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ABSTRACT

A taper-taper adhesive-bonded joint between two composite plates has been 

analyzed under tension and cylindrical bending.

Two tension models were derived. The first model was based on mechanics of 

materials and the second model used laminated plate theory and shear correction factors. 

For the mechanics o f materials model the condition of plane strain was assumed for the 

adherends and adhesive. Average stresses were used in the adherends and point-wise 

stresses were used in the adhesive. The model derived consisted of four second-order 

ordinary differential equations with variable coefficients. The adherends were characterized 

by the extensional Young's modulus. The equations were solved numerically using the 

Linear Shooting Method and the solutions were compared with finite element models 

developed using the COSMOS/M commercial software package. The model was accurate 

in the area away from the sharp end o f  the taper and predicted strains within about 5-10% 

of the finite element models. The second analytical model was developed to improve 

prediction near the sharp end of the taper. The model was derived using first-order, 

laminated plate theory and included transverse shear deformation effects. The assembly was 

divided into three areas to facilitate the analysis, the two sections o f laminate away from the 

joint and the joint itself. The first two sections were modeled by three first-order differential 

equations each. The joint was modeled by six second-order, ordinary differential equations 

with variable coefficients. The six equations were reduced to a set o f twelve first-order 

diflferential equations, which were solved numerically with the six first-order equations from

ix
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the areas away from the joint. Finite element models were developed using the 

COSMOS/M commercial software package for verification of the model. The model was 

accurate and predicted the peak stresses within about 5-8 % of the values calculated with 

finite element analysis.

A laminated plate model o f the taper-taper joint was also derived for the case of 

cylindrical bending. The FORTRAN program was modified to numerically solve the 

resulting system of twelve first-order differential equations with variable coefficients. The 

adhesive stresses predicted were within about 2 % of the results from the finite element 

models.
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CHAPTER 1 

INTRODUCTION

Fiber-reinforced polymer composite materials are used in the chemical process 

industries because of their light weight, high strength-to-weight ratio, directional properties 

and high corrosion resistance. The fibers are used to carry the loads and the matrix is used 

to fix the shape of the component. Modem composites incorporate high performance fibers 

such as carbon, boron, and Kevlar as well as glass. New matrix materials are also routinely 

developed. One of the primary advantages available with composites is the ability to tailor 

the stiffness in a particular direction by varying the laminate stacking sequence.

Joints are normally the weakest part of a structure but some are required in almost 

all real applications. In many applications adhesive-bonded joints have replaced bolted joints 

because of the laminate damage inherent to the drilling process, the stress concentration 

developed due to the holes, the weight penalty of the bolting, and susceptibility of the 

bolting material to corrosion. Joint design in industry is largely based on engineering 

judgement tempered with experience or experimental studies. The lack of easily used 

analytical design methods prevents adhesive-bonded joints from being used to their full 

potential. These factors highlight the need for additional research in the field of adhesive- 

bonded joint design and analysis.

Finite element methods can be used to solve many design and analysis problems with 

different materials and geometries. However, analytical solutions are still desired for further 

analyses such as optimization o f  joint geometry.
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This present research was initiated because of an industrial design problem that was 

encountered several years ago. A joint design was developed to reduce the cost of a 14 to 

18 inch composite piping system. The system was initially designed with standard couplings 

and an overlay at each end of the coupling to ensure the integrity o f the buried pipeline. The 

high estimated cost of each joint, due to the coupling, two overlays and the associated labor, 

led to the consideration of a more economical joint design. The design team developed a 

taper-taper joint with a single overlay. The taper angle was chosen based on difficulty o f 

machining and assembly and engineering judgment. The piping system has been in service 

for several years without any problems and it must be concluded that the design was 

conservative. However, since there were several miles of piping involved the question of 

efficiency and cost of the joint is still o f interest. The initial effort in this study involved a 

mechanics of materials model of the taper-taper pipe joint. The results achieved were not 

entirely adequate and further research was undertaken to gain an understanding of the taper- 

taper joint between flat plates.

1.1 W ork  to be Done

Previous analyses of the taper-taper joints have been limited to small and large angle 

ranges, and in some cases one or both of the adherends have been isotropic. This was done 

to model actual structures and in some cases to simplify the analyses mathematically and 

make the research manageable. If this joint is to reach its full potential for use, better 

analytical design tools must be developed. In this research models are developed for taper- 

taper joints where both adherends are unidirectional or crossply laminates. The angles 

chosen for modeling are in the intermediate range. Models are developed for tension
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loading. A second laminated plate model is derived and solved for the case o f cylindrical 

bending.

1.2 Scope, Goals, and Objectives

The scope of this research was to develop analytical models o f the adhesive-bonded 

taper-taper joint between two laminates under tension and cylindrical bending.

The specific goals were to derive two analytical models for an adhesive-bonded 

taper-taper joint between two anisotropic laminated plates under tension loading. 

Laminated plate theory was also to be used to derive a model for the case of cylindrical 

bending.

The objective of the research was to derive a mechanics of materials model and a 

laminated plate model for tension loading. A laminated plate model was also to be derived 

for cylindrical bending. All three models were to be solved numerically. FORTRAN 

computer programs were to be developed to integrate the systems o f simultaneous 

diflferential equations of the three models. These programs were necessarily specific to the 

different laminates chosen for study, but could be generalized to other laminates 

combinations by modifying one subroutine to reflect different materials, different number 

of ply groups, and different lay-up sequences.

A preliminary buckling analysis of the taper-taper joint was also carried out using 

laminated plate theory. The derivation of the model and the resulting stiffness matrix 

elements are presented in Appendices A and B.
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CHAPTER 2 

PREVIOUS WORK

2.1 General

There is a growing body of literature covering adhesive-bonded joints in composites 

that spans about the last fifty years. The early analytical work on isotropic adherends prior 

to 1961 was reviewed by Kutscha [I], and the analyses from 1961 to 1969 were reviewed 

by Kutscha and Hofer [2], Matthews, et al. [3] reviewed the classical and finite element 

analyses related to all aspects of adhesive-bonded joints in composite materials. Vinson [4] 

produced a summary o f the published work concerning the adhesive bonding o f polymer 

matrix composite structures in 1989. Hart-Smith [5] published a paper covering the analysis 

and design o f advanced composite bonded joints. Adams and Wake [6 ] published a book 

covering structural adhesive joints. Adams and Wake noted that one of the benefits o f using 

adhesive-bonded joints was that the resulting stress distribution was more uniform than for 

bolted joints. They also noted that non-linearities can be caused by joint rotation and 

material plasticity and warned that large stress gradients, approaching singularities, are 

possible in adhesive-bonded joints. Therefore finite element models must use a sufficient 

number of elements o f the appropriate complexity in areas where the gradients may exist.

Many researchers have developed new or refined theories for describing the behavior 

of plates. Baluch, et al. [7] developed a new theory for isotropic plates that included 

transverse shear, normal stress and normal strain. Voyiadjis, et al. [8 ] extended plate theory 

to account for the effects of transverse normal strain in bending of isotropic plates. Several 

papers have been published noting the importance of including transverse shear effects in
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the analysis of composite plates when the span-to-depth ratio is small [9]-[12] and noted 

that these eflfects can significantly affect gross plate response for anisotropic plates. Khedir, 

e/a/. [13] made refinements to shear deformation theory and calculated a Levy type solution 

for symmetric laminated composite plates. Whitney and Leissa [14] extended thin-plate 

theory by including non-linear terms and rotary inertia. Closed forms solutions were 

calculated for the linearized form of their model. Lo, et al. [15], [16] included the effects 

of transverse shear deformation, transverse normal strain and a non-linear distribution of the 

in-plane displacements. Medwadowski [17] developed a theory for classic, orthotropic 

plates with large deflections. He included transverse shear deformation and normal stress. 

Levy type solutions were calculated for the linearized form o f the equations.

Whitney [18] conducted an analysis of bending-extensional coupling in 

antisymmetric cross-ply and angle-ply laminates under transverse loading. Classical small 

deflection, thin plate theory was used and closed form solutions were derived using Fourier 

Series techniques. Whitney concluded that coupling can increase deflection by as much as 

300%. The real effect of bending-extensional coupling is reduction o f the plate stiffness.

Pagano [19] compared classical laminated plate theory (CPT) to theory of elasticity 

solutions under cylindrical bending. He concluded that classical plate theory leads to a veiy 

poor description of laminate response at low span-to-depth ratios, but converges to the 

exact solution as the ratio increases. Whitney [20] studied the cylindrical bending of 

unsymmetrically laminated plates. Cylindrical bending provides a useful approximation of 

the behavior of rectangular laminated plates having a high length-to-width ratio. Pagano 

[21 ] investigated static bending o f composite plates by considering shear coupling. The
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exact solutions calculated approach classical plate theory as the span-to-depth ratio 

increases.

A number of researchers have developed higher-order theories in an attempt to more 

accurately describe the behavior of plates under loads. Toledano and Murakami [22] 

developed a higher-order laminated plate theory based on Reissnefs mixed variational 

principle. The theory accurately estimated in-plane responses even for small span-to- 

thickness ratios. Pandya and Kant [23] derived a simple isoparametric finite element 

formulation based on higher-order displacements for flexure analysis o f multilayer symmetric 

sandwich plates. Reddy [24] published a higher order shear deformation theory that was 

based on a parabolic distribution of transverse shear strains. Closed form solutions were 

obtained for symmetric cross-ply laminates.

Many of the analyses in the literature neglect edge effects. Spilker and Chou [25] 

developed a special-purpose hybrid-stress multilayer finite element formulation that satisfies 

the traction-ffee-edge condition exactly.

Pagano [26] calculated three dimensional elasticity solutions for rectangular 

bidirectional composite and sandwich plates. His approach is sufficiently general to describe 

the exact elastic response of rectangular, pinned edge laminates consisting of any number 

of orthrotropic or isotropic layers. Pipes and Pagano [27] studied interlaminar stresses 

under axial extension. Interlaminar shear stress was found to be an edge effect which is 

localized in the edge region that is approximately as wide as the laminate thickness.

Chou and Carleone [28] extended Mindlin’s theory to laminated plates by 

considering transverse shear. The theory produces good results without shear correction
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factors. Whitney [29] extended the procedure of Chow to orthrotropic laminates of non- 

symmetric construction and compared the results to exact elasticity solutions.

2.2 Lap Joints

Goland and Reissner [30] analyzed a single lap joint with isotropic adherends and 

adhesive. This analysis was the first to include the effects of rotation of the adherends. 

They related the bending moment to the in-plane loading at the end of the overlay. Hart- 

Smith [31], [32] published papers covering single-lap and double-lap joints using a 

continuum model in which the adherends were isotropic or anisotropic elastic, and the 

adhesive was modeled as elastic, elastic-plastic, or bielastic. Hart-Smith used plate theory 

as the starting point in his derivations. The effects of transverse shear deformation have 

been shown to be important when the span-to-depth ratio is small or when the transverse 

shear modulus is small [33], [34]. However, these effects were not included in Goland and 

Reissner or Hart-Smith's theories. Edge effects have been neglected and adhesive stresses 

assumed constant through the thickness in most of the analyses found in the literature. 

Sharpe and Muha [35] conducted experimental studies of a lap joint using plexiglass models 

and a laser fringe technique. McLaren and Maclnnes [36] used photoelasticity techniques 

to study the stress distribution of a lap joint. Wah [37] conducted a theoretical analysis o f 

a single lap joint using the theory o f elasticity. Allred and Guess [38] studied double lap 

joints under bending using finite elements and experimental techniques. Cheng, et al. [39] 

provided a two dimensional elasticity solution of lap joints with adherends o f different 

thickness, lengths and materials. Delale, et al. [40] conducted an analytical stress analysis 

of a single lap joint constructed of different isotropic adherends. Renton [41] analyzed a the
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symmetric lap shear test and developed a closed form solution. The solution was verified 

experimentally using optical and photoelastic methods. Griffin, et al. [42] analyzed an 

adhesive-bonded composite pipe joint and derived a mathematical model of the stress-strain 

behavior o f the joints. Yang and Pang [43] analyzed the stress-strain distribution in a single 

lap-joint under tension loading. The analysis included transverse shear deformation effects 

and closed form solutions were achieved. The solutions were verified using finite element 

analysis.

2.3 Stepped and Tapered Joints

The terms scarf and bevel joint are used for more than one type o f joint in the 

literature and therefore the term taper-taper was adopted for the type of joint analyzed in 

this research. Hart-Smith [44] also analyzed taper-taper and stepped-lap joints using the 

same type of analysis he used for single and double lap joints. The taper-taper joint has 

higher efficiency than the lap joint and the efficiency of a stepped lap lies somewhere in 

between. The shear stresses in a taper-taper joint are very uniform if identical adherends are 

used. Hart-Smith stated that it is common design practice with small taper angles to neglect 

adhesive tension or compression stresses. Small angles were defined as angles less than 4 “. 

Adhesive peel stresses were therefore omitted by Hart-Smith in his research. Wah [45] 

analyzed a taper-taper joint o f arbitrary angle under pure bending. The approach used was 

classical two dimensional elasticity assuming elastic, isotropic adherends and adhesive. The 

adhesive was also considered to be a thin film. The model was derived under the condition 

o f plane stress. Sage [46] analyzed a taper-taper joint between alloy and a carbon fiber 

composite adherends. He performed fatigue tests under pure shear loading. The fatigue
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strength was well below that o f the adhesive in pure shear. Erdogan and Ratwani [47] 

derived models for the strains and stresses in stepped-lap and taper-taper joints under the 

assumption of generalized plane stress. The taper-taper joint was considered as the limit of 

a stepped joint, i.e., a joint with an infinite number of steps. The stepped joint 

approximation provides a good check on the analytical models developed in 

this research because a closed form solution was obtained. Figure 1 shows the dimensions 

and layout of the stepped joint.

X

Figure 1 Adhesive Bonded Stepped Joint

A second order ordinary differential equation is derived for the force per unit width, 

/?2 i- The equation is

-  P i ,  =  P, P o  = I ’— " ) (1)

where // is the number o f steps, is the applied load per unit width and

a, =
1 - v ;

^3

G

P,
G, 1 -vf

'V \i

(2)
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where v, is Poisson's ratio for the isotropic left plate, and %  are the Poisson's ratios for 

the right plate. £, is Young's modulus for the left plate, is Young’s modulus of the right 

plate in the x  direction, and Gj is the shear modulus of the adhesive, h ^ and h-^ are the 

thicknesses of the laminate at the step under consideration and is the adhesive thickness. 

The solution of Eq. 1 may be written as

P j/x) = ( 1  = 1 , ...,«) (3 )

The 2n integration constants are determined by assuming continuity o f forces and their 

derivatives at the end of each step. Strains and stresses can then be calculated from the 

forces and material properties. Helms, et al. [48] developed a mechanics o f materials model 

o f a taper-taper adhesive-bonded joint between two composite flat plates that accurately 

predicted strains in the joint away from the sharp end of the taper.

The models discussed above do not adequately describe the taper-taper joint. Hart- 

Smith [44] modeled only small taper angles, neglected peel stresses and did not include 

transverse shear deformation. Wah [45] modeled arbitrary angles, but only included 

isotropic adherends and did not include transverse shear deformation. Sage [46] 

investigated only fatigue under pure shear. Erdogan and Ratwani [47] did not include 

transverse shear deformation and used the extensional modului to characterize the 

adherends. Helms, et al. [49] developed a model that incorporated the equivalent modulus 

matrices, included transverse shear deformation effects and modeled arbitrary angles. The 

laminated plate model developed in this research extends the state o f the art o f analysis of
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the taper-taper joint. The numerical solution o f the model was verified using finite element 

models.
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CHAPTER 3 

TENSION LOADING

3.1 Mechanics of Materials Model

A mathematical model of the joint has been developed under the following 

assumptions: I) the adherends are under the condition of plane stress; 2 ) the plate and 

adhesive are assumed to be linear elastic materials; 3) the adhesive was assumed to be 

isotropic and the extensional Young's modulus o f the plate was used to characterize the 

adherends; 4) average stresses were used within the plate to simplify the derivation; 5) the 

adhesive was the weakest part of the joint and would fail by peeling or shearing before either 

of the plates failed; and 6 ) the adhesive layer has a constant thickness throughout the joint. 

Use o f  the average stresses within the plate was acceptable because the adhesive was 

assumed to have been weaker than the composite plates. The average stresses were 

assumed constant across each cross section cut perpendicular to the x  axis.

Figure 2 is a pictorial representation of the joint. Figure 3 is a freebody diagram of 

the joint that was used to facilitate the derivation of the equations. The equations are 

written in terms of average stresses within the plate and point-wise stresses within the 

adhesive. Since average stresses are used in modeling the plate, the stresses are considered 

to be functions o f the distance along the plate only. There is no external applied moment 

because the tension load is applied along the long (x) axis o f the plates and through the 

geometric center. Therefore there will be no rotation of the plates due to the applied 

loading. The moment equations were not included since they would only show the location 

of the point of application o f the equivalent force on the cross section.

1 2
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Figure 2 Pictorial View of the Joint - Mechanics o f Materials Model

h

(j aA

Figure 3 Freebody Diagram of the Joint - Mechanics of Materials Model 

A force balance yields the following equations in terms of the stresses:

(ô -t- daJ(A^ + d4i)  -  (o sin0  + t  cos6 ) X, = 0

d4j)  - + (a COS0 - T sin0) = 0

(a^+ da^{A^^ dA^) - a'̂  A^ -  (a sin0  + t  cos0 ) A^ = 0

(4)

(5)

(6) 

(7)(t^ +  d-c^XA^* d A ^  - A^ -  (a cos0  -  t  sin0 ) A^ = 0

where A , and A; are the cross-sectional areas for a unit width of the plates, and 4  is the 

shear area for a unit width of the joint, and are the normal and shear stresses in the 

left-hand plate and the primed stresses are for the right-hand plate, a  and r  are the normal 

and shear stresses in the adhesive. Multiplying out the terms in the equations above.
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eliminating second order differentials, and dividing by dx yields the following:

da dA.  ^
A,   + o   + (a sin 0 + T cos 0) —  = 0  (8)

^ d x ^ d x  dx

dx dA. A
A. -----  + T   + (a cos 0 - T sin 0) —- = 0 (9)

dx dx dx

da^ , dA., A,
A^   + o ^ ------  - (a sin 0  + T cos 0 ) —  = 0  ( 1 0 )

' dx dx dx

dx , dA. /f
Aj -----  +   -  (a cos 0 - t  sin 0) —- = 0 (II)

dx dx dx

where the areas for a strip of unit width can be expressed as:

A^ = /? - X tan 0  ( 1 2 )

^ 2  = tan 0 (14)

where h is the plate thickness, 0  is the taper angle, X, and are the areas for the left and 

right plate, and A^ is the shear area o f the adhesive. In general, adhesives often act as 

bilinear or elastic plastic solids. However, in this model the applied loading is far from that 

which would cause failure o f the joint. For this reason the adhesive can be modeled as an 

elastic solid. And the equations used by Erdogan and Ratwani, which modeled the adhesive 

as tension and shear springs [47] were chosen:
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£ ,
G = —- [(Wj- M|) Sin6 -  (w^-  IV,) COS0] (15)

" 3

G,
T = —  [ ( " 2 " " i )  c o s 6  + (W j-  w ,)  s in 0 ]  (1 6 )

" 3

where Gj, £ 3 , and A3  are the shear modulus (GPa), elastic modulus (GPa), and thickness 

(mm) of the adhesive, respectively, and £  and G are the extensional Young's modulus (GPa) 

and shear modulus (GPa) of the plates, z/, and w, are the displacements along the left and 

right plates in mm and and iv, are the vertical displacements of the left and right plates 

in mm. ^ is  the taper angle in degrees. The stresses can be related to the displacements 

through the use of Hooke's Law;

r- àu r- ( du
(17)

Since the integrated average stresses are used, dwdz = 0. Substituting Eqs. (12-  17) into 

Eqs. ( 8  - 1 1 ) yields:

_ d'^u. du,
E (h -  X t a n 0 )  --------- -  £  ta n 0 --------

£ 3
+ —  [ ( ; / ; -  w ,)  s in 0  ta n 0  + ( w y -  w ,)  s in 0 ]  ( i g )

" 3

G,
+ ——  [ ( î / j "  H |) COS0 + ( w ^ ~  »V|) s in 0  ta n 0 ]  = 0  

" 3
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d \> .  dw.
G {h -  X tan0) ------  - G tan0 -----

d r
E.

+ —  [(^2 - M,) Sin0 + (if;- M',) COS0] (19)
" 3

-—-[(w^- Wj) COS0 + (w^- sin0 tan0] = 0 
^ 3

d^u^ _ du^
E (x tan0)   + E  tan0 -----

d f :  dk
£ 3

-  —  [(î/j- ifj) sin0  tan0  + ir,) sin0 ] (2 0 ) 
^ 3

G3

—  [(//,- w,) COS0 + (3 2̂ - IV,) sin0 tan0] = 0

_ d h v  dw
G (x tan0) ------  + G tan0 -----

d r :  ^
£ 3

-  — [("2“ " ,) sin0 + ly,) COS0] (21)
" 3

G,
—  [ ( « 2  -  H|) sin0 + (3 ^2 “ 31',) sin0 tan0] = 0

These equations are linear, coupled, second order differential equations with variable 

coefficients. The equations must be solved numerically subject to the boundary conditions 

below. For both plates it is assumed that the stress is uniformly distributed in the regions 

away from the taper-taper joint, and that the stress is zero on the free surface on the end of 

the truncation. It is assumed that the shear stress develops due to the taper and is essentially 

zero away from the joint.
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For the left plate:

dll. , p  dll.

■ sr ''-»  ° T i ,  ' ° °

dw
= 0 (23)

For the right plate:

dll., diu p
- ^ L o  -  » ■ -  Y U  » “>

dw,
0 (25)dx  '"0

The four second-order equations were reduced to a set o f eight first-order equations 

by an order reduction method [60]. An algorithm based on the Linear Shooting Method 

[61] was developed to solve this boundary value problem. Solution o f the eight equations 

required two additional boundary conditions. The deflections at the left end of the joint 

were assumed to be:

= 0 (26)

' îlx=o = 0 (27)

The Shooting Method converts boundary-value problems to initial-value problems. 

The equations are integrated from left to right and the values of the variables calculated are 

compared to known boundary values at the right end of the joint. The assumed initial values
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are then adjusted and the equations are integrated again. The process is continued until the 

diflferences between the calculated values and the known boundary conditions are reduced 

to a small quantity. A computer program was written in FORTRAN to implement the 

algorithm on an IBM compatible personal computer. The program calculated strains along 

the plate where strains were assumed to be constant across a cross-section. The program 

was run for taper angles of 20“ and 25“ for 6.35 mm plate and at taper angles of 15“ and 

20“ for 3.175 mm plate.

3.2 Laminated Plate Model

The mechanics of materials model uses the extensional Young's modulus to 

characterize the behavior of the adherends. This approach is adequate for gross extensional 

behavior of the non-tapered portion of the adherends. However, in the tapered portions of 

the adherends this method does not accurately represent the change in stiHhess from laminae 

to laminae, but approximates it linearly. Use of the equivalent modulus matrices will more 

accurately represent the fractional stiffness that results from removing material to form the 

taper. Classical first order laminated plate theory is used in the derivations that follows. 

Transverse shear deformation effects are included through the use of shear correction 

factors. The tension and shear spring model of the adhesive used in the first model was 

replaced by a model based on derivatives of the strains.

The main advantage of the laminated plate model is that pointwise strains and 

stresses can be calculated since the change in laminate properties from ply group to ply 

group are more accurately represented. This advantage is offset by the increased 

mathematical difficulty of the model and the additional computational effort involved in
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integrating the eighteen differential equations versus the eight differential equations of the 

first analytical model.

Figure 4 shows the configuration of the taper-taper joint under tension. The tensile 

loading, shown as P, represents a loading per unit width.

, 1 p1 t ,

1- - - - - - - - ( D - - - - - - - -
!  1 
I — m — !

i  4  
1— @ — 'i

Figure 4 Tension Loading - Laminated Plate Model 

Figure 5 shows the coordinate system o f the joint

dx ^  —

: z . w

Adhesive

M HM
/V /

V I J  I / - '
(t — fdg'

;Vfd/V

‘ ’p.

Figure 5 Freebody Diagram of the Joint - Laminated Plate Model 

Based on first-order, laminated plate theory, the displacement field of the two laminates in 

the X and r-directions can be written as
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/ /= / /"(a:)+zt|;(x) (28)

w=w(x) (29)

where the superscript u° represents the mid-plane displacement, ijr is its corresponding 

bending slope, and x is a general length variable and applies to all sections o f the joint. By 

substituting Eqs. (28) and (29) into the strain-displacement relations, the normal strain 

and shear strain can be expressed as

o dyif
(30)

du dw , dw

For laminates constructed of orthotropic laminae, the stress resultant (or unit width force 

resultant) in the x-direction, and the unit width moment in the y-direction, , are 

related to only the mid-plane strain and plate curvature and not to the in-plane shear strain. 

Because of the assumption of plane strain the stress and moment resultants of the lower and 

upper laminates are [63]

(32)dx dx

(33)dx dx
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(34)
dx dx

(35)
dx dx

where the [A\ [5], [D\ are the matrices of the equivalent moduli for the laminate per unit 

width and the matrices of the equivalent moduli are defined as

h ‘■■2

f  (36)
-h^7

h '-2
('4,';>n'.-Dn)= /  Q ^ O , 2 , , z ^ ) d z ^  (37)

where O,/*’ represent the stiffness in the x-direction of the I ply. The superscripts L and 

U  denote the lower and upper laminate, respectively, h is the thickness, and z, and z, are 

measured from the middle plane o f the lower and upper laminates.

From the constitutive relation, the transverse shear stress resultant (or unit width 

transverse shear force resultant), 0^ can be written as [63]

^.=^55^= (38)

where k  is the shear correction factor introduced by Reissner [33] and Mindlin [64]. The 

/ 1 5 5  is defined for the upper and lower laminates as
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h ‘■'2

^ss=  /  0S S ^ 1 (39)

h L 2

(40)
-A " , 2

where is the shear stiffhess o f  the i* ply.

The transverse shear stress resultants for the lower and upper laminates can be 

related to the displacement fields by the substitution of Eq. (31) into Eq. (38).

(41)
ax

Qx (42)ax

The above relations from laminated plate theory correlate the laminate force and 

moment with the displacement field in terms of the equivalent modulus matrices.

It is convenient to break the joint into three sections as shown in Fig. 4 to facilitate 

the analysis. The mechanical behavior of the adherends in each section is discussed 

separately in the following sections.

(a) Section One

Section one is the flat plate to the left o f the joint. The axial stress resultant at each 

section of the lower adherend is
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N^\=P (43)

Substituting the kinematic relations into the constitutive relations (Eqs. (32), (34) and (41)), 

the governing equations of the lower adherend are then

(44)
UX, ÆCj

,  L L t L

d^x

(b) Section Two

Section two is the flat plate to the right of the joint. The governing equations for

the upper laminate are almost the same as those for the lower adherend in section one.

, , . U

< * 2  * 2

(45)
dx^ C& 2

* 2

(c) Section Three

Section three is the joint region and includes the tapered portion of the lower and 

upper adherends and the adhesive. The equilibrium equations for the lower and upper 

laminates are obtained from a force and moment balance.
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dx^ 55 4̂ 3-

d N ^ Px

dXj COS0

d O ^ Pz
COS0

d w ^ vV4 a n 0

2

Px

dx^ COS0

d O ^ Pz

-p.
ta n 0

COS0

dx^  COS0

(46)

(47)

(48)

(49)

(50)

dx^ 55
c

dx3

N  4 an 0  :^3ta n 0
(51)

where and p  ̂ , see Fig. 5, are combinations of projections o f the adhesive stresses from 

the vertical and horizontal surfaces to the inclined taper surface for the taper area 

corresponding to dx. From Fig. 6 , the relations among p^ p^  and are

Px ~ sin 0  + cos 0

p . = o. cos 0  + T sin 0

(52)
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CL

05“ J Ixz

n T,xz
■ CTv

' n

Figure 6  Adhesive Stresses - Laminated Plate Model 

and the adhesive stresses and v ̂  can be related to the adhesive mechanical properties 

and the laminate displacement field as

du E (u  ̂ -  u

E(w ^ -s
( \u

dw
dw

-  w^)

T _  = G

dz s tan0

' du cV'
-  Q

/
U^'

/ \ 
du^’

[  àx
-

\ A tan0

(53)

w ^ -  w ^

where E  and G are the Young’s and shear modului of the adhesive, s is the horizontal 

distance across the adhesive, and the displacement variables, u and w, are defined in Eqs. 

(28) and (29). Combining these equations with Eqs. (32)-(35) and Eqs. (41)-(42) yields the 

governing equations of the model. Substituting into these equations, and noting that [A], 

[5] and [£)] are functions o f x  in this section because of the taper, yields the governing 

equations.
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d A l;^du f # 3  Px
‘ 11

dx: dx, dx.
■*B

^ 2  COS 0 (54)

B
1 1 "

d xl ^ 3  ^ 3

+Dii‘
^ 3  ^ 3

^3 dx.
A/" ̂  tan 0 / ^ 3 ! tan 0  

cos 0

(55)

dx. dx
c/ijij d  hv.̂

3 dx. dx:

Pz

cos 0

(56)

‘II
^ 2  dx^ C&3

3 _  P x
+ D ,' I I

^ 2  okj cos 0
(57)

II
dXx A  ^ 3

- + £ ) I I
ok '  (^3 ^ 3

=k ’̂A ^55
U ^ 3

C

ok.
3  /

(' tan 0  3 : 3  tan 0

2  ^ ^ 2  cos 0

(58)

t / ^ 5 :
dx. 4̂ 3

U  ^ 3

dx.
Ua U

55

3 ok. aki

Pz

cos 0

(59)

These six second-order equations can be reduced to a set of twelve first-order equations that 

can be combined with Eqs. (44) and (45) to yield the overall model of the assembly. The 

overall model has three first-order equations in region one for ti°^, ifr,̂  and w /, three first-
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order equations in region two for and and six first-order equations for

dif^ dx, ijf-, diff- dx, \d- and dw^/dx for the lower laminate in the joint region and six similar 

equations for the upper laminate in the joint region. The resulting eighteen simultaneous, 

linear, coupled, first-order differential equations with variable coefficients must be solved 

numerical subject to the following boundary conditions. Since there are eighteen equations 

in the model, eighteen boundary conditions or equations are required. The system of 

equations are integrated from left to right. The left end o f the assembly is assumed to be 

pinned which results in the following conditions;

ut = 0 (60)

At the right end of the assembly the laminate is assumed to be restrained in the z  direction:

u'̂ 2 = 0 (62)

At each end of the joint region, continuity of each of the variables is assumed:

«.°" = (63)
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u f oU= U j (6 6 )

= 'ifl (67)

< = w / (6 8 )

N'- = p (69)

= -P w ^  (70)

0 ^  = - P - —  (71)
^ 3

At the left end of the joint region, the following equations are enforced: Similar conditions 

apply at the right end o f the joint:

N^' = P (72)

= -Pw^^ (73)

Q  "  = - P ^  (74)

These are fifteen boundary conditions and three additional conditions are needed to integrate

tthe system of eighteen equations. At the left end of the joint the normal stress and moment

resultants of the upper laminate are set to zero and at the right end o f the joint the moment 

resultant of the lower laminate is set to zero.
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^ \ - o  = 0; = 0; ^ \ - i  = 0 (75)

Intuitively, four conditions on the normal stress resultants are available. However, the 

normal stress resultants are governed by Eqs. (46) and (49). The right-hand sides o f these 

equations have the same magnitude but opposite signs. Once the three conditions regarding 

jV^and in Eqs. (69), (70), (72), (73) and (75) are satisfied, N^(l) will automatically equal 

zero. Therefore, only three o f the conditions are independent and can be used to complete 

the solution. These eighteen values and equations are sufficient to numerically solve the 

model.

A FORTRAN program was developed on an IBM compatible personal computer 

to numerically solve the model. The Linear Shooting Method as described by Press, et al. 

[54] was chosen to integrate the system of equations. The fourth-order Runge-Kutta 

Method was chosen to carry out the integration of the equations. In the first and last step 

of the joint region, the Modified Euler Method was used to average the effect of the 

singularity [55] that occurs at each end of the joint where one of the adherends tends to zero 

cross-sectional area, and therefore, zero values o f the equivalent moduli terms. The 

shooting method converts a two-point boundary problem to an iteratively solved initial value 

problem. Some of the known or assumed boundary conditions are specified at each end of 

the joint assembly. The unspecified variables at the left end of the assembly or joint can be 

adjusted to achieve the conditions at the right end of the joint and assembly. The equations 

are then integrated and the final conditions are checked. An algorithm is used to adjust the
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unspecified initial conditions and the integration is repeated. The process is continued until 

the errors in the final conditions are small.
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CHAPTER 4 

CYLINDRICAL BENDING

Cylindrical bending occurs under four-point loading. The mid-plane o f  the laminate 

is bent into a cylindrical surface. Figure 7 is a pictorial representation of a laminated plate 

with a taper-taper joint bent into a cylindrical form by four-point loading.

Figure 7 Plate Under Cylindrical Bending

The model derived in this research for the case of cylindrical bending was a one dimensional 

approximation of the case shown in Fig. 7. The one dimensional representation of the plate 

is shown in Fig. 8 . The derivation o f the model for cylindrical bending closely follows the 

development of the tension model. The applicable figures and equations in Chapter 3 will 

be referenced in the discussion below.

31
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I
I  I

_ /z i  ------------ L / 2 ------------- 4 — L / 4

Figure 8 Joint Under Cylindrical Bending

The freebody diagram in Fig. 5 was used in the derivation of the model. For the 

lower and upper laminates, the thin slices shown in the figure were assumed to be in 

equilibrium. Stress resultants were summed in the horizontal and vertical directions and 

moments were summed about the center of the laminate slices to generate the equilibrium 

equations..

The displacements in the x  and z directions are given in Eqs. (28)-(29). Using these 

equations the normal and shear strains can be expressed by Eqs. (30)-(31). The equations 

relating the normal stress and bending moment resultants to the plate displacements and 

equivalent moduli are given in Eqs. (32)-(35). The definitions of the equivalent moduli 

terms for the lower and upper laminates are given by Eqs. (36)-(37). The constitutive 

relation in Eq. (38) relates the shear stress resultant to the shear strain. The same value of 

the shear correction factors was chosen for this model, = 5/6. The equivalent shear

moduli for the lower and upper laminate are presented in Eqs. (39)-(40). These relations 

correlate the forces and moments in the laminate with the displacement field in terms of the 

equivalent modulus matrices.
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Under cylindrical bending the joint area is subject to a constant applied moment. Summing 

forces in the horizontal and vertical directions and summing moments about the element 

center yields Eqs. (46)-(51). The adhesive relations are listed in Eq. (53). Combining the 

equations above with Eqs. (32)-(35) and Eqs. (4I)-(42) yields the governing equations of 

the model which are listed in Eqs. (54)-(59). These six second-order ordinal}' differential 

equations with variable coefficients must be solved simultaneously subject to the boundary 

conditions listed below. To facilitate the solution, an order reduction method was 

employed to reduce the problem to a system of twelve, first-order equations.

Twelve boundary equations or values must be specified to solve the system of twelve 

linear, ordinary, first-order differential equations with variable coefficients. These equations 

and values are outlined and discussed below.

Since the stresses and strains are related to the derivatives o f the variables «°, ifr, and 

w, the datum for these variables are irrelevant. Therefore, these variables for the lower 

laminate were set to zero at x = 0 .

w°^(0 ) = 0

= 0 (76)

w^(0 ) = 0

Under four-point bending, the axial stress resultants must be zero at each end of the joint. 

Three of the four resultants are set to zero.
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A^ (̂O) = = 0

dx dx

N \[ )  = = 0  (7 7 )
dx dx

N^{Q) = = 0

dx dx

The right hand side o f Eqs. (54) and (57), which govern the axial force resultants on the 

lower and upper laminates, have the same magnitude, but opposite sign. Once the three 

conditions above are satisfied, N^O) will automatically be zero. Therefore, N^'(l) = 0 is not 

an independent boundary condition. The applied moment, A^, is taken by the lower 

laminate at j: = 0, and by the upper laminate at r  = /. Therefore the following conditions are 

imposed.

M ^( 0 ) = ^ = M
" dx “ dir

(78)

M \ l )  = = 0

dx dx

M  ^(0 ) = = 0

dx dx

M (̂[) =  ^
" d i r  " d i r

Two additional boundary conditions are needed to solve the model. The shear resultants 

are zero at each end of the joint, but the conditions are not independent by an argument 

similar to that given above for the axial stress resultants. Two o f these conditions are set
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to equal to zero:

Q \[ )  = /tM /-55
d w \ l )

dx
=  0

dx y

(79)

=  0

The twelve conditions above are sufficient to solve the model. The FORTRAN program 

developed to solve the tension loading case in Chapter 3 was modified to integrate the 

laminated plate model for the case of cylindrical bending.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5 

MODEL VERIFICATION

Finite element analysis was not a major part of this work, but was only used to verify 

the accuracy of the developed models for tension and cylindrical bending. The mechanics 

of materials and laminated plate models were both verified for tension loading using finite 

element models constructed with the COSMOS/M finite element software [56]. The 

cylindrical bending laminated plate model was also verified using a COSMOS/M finite 

element model. The laminates modeled were relatively thin and the angles involved resulted 

in small surface areas in the joint region. The small surface areas of the joints precluded the 

use of strain gauges. At most, the strain at one point on the surface of the laminate in the 

joint region would have been obtainable. Finite element models were chosen for verification 

in order to generate a point-by-point comparison with the analytical models along the x-axis.

For the mechanics of materials model two plate thicknesses and two taper angles 

were modeled. The plates and adhesive were modeled using 2-D plane strain, four-noded 

quadrilateral elements. In the models, the first 0.8 mm of the sharp tapers was truncated to 

match the geometry used in the analytical model. Finite elements were generated using 

reduced integration for the case o f plane strain. The details o f the mesh in the joint region 

are shown in Fig. 9.

36
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Figure 9 Finite Element Mesh - Mechanics o f Materials Model 

COSMOS/M models were used to verify the laminated plate model for a 2 0 “ taper 

angle and unidirectional and crossply laminates under tension. In these models the entire 

taper was included to match the laminated plate model. 2-D plane strain, eight-noded 

quadrilateral elements were used. The mesh consisted of 2,248 elements. The finite 

elements were generated using reduced integration for the case o f plane strain. Figure 10 

is a plot o f the mesh used to model the joint region.

Figure 10 Finite Element Model for Laminated 
Plate Model Under Tension

The finite element models used in the tension case were not adequate for the bending

case. The model produced stresses that generally followed the model but had some sharp
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excursions. This was caused by the rotation of the elements and the change of angles in the 

elements adjacent to the adhesive. To overcome this problem the model was meshed using 

constant angle elements that matched the taper angle in most o f the model. The transition 

section was outside o f the points of load application. A detail o f the mesh is shown in Fig. 

1 1. The model was meshed using a higher density o f lower order elements than the tension 

model. The model used 5,376 four-noded quadrilateral elements. The 2-D plane strain 

elements were generated using reduced integration.

Figure 11 Finite Element Mesh for Laminated 
Plate Model Under Cylindrical Bending
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CHAPTER 6 

RESULTS AND DISCUSSION

6.1 Mechanics of Materials Model - Tension

Table I lists the properties that were used in the mechanics o f materials and finite 

element models.

T ablet Properties of Scotchply Plate

Property Value

Modulus of elasticity for 
plate (GPa)

39.3 (Unidirectional) 
24.5 (Crossply)

Thickness of plate (mm) 6.35 (Unidirectional) 
3.175 (Crossply)

Shear modulus o f adhesive 
(GPa)

0.34

Modulus of elasticity of 
adhesive (GPa)

0.96

Thickness of adhesive layer 
(mm)

0.084

Poisson’s ratio for plate 0.3

The finite element results are superimposed on the analytical results in the four 

graphs included as Figs. 1 2  through 15. Figure 12 shows the strain distribution for 3.175 

mm plate with a 15“ taper angle, and Fig. 13 shows the strain distribution for the 3.175 mm 

plate with a 20“ taper angle. The strain is nearly constant through most of the joint and falls 

toward zero as the end of the taper is approached. The finite element results match the 

analytical model closely except in the vicinity of the end of the taper where the strain

39
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Figure 12 Strain Distribution for 3.175 mm Plate at 15'
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falls to zero more quickly for the analytical model. This mismatch is probably due to the 

omission of the moment equations from the model. The finite element results are strains at 

the center of each element and therefore do not reach zero for the last element in the taper. 

The same situation occurs at the beginning of the taper. Figure 14 shows the strain along 

the joint length for the 6.35 mm plate with a 20“ taper, and Fig. 15 shows the same for a 

25“ taper. The strains are again nearly constant along most o f the joint. There is a slight 

mismatch near the end of the taper in Fig. 14, but the overall agreement is excellent in Fig. 

15. The agreement improves with the thicker plate and the steeper angle because there is 

more material in the area near the end of the taper to resist the shear stresses caused by the 

taper. The calculated strains are smaller for the thicker plates because the same load was 

used for both plate thicknesses, and the thicker plates have more material to resist the load. 

The analytical model and the finite element model agree well and are within about 5 to 10% 

of each other over the length o f the joint.

The method of Erdogan and Ratwani [47] was used to provide an additional check 

on the accuracy of the mechanics of materials model. The method is summarized briefly in 

Chapter 2, Eqs. (l)-(3). For comparison with the model and the finite element results, the 

joint was divided into ten steps and the strains were calculated at the center o f each step. 

A personal computer program was written in the C computer language to evaluate the 

constants and calculate the strains. The data points extend beyond either end of the other 

models because there is no truncation of the ends o f the joint in the stepped joint model. 

The stepped joint approximation data are superposed on Figs. 12-15. This model matches 

the analytical model well in the area away from the end of the taper and fits better for the
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thicker plate and steeper angle. The model does not fit well near the end o f the taper, as the 

cross-sectional area of the stepped joint does not go to zero. The stepped joint 

approximation would approach zero area at the last step if the number of steps became 

infinitely large.

6.2 Laminated Plate Model - Tension

A 16 ply unidirectional laminate of T300/5208 (Graphite/Epoxy) with ply 

thicknesses o f 0.25 mm and a [90/0/90/0^] laminate of the same material were chosen for 

demonstration of the analytical model. Identical laminates were used in each case for the 

lower and upper adherends. The engineering constants of T300/5208 are [68] E^ = 181 

GPa, Ey = 10.3 GPa, E=  7.17 GPa and y^= 0.28. Table 2 lists the equivalent moduli per 

unit width for the laminates outside o f the joint area.

Table 2 Equivalent Moduli for the Laminates

X ,„M N B,,, kNm Du, Nm-

Unidirectional 727 0 969.6 28.7

Crossply 384 -171.5 512 28.7

In the joint region the A,,, and D,, terms were represented algebracially as 

functions o f x  to account for the varying amount of material removed to machine the taper 

angle. Each laminate has a 50 mm long straight section on the end plus the tapered region 

whose length is a function of the taper angle. The tension load applied was 1,000 N/m.
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The properties assumed for the elastic isotropic adhesive are listed in Table 3.

Table 3 Adhesive Properties

Modulus of Elasticity, E  (GPa) 0.96

Shear Modulus, G (GPa) 0 .34

The shear correction factor was introduced by Reissner [9] and Mindlin [64] for 

isotropic plates. The choice o f the shear correction factor k for anisotropic plates is not 

trivial. The value o f  the factor has been shown to depend on both laminate materials and 

stacking sequence. Several values have been suggested by researchers. A value of 5/6 was 

suggested by Whitney and Pagano [11], and the results were shown to be close to the exact 

solutions for a crossply laminate under bending. Calculations with two different k  values 

(2/3 and 5/6) indicated that the model was not very sensitive to the shear correction factor. 

The adhesive stresses were almost identical for both values with a maximum difference of 

about 2% near the peak peel stress for the crossply case. Therefore, the value o f k  in Eqs. 

(44)-(45) and (54)-(59) was chosen as 5/6 to simulate both k^ and kf'.

A 20“ taper angle was chosen for the examples presented in Figs. 16-25. The 

unidirectional results are shown in Figs. 16-20 and the crossply results are shown in Figs. 

21-25. The results are shown for the joint region only. The distribution o f the normal stress 

resultants are shown in Fig. 16. The plots are linear as expected for unidirectional material. 

The bending moment and shear resultants are shown in Figs. 17 and 18. The bending 

moments are zero at each end of the joint because there is no applied moment and the 

moment present within the joint is generated by the tapers. Figure 19 is the peel stress
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distribution in the adhesive and Fig. 20 is the shear stress distribution in the adhesive. The 

results o f the finite element model are superposed on the curves in Figs. 19 and 20. The 

agreement between the analytical model and the finite element model is very good with 

only a slight mismatch near the ends o f the joint. The adhesive stresses are very uniform as 

expected since the adherends have uniform properties in the x-direction [44]. The normal 

stress resultant, bending moment, and shear resultant are shown in Figs. 21-23 for the 

crossply case. The normal resultants are not linear for the crossply case. This is due to the 

different properties o f the ply groups. The bending moments are both zero at each end of 

the joint due to the absence of any applied moments. The shear resultant curves show local 

maximums at the ply group interfaces where there is a discontinuity o f  properties. The 

adhesive peel and shear stresses are shown in Figs. 24-25. In Fig. 24 the peel stress curves 

are similar. The maximum peel stress occurs at about x 7=0.4 and the mismatch between the 

two curves is only about 5%. In Fig. 25 the shear stress curves are also similar. The 

maximum shear stress occurs at about x  /=0.3 and the mismatch is about 8%. This 

agreement between the analytical model and the finite element model is good and should be 

usable for future failure analysis. The stresses are not uniform due to the change in 

properties between ply groups. It is interesting to note that the second ply group takes most 

of the load, followed by the bottom ply. This is as expected since the 0 “ ply groups have 

significantly more strength in the x-direction than the 90“ ply groups.

Figures 26-27 are plots of the adhesive peel and shear stresses for the unidirectional 

laminate with two diflferent values of the shear correction factor. Figures 28-29 are similar
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plots for the crossply laminate. All four plots show that the model is not very sensitive to 

the value of the shear correction as noted above.

6.3 Laminated Plate Model - Bending

The applied bending moment was 2 Nm. Figure 30 is the distribution o f the normal 

stress resultants. The curves for the lower and upper laminate are symmetric about the x- 

axis and start and end at zero because there is no in-plane load applied to the laminate. 

Figure 31 is the bending moment resultant. The moment resultant equals the applied 

moment at the left end of the joint for the lower laminate and at the right end of the upper 

laminate. Figure 32 is the shear stress resultant. The plots are symmetric about the x-axis 

and have stress reversals at the ply interfaces. Figure 33 is the adhesive peel stress 

distribution.The highest stresses are carried by the adhesive adjacent to the two 0“ ply 

groups as expected. The peak stresses are within about 2% o f those predicted by the finite 

element analysis results. Figure 34 is the adhesive shear stress distribution. The peak 

stresses are also carried by the adhesive adjacent to the two 0 “ ply groups. The peak 

stresses predicted by the analytical model are very close to the finite element analysis results.
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CHAPTER 7 

CONCLUSIONS

Two analytical models have been developed to describe the taper-taper adhesive- 

bonded joint under tension loading, a mechanics of materials model and a laminated plate 

model. The laminated plate model was also solved for the case o f four-point bending.

The mechanics o f materials model was based on the assumption o f an isotropic 

adhesive and used the extensional Young’s modulus to characterize the plates. The 

laminates were assumed to be in the plane strain condition under a tension load. Using this 

model the strain distribution in the laminates was obtained through numerical integration of 

the set of eight simultaneous first-order, linear ordinary differential equations with variable 

coefficients. A FORTRAN program was developed to carry out the integration. The model 

appeared to be reasonably accurate in the area of the joint that was modeled and could be 

used for joint design after suitable refinement and experimental testing to prove its accuracy.

The laminated plate model was developed to overcome some o f the limitations of 

the mechanics of materials model. The analytical model of the strain-stress distributions in 

an adhesive-bonded taper-taper joint under tension loading was developed for unidirectional 

and crossply laminates using classical laminated plate theory. Shear correction factors were 

used to account for transverse shear deformation. The developed model consists of 

eighteen simultaneous, linear, first-order differential equations with variable coefficients. 

A FORTRAN program was developed to implement the Linear Shooting Method to 

numerically integrate the model. The program was developed and run on an IBM

68
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compatible personal computer. The analytical model compares well with the finite element 

models and computes the peak adhesive peel and shear stresses to within about 5 - 8 % of 

those predicted by finite element analysis. The model can be used to analyze joints for safe, 

efficient design.

A laminated plate model was also derived for the case o f cylindrical bending. The 

model consisted of six, simultaneous, second-order differential equations. The FORTRAN 

program used to solve the tension model was modified to solve this case. The model results 

agreed well with the finite element model. The adhesive stresses predicted were within 

about 2% of the finite element results. The model can be used to analyze joints for safe, 

efficient design.

Further study o f this joint is warranted. The preliminary buckling analysis in 

Appendices A and B will be completed in the future.
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APPENDIX A 

BUCKLING ANALYSIS

To complete the study of the taper-taper adhesive-bonded joint the behavior of the 

joint under compressive loading should be studied. The following development outlines 

buckling analysis of the joint. First-order laminated plate theory was used in the derivation 

of this model. Shear correction factors were included to account for transverse shear 

deformation. Three steps were followed in the derivation of the analytical model. A 

description of each step is detailed below.

(a) Kinematical Relations

Figure A1 is a drawing of the taper-taper joint under a compressive in-plane load.

 -------------L ---------------

 :

P --^  -̂---- P
h ~

L ’

Figure A1 Joint with Compression Loading 

A standard right hand x, y, z coordinate system was used in the derivation of the model as 

shown in Fig. A2. The x  and y  coordinates are defined in the mid-plane of the laminate.
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z,w

Adhesive

(V 4-dN

M !---   M i-dM

fdp"

Figure A2 Freebody Diagram of the Joint - Compression Loading 

The tangential displacement in the x-direction was assumed to be a linear function o f the 

through laminate coordinate, that is

(A l)
u = u °(x) + r 

\v = w(.v)

where n° is the tangential displacement o f the mid-plane in the x-direction, ^  is the 

corresponding bending slope, and w is the deflection in the r-direction. The transverse strain 

is

fx) + dw
dx ( A 2 )

The strain-displacement relation is

( A 3 )
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where the mid-plane strain and x-direction curvature can be represented as shown in Eq. 

(A4):

(b) Energy Formulation

The total strain energy for the orthotropic plates and adhesive can be written as

^  '  i / / / r  -  2 dxdydz (AS)

where k  is the shear correction factor, 0 ,," ‘ is the i* ply stiffness and 0 ;^“ is the shear 

stiffness of the i* ply and

" 2C (e^ .  e-) .  G e^]
v £  (A.6)

and  É? = €,. + e. and K = -----------------
( l+ v )(l-2 v )

where E  and G are the modulus of elasticity and shear modulus o f the adhesive and v  is 

Poisson’s ratio for the adhesive.

The potential energy o f in-plane loads is

dxdy (A7)

where is the initial in-plane force applied to the plate in a pre-buckled state and ' is the 

mid-plane strain due to the large deflection w in the z direction, that is.

du° \ (  dw \^
dx 2
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Substituting into the expression for potential energy

For the case in question

d u °  1
----------------- 4-  —

dx 2
dw 
d x ,

dxdy (A9)

M ‘ = -P  (A 10)

Since there is an absence o f transverse loading the work due to transverse loading is

fV = 0 (A ll)

(c) Ritz Method

The Ritz Method is a convenient method for obtaining approximate solutions to 

boundary value problems [63]. The problem can be formulated by setting the first variation 

of the total energy to zero,

ô n  = ô ( ( / + F  + fV) = 0 (A 12)

To derive a solution known functions are chosen for each of the variables. For this study

Fourier Series were chosen to represent all of the displacement variables. The geometric

boundary conditions must be satisfied by these series. Also the series must be continuous

through at least the same order derivatives as required in the corresponding differential

equations.

To facilitate the analysis the assembly was divided into two regions as shown in Fig. 

A l. Eqs. (A5) and (A6) are written for each region and then combined into Eq. (A12). 

Fourier series were chosen to meet the boundary conditions at each end o f the assembly.
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The boundary conditions are

w = 0 at x  = Q 8 cx  = L 

= 0 at x = 0 &  x = L
dx

1I2 = 0 at X = L '

(A 1 3 )

In section one the following Fourier series were chosen

" 1  = “ 0  "
L

7 -  + I  sin
/  Tt X ,

,=1 L

k t i  X ,
ij;, = I  5 ,  sin

I 1 L
I (AM)

1 -  cos
m ti X

where L is the length of each laminate, L ' is the length of the assembly and u„ is the static 

deflection of the assembly.

In section 2 the following series were chosen

L ' L

(AI5)

' ♦ ' 2  = L
nt - 1

1- COS

The adhesive stresses and can be related to the adhesive mechanical properties and 

the laminate displacement fields as
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o = E  ^  (y
^ dx s

E(}v -s
a  = £  iü ;  =

dz
dx

-  w^)

s tan0
(A16)

= G ' dll (?w \ -  G

/
Il -s ' dll

I J
\

i dz dx J 1 s tan0 j
where E  and G are the Young’s and shear moduli o f the adhesive, s  is the horizontal 

distance across the adhesive in the x-direction, and the displacement variables, u and w, are 

defined in Eq. (Al).

When the series above (Eqs. (A14)-(A15)) and the adhesive relations, Eq. (A16) are 

substituted into the expression for the first variation is taken and the resulting integrals 

are evaluated considering the orthogonality o f the series, a general eigenvalue problem is 

obtained. The resulting equations can be expressed in matrix form as

(A 17)

where Kf is the stiffness matrix, AT ̂  is the incremental geometric stiffness matrix, P  is the 

applied load and the X, are the undetermined coefficients of the assumed Fourier series. 

Equation (A 17) can be re-arranged to yield

(A18)
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And finally a standard eigenvalue problem is obtained;

I M  M  -  4 4  ] m  = 0 (AI9)

where [/] is the identity matrix. To solve this problem, the determinant of the equation in 

brackets is set equal to zero. The largest eigenvalue, was calculated and P = 1/̂ »̂% 

yielded the desired critical buckling load.

The stiflSiess matrix, is necessarily symmetric, therefore, only elements along and 

to the right of the major diagonal are shown in the equations listed in Appendix B. The 

symbols, such as 1N22, are integrals that must be evaluated numerically. The integrals are 

defined below the equations. A prime on an integral, i.e., IN22', indicates that the integral 

should be evaluated with the / and j  indexes interchanged.

A personal computer program will be developed in FORTRAN to solve Eq. (A 19).
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APPENDIX B

ELEMENTS OF THE STIFFNESS MATRIX

du_ - I

INI+INIO E  +4(

-4(

A':
E

s^L'^ shan^QL 
G G

s^L'^ sL'han^Q shan^QL

■)IN47

■)IN46

)!N48

u.

LL  

-jTzIN4
2LE - 2(

s ̂ L' s han^QL' 
E

2s^L' shatv^QL'

s  ̂  Stan ̂ L' s 4an^B
G

)IN46^2{ )IN29+{ ^

staii^QL' j^tan^B 
G+vE

)IN 3I

)IN20

Z

jn lN II
LL'

hanQL'

2(

- (

s \anQL' .rtanBZ,' s  ̂ tanB
G G'*'vE

)IN48

5tanBI' j^^tanB
)IN22 '

B.

C.

L' s ^tan^BL' 
lGjnIN29
siat?QLL'

HGy7i( 1
s ̂  stan^BL' 5  ̂ tan^B 

)IN23 '

)IN 3l
D.

iar^QLL' itan^BZ,

2Z-Z-’ L' shan^QL'
^  )IN23+{— + ^ G

s^ s t̂an^B itan^BZ-
■)IN22

1 . 1 3GJTZ/N40 . GZAZ5Z
2 5tan^BZZ' 5^tan^BZ 4shan^QLL' shaii^dL'

' ' )IN-I44 (2 5tanBZ‘ s  ̂ tanB 

2(-^ - —  )ZA^45-2(--^ - )IN29-{ ^ G+vE
^ 4anBZ' 5^tanBZ,' JtanBZ' j^tanB

+(— 5 _ + - ^ lZ ^ ) /A r jJ  /_ ^^EjTzIN19  ̂\EjuIN31 
5tanBZ' 5 ^tanB JtanBZZ' 5tanBZ,'

)IN48

(Bl)
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(?n
dA. = I

tan^0
)IN 3 2

ijTZ^INS ^ E I I ^  J + G y j^2 6 'B
2L^ 2s^

G+vE
2 s‘ tan^0

- I (

I - ( 4 ^

tan0
G

)IN 3 l'-{  )IN35
tan0

C.

S '  2s^tan^0
)IN32- GIN35 GjTzIN35‘

( 4 -
tan^0

)m 24-

2s^tan^0 s  tan^0Z, 
GjnIN43 ' GIN49
Is  \ss?QL 2s ̂ tan0

D.

_( G+vE yN 3 i  /+( ^V i^^ )IN 3 5
c ̂  tân0 ton A ^3n0/.tan0 5tan0L

F.

(B 2 )

= I

k^jnIN S G+\'E

ijiFlNô + _ _ ^ _ ) /a /2 5
4L'

(■
5^tan0

)IN20 '- (

s ^tan^0 
G+vE

B

5^tan0
)IN39 '

_ ( E .  G y j^n ^_ G IN 21 '_ GJ^IN39 
s~ i’ t̂an^O 5^tan^0 5tan^0L

C.

D

G yj,r22^ GIN27' ^ GjizIN45 _ GIN54' GIN54 
s^ 2y^tan^0 2y^tan^0 2.v“tan^0L 45^tan0 4^ 4an0

-(  ^ * '^ ^ )IN20 '+{P. *— .)IN39

(B3)

A' ̂ tan0 i’^tan0 s  tan0 L
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m
dC. = l

- P ^  . ^ ) I N 4 8

+(-

21 i^tan^ô C.

5^tan^0 5^tan^0 5“ s

- (  )IN 3 î-{  )IN 3 5 -GJTZIN33'_ GjTzIN34'
^^tan0 J^an 0  5tan0Z, 5tan0Z,

^ )IN22-  )/Â 3<5

D.

- ( -
■ t̂an^0

5^tan0 5^tan0 ly^tan0Z,
. GjTzlN38 _ GIN44 _ G//V55

IshandL  2s^ 2s^
G F,}±)IN48*( ^

•tan^0
^^)IN 3 3 + (-

^tan^0
^9-)IN 33

EJtzIN3I EjTtIN35 , E
5tan^0Z- 5tan^0Z, 5^tan^0

— )IN34
F

(B4)

an
az).

=E

ijTi^INI2 , E  
  ; + ( — -

: ̂ tan^0
)IN32- GjTzIN35

5tan^0Z,
GjTtIN35 , GjTiIN43 ' , Gij-n}IN34 
itan^0Z- Zs^tan^0Z, tan^0A ^

D.

ijy}lN14 ^  , G/tt
2Z.:
y-TT

5^ 5^tan^0 25tan^0Z,
)/7V2V GîtzIN 36'

2ytan^0Z,
/ÿTT"

4 5tan^0Z, stzx^QL ^
)IN38- GjTiIN43 ' GIN49 GinINSS

45 ̂ tan^0Z, 25 4an0 2.rtan0Z-
 ̂G+vE /_ GîtzIN33 ___ GinlN34 G+vE /_ 'jEJtzIN32 
5^tan0 ^ tan0 L 5tan0Z, 5^tan0 5tan0Z,

(B5)
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tan^0
)im 8 - GjTiIN41 ' _ Gijii}lN4I

2s HdS^QL 2s han^QL
 ̂ GijTi^IN42 GIN50 ^ GjTtIN52 '  ̂ GmIN52 GIN53
^sHai^QL^ 5^tan0 4^4an0Z. 4^ t̂an0Z,

k j iz IN l7 G +vE y ^22  f  )IN36+
L 5^tan0 5^tan0 2^^tan0Z,

GinIN38 ' _ \Ej%IN24 '  ̂GIN44 ' GIN55 ' 
2shanQL sianQL %y2 2s ̂

F.

(B6)

-Pi ~Tp- k  ^'ijTZ^INI8 ., ------— )IN 48'{  - ^  *— )lN33
tan^0 5^ 5^tan^0 s^

E  Ejv:IN3I EjizIN35 EiTiIN31'
i’ t̂an̂ OL 5tan̂ 0Z- itan^0Z.s  ̂ tan^0 ..2

. EiTiIN35 '  ̂EijTZ^IN32 GIN33 
.stan^0Z, tan^0Z.  ̂ s^

f j  (B7)

INl= jA ,\d x (B8)

IN2= jA i \c o s ^ ^ d x (B9)

(BIO)
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L

I N 4 = Ç B ^ \ c o s i ^ d x  ( B l l )
0

r.r- rrjL ITIX jn x  ,
/ A' j =j 5, , cos— ( BI 2 )

m 6 = fD ^ \c o s ^ c o s ^ ^ d x  (B13)

L
IN7=I A (B14)

L
! N 8 = l A ^ \ s i n ^ s i J j ^  (B15)

INIO=jA^^dx (B17)



L IL
0

21 2Z.

IL  L
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IN12=j'A^\cos^^cos^^^dx (B19)

L

IN I3 = jB ^^co si^d x  (B20)

IN I5=jD l\cos^C Q sJ^dx  (B22)

IN 1 6 = jA ^^sm i^sxx J^^^  (B23)

IN I7 = jA ^^s \n -^s .\xJ^d x  (B24)
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IN I8=jA^^sm ^s\xJ^dx  (B 2 5 )

L
IN I 9 = Ih ^ s h T ^ d x  (B26)

L

IN20=Ihjh  (B27)

I N 2 I = l h / i ^ s m ^ s i n ^ d x  (B28)

IN22 = 1 ’̂ûn-̂ — dx (B29)

IN23 = 1 '^ 'xshJ^dx  (330)

I N 2 4 = j ^ s m ^ s x v J ^ d x  (B31 )
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I N 2 9 ^ jh ^ c o s i^ d x  (b36)

L

IN 3 I= jh ^xv J^d x  (B38)

89

I N 2 5 = jh ^ h (832)

I N26- jh j h  (833)

I N 2 7 = j ^ s m ! ^ s \ v J ^ d x  (834)

IN 28= \h^h  " y s i n ^ s i i Æ &  (835)

L

IN 3 0 = p i^  ^ x s in ^ d x  (837)
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L

IN 38= j'hj/7 '^cos^^cos-^^dx  (B45)

90

L

IN32= jh^in^-^s\vJ^^-dx  (B39)
 ̂ ^

(B40)

I N 3 4 = jh jc o s ^ ^ œ s ^ ^ d x  (B41)

L

IN 3 5 - jh jc o s ^ ^ s in ^ ^ d x  (B42)

L

I N 3 6 - ' ^ s x n ^ ^ c o s ^ ^ d x  (B43)
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IN40= j ^ ’xcos^-^dx  (B47)
2L

IN4I =1h ^ h  (B48)

L

/N 4 3 = J h ^ ^ 'c o s ^ s m - ^ d x  (B50)
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L

m 39= J'h ^ ^ 'cos^ sm -^ dx  (B46)

/N 4 4 = lh ^in ^-^d x  (B5I)

IN 4 5 -j‘h ^ ^ h  ^ s in ^ ^ c o s ^ ^ d x  (B52)



I N 5 2 - jh ^  ^ c o s - ^ s \n L ^ d x  (B59)
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L

IN46=jh^dx  (B 5 3 )

L

IN 4 7 = jh ^^d x  (B54)

L

IN 4 8 = ^ h ^  (B55)

I N S O ^ j f- 's in -^sinÆ ûîr (B57)

IN 5 I= jh ^s .m -i^d x  (B58)
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where hj is the thickness of the plate within the joint.
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IN 53=jh^xn^% \vJ^dx  (B 6 0 )

I N 5 4 = j (B61 )

/N 5 5 = jh ^ o s i^ s x x J ^ d x  (B62)
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