZM are

the most critical parameters for achieving a low frequency

error. Our simulations also demonstrate that the system ACF

strongly depends on input RF power, thus leading to a poor

performance in terms of dynamic range even when using

parameter values from state-of-the-art devices. Overall, our

results suggest that a careful analysis and assessment of the

impact of RF power needs to be done when designing and

reporting on the performance of photonics-based IFM systems.

Finally, some ideas for alleviating this problem have been

discussed, such as the combined use of calibration curves and

limiting amplifiers in the input RF stage.
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