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)is research studies the vibration analysis of Euler–Bernoulli and Timoshenko beams utilizing the differential quadrature
method (DQM) which has wide applications in the field of basic vibration of different components, for example, pillars, plates,
round and hollow shells, and tanks. )e free vibration of uniform and nonuniform beams laying on elastic Pasternak foundation
will be studied under three sets of boundary conditions, that is, mixing between being simply upheld and fixed while utilizing the
DQM. )e natural frequencies and deflection values were produced through the examination of both beam types. Results show
great concurrence with solutions from previous research studies. )e impact of the nonuniform cross-section area on the
vibration was contemplated. A comparison between the results from both beams is obtained.)e focus of this work is on studying
the deflection difference between both beam theories at different beam dimensions as well as showing the shape of rotation of the
cross section while applying a nodal point load equation to simulate the moving load. )e results were discussed and a general
contemplation about the theories was developed.

1. Introduction

)emost basic assumption developed about a bending beam
resting on an elastic foundation is that the foundation’s
reaction forces are directly proportional to the beam de-
flection at any arbitrary point. )e deformation simulation
of the foundation due to loading is perceived as indepen-
dent, similar, and linear elastic springs. )is trivial con-
sideration was presented in 1867 by Emil Winkler [1]. )is
analysis has been widely accepted and has been developed to
include more complicated parameters throughout the years.
Oppermann [2] studied the beam on elastic foundation
using the simplified continuum approach. Avramidis and
Morfidis [3] introduced three-parameter elastic foundation
for Kerr-type Timoshenko beam. Nassef et al. [4] studied the
effect of using spring loads on a Timoshenko beam sup-
ported on a viscoelastic damped spring foundation. )e
dynamic response of a finite beam resting on a Winkler

subjected to a moving point load as well as a moving vehicle
on two axles moving with a speed varying with time was
studied by Beskou and Muho [5].

Euler–Bernoulli beam theory is an introductory method
to calculate bending of beams when a load is applied.
Bernoulli formulated the differential equation of motion of a
vibrating beam. After that, Euler studied elastic beams under
different loading conditions’ deforms. )e Euler–Bernoulli
beam theory is the most applied of other theories because of
its simple and sensible numerical approximations in many
problems, which stated that the model tends to overestimate
the natural frequencies slightly. Shu and Du [6] studied the
vibration of an Euler beam while applying the clamped and
simply supported boundary conditions on the beam. Rajib
et al. [7] studied the dynamic response of an Euler–Bernoulli
beam subjected to a moving load supported by the Pasternak
foundation. Mutman [8] presented a study about the free
vibration of an Euler beam with a variable width using the
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Homotopy perturbation method. Abumandour [9] studied
the vibration of a nonuniform Euler–Bernoulli beam resting
on two-layer elastic foundation. Bezerra et al. [10] presented
and studied the free vibration of an Euler–Bernoulli beam
resting on Pasternak foundation.

Timoshenko [11] contributed a theory which takes into
account the shear and rotary inertia corrections that are
neglected in Euler–Bernoulli’s beam theory. )e solution of
simply supported beam subjected to moving loads through
using the power series expansion was studied by Timo-
shenko [12]. Leszek [13] studied the vibration of uniform
Euler and Timoshenko beam resting on an elastic founda-
tion using the green functions. Azam et al. [14] studied the
response of Timoshenko beams subject to moving mass
using Hamilton’s principle. Lucas et al. [15] studied the
dynamic analysis of a Timoshenko beam resting on a two-
parameter Pasternak foundation using finite element. Li and
Hu [16] investigated the nonlinear bending and free vi-
bration behaviors of size-dependent nonlinear
Euler–Bernoulli and Timoshenko beam through thickness
power-law variation of two-constituent functionally graded.
)e cross-section effect on the bending behaviors of non-
local beams was studied by Li et al. [17]. Mirzaeiet al. [18]
studied, using a semianalytical method, the thermoelastic
behavior of temperature dependent and independent
functionally graded variable thickness cantilever beam.

Researching the development of new numerical tech-
niques for solving engineering problems is on par with the
rapidly growing advancement of faster computer machines.
)e differential quadrature method was first developed by
Bellman [19]. )e DQM is a numerical solution technique
which is noticeably growing to be used in solving the
boundary and initial value problems; it is considered a well-
suited alternative to the well-known conventional numerical
methods such as the finite difference technique. Patil and
Kadoli [20] utilized the DQM to study the influence of the
Winkler foundation on the free vibration of a functionally
graded beam.

In this paper, a numerical analysis of Timoshenko beams
and Euler–Bernoulli beams is presented, using the differ-
ential quadrature method, through which the natural fre-
quencies and deflections due to external loads are calculated.
)e output results using the DQM are compared with the
exact solution as well as the work of other researchers to
validate the accuracy of the work. Both beam theories resting
on a two-parameter Pasternak foundation are compared to
describe the behavior of both theories under the same
conditions.

)e contribution of this work is the study of both beam
theories simultaneously while using a variable beam depth
which subjected to a moving load and an axial load. )e
moving load was applied without using the Dirac delta

function, instead a relation between the time and grid point
was formed which interprets the location of the vertical load
by inserting the time parameter; this facilitates the appli-
cation of the vertical load without using an analytical
solution.

2. Problem Formulation

Figure 1 shows the schematic diagram of a beam of length L,
carrying a constant traversing point load f , and a com-
pressive point load P at the beam’s ends. )e beam rests on
an elastic Pasternak foundation.

2.1. -e Euler–Bernoulli Model. )e assumptions stated by
the Euler–Bernoulli beam theory are [21]

Beam sections remain plain after deformation

Deformed angles of rotation of the neutral axis are
small

)e foundation of the beam is taken as a Pasternak
foundation with linear stiffness:

Rx,t � k1wx,t − GR
z2wx,t

zx2
, (1)

where Rx,t is the reaction of the foundation per unit length,
wx,t is the beam vertical displacement, k1 is the first order
foundation parameter (elastic stiffness), and GR is the shear
deformation coefficient.

Basic energy derivations for the Euler–Bernoulli beam
model are

M � EI
z2w

zx2
. (2)

)e beam bending energy Ub is given as follows:

Ub �
1

2
∫L
0
EI

z2w

zx2
( )2

dx. (3)

)e system’s kinetic energy T is given as follows:

T �
1

2
∫L
0
ρA

zw

zt
( )2

dx, (4)

where ρ is the beam density. )e work done by the com-
pressive force P at the beam’s ends is

Wp �
P

2
∫L
0

zw

zx
( )2

dx. (5)

Applying Hamilton’s Principle,

δ∫t2
t1

∫L
0
Ldxdt � δ

1

2
∫L
0
ρA

zw

zt
( )2

dx −
1

2
∫L
0
EI

z2w

zx2
( )2

dx −
1

2
∫L
0
Kdx +

P

2
∫L
0

zw

zx
( )2

dx
 dxdt, (6)
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where L is the Lagrangian. Solving equation (6) results in the
following fourth-order differential equation:

z2

zx2
EIwxx( ) + P wxx( ) + ρAwtt + k1w − Gpwxx � fx,t.

(7)
To neglect the effect of time, we use the method of

separation of variables and assume that

w(x, t) � eλt ∗ω(x). (8)

Substituting then simplifying gives

z2

zx2
EI

z2ω

zx2
( ) + P z2ω

zx2
+ ρAωλ2 + k1 ∗ω(x)

− Gp
z2ω

zx2
�
fx,t

eλt
∗ L

3

EI0
.

(9)

Introducing the dimensionless variables,

W �
ω

L
,X �

x

L
⟶ ω �WL, x � XL. (10)

Substituting the newly stated variables into equation (9)
yields after simplification:

z2

zX2 S(X)
z2W

zX2( ) + β1W + β4
z2W

zX2 � Fx,t +Ω
2W, (11)

where

β1 �
k1L

4

EI0
, β2 �

GpL
2

EI0
, β3 �

PL2

EI0
, β4 � β3 − β2, andΩ2 �

ρAL4λ2

EI0
.

(12)
)e following two boundary condition types are

considered.
A simply upheld end:

W � 0,
z2W

zX2 � 0. (13)

A fixed end:

W � 0,
zW

zX
� 0. (14)

Assuming a fixed and a simply upheld ends, end con-
ditions can be shown, respectively:

W1 � 0,
zW

zX(1)

� 0,

WN � 0,
z2W

zX2
(N)

� 0.

(15)

2.2. -e Timoshenko Beam Model. From the Timoshenko
theory assumptions,

ux � −zφ, uy � 0, uz � w, εx �
dux
dx

� −z∗ zφ
zx
, (16)

where φ is the rotation of the cross section (which is different
from the rotation of the neutral axis in Timoshenko beams).
)is difference results in additional rotation due to shear:

cs �
zw

zx
− φ( ). (17)

According to (16) and (17), the strain components are
given as

ε �

−z
zφ

zx

zw

zx
− φ


. (18)

From Hook’s Law,

σ � E.ε �
EI 0

0 KAG

 .
−z

zφ

zx

zw

zx
− φ


, (19)

∴σ �
−EIz

zφ

zx

KAG
zw

zx
− φ( )


, (20)

the beam’s bending energy U is calculated as

U �
1

2
∫
V
[σ]T.[ε]dV. (21)

Substituting (18) and (20) into (21) results in

f

P P

L

x

z

Figure 1: Physical problem.
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U �
1

2
∫L
0

−EIz
zφ

zx

KAG
zw

zx
− φ( )




T

−z
zφ

zx

zw

zx
− φ


 �

1

2
∫L
0
EI

zφ

zx
( )2

+ KAG
zw

zx
− φ( )2 dx. (22)

As a result, the beam bending strain energy resting on a
Pasternak foundation is expressed as

U �
1

2
∫L
0
EI

zφ

zx
( )2

+ KAG
zw

zx
− φ( )2 dx, (23)

where φ is the cross-section rotation, zw/zx is the slope of
vertical displacement, E is the beam’s modulus of elasticity, I
is the moment of inertia, A is the cross-section area, G is the
shear correction factor, K is the shear section modulus, and
AG is the shear modulus of the cross-section area. )e
system’s kinetic energy T is given as follows:

T �
1

2
ρ∫L

0
A

zw

zt
( )2

+ I
zφ

zt
( )2 dx, (24)

where ρ is the density of the beam material. Applying
Hamilton’s Principle,

δ∫t2
t1

(L)dt � 0⟶ ∫t2
t1

(U − T +W)dt � 0, (25)

where L is the Lagrangian:

δ∫t2
t1

∫L
0
Ldx d � δ∫t2

t1

∫L
0

1

2
EI

zφ

zx
( )2

+ KAG
zw

zx
− φ( )2  − 1

2
ρ A

zw

zt
( )2

+ I
zφ

zt
( )2  + P

2

zw

zx
( )2 dxdt � 0. (26)

Solving the system, the resulting coupled linear diff.
equations are

−
z

zx
EIφx( ) − KAG wx − φ( ) + ρIφtt � 0, (27)

−KAG
z

zx
wx − φ( ) + ρAwtt − p wxx( ) + k1w − Gpwxx � fx,t.

(28)

To neglect the effect of time, assume that

φ(x, t) � eλt ∗V(x),

w(x, t) � eλt ∗ω(x).
(29)

Substituting the previous expansions into (27) and (28),
respectively, yields

−
z

zx
EI

zV

zx
eλt( ) − KAG

zω

zx
eλt − eλtV( ) + ρI λ2eλtV( ) � 0, (30)

−KAG
z

zx

zω

zx
eλt − eλtV( ) + ρA ωλ2eλt( ) − p z2ω

zx2
eλt( ) + k1 eλtω( ) − Gp z2ω

zx2
∗ eλt( ) � fx,t. (31)

Reintroducing the dimensionless variables,

W �
ω

L
,X �

x

L
. (32)

Substituting in (30),

−β1
z

zX
S(X)

zV

zX
( ) − β2 zW

zX
−V( ) � S(X) Ω2{ }V.

(33)
Substituting in (31),

−β3
z2W

zX2 + β3
zV

zX
+WΩ2 − β4

z2W

zX2( ) + β7W − β5
z2W

zX2( ) � F,
(34)

factoring for V,W, andWxx, equation (34) for a variable
cross-section becomes

β3
zV

zX
− β6

z2W

zX2 + β7W � F +WΩ2, (35)

where
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S(X) �
EI

EI0
�
I

I0
� 1 +

αx

L
( )3,

A � A0 1 +
αx

L
( ), α � hL − h0

hL
,

β1 �
AL2

I0
, β2 �

KA2GL4

E I0( )2 , β3 � KAGL

EI0
, β4 �

PL2

EI0
,

β5 �
GpL

2

EI0
, β6 � β3 + β4 + β5, β7 �

K1L
4

EI0
,

Ω2 � ρAL4λ2

EI0
, F �

fx,t

eλt
L3

EI0
.

(36)

)e following two boundary condition types are
considered.

A simply upheld end:

W � 0,
z2V

zX2 � 0. (37)

A fixed end:

W � 0,
zV

zX
� 0. (38)

Assuming fixed and simply upheld ends, end conditions
can be shown, respectively, as

W1 � 0,
zV

zX(1)

� 0, (39)

WN � 0,
z2V

zX2
(N)

� 0. (40)

3. Differential Quadrature

In the differential quadrature method (DQM), the deriva-
tives of a function at any point are approximated by a
weighted linear summation of all the functional values at all
other points as follows [22]:

f(m)(x) �∑n
j�1

C(i,j) f xj( ) (i � 1: n), (41)

where f(m)(x) is the m derivative of the function f(x) at the
point x � xi, f(xj) is the functional value at point of x � xj,
and Cm(i,j) is the weighting coefficient relating the m de-
rivative at x � xi to the functional value at x � xj. To obtain
the weighting coefficients, many polynomials with different
base functions may be used. Lagrange interpolation formula
is the most common one, where the functional value at a
point x is approximated by all the functional values f(xk)
(k� 1: n) as

f(x) ≈ ∑n
k�1

L(x)

x − xk( )L1 xk( )f xk( ), (42)

where

L(x) �∏n
k�1

x − xj( ), L1 xk( ) � ∏n
k�1,k≠ i

xi − xk( ),
(i, k � 1: n).

(43)

Differentiating equation (42) and comparing the result
with equation (41), the weighting coefficients of the first
derivative are obtained as

C1(i,j) �
L1 xi( )

xi − xj( )L1 xj( ) (i≠ j), (i, j � 1: n), (44)

C1(i,j) � − ∑n
j�1,j≠ i

C1(i,j)(i � j), (i, j � 1: n). (45)

Applying the chain rule, the weighting coefficients for
the m derivative can be related to the weighting coefficients
of the (m− 1)-derivative as

Cm(i,j) � ∑n
k�1

C1(i,j)Cm−1 (i,j), (i, k � 1: n). (46)

After choosing the sampling points which cover the
solution domain, the weighting coefficients of the first de-
rivative are calculated first, and then, the weighting coeffi-
cients of the higher derivative can be derived. As an example,
if a total of 5 grid points are to be taken, the following sample
of coefficients are obtained:

C1(1,1) �
1

ξ1 − ξ5
+

1

ξ1 − ξ4
+

1

ξ1 − ξ3
+

1

ξ1 − ξ2
,

C1(3,2) � −
ξ3 − ξ1( ) ξ3 − ξ4( ) ξ3 − ξ5( )

ξ2 − ξ1( ) ξ3 − ξ2( ) ξ2 − ξ4( ) ξ2 − ξ5( ),
(47)

where ξ is the grid point number and C1 is the weighting
coefficient of the first derivative. Hence, to solve a
boundary value problem, the governing differential
equation is transformed at n-sampling points into a system
on n-algebraic equations in n-unknown functional values
of the solution function. )e solution of such algebraic
system considering the boundary condition leads to the
functional values which satisfy both the governing dif-
ferential equation and the boundary conditions.

3.1. Sampling of the Solution Points. As the DQM is a nu-
merical method, its accuracy is affected by both the number
and the distribution of the sampling points. One of the
frequently used distributions is the normalized Gauss–
Chebyshev–Lobatto distribution which is given as

xi �
1

2
1 − cos

i − 1

n − 1
π( )[ ], (i � 1: n). (48)

Substituting of the solution points’ coordinates into (44)
and (45), the values of the weighting coefficients can be
calculated, and then, the governing differential equationmay
be transformed to the algebraic system:
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A1[ ]n∗m Fj[ ]
n∗ 1 � B1[ ]n∗ 1, (j � 1: n). (49) 3.2. Implementing the DQM. By using the definition of the

DQM and substituting in (11), the governing equation
becomes

z2

zX2 S(X)∑N
j�1

C2ij ∗Wj
  + β1Wi + β4∑N

j�1

C2ij ∗Wj � Fix,t +Ω2Wi, (50)

for i: 3, 4, . . . (N− 2). As for the Timoshenko model, substituting (46) in the
governing equations (34) and (35) gives

β2Φi − β2∑N
j�1

C1ij ∗Wj − S(X)β1∑N
j�1

C2ij ∗Φj − β1
zS(X)

zX
∑N
j�1

C1ij ∗Φj � S(X)ΦiΩ2, (51)

for i: 1, 2, . . . (N), and

β3∑N
j�1

C1ij ∗Φj − β6∑N
j�1

C2ij ∗Wj + β7Wi � Fi +WiΩ2,

(52)

for i: 3, 4, . . . (N− 2).

3.3. Shaping the Boundary Conditions. For an Euler beam,
utilizing the DQM, the discretized conditions can be shown,
respectively, as

W1 � 0,∑N
k�1

C(n0)(1,k) ∗Wk � 0, (53)

WN � 0,∑N
k�1

C(n1)(N,k) ∗Wk � 0, (54)

where n0 and n1 represent the boundary condition at the first
end and last end, respectively. n0 and n1 may be taken as
either 1 or 2 (1 for simply supported or “upheld” BC, 2 for
fixed BC). By choosing n0 and n1, equations (53) and (54)
can give the following sets of boundary conditions:

n0 � 1, n1 � 1⟶ fixed from both sides

n0 � 1, n1 � 2⟶ fixed and upheld

n0 � 2, n1 � 1⟶ upheld and fixed

n0 � 2, n1 � 2⟶ upheld from both sides

)e first equations from (53) and (54) can be substituted
easily into the governing equation (50). However, that is not
the case for the second equations. Fortunately, they can be
coupled to give two solutions W2 and WN−1 as

W2 �
1

AXN
∗ ∑N−2

k�3

AXK1∗Wk, (55)

WN−1 �
1

AXN
∗ ∑N−2

k�3

AXKN∗Wk. (56)

According to (55) and (56),W2&WN−1 are expressed in
terms of W3,W4, . . . ,WN−2 and can be easily substituted
into the governing equation system (50). It is noted that
equations (53) and (54) provide four boundary equations. In
total, we have N unknowns W1, . . . ,WN{ }. So, to close the
system, the discretized governing equation has to be applied
at (N− 4) grid points.)is can be done by applying equation
(50) at grid points X3, X4, . . . , XN−2 for [W].

It is noted that, after substitution, the system has (N− 4)
equations and (N− 4) unknowns, which can be written in an
eigenvalue matrix form:

[A] W{ } � Ω2 W{ }, (57)

where [A] and [B] are the coefficients of W{ }:

W{ } � W3,W4, . . . ,WN− 2{ }T. (58)

As for the Timoshenko beam, similar to the Euler beam,
the discretized conditions can be shown, respectively, as

W1 � 0,∑N
k�1

C(n0)(1,k) ∗Vk � 0, (59)

WN � 0,∑N
k�1

C(n1)(N,k) ∗Vk � 0, (60)

where n0 and n1 represent the boundary condition at the
first end and last end, respectively, as explained before in
Section 3.3. According to (59) and (60), W2&WN−1 are
expressed in terms of W3,W4, . . . ,WN−2 and can be easily
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substituted into the governing equation system (51) and
(52). It is to be noted that (59) and (60) provide four
boundary equations. In total, we have 2∗N unknowns
V1, . . . ,VN{ } and W1, . . . ,WN{ }. So, to close the system,
the discretized governing system has to be applied at
(2∗N)− 4 grid points.)is can be done by applying (51) and
(52) at grid points X1, X2, . . . , XN for [V] and
X3, X4, . . . , XN−2 for [W]. It is noted that, after substitution,
the system has (2∗N)− 4 equations and (2∗N)− 4 un-
knowns, which can be written in an eigenvalue matrix form:

[A] V{ } +[B] W{ } � Ω2 V{ }, (61)

[C] V{ } +[D] W{ } � Ω2 W{ }, (62)

where [A], [B], [C], and [D] are the coefficients of
V{ } and W{ } from equations (61) and (62), respectively:

V{ } � V1,V2, . . . ,VN{ }T,
W{ } � W3,W4, . . . ,WN− 2{ }T. (63)

3.4. Formulation of theMoving Load. In Figure 2, the load is
assumed to move with a constant velocity “v” to traverse the
beam length “L” through time “T.” A relation between the
traversed distance “d” and the corresponding grid point “i”
must be developed. A simple representation of how this
relation is derived is as follows.

Starting from the basic equation,

d � v∗ t, (64)

and from Figure 2,

d �
L

N − 1
( )∗ (i − 1). (65)

)erefore, substituting from (64) into (65) gives

v∗ t � L

N − 1
( )∗ (i − 1). (66)

Factoring for i, results in the grid-time equation:

i �(v∗ t)∗ N − 1

L
( ) + 1. (67)

4. Results and Verification

All outputs were produced using the open-source software
WXMAXIMA. As a starting reference, the temporary
physical and geometrical properties of the two models,
foundation and the moving load, are listed in Table 1, in
which all are taken as unity and the resulting effect on the
natural frequencies will be studied (due to the beam only,
and this means that all external loads will be nullified here).

Using Table 1, the resulting first four nondimensional
frequencies and natural frequencies of a simply supported
Euler–Bernoulli beam and Timoshenko beam are free of any
loads for n� 13 grid points which have been computed in.

Table 2 is a verification reference, and this result was also
achieved by Taha [23] using the method of recursive dif-
ferentiation. Another validation is the work of Kumar [24] in
which an Euler beam is studied using Green’s function and
the Rayleigh–Ritz method. )ese results have also been
confirmed in the work of Ramzy et al. [9, 25].

)e actual physical and geometrical properties of the
Euler–Bernoulli beam, foundation, and moving load are
listed in Tables 3 and 4.

)e problem introduced is compared with the model
presented by Leszek [13]. First, the values of the natural
frequency “λ” were compared. It is to be noted that to obtain
these values one must first obtain the coefficient matrix and
formulate the determinant then equating to zero. )e
resulting roots of the equation are the required nondi-
mensional frequencies. )e computation was done using
n� 15 grid points for deflection computations and n� 13 for
frequency computations. Four beam dimensions will be
considered: beam (1) (deep, b � 0.02m, and h � 0.08m),
beam (2) (slender, b � 0.02m, and h � 0.03m), and beam (3)
(nonuniform, b � 0.02m, and h0 � 0.03m, h1 � 0.05m). )e
following table shows the first three natural frequencies of
the Euler–Bernoulli model (N� 13 grid points) and the
Timoshenko model (N� 7 grid points). Note that the
number of grid points taken for the Timoshenko beam (for
calculating the natural frequency) is less than that of the
Euler–Bernoulli beam, which is due to a limitation in the
software where it would not solve the determinant matrix
(for the frequency values) with a higher grid point value.
However, the deflection analysis was accurately produced
using N� 15 grid points since no determinant was required.

f
d

i = 1

L/ (N – 1) L/ (N – 1) L/ (N – 1) L/ (N – 1)

i = 2 i = 3 i = 4 i = N

L

Figure 2: Beam divided into N grid points.

Table 1: Temporary governing properties.

Property Value unit

Beam

Young’s modulus E 1 Pa
Shear modulus G • 1 • Pa
Mass density ρ 1 • kg m−3

Beam height 0 h0 1 • m
Beam height 1 h1 1 • m
Beam width b 1 • m

Length L 1 • m
Shear coefficient k 1 • -

A 1 • -

Foundation
• K1 • 1 • -
• G • 1 • -

Moving load • F • 0 • N
Axial load • P • 0 • N
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)e resulting natural frequencies to Leszek’s results for beam
(1) and beam (2) were compared in Tables 5 and 6.

)e results from Table 2 were also confirmed by the results
achieved by Mohammad et al. [26] in which he studied the
nonlocal fully intrinsic equations of Euler–Bernoulli beams
with constitutive boundary conditions.

Figure 3 shows the deflection of the beam due to axial
loading with a constant applied vertical load at midspan.

Figures 4–9 show the deflection due to a traversing load
(30N) at midspan at different instances, under different
boundary conditions.

Figures 10–13 compare the deflection between both
beam theories.

Figures 14–18 show the rotation of the cross section of
both beams due to the traversing load (30N). )e outputs
conform logically with the outputs from Figures 4–9.

Table 2: Nondimensional and natural frequencies.

Euler–Bernoulli (N� 13) Timoshenko (N� 7)

Ωn λn Ωn λn
1 9.869 3.141 9.793 3.129
2 39.479 6.283 34.737 5.893
3 88.866 9.426 61.809 7.861
4 156.339 12.503 1034.360 32.161

Table 3: Actual governing properties.

Item Property Value Unit

Beam

Young’s modulus E 2.1∗ 1011 Pa
Shear modulus G • 8.1∗ 109 • Pa
Mass density ρ 7860 • kg m−3

Beam height 0 h0 Variable • m
Beam height 1 h1 Variable • m
Beam width b 0.02 • m

Length L 1 • m
Shear coefficient k 5/6 • -

A Variable • -

Foundation
K1 100 • -
G 80 • -

Moving load F 30 • N
Axial load P Variable • N

Table 4: Current values of the natural frequencies.

Beam (1) Beam (2)

E-B Tim E-B Tim
λ1 1178.17 1169.10 442.017 443.3
λ2 4712.69 4146.66 1767.44 1567.15
λ3 10608.1 7378.25 3978.22 2781.11

Table 5: First 3 natural frequencies for beam (1).

λ Current (EB.) Leszek [13] (EB.) Current (Tim.) Leszek [13] (Tim.)

λ1 1178.17 1178.1 1169.10 1160.5
λ2 4712.69 4712.6 4146.66 4447.4
λ3 10608.1 10603.0 7378.25 9386.1

Table 6: First 3 natural frequencies for beam (2).

λ Current (EB.) Leszek [13] (EB.) Current (Tim.) Leszek [13] (Tim.)

λ1 442.017 441.8 443.30 440.8
λ2 1767.44 1767.2 1567.15 1752.2
λ3 3978.22 3978.2 2781.12 3901.2
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Comparing the results from Figure 5 with an exact
solution for the deflection of a simply supported beam due to
a point load at midspan, it is calculated asw � FL3/48EI [27].
)e error is calculated using the following formula:

Error �
wapprox − wexact

wexact

∗ 100. (68)
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Figure 3: S-S EB Beam (2) axial load, F� 30N.
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Figure 4: S-S EB Beam (3) deflection, F� 30N.
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Figure 5: S-S EB Beam (1) deflection, F� 30N.

Journal of Mathematics 9



t/T = 0.3

t/T = 0.5

t/T = 0.7

∗1.132∗10–3

–0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

W
 (

m
)

2 3 4 5 6 7 8 9 10 11 12 13 14 151

Beam length (1m), n = 15

Figure 6: C-S EB Beam (2) deflection, F� 30N.
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Figure 7: C-C EB Beam (3) deflection, F� 30N.
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Figure 8: C-S T Beam (1) deflection, F� 30N.
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Figure 9: C-S T Beam (2) deflection, F� 30N.
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Figure 10: C-S beam (3) deflection, F� 30N.

∗1.132∗10–3

Euler-B.

Timosh.

–0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

W
 (

m
)

2 3 4 5 6 7 8 9 10 11 12 13 14 151

Beam length (1m), n = 15

Figure 11: C-C beam (2) deflection, F� 30N.
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Figure 13: C-S Beam (2) deflection, F� 30N.
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Figure 14: S-S T Beam (1) cross-section rotation.
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Figure 15: C-C T Beam (2) cross-section rotation.

t/T = 0.3

t/T = 0.5

t/T = 0.7

∗5.971∗10–5

–0.5
–0.44
–0.38
–0.32
–0.26

–0.2
–0.14
–0.08

Ф

–0.02
0.04

0.1
0.16

2 3 4 5 6 7 8 9 10 11 12 13 14 151

Beam length (1m), n = 15

Figure 16: C-S T Beam (1) cross-section rotation.
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Figure 17: S-S T Beam (3) cross-section rotation.
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Figure 12: C-C Beam (1) deflection, F� 30N.
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5. Conclusion

In this work, the method of differential quadrature was applied
on two beam models, that is, the Euler–Bernoulli and Timo-
shenko beams. )e natural frequencies and deflection modes
were derived from the basic constitutive equations and the
numerical outputs of both problems were shown.

)e aim of this work is to compare the deflection of both
beam theories subjected to a moving concentrated load as
well as an axial load. )e moving load was applied using a
different approach other than the Dirac delta function; a
relation between the grid point and time parameter was
formed so as to allow manipulation of the load location by
only changing the time parameter. )e models discussed
approved the viability of applying the moving load without
analytical solutions while dealing with nodal equations.
Summarizing the results based on the figures,

(1) From Figure 11, it is noted that when dealing with
slender beams the difference between the Timo-
shenko beam theory and Euler–Bernoulli theory
tends to vanish. When dealing with deep beams,
however, the difference is very noticeable and cannot
be neglected.

(2) Euler beams produce smaller deflections than
Timoshenko beams, which are explained by the
presence of shear effect in Timoshenko beams, which
allows for a greater deflection. Figures 11 and 12
showcase this property in which Figure 11 (the
slender beam) shows nearly identical deflection
between both theories, while in Figure 12 (the deep
beam), the difference is clearly visible.

(3) )e deflection of both beam theories produces a
maximum deflection near the center of the beam no
matter the location of the moving vertical load. By
increasing or decreasing the beam’s cross-sectional

inertia, the maximum deflection will shift closer or
further, respectively, from the center of the beam.

(4) Axial loading does not affect bending nearly as much
as the traversing load. From Figure 3, between
(P � 0N) and (P � 20000N), an axial load “P”
equivalent to 66,666% of the applied transverse load
“F” produces only 25% greater deflection (from
6.62∗10–5 to 8.32∗10–5 meters).

Data Availability

)e data used to support the findings of this research are
included within the article.

Conflicts of Interest

)e authors declare that they have no conflicts of interest
regarding the publication of this research.

References

[1] E. Winkler, Die Lehre von der Elastizität und Festigkeit mit
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