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Abstract

This thesis performs a research on scheduling algorithms for parallel appli-
cations. The main focus is their usage on multi-core embedded systems’ appli-
cations. A parallel application can be described by a directed acyclic graph.
A directed acyclic graph is a mathematical model that represents the parallel
application as a set of nodes or tasks and a set of edges or communication
messages between nodes.

In this thesis scheduling is limited to the management of multiple cores
on a multi-core platform for the execution of application tasks. Tasks are
mapped onto the cores and their start times are determined afterwards. A
toolchain is implemented to develop and schedule parallel applications on a
Epiphany E16 developing board, which is a low-cost board with a 16 core chip
called Epiphany. The toolchain is limited to the usage of offline scheduling
algorithms which compute a schedule before running the application.

The programmer has to draw a directed acyclic graph with the main at-
tributes of the application. The toolchain then generates the code for the target
which automatically handles the inter-task communication. Some metrics are
established to help evaluate the performance of applications on the target plat-
form, such as the execution time and the energy consumption. Measurements
on the Epiphany E16 developing board are performed to estimate the energy
consumption of the multi-core chip as a function of the number of idle cores.

A set of 12 directed acyclic graphs are used to verify that the toolchain
works correctly. They cover different aspects: join nodes, fork nodes, more
than one entry node, more than one exit node, different tasks weights and
different communication costs.

A use case is given, the development of a brake-by-wire demonstration
platform. The platform aims to use the Epiphany board. Three experiments
are performed to analyze the performance of parallel computing for the use
case. Three brake-by-wire applications are implemented, one for a single core
system and two for a multi-core system. The parallel application scheduled
with a list-based algorithm requires 266% more time and 1346% more energy
than the serial application. The parallel application scheduled with a task
duplication algorithm requires 46% less time and 134% more energy than the
serial application.

The toolchain system has proven to be a useful tool for developing paral-
lel applications since it automatically handles the inter-task communication.
However, future work can be done to automatize the decomposition of serial
applications from the source code. The conclusion is that this communication
system is suitable for coarse granularity, where the communication overhead
does not affect so much. Task duplication is better to use for fine granularity
since inter-core communication is avoided by doing extra computations.



Sammanfattning

Detta examensarbete utför en studie av om schemaläggningsalgoritmer för
parallella applikationer. Huvudfokus är deras användning för flerkärniga in-
byggda systemapplikationer. En parallell applikation kan beskrivas genom en
riktad acyklisk graf. En riktad acyklisk graf är en matematisk modell som
representerar den parallella applikationen som en uppsättning av noder, eller
uppgifter, och en uppsättning av pilar, eller meddelanden, mellan noder.

I denna uppsats är schemaläggning begränsad till hanteringen av flera
kärnor på en multikärnig plattform för genomförandet av applikationens uppgif-
ter. Uppgifter mappas på kärnorna och deras starttider bestäms efteråt. En
speciell verktygskedja kallad ett ”toolchain system” har tagits fram för att
utveckla och schemalägga parallella applikationer på ett Epiphany E16 kort,
vilket är ett billigt kort med ett 16-kärnigt chip som kallas Epiphany. Toolchain
systemet är begränsat till användningen av offline schemaläggningsalgoritmer
som beräknar ett schema innan du kör programmet.

Programmeraren måste rita en riktad acyklisk graf med de viktigaste at-
tributen. Toolchain systemet genererar därefter kod som automatiskt hanterar
kommunikationen mellan uppgifterna. Ett antal prestandamått defineras för
att kunna utvärdera applikationer på målplattformen, såsom genomförandetid
och energiförbrukning. Mätningar på Epiphany E16 kortet genomförs för att
uppskatta energiförbrukningen som en funktion av antalet lediga kärnor.

En uppsättning av 12 riktade acykliska grafer används för att kontrollera
att toolchain systemet fungerar korrekt. De täcker olika aspekter: noder som
går ihop, noder som går isär, fler än en ingångsnod, fler än en utgångsnod,
olika vikter på uppgifterna och olika kommunikationskostnader.

Ett användningsfall ges, utveckling av en brake-by-wire demonstrations
plattform. Plattformen syftar till att använda Epiphany kortet. Tre experi-
ment utförs för att analysera resultatet av parallella beräkningar för använd-
ningsfallet. Tre brake-by-wire applikationer genomförs, en för ett enda kärn-
system och två för ett multikärnigt system. Den parallella applikationen som
var schemalagd med en algoritm baserad på listor kräver 266% mer tid och
1346% mer energi än den seriella applikationen. Den parallella applikationen
som var schemalagd med en uppgiftsduplicerings-algoritm kräver 46% mindre
tid och 134% mer energi än den seriella applikationen.

Toolchain systemet har visat sig att vara ett användbart verktyg för att
utveckla parallella applikationer eftersom det automatiskt hanterar kommu-
nikation mellan uppgifter. Däremot kan framtida arbete göras för att automa-
tisera nedbrytningen av seriella program från källkod. Slutsatsen är att detta
kommunikationssystem är lämpligt för grovkorning parallellism, där kommu-
nikationskostnaden inte påverkar lika mycket. Uppgiftsdupliceringen är bättre
att använda för finkorning parallellism eftersom kommunikation mellan kärnor
undviks genom att göra extra beräkningar.
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Chapter 1

Introduction

1.1 Background

The thesis work has been conducted at XDIN AB, an engineering and IT consulting
firm. The main customers belong to the energy, telecommunication, manufacturing
and automotive industries. The thesis is part of the MANY-core programming and
resource management for high-performance embedded systems (MANY), combined
Model-Based Analysis and Testing of embedded systems (MBAT) and Portable and
Predictable Performance on heterogeneous embedded manycores (PaPP) projects.
MANY is hosted by Information Technology for European Advancement (ITEA2).
MBAT and PaPP are hosted by Advanced Research & Technology for EMbedded
Intelligence and Systems (ARTEMIS) (industry association and joint undertaking
in the field of embedded systems).

Traditionally computing architectures have been made up of one processing
unit. This paradigm was good enough to cope with the software requirements.
Factors such as the growing software complexity and size or the amount of data to
be processed demanded processors with higher frequency. Hardware manufactures
were able to launch to the market faster processors until a limit was reached.

The dynamic power that a chip consumes is given by the equation P = ACV 2F .
Where A is the activity factor, C is the switched capacitance, V is the supply voltage
and F is the clock frequency. This means that the power consumed by the chip
is proportional to the clock frequency. Therefore higher frequency processors are
more power greedy.

This is reflected by the fact that Intel canceled Tejas and Jayhawk processors
in May 2004 [2]. The power consumption of the chip became prohibitive. Another
side effect was the increase of heat. The required architectures to dissipate the heat
became too complex and expensive. Frequency scaling was not viable any more.

Chip makers such as Intel and AMD started to develop multi-core architec-
tures. Multi-core architectures are composed of more than one processing unit.
The speed up of the application is achieved by parallel computing, a new paradigm
in programming. Applications are able to run faster in more energy efficient ar-
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chitectures. However, effective parallel computing has a cost. It requires either
more programming expertise or to develop automatic code generation tools [3]. In
the first approach the programmer has to specify in the code which parts can be
parallelized and on which processing elements they will run. The second approach
is to come up with new tools that abstract the programmers from parallelizing the
application and from scheduling it onto the platform. The goal is to go for the
second approach but more work has to be done by the academy and the industry
in order to cope with problems such as hardware heterogeneity.

Embedded systems are often required to be real-time and energy efficient. They
are broadly used in space and military applications for executing specific tasks that
are time constrained. A wide range of control and signal processing applications in
the industry are run on them. They are also found in everyday life such as consumer
electronics.

Embedded systems with multi-core processors are growing due to the diversity
of applications they can run. Industrial applications with high potential are ma-
chine vision, CAD systems, CNC machines, automated test systems and motion
control [4]. Some of them do a lot of math computations over a given dataset and
can be decomposed into smaller tasks by applying data partitioning. Multi-core
platforms are specially appropriate for battery-powered embedded systems. Multi-
ple energy-efficient cores can give the same performance as a powerful core with a
smaller budget of energy [5] and [6]. They also offer other benefits such as bounded
determinism, dedicated CPU cores, decreased clock jitter, expanded resources for
scaling and optimal contention for resources [7].

Parallel computing is a concept to be explored in the embedded systems’ world.
A variety of new programming languages, compilers and scheduling strategies are
arising for parallel computing ([8] and [9]). It is especially interesting the area of
scheduling. Scheduling has become a complex issue since there is now more than one
processing element. It handles the mapping of application tasks onto the processors
and the determination of their start times.

1.2 Problem statement

The first goal of the thesis is to make an in-depth study of the state of the art
scheduling algorithms for parallel computing in embedded systems. The second
goal is to design and implement a scheduling algorithm based on the previous study
to deploy tasks on the target platform for a brake-by-wire application.

The scheduler will be implemented in a Epiphany E16 developing board. The
final target is a low cost parallel platform called Parallella from Adapteva. The main
components of the architecture are a Xilinx Zynq7000 FPGA and the Epiphany chip.
The Xilinx Zynq7000 has a Dual-Core ARM-A9 programmed inside and a bus to
communicate to the Epiphany chip. The Epiphany chip is a 16-core co-processor.
It contains an e-Mesh Network-on-Chip which connects a 2D array of e-Nodes.

The demonstration platform is made up of one Epiphany E16 developing board
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among other things. Communication between tasks will be based on message pass-
ing. The following questions are of special interest:

• Which scheduling algorithm is going to be used? Why?

• Which metrics are going to be used to measure the performance of the sched-
uler?

1.3 System requirements

This section states the requirements that the ideal scheduler should fulfill. These
requirements were set up during the whole analytical phase. To set up the require-
ments it was necessary to have a good understanding of scheduling and parallel
computing. Chapter 5 will elaborate and clarify the requirements. The aim of
the thesis is to design and implement a system that complies with the following
requirements:

REQ_1 The scheduler shall cope with both serial and parallel applications.

REQ_2 The scheduler shall do automatic parallelization of the application. Par-
allelization shall be transparent to the programmer.

REQ_3 The scheduler shall parallelize tasks as much as possible.

REQ_4 The scheduler shall avoid communication as much as possible.

REQ_5 The scheduler shall provide to an application an end-to-end guarantee.
An end-to-end guarantee is a kind of timing requirement that might be given
by a control requirement of the application, such as stability or settling time.

REQ_6 The scheduler shall generate a schedule with the minimum execution time.

REQ_7 The scheduler shall be energy efficient.

REQ_8 The scheduler shall be target independent. The algorithm shall be easily
portable to other platforms.

Some of the requirements, such as REQ_3 and REQ_4, may actually be in
conflict. Section 5.1 will present how this requirements can be fulfilled and to which
degree.

1.4 Team goal

There are four master thesis workers at XDIN in the spring of 2013, all working
separately but within the same topic. The goal for the team is to in the end com-
bine their knowledge and implement their respective work on the same distributed
embedded system. The aim is to implement a brake-by-wire system based on a new
middle-ware layer.
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1.5 Method

The thesis is split into two main phases: the analytical part and the practical part.

1.5.1 Analytical phase

A study about task scheduling on a multi-core embedded system will be carried
out. Documentation about the subject will be read and analyzed. The result of this
phase will be a report presenting the state of the art and some conclusions for the
next phase.

1.5.2 Practical phase

A design and an implementation of a task scheduler for a multi-core embedded
system will be performed based on the knowledge gained in the analytical phase.
The system developing method will be SCRUM. The result of this phase will be a
demonstration of the system through a Graphical User Interface (GUI) and a report
presenting the results of the scheduling algorithm.

1.6 Delimitation

The time limit for the thesis work is 20 weeks in which the analytical phase, the
practical phase and the presentation shall be completed. The hardware platform
considered for the demonstration is a prototype board from Adapteva. Design,
implementation and testing will be done according to XDIN AB standards. This
thesis aims to make a design of a toolchain for developing parallel applications and
to implement the required features to make a demonstration. This work should
serve as a foundation for future Master thesis works.

The scheduling is limited to the management of multiple cores on a multi-core
platform for the execution of multiple application tasks. Tasks will be mapped
onto the cores and their start times will be determined afterwards. The toolchain
is limited to the usage of offline scheduling algorithms which compute a schedule
before running the application.

According to the Flynn’s taxonomy [10] there are for kinds of computer archi-
tectures:

• Single Instruction, Single Data stream (SISD). A single processing
element processes a single data stream.

• Single Instruction, Multiple Data streams (SIMD). Multiple process-
ing elements process multiple data streams against a single instruction stream.

• Multiple Instruction, Single Data stream (MISD). Multiple processing
elements process a single data stream against multiple instruction streams.
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• Multiple Instruction, Multiple Data streams (MIMD). Multiple pro-
cessing elements process multiple data streams against multiple instruction
streams.

The toolchain is limited to MIMD architectures, because it needs multiple cores
executing different instructions on different data.





Chapter 2

Use case description and requirements

There are many embedded system applications that could take advantage of a multi-
core platform. Brake-by-wire has been decided to be the use case. This chapter
provides a detailed description of a brake-by-wire system. Then the requirements
of the system will be extracted and discussed.

Some efforts has been done by the academy in order to introduce multi-core
platforms in the automotive industry. A modern vehicle can have more than a
hundred Electronic Control Units (ECUs) [11] and in the future some of them will
be likely replaced by multi-core ECU for high safety and reliability applications
[12]. The behavior has to be predictable and thorough timing and schedulability
analysis are carried out. The complexity of novel control applications require the
use of multi-core processors (see Figure 2.1, taken from [13]).

At the same time the automotive industry is pushing for replacing mechanical,
hydraulic or pneumatic transmissions by the drive-by-wire technology. Traditional
systems are substituted by electronic controllers coupled to electromechanical actu-
ators and human-machine interfaces. Even though a car equipped with this tech-
nology is today more expensive than a traditional car it provides a number of ad-
vantages such as weight reduction, space saving, no problems with wear or leakage,
shorter response time and reduction of vibrations and noise.

Figure 2.1: Design of automotive control applications

9
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(a) Traditional brake system (b) Brake-by-wire system

Figure 2.2: Brake system technologies

Some ECUs in the vehicle are in charge of providing safety functionalities such as
the Anti-lock Braking System (ABS), the Electronic Stability Program (ESP) and
the Traction Control System (TCS). They run complex control structures and filters
such as Kalman Filters. This kind of algorithms do a lot of math calculations, for
instance matrix operations and signal processing. Many of them are subject to be
parallelized in order to speed up the performance or reduce the energy consumption.
In [14] a study is performed to evaluate the suitability of a multi-core for an ABS
system. They compared a TMS470 single core with a TMS570 dual core. The test
was performed for three different speeds: 60, 80 and 90 km/h. The stopping time of
the dual core outperformed by 180, 130 and 41%, inversely related with the speed
of the vehicle. The consumption was bigger for the dual-core due to peripherals
such as the CAN interface unit. However, the processor cores consumed much less
power. Multi-core platforms for automotive applications is a field where current
research is being done ([15], [16], [17], [18], [19], [20], [21] and [22])

2.1 Introduction to brake-by-wire

Brake-by-wire is a system that tries to replace the traditional brake system (see
both technologies in Figure 2.2, taken from [23] and [24]). The traditional brake
system has been proven to work correctly along the years. The main components
are the brake pedal, the master cylinder, the hydraulic circuit, the four calipers
and the four brake disks. The mechanism is operated by pressing the brake pedal.
The master cylinder then transforms the pressure from the pedal into hydraulic
pressure. The hydraulic circuit transmits the pressure to the brake cylinders inside
the calipers. The brake cylinders push the brake pads against the brake disk causing
a brake force that decelerates the vehicle.

Brake-by-wire aims to substitute the hydraulic mechanism by using electric wires
and electric actuators. This approach enhance the already available safety features,
such as ABS, ESP, TCS, ACC and so on. There is a reduction in space and weight
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Figure 2.3: Brake-by-wire control structure

and the weight is easier to distribute. Therefore the fuel efficiency increases. Finally
there is more operational accuracy and a lot less maintenance since there are less
moving parts and no circuit leakages.

However, traditional brake systems are still cheaper than using brake-by-wire.
The reason behind this is that the system is more complex. Exhaustive verifications
and validations have to be done before launching a new system to the market. The
safety requirements to be met are strict. Redundant hardware components are
deployed in order the ensure the fault-tolerant capabilities. Thus the overall process
is expensive. The question is whether the users are willing to pay this overprice.

2.2 Use case description

Complex systems cannot be described from only one point of view. The full de-
scription of the system is given by a set of views. In the brake-by-wire the control
view and physical view are needed to get an overview of the system.

2.2.1 Control view

Several control schemes have been suggested for the brake-by-wire application. A
good example is described in [24]. There are three main kinds of control blocks:
the vehicle central controller block, the braking force distribution block and four in-
stances of an actuator controller block (one per wheel). The vehicle central controller
and the braking force distribution form the central brake control and management
unit.

A sensor transforms the pressure in the brake pedal into a electrical signal
which is sent to the central ECU. The inertial navigation system is made up of
gyroscopes and accelerometers that are used to estimate to state of the vehicle.
That information is also fed back to the central ECU. The vehicle central controller
then calculates how the vehicle should brake. The braking force distribution module
calculates the braking force that should be applied to each wheel. A block diagram
control structure is shown in Figure 2.3, taken from [24].
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2.2.2 Physical view

The physical view of the system has been presented in Figure 2.2. It describes a
distributed system with five nodes: one central ECU and four local ECU located
at each wheel. They are connected via a network that runs a hard real-time com-
munication protocol such as FlexRay or TTP/C [25]. The communication has to
be deterministic and support fault-tolerant features (redundant buses). There is a
communication interface in every node to access the medium. The central brake
control and management unit is allocated in the central ECU. Whereas the actuator
controllers are allocated in the local ECUs. A wheel plus the electrical actuator plus
the local ECU plus the communication interface form the wheel electromechanical
brake system.

2.3 Use case requirements

The brake-by-wire system is a safety-critical system. A failure may cause loss of hu-
man lives or serious injures. The development of a brake-by-wire system has to com-
ply with regulations such as IEC 61508, ISO 26262, and EC directive 71/320/EEC
or UN/ECE Regulations 13. IEC 61508 is an international standard for functional
safety of electrical/electronic/programmable electronic safety-related systems. ISO
26262 is an adaptation of IEC 61508 for automotive electric/electronic systems. EC
directive 71/320/EEC and UN/ECE Regulations 13 are the conventional braking
regulations.

Functional and real-time requirements can be extracted from the regulations.
Based on this regulations and the stakeholders the non-functional requirements of
our application are going to be defined.

2.3.1 Real-time guarantees

In real-time systems tasks are activated by events. Events come from internal timers,
internal interrupts and external interrupts. Tasks have real-time constraints, that
are defined by deadlines. There exists relative deadlines (budget of time from the
release time of the task) and absolute deadlines (an absolute time point).

Another type of time constraints are end-to-end latencies ([26] and [27]). An
end-to-end latency is the required time by a task/message chain. Timing require-
ments such as deadlines/WCETs and end-to-end latencies are given by control re-
quirements such as stability or the settling time [28].

2.3.2 Fault-tolerance

As it was mentioned before brake-by-wire is a safety critical system [29]. This kind
of systems shall still work after a component failure, known as fault-tolerance. This
is often achieved by using redundancy at different levels. There are sensor redun-
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dancy, signal redundancy an hardware redundancy. When the output of redundant
hardware is contradictory a voting algorithm is used to decide.

2.3.3 Energy efficiency

The brake-by-wire system should be energy efficient for economical and environ-
mental reasons. If we take into account the whole life of the car and multiply by
the number of sold cars, it can make a difference. Multi-core platforms should be
investigated as a mean to reduce the energy consumption [30].

Another reason is to decrease the amount of heat generated, which is propor-
tional to the power consumed. Heat increases failure rate of electronic components
and shortens their lifespan [31].

2.4 Summary

The brake-by-wire technology will be deployed at large scale in future vehicles. A
brake-by-wire system has to comply with international standards and regulations
to prove that it provides real-time guarantees and fault-tolerant capabilities.





Chapter 3

Parallel computing

This chapter provides the basic concepts of parallel computing and an overall
overview of the development process of a parallel application.

3.1 Introduction to parallel computing

In the early days of computer science computations were performed sequentially.
There were mainly two reasons. First, there was only one processing element. Sec-
ond, programs were not thought to run in parallel. The situation has changed over
the years. Nowadays multiprocessor platforms and distributed systems surround
us. Exploiting all their power has become a challenge.

Parallel systems have potential to be more energy-efficient than a powerful
single-core system. Reducing the frequency by two the power is reduced by eight
and the energy by four. If we assume perfect level of parallelization, two processors
running at half the frequency can substitute a normal processor. Half of the energy
has been consumed for the same amount of work.

The decrease of energy consumption is not free. Serial applications need to be
modified and Operating Systems (OSs) have to provide new services. Contention
of resources such as the memory or the communication network can degrade the
performance.

Parallel computing is an extensive field and there is no book covering all the
details. A classic reference book on the subject is [32]. It covers all the basics
although other alternatives are recommended, such as [33]. Books that are also
worth a look are [34], [35] and [36]. They cover some of the related technology.

3.1.1 Parallel system

A parallel system is a system composed of two or more processing elements. When
the processing elements are located in the same platform, the system is called multi-
core platform (a few processing elements) or many-core platform. The processing
elements are connected via a network that usually is very fast. If the processing

15
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elements are located in different platforms connected via a network, the system is
called distributed system. For instance, the brake-by-wire application runs over a
five node distributed system (a central ECU and four local ECU). When all the
processing units are the same, the system is homogeneous. Otherwise the system is
heterogeneous.

In parallel computing there are two ways to model a parallel system: the classic
model and the contention aware model. They are presented below.

Classic model

The system is composed of P processors connected via a network. Full connection
between processors is provided. Communication and computation can be performed
concurrently thanks to a dedicated communication system.

Contention aware model

The topology of the system and its communication is represented by a Topology
Graph (TG)= (P, L). Processors P are modelled by nodes and communication links
L by edges [37]. This model is closer to reality at expense of more complexity.

3.2 Task models

A task model is a description of the kind of tasks running in the system and their
attributes. This section introduces two task models: a task model for independent
tasks and a task model for interdependent tasks with communication costs. The
first model is used for real-time applications, whereas the second model is used in
parallel computing applications. The algorithms presented in the next chapter will
use the second model.

3.2.1 Task model for independent tasks

This model is used for real-time systems. In real-time systems tasks have to be
executed with both logical correctness and temporal correctness. This model does
not consider interdependencies between tasks such as communications.

Task τi Set of instructions that have to be executed in
sequence.

Task set τ Set of tasks τi that must be executed on the
system.

Job J Execution of a task.

Classification of tasks according to their releasing pattern:

• Periodic task: A new job is released every period.
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• Sporadic task: The time between two consecutive jobs is equal or greater
to the minimum inter-arrival time.

• Aperiodic task: An aperiodic task does not have a period or minimum
inter-arrival time. They usually model non real-time tasks.

Real-time tasks are defined by a set of attributes:

Release time ri Time when a task is asked to be executed.
Period Ti Fixed amount of time between two consecutive

releases of a periodic task.
Minimum inter-arrival
time Ti

Minimum amount of time between two consec-
utive releases of a sporadic task.

Worst-case execution
time Ci

It is the maximum execution time of a job. It
can vary in function of the structure of the pro-
gram, the hardware platform, Real-Time Oper-
ating System (RTOS) and its scheduling policy,
and state of the system and data to be treated.

Deadline Di Time constrain that defines when a job must be
completed.

3.2.2 Task model for interdependent tasks with communication costs

A parallel application is a set of tasks in which two or more can be executed in
parallel. Often the tasks present dependencies among each other that prevent them
to execute in parallel. This dependencies can be precedence constraints, intertask
data dependencies and exclusive relations. A parallel application can be modeled
by a DAG. A DAG is a mathematical tool that is used in many parallel application
scheduling algorithms (see Figure 3.1). The first number in a node is the node id
and the second one is its weight. The number on the edges are the communication
costs.

Directed acyclic graph G(V, E, C, W)

A DAG is used when the characteristics of an application are known a priori (static
knowledge). Nodes represent the application tasks and edges the precedence con-
straints and inter-task data dependencies. Some typical topologies are: out-tree,
in-tree, fork, join, fork-join, series-parallel and mixes of the previous ones. A DAG
is described by the following attributes [1]:
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Figure 3.1: A sample DAG

vi Node. A node without a parent is and entry
node and a node without a child is an exit node.

V Set of vi nodes.
wi Execution time of vi.
W Set of wi execution times.
ei,j Communication edge from the parent node vi

to the child node vj . vj cannot start until vi is
finished.

E Set of ei,j communication edges.
suc(vi) Successors of vi. Set of vj nodes such there exists

ei,j .
pred(vi) Predecessors of vi. Set of vj nodes such there

exists ej,i.
ci,j Communication cost associated to ei,j . Its value

is given by ci,j = S + µi,j/R.
S Cost of starting the communication.
µi,j Amount of data transmitted from vi to vj .
R Speed of the communication channel.
C Set of ci,j communication costs.

Some parameters will now be defined:

• t− level(vi) is the length of the longest path from the top to vi (excluding vi).

t− level(vi) = max
vm∈pred(vi)

{t− level(vm) + wm + cm,i} (3.1)

• b− level(vi) is the length of the longest path from vi to the bottom.

b− level(vi) = wi + max
vm∈succ(vi)

{b− level(vm) + ci,m} (3.2)
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• static b− level(vi) is the same as the b− level(vi) but without the communi-
cation costs.

static b− level(vi) = wi + max
vm∈succ(vi)

{static b− level(vm)} (3.3)

• As Soon As Possible (ASAP) or Earliest Start Time (EST) of vi to be started.

EST (vi) = max
vm∈pred(vi)

{EST (vm) + wm + cm,i} (3.4)

• As Late As Possible (ALAP) or Latest Start Time (LST) of vi to be started.

LST (vi) = min
vm∈suc(vi)

{LST (vm)− ci,m} − wi (3.5)

• Critical Path (CP) is the longest path from the entry node to the exit node.

• Earliest Execution Start Time (EEST) of vi to be started, being vi a ready
node. A ready node is a node with all its parents completed.

• Dynamic Level (DL) is the difference between the static b− level(vi) and the
EEST (vi).

• Finishing Execution Time (FET) of vi.

• Communication to Computation Ration (CCR) measures the importance of
communication versus the computation.

CCR =

∑

ci,j∈C

ci,j

∑

wi∈W

wi

(3.6)

3.3 Examples of parallel applications

In this section some well known algorithms will be introduced (see Figure 3.2, taken
from [38]). They have one thing in common, they have been adapted to make use
of parallel systems. This kind of algorithms are very suitable for embedded system
applications. They are fed with some input data which is processed and produce
an output. Processing the data involves a lot of small and easy operations that can
be parallelized.

3.3.1 LU decomposition graph

LU decomposition has three main applications. They are solving systems of linear
equations, inverting a matrix and computing a determinant.
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(a) LU decomposition graph (b) Laplace algorithm graph

(c) FFT algorithm graph (d) Stencil algorithm graph

Figure 3.2: Parallel algorithms

3.3.2 Laplace algorithm graph

Laplace algorithm is used to solve differential equations and to solve circuit analysis
problems.

3.3.3 FFT algorithm graph

The FFT algorithm is a key tool in the field of signal processing. There is a wide
variety of applications, especially for sound and image processing. Audio signal
processing is performed in phones, sound synthesizers and audio players. Image
processing has been developed a lot but still has a huge potential. Medical imaging
or cameras in the automotive industry are some examples. It can also be applied to
solve partial differential equations or perform quick multiplications of large integers.
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3.3.4 Stencil algorithm graph

Stencil algorithm is used for linear and non-linear image processing operations,
such as linear convolution and non-linear noise reduction. It also computes explicit
solutions to partial differential equations. Other application which is out of our
scope is the simulation and seismic reconstruction.

3.4 Application decomposition and dependency analysis

Application decomposition is the process of dividing the application into smaller
tasks that can be run in parallel. How this decomposition is done has a hard relation
with the performance of the parallelized application. In this process it is very
important the size of the partitions, which is called granularity. Fine granularity
has high parallelization but high communication overhead. Coarse granularity has
low communication overhead but low parallelization. It is necessary to find the right
balance.
Manual decomposition. It is more error prone. The code is usually divided into
tasks that communicate each other by means of message passing. Communication
is used to synchronize or transfer data.
Automatic decomposition. The desire of the industry is to automatize the
process by having an intermediate tool. The tool shall abstract the developer so
that he does his job as it was a serial program. All the applications in the automotive
industry has been developed for single core ECUs. The manual migration of the
code to multi-core platforms is very costly and error prone as it is stated in [21].

There are some systematized ways of doing the decomposition [32]. A general
classification is shown below:

• Data decomposition. When the amount of data to process is large. First
the data is partitioned. Second the application is partitioned according to
the data. Either input, intermediate or output data is partitioned. The ap-
plication is partitioned into tasks that are in charge of a specific block of
data. They are intensively used in scientific applications with high load of
mathematical operations.

• Recursive decomposition. When the problem that has to be solved can be
split into subproblems (divide-and-conquer). Some examples are quicksort,
finding the minimum.

• Exploratory decomposition. When the problem to solve is a search of a
space of solutions, normally represented by a tree.

• Speculative decomposition. When the next step is one of many possible
actions, and it is only known when the current task ends. This decomposition
assumes it is known and executes some of the next steps.
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• Hybrid decomposition. The aforementioned strategies can be combined
together.

Depending on the result of the decomposition, some dependencies between tasks
emerge. For instance, precedence constraints are represented by edges in the DAG.
They fall into two families, data dependencies and control dependencies [39]. Con-
trol dependencies can be transformed into data dependencies for doing analysis.

An example of data dependencies is shown in the following sample program,
x = a ∗ 2 + a ∗ 3. b and c depend on a, whereas x depends on b and c.

a = 1;

b = a * 2;

c = a * 3;

x = b + c;

In control dependencies there is not transference of data. They are produced by
control statement such as if-else statements.

if (a = 1) {

b = a * 2;

} else {

b = a * 3;

}

3.5 Task scheduling

In a serial application task scheduling consists in determining the start time of the
task/application. If another application with higher priority becomes ready for ex-
ecution and there is a preemptive scheduler, the running application is preempted.
The preempted application continues the execution when the one with highest pri-
ority is finished or blocked. For parallel computing we are not going to consider
preemptive scheduling because of its complexity. Besides an increase of performance
is not very clear since there is overhead. In parallel applications as in serial appli-
cations the scheduler determines the start time of the tasks. In order to do that,
tasks first need to be mapped onto the processing elements.

Static scheduling. The processing element selection and the start times are
decided at compile time. The advantage of this approach is that the scheduling
overhead is low. The disadvantage is that is very rigid and can not take advantage
of the run-time state of the system.

Dynamic scheduling. Processing element selection is done at run-time. Load
balancing enhance the performance of the system. This approach is used with
independent tasks.



3.5. TASK SCHEDULING 23

3.5.1 Task mapping onto processing elements

Tasks are grouped onto processing elements in a special way. The goal is to reduce
the makespan of the application. There is a trade-off between parallelization and
inter-task communication. If all tasks are grouped onto the same processing ele-
ment, the parallel application runs as a serial program. It is not an optimal solution.
On the other hand, if all tasks are executed in different processing elements, the
inter-task communication can slow down the execution. This is due to the fact that
when two tasks are executed on the same processing element the cost of the com-
munication becomes zero. The optimal solution is a balance between parallelization
and inter-task communication.

3.5.2 Task temporal arrangement

Once the tasks are located onto their specific processing element, their start time has
to be determined. There are two constraints, precedence constraint and exclusive
processor allocation constraint.

Precedence constraint. They are the edges of the DAG. They correspond to
data dependencies or control dependencies.

Exclusive processor allocation constraint. Two tasks can not run simul-
taneously onto the same processor. Let A and B be two tasks allocated onto the
same processor. Either A executes before B or B executes before A.

3.5.3 Scheduling metrics

Scheduling metrics are scalar values that give information about the performance
of the scheduling algorithm.

Makespan

Makespan is the completion time of a parallel application.

makespan = FET (vexit) (3.7)

Scheduling length ratio, SLR

The main performance measurement of a scheduler is the makespan of the schedule.
This value depends on both the scheduling algorithm and the DAG. A normalization
is needed to make comparisons when different DAGs are used.

SLR =
makespan
∑

i∈CP wi
(3.8)
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Speedup

Speedup is a ratio that shows the gain of performance by executing tasks in parallel
instead of in sequence.

Speedup =
makespanserial execution

makespanparallel execution

(3.9)

3.5.4 Optimality, feasibility and schedulability

A scheduling algorithm for parallel applications is optimal if the makespan is the
minimum possible. Feasibility and schedulability are terms applied to task models
for independent tasks in real-time applications. They can also be applied to parallel
applications in case that deadlines are defined for the whole application or for the
individual tasks.

Feasibility

An application is said to be feasible, if there exists a schedule that respects the
deadlines.

Schedulability

An application is said to be schedulable by a given algorithm S, if the schedule
constructed by S respects all the deadlines.

3.6 Related technology

3.6.1 OpenMP

OpenMP is an Application Programming Interface (API) for multi-platform shared-
memory parallel programming in C/C++ and Fortran (see Figure 3.3, taken from
[40]). The range of platforms supported includes Unix-based systems and Windows
NT systems. OpenMP aims for portability and scalability. These goals are measured
by the simplicity and flexibility that OpenMP offers to the developer during the
implementation phase. OpenMP is basically a specification for a set of compiler
directives, library routines and environment variables.

In the early 90´s there were several vendors providing their specifications for
parallel programming shared-memory Symmetric MultiProcessing (SMP) architec-
tures. OpenMP was then born because the industry was claiming for standardiza-
tion. OpenMP ARB is a non-profit consortium taking care of the development of
OpenMP. Consortium partners include AMD, IBM, Intel, Cray, HP, Fujitsu, Nvidia,
NEC, Microsoft, Texas Instruments and Oracle Corporation.

The parallel programming model defined by OpenMP can be extended to non
shared-memory parallel programming, for instance by using message passing. Typ-
ical non shared-memory systems are computer clusters. Two solutions have been
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Figure 3.3: OpenMP parallelization

proposed. The first solution stands for the use of MPI. The second one advocates
to use new OpenMP extensions.

3.6.2 MPI

It is a standard message passing system that aimed to work in parallel computing
applications. The standard currently supports message-passing programs in For-
tran, C and C++. Two implementations of the MPI standard will be introduced.

MPICH

It is a very popular and free implementation of MPI. It is thought for distributed
memory applications and is supported in Unix-based systems and Windows OS.
There is an implementation of the MPI-2 standard called MPICH2 or simply MPICH
and another of the MPI-3.0 standard called MPICH v3.0.

Open MPI

It is other popular open source implementation of MPI. Three previous big MPI
projects merged into Open MPI. They are FT-MPI, LA-MPI and LAM/MPI. Many
supercomputers are currently using it.

3.6.3 OpenHMPP

OpenHMPP stands for Hybrid Multicore Parallel Programming. CAPS, a Many-
Core Programming company, started the project in 2007. It is a set of directives and
a compiler that ease the use of HardWare Accelerators (HWAs) such as Graphics
Processing Units (GPUs) to the developers. Computations are offloaded to HWAs
because their architecture is specialized for parallel computations (see Figure 3.4,
taken from [41]). The transference of procedures and data from the general purpose
processor to the HWA is hardware dependent. OpenHMPP provides a standard
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(a) Synchronous versus asynchronous
RPC

(b) OpenHMPP Memory Model

Figure 3.4: OpenHMPP model

API for reducing the complexity. Its directives provide a specification of the Remote
Procedure Calls (RPCs) on the HWA.

3.6.4 OpenACC

OpenACC is a set of directives and a compiler to manage HWAs. OpenHMPP is
a superset of the OpenACC API with additional features. At the present there are
new languages for programming HWAs, such as CUDA and OpenCL. OpenACC
basically provides a new layer of abstraction to ease the use of HWAs. It is used to
specify loops and parallel regions of the code to be offloaded to the HWA.

3.6.5 CAPS compilers and CodeletFinder

CAPS compilers support the OpenHMPP standard. It allows to build portable
applications for many-core platforms, such as Nvidia GPU, AMD GPU and Intel
MIC. The workflow of the compiler is described in Figure 3.6, taken from [42] and
[43]. CAPS compilers try to partition the code into standalone pieces that can run
in parallel, called codelets. The process have two auto-tuning phases. The first one
is done offline by a tool called CodeletFinder. It identifies the hotspots and isolates
them in order to check if they can be parallelized (see Figure 3.5, taken from [43]).
The second phase is done by using machine learning techniques with online profile
data.

Performance optimization and portability are conflicting requirements. This
approach tackles both problems. OpenHMPP provides the portability and the two
step-compiler the performance optimization for a specific target.
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Figure 3.5: CodeletFinder

(a) CAPS compiler model (b) CAPS compiler workflow

Figure 3.6: CAPS compiler

3.7 Summary

In this section the automatic development of a parallel application will be described.
First, the programmer writes the code of the application according to his design.
The next step is to compile the code. Here, there is a big difference respect to
serial applications. The programmer has placed some directives in the code to help
the compiler to partition and schedule the application. The compiler breaks the
application into blocks called tasks. New instructions are inserted in the code to
manage the transfer of data from one task to another and to synchronize the tasks.
All this process is transparent to the programmer. The compiler also makes a static
mapping of the tasks onto the processing elements and arranges their temporal
execution. The outputs are binary files for the processing elements involved.





Chapter 4

Scheduling for interdependent tasks

with communication costs

Research has been performed on the scheduling complexity of DAGs [44]. The differ-
ent formulations of the scheduling problem have been classified into three complexity
classes: P, NP-complete and NP-hard. P contains decision problems that can be
solved by a deterministic Turing machine in polynomial time in the input size. NP
is a class of decisions problems that can be solved by a non-deterministic Turing
machine in polynomial time. NP-complete is a subset of NP, for which no fast so-
lution is known yet. NP-hard problems are decision problems, search problems and
optimization problems that are at least as hard as the hardest problems in NP.

The first formulations of the scheduling problem did not consider any com-
munication cost. Scheduling on a limited number of processors was proved to be
NP-complete by [45]. However, a polynomial time solution exists for an unlimited
number of processors.

Nowadays the formulations consider communication costs in the model. Schedul-
ing on a limited number of processors is NP-hard [46]. The same problem with an
unlimited number of processors is still NP-complete [47].

Several tens of algorithms have been developed for scheduling on multi-processor
systems. They are based on heuristics and use some assumptions in order to deal
with the otherwise NP-hard problem. A taxonomy has been created in order to
classify them. More information about them can be found in [48], [49], [50] and
[51]. This chapter presents four families of algorithms to schedule a DAG into
a multi-core system. Some comparisons done by researchers on the field will be
introduced in order to have an overview of their performance. The families that we
are talking about are the following.

• List-based algorithms: Schedule the tasks onto a limited number of pro-
cessing elements.

• Clustering algorithms: Schedule the tasks onto an unlimited number of
processing elements.

29
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• Arbitrary processor network algorithms: Schedule the tasks taking into
account the network architecture.

• Duplication algorithms: Schedule the tasks by duplicating some of them
in order to enhance the performance.

4.1 List-based algorithms

List-based algorithms are meant to schedule the nodes of the DAG into a limited
number of processors. They are a popular approach for their low complexity and
their good results. They give each node a priority and sort them in a list [1]. This
family of algorithms can be further divided into two subfamilies.

• Static list-based algorithms. Node priorities are computed before schedul-
ing and do not change during the scheduling process.

– Highest level first with estimated times, HLFET.

– Modified Critical Path, MCP.

• Dynamic list-based algorithms. Node priorities are subject to change
during the scheduling process.

– Earliest time first, ETF.

– Dynamic Level Scheduling, DLS.

– Cluster ready Children First, CCF.

– Hybrid Re-mapper minimum partial completion time static priority.

Some list-based algorithms will be explained in the following. Parameters from
subsection 3.2.2 will be used in order to describe them.

4.1.1 Highest level first with estimated times, HLFET

It is a static b-level based algorithm proposed in [52]. It schedules a task to a
processor that allows the EST. Scheduling first the nodes with highest b-level gives
more priority to the critical path nodes.

The complexity of the algorithm is O(PV 2). This means that the algorithm com-
putes the schedule in polynomial time. The required time is linearly proportional to
the number of processors (P) and quadratically proportional to the number of nodes
(V). In the following, the complexity of the other algorithms should be interpreted
in the same way.

4.1.2 Modified Critical Path, MCP

It is a ALAP based algorithm presented in [53]. The complexity of the algorithm
is O(V 2log(V )).
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Ranking Position 1 Position 2 Position 3 Position 4

Average makespan DLS ETF HLFET MCP
Average speedup DLS ETF HLFET MCP
Average SLR ETF DLS MCP HLFET
Best results DLS ETF MCP HLFET
Complexity HLFET&MCP DLS&ETF

Table 4.1: HLFET, MCP, ETF and DLS performance evaluation

4.1.3 Earliest time first, ETF

It is a EEST based algorithm introduced in [54]. Processors are kept as busy as
possible. It computes the EEST of all ready nodes and selects the one having the
lowest value. The complexity of the algorithm is O(PV 2).

4.1.4 Dynamic Level Scheduling, DLS

It is a DL based scheduling proposed in [55]. It behaves like HLFET in the first
steps and like ETF in the last steps of the process. The complexity of the algorithm
is O(PV 3).

A performance comparison between HLFET, MCP, ETF and DLS was carried
out in [1]. 90k random DAG were generated with CCR values between 0.5 and 2.
According to those results the algorithms were ranked, see Table 4.1. The algorithm
with the lowest position in the ranking is the one with the best performance. On
the other side, the algorithm with the highest position is the one with the worst
performance. A one to one comparison was also presented (see Figure 4.1, taken
from [1]).

4.1.5 Cluster ready Children First, CCF

It is a dynamic scheduling algorithm based on lists [56]. The graph is visited in
topological order, and tasks are submitted as soon as scheduling decisions are taken.

4.1.6 Hybrid Re-mapper minimum partial completion time Static

Priority, Hybrid Re-mapper PS

It is a dynamic list scheduling algorithm for heterogeneous distributed systems [56].
The set of tasks is partitioned into blocks so that tasks in a block do not have any
data dependencies among them. Blocks are executed sequentially.

4.2 Clustering algorithms

These algorithms are meant to group the nodes of the DAG to an unbounded num-
ber of clusters. A cluster is a virtual processor. Clustering algorithms initially
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(a) Algorithm complexity disregarded

(b) Algorithm complexity regarded

Figure 4.1: List-based scheduling algorithms’ comparison, taken from [1]. B-rows
stand for better performance than the compared algorithm. E-rows stand for equal
performance as the compared algorithm. W-rows stand for worse performance than
the compared algorithm.
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schedule a node onto a different cluster. Then clusters are merged in an iterative
process in order to reduce the makespan of the DAG. This is due to the fact that the
edges across two merged clusters are zeroed, since the inter-process communication
cost within the same processor is negligible. When clusters belonging to the CP are
merged, the completion time of the DAG decreases. But merging has to be done
carefully. Nodes inside the same cluster are executed sequentially. Merging may
reduce the parallelism of the application and therefore increase the completion time.
Optimal scheduling is a trade-off between minimizing inter-processor communica-
tion and maximizing the concurrency of the tasks. The goal of clustering algorithms
is to reduce the length of the CP as much as possible by merging clusters.

It can happen that the required number of clusters or virtual processors is greater
than the number of physical processors. A clustering based scheduling algorithm
is a scheduling algorithm that makes use of a clustering algorithm. They schedule
clusters into a bounded number of processors. They are comprised of three steps:

• Use a clustering algorithm to find a clustering.

• Map clusters to physical processors.

• Set the start time of each node based on the precedence constraints and the
exclusive processor allocation constraints (see Section 3.5).

Precedence constraint. Let eij and vj be a communication edge and a node
that receives communication data. vj can not start until eij has completed.

Exclusive processor allocation constraint. Let vi and vj be two nodes
assigned to the same processor. Either vi is executed before vj or vj is executed
before vi. They can not overlap.

Some clustering algorithms will be explained in the following. Parameters from
subsection 3.2.2 will be used in order to describe them.

4.2.1 Edge-Zeroing or Single Edge, EZ or SE

Edge-zeroing was introduced by V. Sarkar in [57]. Initially every task is assigned
to a different cluster. The edges of the DAG are given a priority according to some
sort of heuristic, such as the cost of eij or “the b-level of eij”. The algorithm iterates
over each edge and sets it to zero. If the resulting schedule length is smaller than
or equal to the current schedule length, the clusters linked by the edge are merged
together.

An example is shown in Figure 4.2. The CP consists of nodes 1, 3 and 4. The
CP length is 35. The algorithm first tries to zero e13. The resulting schedule length
is 29. Since the schedule length is shorter, cluster 1 and cluster 3 are merged. Now
e23 is zeroed. Nodes in a cluster are executed sequentially. Therefore a cluster
containing 1, 2 and 3 takes 24 time units to be executed. The resulting schedule
length is 37, greater than 29. Thus that configuration is discarded. e25 is then
zeroed. The schedule length is still 29, therefore the new configuration is accepted.
Finally e34 is zeroed.
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(a) Initial clustering (b) e13 is edge-zeroed

(c) e25 is edge-zeroed (d) e34 is edge-zeroed

Figure 4.2: Edge-Zeroing

The schedule and CP length are 24 and 35 respectively. Thus the Scheduling
Length Ratio (SLR) is 0.69. The algorithm started with an initial configuration of
five clusters and finished with a configuration of two clusters. The initial configura-
tion is slower because of the inter-task communication. A configuration with only
one cluster is slower because there is no parallelism. This algorithm finds a solu-
tion which is a trade-off between inter-task communication and parallelism. The
complexity is O(E(V + E)).

4.2.2 Linear Clustering, LC

Linear clustering was proposed in [58]. Firstly it is necessary to define what a
linear cluster is. A cluster is linear if there exists a path that connect all the nodes
belonging to the cluster. Linear clustering is an algorithm based on this concept.
Basically, it decomposes the DAG into linear clusters. The algorithm starts by
assigning one cluster to each node. Afterwards the CP is found and their nodes are
merged into one cluster. These nodes and their communication edges are ignored
hereafter. The CP of the remaining DAG is found and their nodes are merged into
another cluster. The algorithm continues until all edges are explored.

Figure 4.3 shows this algorithm. Initially the CP consists of nodes 1, 3, 6 and
10. They are merged into one cluster. From now on the nodes and edges of this
cluster are ignored. The CP of the remaining graph is calculated. In this case there
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(a) Initial clustering (b) Nodes 1, 3, 6 and 10 are clustered

(c) Nodes 4, 7 and 11 are clustered (d) Nodes 2, 5 and 9 are clustered

Figure 4.3: Linear Clustering

are two solutions. The first solution is nodes 4, 7 and 11. The second solution is
nodes 4, 8 and 11. The first solution is taken although the second one is also valid.
Nodes 4, 7 and 11 are merged. Subsequently the algorithm merges nodes 2, 5 and
9 into another cluster. Node 8 is left alone.

The final solution consists of 4 linear clusters. In this case the length of the
schedule is 36. The length of the CP is 44. Therefore the SLR is 0.82. The
complexity is O(V (V + E)).

4.2.3 Dominant Sequence Clustering, DSC

Dominant sequence clustering was presented in [59]. The algorithm introduces the
concept of scheduled DAG. The scheduled DAG is the original DAG plus a new set
of edges with zero cost. The new edges link two independent nodes inside a cluster.
They transform a non-linear cluster into a linear cluster. The schedule of a linear
cluster is univocally defined. This concept serves to define the Dominant Sequence
(DS). The DS is the CP of the scheduled DAG.

The algorithm incrementally explores the DAG with the help of two lists. One for
the explored nodes and another one with the unexplored nodes. At every iteration
a node is tried to merge with one or more predecessors, the node with highest



36
CHAPTER 4. SCHEDULING FOR INTERDEPENDENT TASKS WITH

COMMUNICATION COSTS

MCP ETF MD DSC

Task priority b-level t-level relative mobility t-level+b-level
DS task first no no yes yes
Processor
selection

processor for
EEST

processor
for
EEST

First processor
satisfying
moving interval
condition

minimization
procedure

Complexity O(V 2log(V )) O(PV 2) O(PV (V + E)) O((V + E)logV )

Join/Fork no no optimal optimal
Coarse grain
in-tree

optimal optimal no optimal

Table 4.2: MCP, ETF, MD and DSC comparison

1− makespan(DSC)
makespan(ET F ) 1− makespan(DSC)

makespan(EZ)

Average group 3.30% 20.74%
Coarse grain group 0.06% 5.56%
Fine grain group 2.36% 19.39%
Average all 1.91% 15.23%

Table 4.3: ETF, EZ and DSC performance evaluation

priority among the unexplored free nodes and the unexplored partially free nodes.
A free node is a node in which all its predecessors have been explored and a partial
free node is a node in which at least one has been explored. The node is merged
with the successors that minimize the t-level as long as it does not increase the
t-level and satisfies the Dominant Sequence Length Reduction Warranty. Finally
the priorities of its successors are updated. The algorithm iterates until the DAG
is fully explored.

The algorithm provides optimal solutions for a subset of DAGs, namely fork,
join, coarse grain trees and some fine grain trees. It has low complexity and high
performance. The complexity is O((V + E)logV ).

T. Yang and A. Gerosoulis made a comparison of DSC with MCP, ETF and
MD. It is shown in Table 4.2 and Table 4.3. They performed simulations with 180
graphs to evaluate the performance of DSC versus ETF and EZ. DSC and MD were
not compared due to fact that they use similar strategies, thus the performance is
expected to be similar. The graphs were divided in three subsets: average group
(0.8-1.2 CCR), coarse grain group (3-10 CCR) and fine grain group (0.1-0.3). DSC
performed better than ETF 56.67% of the times and better than EZ 93.89% of the
times. It performed worse than ETF 20% of the times and worse than EZ 6.11% of
the times.
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Figure 4.4: MD, MCP, DSC, DLS and DCP comparison

4.2.4 Mobility Directed, MD

Mobility directed was introduced in [53]. Scheduling is based on the concept of
node mobility, M(vi) = ALAP (vi) − ASAP (vi). Relative mobility is defined as
Mr(vi) = M(vi)/w(vi). This algorithm computes iteratively the relative mobilities
of the nodes. It schedules into a processor the node with lowest mobility. When
a node is scheduled before other node into the same processor a new edge with
zero cost is added to the DAG. Then it is checked that there is no deadlock. The
algorithm ends when all nodes are scheduled. The complexity is O(V 3).

M. Wu and D. D. Gajski present a tool for parallel programming, called Hyper-
tool. It is stated that up to 300% improvement in speed is achieved in problems
such as Gaussian elimination, Laplace equations and Dynamic programming when
Hypertool is used instead of manual scheduling. There is no such a improvement
for Matrix multiplication and Bitonic sort.

4.2.5 Dynamic Critical Path, DCP

Dynamic critical path was proposed in [60]. The dynamic critical path is the critical
path at a certain step in the clustering process. This concept is related to the
dominant sequence. The nodes of the dynamic critical path have the same absolute
earliest start time and absolute latest start time. The algorithm iterates over all the
nodes. It clusters the node with highest priority at every iteration which is given
by the minimum of the Absolute Latest Start Time (ALST) minus the Absolute
Earliest Start Time (AEST) of vi. If the value is zero it means it belongs to the
dynamic critical path. The nodes are clustered to the cluster that gives best AEST
to the node and its critical child together. In each step AESTs and ALSTs are
updated. The complexity of the algorithm is O(PV (V + E)).

An experiment with 420 DAGs and 5 different scheduling algorithms was per-
formed (see Figure 4.4, taken from [60]). They tested MD, MCP, DSC, DLS and
DCP. They ranked them according to the resulting makespan. The rank order was:
DCP, MCP, DLS, MD and DSC.
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DSC required a larger amount of processors to be executed when compared to
the others. Regarding the computation time of the scheduling, DLS was extremely
slow. DSC and MCP were fast but the makespan was not so good. DCP and MD
were in the middle. DCP is indicated to use with very large DAGs since it has low
complexity compared to the short makespan produced.

4.3 Arbitrary processor network algorithms, APN

This kind of algorithms uses a more complex model of the system architecture in
order to achieve a better performance. Therefore they have an increased complexity.
They require two inputs: the static definition of the application (DAG) and the
network topology (TG) of the target architecture. They include routing of messages
into the scheduling. An example is shown in Figure 4.5.

(a) Directed acyclic graph (b) Topology graph

Figure 4.5: Arbitrary processor network algorithm

Classical models assume that all communication can happen at the same time
and that all processors are fully connected. These simplified models might not be
enough in systems where communication is a scarce resource. Contention-aware
scheduling algorithms take care of the communication resources scheduling.

Contention-aware scheduling make use of a TG= (P, L), where P represents the
set of nodes/processors and L the set of edges/communication links. This approach
affects the calculation of the finish time of a communication edge eij in the DAG.
Lets assume R =< L1, L2, ..., Ll > being the route from Psrc to Pdst where Li ∈ L
for i = 1...l is the communication links of the route.

In the classical model, the finishing time is calculated as follows.

tf (eij , Psrc, Pdst) = tf (vi, Psrc) +

{

0 ifPsrc = Pdst

c(eij) otherwise
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In the contention model, the communication edges of the DAG have to be sched-
uled in the TG.

tf (eij , Psrc, Pdst) =

{

tf (vi, Psrc) ifPsrc = Pdst

tf (eij , Ll) otherwise

Some arbitrary processor network algorithms will be explained in the following.
Parameters from subsection 3.2.2 will be used in order to describe them.

4.3.1 Mapping Heuristic, MH

The mapping heuristic algorithm was presented in [61]. It uses a list-based schedul-
ing algorithm that has been modified in order to produce a schedule which is suitable
for a target machine with an arbitrary network topology. It has in mind the effects
of different communication delays depending on the selected route and contention
problems. Both scheduling and routing are done at every step. A new parameter
called average degree was introduced, AD=number of edges/number of nodes. Both
AD and CCR show the weight of the communication in the application.

An ideal model of the network is not good enough in communication intensive
applications. MH introduces a more advanced model of the communication costs:

c(eij , p1, p2) =

(

Data(eij)

R
+ I

)

·H(p1, p2) + D(p1, p2) (4.1)

where the following terms stand for

Data(eij) Amount of sent data
R Speed of the link
I Time to initiate the transmission
H(p1, p2) Number of hops between p1 and p2

D(p1, p2) Contention time. Time which the transmission
is delayed due to previously routed transmis-
sions.

In the MH algorithm there is a routing table in every processor. The table keeps
track of the communication links usage. It serves to avoid contention problems. The
table has an entry for each processor of the system. An entry has three data cells.
The first one contains the number of hopes to reach the processor. The second one
has the preferred outgoing link to reach the processor. The third one is the delay
due to contention. These tables are used to route the communication edges. The
complexity of the algorithm is O(P 3V 2 + PV 2 + P 3), and O(V 2) for a constant
number of processors.

H. El-Rewini and T. G. Lewis performed simulations with a tool called Task Gra-
pher with different network topologies such as ring, star, mesh, hypercube and fully
connected networks. They proved that in hypercubes the effects of communication
should be taken into account due to the effect of contention in the communication
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channels. Traditional list-based scheduling algorithms with ideal model networks
are incomplete and it affects the performance. This is especially noticeable in ap-
plications with high AD and CCR.

4.3.2 Bottom-Up, BU

The bottom-up algorithm was introduced in [62]. The algorithm first maps the
nodes onto the processors. Finally it routes the inter-processor communication into
the network.

The algorithm starts mapping the deepest nodes and keep ascending the tree
level by level until the entry nodes. Three mapping heuristics are suggested. The
first one tries to map a task in the same processor when the communication cost is
higher than the computation cost. The other two try to balance the load onto the
different processors. The algorithm keeps track of the loads on every processor.

In the second phase communication links are assigned for the inter-processor
communications. This is done starting from the entry nodes. An adaptive channel
assignment heuristic is required. It takes into account the network topology and the
link loads in order to avoid contention and deadlocks. Some routing algorithms have
been proposed: hypercube topology [63], mesh topology [64] and torus topology.

N. Mehdiratta and K. Ghose performed some experiments with randomly gen-
erated task graphs. They compared BU with MH and a top-down TD scheduler
(same algorithm as BU but starting from the entry node). MH and TD had lower
performance than BU for high fan-out graphs. MH had lower performance than
TD and BU for high fan-in graphs. TD performed a little bit better than BU in
this case. BU also showed great scalability with the number of nodes per DAG. BU
outperformed MH in a 4x4 torus topology and a 16 hypercube topology and the
difference increased with the number of nodes.

4.4 Duplication algorithms

This family of algorithms duplicates a task in several nodes for different purposes.
Task duplication is beneficial in DAGs that contains nodes with more than one child
node (see Figure 4.6).

Figure 4.6: Task duplication

Some duplication algorithms will be explained in the following.
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4.4.1 Contention-aware scheduling algorithm with task duplication

This algorithm belongs to both the arbitrary processor network family and the
duplication family. The purpose of this algorithm is to avoid inter-node commu-
nication as much as possible (contention-aware scheduling). This can be done by
means of task duplication (duplication scheduling). Task duplication increases its
benefits in a contention-aware context.

There are two different approaches: origin duplication (see Figure 4.7) and des-
tination duplication (see Figure 4.8). Both can be combined to improve the perfor-
mance.

Figure 4.7: Origin duplication

Figure 4.8: Destination duplication

In [65], the implementation of this algorithm is explained. The algorithm first
finds the critical parent of a task, the critical parent of the critical parent and so
on. The critical parent of a node is the predecessor with highest finish time of the
communication edge. The next step is to recursively duplicate the critical parent
to minimize the finish time, which is done by tentative scheduling and redundant
task/edge removal.

The complexity is O(|P |2|V |2|E|2O(routing)). Where O(routing) is the com-
plexity of the routing algorithm.

Contention-aware scheduling with task duplication’s benefits are more noticeable
in applications with high amount of communications and networks that are far from
the ideal case.
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4.5 Summary

In this chapter many algorithms have been presented along with some comparisons
between them. Some algorithms get better results than the others but are compu-
tationally more complex. Clustering algorithms get reasonably good results at an
affordable complexity.

Arbitrary network processor algorithms and task duplication algorithms should
be considered for high performance applications where communication is a bottle-
neck.



Chapter 5

Discussion and conclusions for

scheduling

This chapter makes use of the knowledge gained in order to provide ideas on how
to design and implement a scheduler that fulfills the requirements that were set up
in Chapter 1.

5.1 Requirements analysis

An analysis of the requirements list given in Section 1.3 is performed below:

REQ_1 The scheduler shall cope with both serial and parallel applica-
tions.
The algorithms presented in Chapter 4 are by design able to cope with parallel
applications. A serial application can be seen as a special case of a parallel applica-
tion. A serial application is a parallel application with just one task and no edges.
Therefore the algorithms presented in Chapter 4 can be easily adapted to cope with
serial applications as well.

REQ_2 The scheduler shall do automatic parallelization of the applica-
tion. Parallelization shall be transparent to the programmer.
Automatic parallelization requires two complex activities. The first one is the de-
composition of the application into small tasks with the right granularity. Gran-
ularity is a key factor that seriously affects the trade-off between parallelization
and communication. The second activity is to handle the dependencies. A tool for
automatic parallelization has to insert commands in the code for communication
and synchronization of tasks. There is not in the market a tool that completely
abstracts the programmer from this activities. OpenMP is a very popular tool that
was presented in Chapter 3. In OpenMP the programmer specifies the sections of
code that can be parallelized by using compiler directives, which is a clean way
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since it does not modify the code. The approach of CAP’s compilers is to make
a two step decomposition. The first step identifies the hotspots and tries to iso-
late them in independent pieces of code, called codelets. The second step is to
profile the application and use machine learning techniques in order to improve
the decomposition. This idea sounds very interesting and has an important benefit.
It can adapt to different target platforms thanks to the machine learning techniques.

REQ_3 The scheduler shall parallelize tasks as much as possible.
REQ_4 The scheduler shall avoid communication as much as possible.
REQ_6 The scheduler shall generate a schedule with the minimum ex-
ecution time.
Scheduling is a trade-off between parallelization and communication. The optimal
schedule finds the right balance. It takes a lot of time to compute the optimal
schedule, thus heuristics are used in order to find a solution with a performance
close to the one of the optimal solution. The algorithms presented in Chapter 4 are
not optimal, they use heuristics. One of the main advantages of the algorithms of
Chapter 4 is that if two tasks are mapped to the same processing unit the commu-
nication cost is zero. This is true if the output of the predecessor is stored in the
local memory of the processing unit. In that case the successor retrieves the output
from the local memory. It reduces communication and increases performance. In
the implementation the output of a predecessor shall be stored in local memory.

REQ_5 The scheduler shall provide to an application an end-to-end guar-
antee.
The DAG is a tool to model parallel applications. This tool can be used to calculate
end-to-end latencies in multi-core systems. The makespan of the application is what
gives the end-to-end latency. In real-time systems the end-to-end latency shall be
smaller than a deadline.

REQ_7 The scheduler shall be energy efficient.
There are two ways of increasing energy efficiency. The first method is by increas-
ing parallelization. Two small energy efficient cores can perform the same task as
a powerful processor with less energy. The second method is by using the power
saving mechanisms provided by the target platform. The prototype board provides
an idle mode to sleep cores if they are not used.

REQ_8 The scheduler shall be target independent. The algorithm shall
be easily portable to other platforms.
List-based algorithms, clustering algorithms and duplication-based algorithms do
not have dependencies with the platform. It means that the algorithms are easily
portable from a target system to a different target system. However, arbitrary pro-
cessor network algorithms are target dependent. These algorithms need an extra
input, the TG. Extra performance is gained in exchange of portability.
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5.2 Performance comparison

There are two basic parameters to measure the performance of the algorithms: the
complexity and the makespan. The complexity tells how much time is needed to
construct the schedule. The makespan is the length of the schedule produced.

List-based algorithms are based on very simple ideas or heuristics. However,
the makespan and the time to construct the schedule is not very good. Clustering
algorithms are normally based on list-based algorithms. Their complexity is usually
lower than the one of list-based algorithms and the produced makespan is still good.
This is due to the fact that they assume an unlimited number of processors to
schedule the tasks. LC is an algorithm that gives optimal solutions for coarse grain
in-tree and join/fork DAGs at a low complexity (see table 5.1).

Arbitrary processor network algorithms are recommended to be used in appli-
cation with high CCR and where the communication network is far from the ideal
case. The complexity of the implementation is greater than in the other algorithm
families, specially with complex network topologies. Only the previous conditions
justify their usage. BSA is the algorithm with better performance among the algo-
rithms studied according to [66] (see table 5.2).

Duplication-based algorithms are more complex in order to reduce the makespan.
They should be used only in cases where a very short makespan is required.

Novel algorithms combined the ideas from arbitrary processor network and
duplication-based algorithms [65]. It turns out that there is a synergy between
the ideas and quite good results are obtained.



Source
List-based Clustering

HLFET MCP ETF DLS EZ LC DSC MD DCP

[1]
Makespan Longest Medium-long Medium-short Shortest N/A N/A N/A N/A N/A
Complexity O(PV 2) O(PV 2) O(PV 3) O(PV 3) N/A N/A N/A N/A N/A

[59]
Makespan N/A Optimal in-tree Optimal in-tree N/A N/A Optimal in-tree/

join-fork
Optimal join-fork N/A N/A

Complexity N/A O(V 2 log V ) O(PV 2) N/A N/A O((V + E) log V ) O(PV (V + E)) N/A N/A

Table 5.1: List-based algorithms and clustering algorithms: Performance comparison

Source Arbitrary processor network Reduction of makespan by using BSA

[65]
MH 40%
DLS 50%
BU 71%

Table 5.2: Arbitrary processor network: Performance comparison
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5.3 Design decisions

The aim of this thesis is to implement a code generation toolchain for parallel
applications. In this section the design decisions to fulfill the requirements will be
listed. The implementation process will be iterative.

The aim is to use a simple algorithm first in order to get to know the hardware.
A simple algorithm is also simpler to debug. Once the first prototype is working
new features will be implemented.

The first algorithm to be implemented is linear clustering. In table 5.3 the main
features of the toolchain are listed and mapped with the requirements they meet.
REQ_2 is only partially fulfilled because the dependencies are handled but the
decomposition has to be done manually by the programmer.

Item Description Fulfilled
requirements

Implementation of
LC on the prototype
board

LC provides optimum schedules for
optimal coarse grain in-tree and
join/fork DAGs. The algorithm is also
independent from the target platform.

REQ_3,
REQ_4,
REQ_6 and
REQ_8

Adaptation for serial
applications

REQ_1

Utilization of the
target energy modes

Energy modes will sleep the cores
when not being used.

REQ_7

Implementation of a
DAG generator

The output DAG from the generator
will be the input to the scheduler.
The DAG is drawn by the
programmer in a GUI.

REQ_2
(partially)

Offline calculation of
the makespan

The calculation will serve as an
end-to-end latency guarantee.

REQ_5

Table 5.3: First prototype specification

A new prototype will be implemented once the first prototype works correctly.
There is room for improvement changing the scheduling algorithm. A duplication
based algorithm could reduce the makespan. The algorithm would duplicate tasks
with more than one successor.

The ideal system would be an arbitrary processor network algorithm with task
duplication (see table 5.4). The Epiphany network-on-chip would be taken into
account in order to avoid communication contention due to the side-effects of inter-
task communication. Something important to notice is that this prototype would
not meet REQ_8. This is accepted because the previous prototype met REQ_8.
The programmer would implement the application as a serial application and the
toolchain would identify the optimal decomposition of the application into tasks
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and would handle their scheduling and dependencies. No graph would be needed
to draw. One possibility to be considered is that the final system would run several
algorithms and select the one with the best performance.

Item Description Fulfilled
requirements

Customized
scheduler for the
prototype board

Arbitrary processor network + task
duplication algorithm

REQ_3,
REQ_4 and
REQ_6

Adaptation for serial
applications

REQ_1

Utilization of the
target energy modes

Energy modes will sleep the cores
when not being used.

REQ_7

Implementation of a
DAG generator

The output DAG from the generator
will be the input to the scheduler.
The DAG is generated from the serial
version of the application.

REQ_2

Offline calculation of
the makespan

The calculation will serve as an
end-to-end latency guarantee.

REQ_5

Table 5.4: Ideal system specification



Part II

Practical phase
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Chapter 6

System design and architecture:

Toolchain

The system to be implemented has been thought as a toolchain. The main use case
of the system consists in giving a graph representing a parallel application as the
input and getting some files with the skeleton of the application as the output. A
node is a part of code that cannot run in parallel but sequentially on a specific core.
Figure 6.1 shows the toolchain modules and how they are connected together. It
also shows the outputs of each module, which are the inputs to the next module.

Figure 6.1: Toolchain

6.1 Graph editor

The graph editor used is yEd. It is a freeware software that runs on Windows, Linux
and Mac OS. The program is able to load and save diagrams from/to XML-based
format files.

Figure 6.2 shows an example of a graph drawn in yEd. It has 6 nodes and 7
edges. Each node contains the node id and the node weight separated by the slash
character. Each edge has the communication cost.
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Figure 6.2: yEd graph

Figure 6.3: Node and edge structures

6.2 Xgml parser module

The xgml parser initializes the DAG. It reads the xgml file generated by the graph
editor and generates two linked lists: a node list and an edge list (see Figure 6.3).

The module uses libxml2, which is a software library written in C for parsing
XML documents. It was developed for the GNOME project and is available under
the MIT License.

A node is a structure with a graph id, an id, a weight, a top level, a bottom level
and a pointer to the next node in the linked list. The graph id is a field defined by
the graph editor and that is required to identify the edges that link nodes. The id
is a number given by the user. The weight is the execution time of the task. The
top level and the bottom level are two fields used by the linear clustering algorithm.

An edge is a structure with a predecessor, a successor, a cost and a pointer to
the next edge in the linked list. The predecessor is the source node where the edge
starts from. The successor is the sink node where the edge is pointing at. The cost
is the communication time.
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6.3 Clustering algorithm module

The clustering algorithm module implements linear clustering, proposed by [58].
Many algorithms are described in [46], among them linear clustering. Its description
is presented below.

Algorithm 1 Linear clustering

Eunex: set of unexamined edges
Vunex: set of nodes v ∈ V on which edges Eunex are incident
Create initial clustering C0: allocate each node v ∈ V to a distinct cluster C ∈ C
|C| = |V|
Eunex ← E
while Eunex 6= ∅ do

Find a critical path cp of graph Gunex = (Vunex, Eunex)
Merge all nodes Vcp of cp into one cluster
Eunex ← Eunex − {eij ∈ Eunex : vi ∈ Vcp ∨ vj ∈ Vcp}

end while

In order to find the critical path of the DAG, the top level and the bottom level of
each node are calculated. To do that it is necessary to sort the nodes topologically.
The implementation uses the algorithm proposed by [67]. The complexity of the
algorithm is O(|V |+ |E|).

Algorithm 2 Topological sorting

L← Empty list that will contain the sorted elements
S← Set of all nodes with no incoming edges
while S 6= ∅ do

Remove a node v from S
Insert v into L
for all node m with an edge e from v to m do

Remove edge e from the graph
if m has no other incoming edges then

Insert m into S
end if

end for
if graph has edges then

Return error (graph has at least one cycle)
else

Return L (a topologically sorted order)
end if

end while

The output of this module is a linked list per cluster and a list with the head
nodes of the clusters. Each cluster contains a list of tasks that will be mapped to a
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Figure 6.4: Generated code

specific core.

6.4 Code generator module

The code generator module is in charged of generating the skeleton code of the
application. Once it is generated, it has to be loaded onto the Epiphany projects.

Figure 6.4 shows the generated code for the brake-by-wire application. It is
created in a folder called generated_code. Inside generated_code there are three
kinds of folders: common, core_i and host. The application shown in the figure
requires 6 cores for the execution.

The code in folder common goes to a common project for all the cores. It con-
tains the software modules that allow us to run the parallel application on Epiphany.
The core_i folder contains specific code for a core, mainly the tasks that the core
has to execute. The host folder is the generated code that the host computer has
to run to start Epiphany and fetch the results once Epiphany has finished.
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6.5 Application development

After the skeleton code has been generated, the user has to define the following
sections.

• The inputs of the parallel application.

• The outputs of the parallel application.

• The calculations section of the tasks.

• The communication edges between tasks.

The inputs and the outputs are empty structures. Inside the structures the
programmer creates the fields for the specific application.

1 typedef struct {
2
3 } input_i_t ;
4
5 typedef struct {
6
7 } output_j_t ;

Below it is presented an example of the code generated for a task. The sections
inside a task are always the same: input, output, retrieve the input, start task profiler,
calculations, end task profiler and transmit results. All sections are generated by
the code generator module except the calculations section that is specific of the
application.

1 void task_j ( void )
2 {
3 // Input
4 edge_ij_t edge_i j ;
5
6 // Output
7 edge_jk_t edge_jk ;
8
9 // Ret r i eve the input

10 while (0 != retr i eve_message ( i , j , &edge_i j ) )
11 __asm__( "IDLE ; " ) ;
12
13 s t a r t _ t a s k _ p r o f i l e r ( ) ;
14
15 // Do c a l c u l a t i o n s and s t o r e the r e s u l t s
16 // input = f ( output ) ;
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17 //
18 // User code
19
20 Log_tasks_core [ j ] = end_task_pro f i l e r ( ) ;
21
22 // Transmit the r e s u l t s
23 send_message ( s izeof ( edge_jk_t ) , j , k , &edge_jk ,

CORE_NUMBER_k) ;
24 return ;
25 }

The last step is to define the communication edges, which are also empty struc-
tures where the user creates customized fields.

1 typedef struct {
2
3 } edge_ij_t , ∗ pointer_edge_ij_t ;



Chapter 7

System design and architecture:

Epiphany application

In this chapter it will be described the software modules that allow us to run a
parallel application on Epiphany. The system is made up of six software modules:
epiphany module, file system module, interrupts module, mailbox module, host com-
munication module and profiler module. Figure 7.1 shows the stack diagram of the
system.

Figure 7.1: Software modules stack

Some software modules requires the definition of a set of data structures in the
local memory. The location of these data structures is specified in a linker definition
file. That file also tells the compiler to place the stack in the local memory instead of
the external DRAM and to place the Interrupt Vector Table (IVT) at the beginning
of the local memory. Figure 7.2 shows how the local memory of a core and the shared
memory of the board are used.

7.1 Epiphany module

This module defines a global variable called Me. Me contains relevant information
about the core that is used by other modules, see Table 7.1.
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APPLICATION

Figure 7.2: Board memory

7.2 Interrupts module

The interrupts module is where the ISRs of the system are declared and defined.
An ISR is a callback function which is triggered by an interrupt. An interrupt is a
signal to the processor indicating the arrival of a new event. There are two kinds of
interrupts depending on the nature of the event: hardware interrupts and software
interrupts.

Hardware interrupt: is generated by either an internal peripheral or an ex-
ternal peripheral to the processor. The hardware interrupts in epiphany are: syn-
chronization/reset, timer 0 expired, timer 1 expired, Direct Memory Access (DMA)
channel 0 end of transfer and DMA channel 1 end of transfer.

Software interrupt: is generated by an exceptional condition or a special
instruction. The software interrupts in epiphany are: software exception, memory
protection fault and software interrupt.

Each core has an interrupt controller that is in charged of executing the appro-
priate ISR depending on the interrupt generated. Figure 7.3, taken from [68], shows
the operation workflow. ILAT is a system register that records all interrupt events.
IMASK is a system register for blocking interrupts. IPEND is a system register
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core_id A unique id for calling some library functions.
core_number A unique number to identify the core. The

value range is from 0 to 15.
row The row which the core is located in. The

value range is from 0 to 3.
col The column which the core is located in. The

value range is from 0 to 3.
pending_data_
transfer_array

Synchronization array for the mailbox
module. A core that wants to send or retrieve
a message puts its element to 0xFF.

core_with_token Synchronization variable for the mailbox
module. It stores the core number of the core
with grant access to the mailbox.

pointer_core_mailbox Pointer to the mailbox.
task_sec_counter It counts the number of seconds elapsed

during the execution of a task.
core_sec_counter It counts the number of seconds elapsed

during the execution in a core.
target_core_id Auxiliary variable for the mailbox module.
target_pending_
data_transfer_array

Auxiliary variable for the mailbox module.

Table 7.1: Me structure’s fields

that keeps track of the ISRs currently being processed. IVT is the interrupt vector
table. It contains a set of branch instructions that point to the appropriate ISRs.
IRET stores the program counter of the next instruction to be executed when an
interrupt starts being serviced. PC is the program counter and has the address
of the instruction to be executed. GIE and GID are global interrupts enable and
disable.

The interrupts module makes use of the timer 0 expired, the timer 1 expired,
the DMA channel 0 end of transfer and the software interrupts.

The timer 0 and timer 1 expired interrupts are used to increment a counter to
count the number of seconds elapsed during a task execution or a core execution.
These counters are used by the profiler module.

The DMA channel 0 end of transfer interrupt is used to synchronize with other
cores and unlock the mailbox, which is a shared resource.

The software interrupt is used to synchronize the cores when accessing the mail-
box and give the token to only one of them at a time.
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Figure 7.3: ISR operation

7.3 File system module

The file system module handles the management of the second half of the second
memory bank. The size of this chunk of memory is 4kB and it is divided in 32 blocks
of 128B size. The file system module is managed by two arrays: the Fat_table and
the Root_directory (see Figure 7.4).

Fat_table: is a 32 length array. An entry in the array is an unsigned char.
Each entry corresponds to a block in the memory. The unsigned char can either be
0x00 or 0xFF. 0xFF means that the block has been allocated. 0x00 means that the
block is free.

Root_directory: is a 32 length array. An entry in the array is a structure that
contains the following information: entry_used, sender, recipient, start_block and
message_size. Each entry corresponds to a message sent to the core. Entry_used
specifies whether the entry is in use. A message is stored in memory continuously
from the block start_block and the required number of blocks is calculated with the
message_size.

The file system module provides two functions to control the Fat_table: allo-
cate_memory_blocks and free_memory_blocks. The first method writes 0xFF in
the first set of contiguous blocks which the message fits in. The second method
writes 0x00 in the blocks that were previously used by a message.

The file system module also provides two functions to control the Root_directory:
create_entry and delete_entry. The first method creates a new entry in the first
entry that is not in use. The second method deletes an entry in the Root_directory
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Figure 7.4: Fat_table and the Root_directory

by putting the field entry_used into not in use.

7.4 Mailbox module

The mailbox module provides a system service to send and receive inter-core mes-
sages. This communication service has a high level of abstraction. Beneath it uses
the interrupts module and the file system module. It implements two functions:
send_message and retrieve_message.

The mailbox system stores the messages in the memory space managed by the
file system module. It is a 4kB memory area located at address 0x5000. All the cores
have access to the mailbox of a specific core. This fact makes it a shared resource.
Therefore special precautions have to be taken. A synchronization mechanism needs
to be implemented. The synchronization mechanism designed is made up of two
variables in each core: pending_data_transfer_array and core_with_token.

pending_data_transfer_array: is an sixteen-size array. The first element
of the array corresponds to the first core, the second element to the second core and
so on. When a core wants to send or retrieve a message from another core, it has
to write 0xFF into its element. Once the operation has been completed the core
writes 0x00 back into the element.

core_with_token: contains the number of the core with grant access to send
or retrieve messages. The value of this variable is re-evaluated every time there is
a software interrupt.

The function send_message is used to transfer a message into a specific core.
Figure 7.5 shows a description of the send_message function.
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Figure 7.5: Send_message function

Figure 7.6: Retrieve_message function

The function retrieve_message is used to retrieve a message from the mailbox.
Figure 7.6 shows a description of the retrieve_message function.

7.5 Host communication module

The host communication module is the place where the programmer defines the
inputs and the outputs of the parallel application.

The module defines the variable Mailbox_host_epiphany in external DRAM
(address 0x81000000), which contains the inputs, the outputs, the input flag and
the output flags.

The flags are variables to synchronize the cores with the host. The cores do not
start the execution until the input flag is set to 1. The host do not fetch the results
until all the output flags are set to 1.
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Figure 7.7: Profiler functions

7.6 Profiler module

The profiler module measures the execution time of the cores and the execution
time of the tasks (see Figure 7.7). The measurements are stored in a log.

A core has two available timers: timer 0 and timer 1. A timer has a 32-bit reg-
ister to count and the frequency of the clock is 600Mhz. Both timers are configured
to generate an interrupt every second. The interrupts increment a counter.

Timer 1 is used to profile a core. Start_core_profiler is a function that resets
the counter and starts the timer. It is called just after the input flag is set to 1.
After the core has executed all task assigned to it, the timer value is recorded in
the log with the function record_core_time. The value of the timer is given in clock
ticks. Therefore it has to be scaled to nanosecond when storing it into the log.

Timer 0 is used to profile the tasks in a core. Start_task_profiler function resets
the counter and starts the timer. Record_task_time records its value.

Two arrays are allocated in external DRAM. Log_cores_ram (address 0x81001000)
stores the cores’ execution time. 8 bytes are needed for each of the 16 cores.
Log_tasks_ram (address 0x81001000) stores the tasks’ execution times. Writing
into the external RAM adds extra traffic into the e-mesh, therefore the tasks’ execu-
tion times are first stored into Log_tasks_core (address 0x6160) located in internal
RAM and after moved to Log_cores_ram.





Chapter 8

Implementation

This chapter provides the decisions taken during the implementation phase that are
not covered in Chapters 6 or 7.

8.1 Power management

The Epiphany chip provides the IDLE instruction to put a core into a low-power or
standby state. After a reset a core is in idle. An external interrupt event activates
the core. The core keeps active until an IDLE instruction. The core returns to the
normal execution after another interrupt event.

Every core has a 32-bit STATUS register that contains information regarding
the execution status. Bit 0 is a flag called ACTIVE. 0 indicates that the core is idle
and 1 indicates that the core is active. When the core is in the standby state, the
clocks are disabled and the power consumption is minimized.

This mode is used when retrieving messages from the mailbox. If the message
has not arrived by the time it has been tried to be retrieved, the core is deactivated.
The actual implementation is shown below.

1 // Ret r i eve the input
2 while (0 != retr i eve_message ( i , j , &edge_i j ) )
3 __asm__( "IDLE ; " ) ;

The core is woken up when another core sends a message to him. First the
sender raises a remote interrupt to get the token. The recipient goes to the idle
mode again since the transfer is not completed yet. Once the transfer is completed
the sender raise another remote interrupt to the recipient. This time the message
is in the mailbox and the core can resume the execution.

1 // Send i n t e r r u p t to r e c i p i e n t
2 e_irq_remote_raise ( coreID , (E_SW_INT + SOFF) ) ;
3
4 // Wait u n t i l the token i s go t
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5 while (Me. core_number != ∗ target_core_with_token )
6 __asm__( "IDLE ; " ) ;
7
8 // Copy the data to the d e s t i n a t i o n
9

10 // Send i n t e r r u p t to r e c i p i e n t a f t e r the t r a n s f e r
11 e_irq_remote_raise ( coreID , (E_SW_INT + SOFF) )

8.2 Inter-core communication

Each core is equipped with a DMA engine. Its function is to offload a core from
data movement. It is capable of a double word transaction on every clock cycle at
a 600Mhz frequency, which means a sustained data transfer rate of 8 GB/sec.

A high level of abstraction schematic for the epiphany chip is given in Figure
8.1, taken from [68].

Figure 8.1: Epiphany schematic

The engine has two independent channels, channel 0 and channel 1. Channel 0
is used for sending and retrieving messages, while channel 1 stays unused. It has
been configured as a master and it generates an event interrupt when the transfer
finishes. A data movement does not start until a previous data movement completes
and the channel is free.
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The configuration of the DMA to send or retrieve a message is shown below.

1 // Copy the data
2 e_tcb_t usr_tcb ;
3 usr_tcb . c o n f i g = E_DMA_ENABLE | E_DMA_MASTER | E_DMA_IRQEN

| E_DMA_BYTE;
4 usr_tcb . i nne r_s t r i d e = 0x00010001 ;
5 usr_tcb . count = 0x10000 | s i z e ;
6 usr_tcb . oute r_s t r ide = 0x00000000 ;
7 usr_tcb . src_addr = source ;
8 usr_tcb . dst_addr = d e s t i n a t i o n ;
9 e_dma_start (E_DMA_0, &usr_tcb ) ;





Chapter 9

Results

This chapter will introduce the tests performed to the system and the implemented
brake-by-wire application to help evaluate the performance. Then the collected data
will be presented and analyzed.

9.1 Toolchain testing

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 9.1: Toolchain testing set
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The toolchain testing procedure has consisted in introducing representative DAGs
into the toolchain. The results have been compared with the expected result in
order to verify the system (see Figure 9.1).

The first example is a 6-node DAG. The toolchain divides it into three clusters.
It also calculates the critical path length and the makespan, 17 and 16 respectively.
There are some interesting aspects. For instance, node 1 forks into four branches
whereas two branches join into node 5. It can also be highlighted that there is more
than one exit node, three in this case.

Example 2 is rather similar to example 1 but with a higher degree of complexity.
The critical path length and the makespan are 25 and 21. Example 3 is more special
because there is more than one entry node, two in this case. The critical path length
and the makespan are 29 and 25.

Example 4 is the one used for the brake-by-wire application. The DAG contains
three entry nodes and five exit nodes (one for the traction motor and four the
brake motors at the wheels). The critical path length and the makespan are 17 and
17. In this case the makespan is not shorter than the critical path length. Linear
clustering does not obtain an optimal solution. There exist other solutions that
outperform the one obtained by the toolchain. The solution presented in Figure 9.2
has a makespan of 16, one time unit less.

Figure 9.2: Alternative DAG with shorter makespan

The toolchain has been evaluated with 12 DAGs in total. Four representative
examples have been shown in this section. In each example different aspects were
evaluated. The covered aspects are join nodes, fork nodes, entry nodes, exit nodes,
different tasks weights and different communication costs. A summary of the eval-
uated aspects is presented in Table 9.1. The last column of the table corresponds
to the other 8 DAGs that are not presented in this report.
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Ex. 1 Ex. 2 Ex. 3 Ex. 4 Rest of DAGs

Join nodes ✓ ✓ ✓ ✓ ✓

Fork nodes ✓ ✓ ✓ ✓ ✓

More than one
entry node

✗ ✗ ✓ ✓ ✓

More than one
exit node

✓ ✓ ✗ ✓ ✓

Different weights ✗ ✓ ✓ ✗ ✓

Different costs ✗ ✗ ✗ ✗ ✓

Table 9.1: Summary of the evaluated aspects with each example DAG

9.2 Brake by wire application

Figure 9.3: Brake-by-wire physical view

A brake-by-wire application has been implemented for the final demonstration
platform. The application runs on the Epiphany E16 development board. The
system’s physical view is presented in Figure 9.3. It is made up of the following
physical components.

• A brake pedal sensor and a throttle pedal sensor.

• A main motor and its controller.

• A brake motor and its controller.

• Four Arduino boards.
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Figure 9.4: Brake-by-wire epiphany application

• Four Raspberry Pi.

• A desktop computer.

• A Epiphany E16 development board.

The inputs of the parallel application are the required brake torque, the required
throttle torque and the wheel speeds in rpm. The inputs are obtained from the three
sensors: the two pedal sensors and the hall sensors from the main motor. A pedal
sensor consist of a potentiometer. The voltage value is read by a Arduino board
and processed to get a percentage value. The motor controller has been configured
to have an output whose voltage is proportional to the main motor speed. The
voltage value is read by another Arduino board and processed to get a percentage
value (100% represents 3400 rpm). The speed of the other three wheels is simulated
with a random function.

Figure 9.4 shows a graph of the brake-by-wire application. The code for the
Epiphany E16 development board is generated automatically by the toolchain. The
calculation’s part of each task has to be fill in by the programmer. The code used in
the test is attached in Appendix C. A short description of the tasks is given below.

• Task 1: transforms the throttle percentage value to the real value.

• Task 2: calculates the electrical signal for the main motor.

• Task 3: transforms the brake percentage value to the real value.

• Task 4: calculates the speed of the car (average speed of the four wheels).

• Task 5, 6, 7 and 8: calculates the slip value of one wheel.
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Figure 9.5: Brake-by-wire host application

• Task 9, 10, 11 and 12: calculates the electrical signal for the brake motor
of one wheel.

Both the execution time of the tasks and the communication time between them
are unknown. Therefore it is assumed that all the tasks have the same execution
time, 5 time units. The second assumption is that the communication time is always
the same, 1 time unit.

On the host computer there is other deployed program (see Figure 9.5). This
program has three monitor variables protected by pthread mutexes: Input_data,
Output_data and Log_data. There are also three threads: epiphany_host_thread,
mosquitto_client_thread and linx_peer_thread. The mosquitto_client_thread is
in charged of updating the Input_data with the information published by the
Mosquitto server, which runs on the main Raspberry Pi node. The epiphany_host
_thread is in charged of starting the execution of epiphany and updating the Out-
put_data and Log_data when the execution has completed. The linx_peer_thread
sends the Output_data and Log_data to the trace server, which runs on the main
Raspberry Pi node.
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9.3 Collected data

9.3.1 Power consumption’s data

The Epiphany chip is equipped with a current sense resistor. The value of the
resistor is 0.02Ω. The sense gain of the system is 50. Therefore, the voltage measured
on the measurement point Vcore(A) is equal to the core current. The voltage supply
for Epiphany is Vcore, 1089mV. The power consumption is given by the following
expression.

PEpiphany = Vcore · Icore

= Vcore · Vcore(A) = 1.089 · Vcore(A)

Figure 9.6 shows the power consumption in Epiphany as a function of the idle
cores. The power consumption when all the cores are in idle is 382.239mW. The
power saving when idling a core is between 21.79mW and 22.869mW. It means a
5.98% of the static consumption per core and about a 98% with all the cores. The
program used to test Epiphany is attached in Appendix A.

Figure 9.6: Epiphany power consumption

9.3.2 Timers’ data

The profiler module has to kind of functions: start_core_profiler/start_task_profiler
and record_core_time/record_task_time. A core is using timer 1 to profile and a
task is using timer 0 to profile.

Some tests have been performed to measure the accuracy of the profiling system.
In the first test the time when no operation is performed is measured. time_1 is
101ns.

1 s t a r t _ c o r e _ p r o f i l e r ( ) ;
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2 log_t time_1 = record_core_time ( ) ;

The next test starts the other timer. time_1 is 245ns. Therefore the time
necessary for executing start_task_profiler is 144ns (101ns subtracted).

1 s t a r t _ c o r e _ p r o f i l e r ( ) ;
2 s t a r t _ t a s k _ p r o f i l e r ( ) ;
3 log_t time_1 = record_core_time ( ) ;

The next test starts the task timer and record a time. time_1 is 105ns and
time_2 is 6008ns (if task and core functions are inverted the result is 100ns and
5986ns). Therefore the time to start a timer and record a value is 5907ns (101ns sub-
tracted). Then 144ns are subtracted for start_task_profiler, 5763ns. The counter
counted 105ns. It means that the timer did not start until 5658ns (105ns sub-
tracted).

1 s t a r t _ c o r e _ p r o f i l e r ( ) ;
2 s t a r t _ t a s k _ p r o f i l e r ( ) ;
3 log_t time_1 = record_task_time ( ) ;
4 log_t time_2 = record_core_time ( ) ;

The last test consists of recording the task time twice. time_1 is 105ns, time_2
is 5870ns and time_3 is 11658ns. Therefore record_task_time takes 5788ns. This
seems to be correct since 5788ns is very close to 5658ns plus 105ns (5763ns).

1 s t a r t _ c o r e _ p r o f i l e r ( ) ;
2 s t a r t _ t a s k _ p r o f i l e r ( ) ;
3 log_t time_1 = record_task_time ( ) ;
4 log_t time_2 = record_task_time ( ) ;
5 log_t time_3 = record_core_time ( ) ;

The times can be summarized as follows:

• start_task_profiler: 144ns.

• timer start time after start_task_profiler: 5658ns.

• record_task_time: 5788ns.

9.3.3 Single core application’s data

In order to evaluate the performance of the parallel application it is necessary to
collect data of an equivalent serial application (see Figure 9.7). The code is attached
in Appendix B.
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Figure 9.7: Brake-by-wire application (single core)

Both core profiler and task profiler are used at the same time. The task profiler
only measures the time for the calculations whereas the core profiler measures the
time to fetch the input, send the output and put the output_flag to 1 as well.
The measurement of the core profiler is affected by the task profiler measurement.
Therefore another experiment is performed without the task profiler. The result is
around 6000ns less, see 9.2.

Task profiler Core profiler Core prof. alone

Mean time [ns] 13368 22627 16623

Table 9.2: Single core application’s task and core profiler

Other experiments are performed in order to identify where the other 3000ns
are spent. The results are shown in Table 9.3.

Mean time [ns]

Before fetching input data 123
After fetching input data 3128
Before sending output data 16529
After sending output data 16602
After setting output flag to 1 16623

Table 9.3: Single core application’s timing

The times can be summarized as follows:

• Calculations: 13368ns.
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• Application: 16623ns.

• Fetching input data: 3105ns.

• Sending output data: 73ns.

• Setting output flag to 1: 21ns.

The energy consumption is:

Energy =

(

Poweridle

16
+ Power1core

)

· time

=

(

382mW

16
+ 22mW

)

· 16623ns = 0.762µJ

9.3.4 Parallel application’s data

The execution times of the cores are shown in Table 9.4.

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5

Mean time [ns] 35126 45399 24182 55508 52824 60908

Table 9.4: Parallel application’s core profiler

The total execution time of the application is 60908ns. The energy consumption
of the application is calculated as follows.

Energy =
∑

(

Poweridle

16
+ Power1core

)

· timecorei

=
∑

(

382mW

16
+ 22mW

)

· timecorei

= 12.567µJ

When the idle capability is included in the code, the energy consumption is
decreased. The cores get into the idle mode because they are blocked waiting for a
message. There is an option in the timers to count the number of idle cycles. The
results are shown in Table 9.5.

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5

Idle time [ns] 7589 2906 6141 12233 15403 26042

Table 9.5: Number of idle cycles
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The idle time needs to be included in the calculations of the energy consumption.
The following equation is used.

Energy =
∑ Poweridle

16
· timecorei

+ Power1core · (timecorei
− idle_timecorei

)

=
∑ 382mW

16
· timecorei

+ 22mW · (timecorei
− idle_timecorei

)

= 11.020µJ

Figure 9.8: Brake-by-wire application timing

Figure 9.8 shows the timing of the parallel application measured with the timers.
The colored edges represent inter-core communication and make use of the mailbox
system. At the departing point there are two rows. The first row contains the
system time in microseconds before sending the message. The second row contains
the system time after sending the message. At the arrival point there are another
two rows. The first row contains the system time at which the core first tries to
retrieve the message. The second row contains the system time after retrieving the
message. Sometimes the measured value is not constant, then the minimum and
maximum measured value are put instead.

Table 9.6 shows the time elapsed in each task.
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Mean time [ns]

Task 1 350
Task 2 190
Task 3 373
Task 4 2853
Task 5 2301
Task 6 2301
Task 7 2301
Task 8 2308
Task 9 990
Task 10 988
Task 11 988
Task 12 988

Table 9.6: Parallel application’s task profiler

9.3.5 Parallel application with task duplication’s data

Another parallel application has been implemented (see Figure 9.9). The code is
attached in Appendix D. The functionality and the calculations are the same. It
is based on a different approach, task duplication. The goal is to avoid inter-core
communication. A short description of the tasks is given below.

• Task 1: transforms the brake percentage value to the real value.

• Task 2: transforms the throttle percentage value to the real value and calcu-
lates the electrical signal for the main motor (if the brake is more than 10%
activated the throttle is deactivated).

• Task 3: calculates the speed of the car (average speed of the four wheels).

• Task 4: calculates the slip value of one wheel and the electrical signal for the
brake motor of the same wheel.

• Task 5: calculates the slip value of one wheel and the electrical signal for the
brake motor of the same wheel.

• Task 6: calculates the slip value of one wheel and the electrical signal for the
brake motor of the same wheel.

• Task 7: calculates the slip value of one wheel and the electrical signal for the
brake motor of the same wheel.

The execution times of the cores are shown in Table 9.7.
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Figure 9.9: Brake-by-wire application with task duplication

Core 0 Core 1 Core 2 Core 3 Core 4

Mean time [ns] 2813 8985 9006 9017 9019

Table 9.7: Parallel application with task duplication’s core profiler

The total execution time of the application is 9019ns. In this case tasks do not
get blocked and the idle capability is not used. The energy consumption of the
application is calculated as follows.

Energy =
∑

(

Poweridle

16
+ Power1core

)

· timecorei

=
∑

(

382mW

16
+ 22mW

)

· timecorei

= 1.781µJ

Table 9.8 shows the time elapsed in each task.

Mean time [ns]

Task 1 355
Task 2 430
Task 3 2466
Task 4 3170
Task 5 3170
Task 6 3170
Task 7 3170

Table 9.8: Parallel application with task duplication’s task profiler
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9.4 Data analysis

9.4.1 Timers analysis

The data collected from the timers is very relevant for the analysis of the other
parts’ data, since they constitute the profiling system. The performance is worse
than expected because it takes around 6µs to read a timer. The effects of these
results were very severe. The profiler module had to be removed in order not to
affect the performance of the brake-by-wire application. It was not possible to
compare the serial application with the parallel application otherwise.

In order not to perturb the measurements a timer was only used once in the
application. This made the measurement process much more tedious.

9.4.2 Single core application analysis

This experiment highlighted that reading from shared DRAM is more time consum-
ing than writing in shared DRAM. It took about 3µs to read and about 0.1µs to
write. The difference is about one order of magnitude.

9.4.3 Parallel application analysis

The parallel application has an execution time that is 266% greater than the one
from the serial application and is 1346% more energy consuming using the idle
mode. The energy saving achieved by using the idle instruction is about 12.3%.
The performance is far worse than the one from the serial application.

The explanation is that the communication time is greater than the computation
time. The brake-by-wire application is very simple and the computation time of the
tasks is very small. Therefore the overhead of the communication system cannot
be neglected. Node 3 in Figure 9.8 needs around 10µs to transmit a message to
other cores. It has to transmit the same message to four different cores, thus the
communication delay is around 40µs. Node 4 is in a similar situation. It has to
transmit a message to three different cores. The transmission cannot be done in
parallel but sequentially. The order in which the messages are sent affects greatly
to the performance of the application, because the delays are accumulated.

Other point to be remarked is that the mailbox is a complex and non-time-
deterministic mechanism. For instance, core 1 is receiving the message e39 from
core 3 while it is sending the message e46 to core 0. Receiving the message requires
to raise an interrupt in core 1 from core 3. That it is why there is a variability in
the times.

The mailbox is a shared resource that can lock the communication. This fact
adds non deterministic extra delays. For example, core 3 has to wait while sending
message e311 to core 4. This happens because core 1 is already sending message e47

to core 4.



82 CHAPTER 9. RESULTS

9.4.4 Parallel application with task duplication analysis

Task duplication is a good alternative for applications with low computation com-
pared to the communication. Instead of executing a task and transmitting the
results to the successors, the task is replicated in each core and the results are got
locally. The mailbox is not used. In this case the application needs 45.7% less time
but 133.7% more energy.

9.5 Requirements evaluation

An evaluation of the requirements list given in Section 1.3 and analyzed in Section
5.1 is performed below:

REQ_1 The scheduler shall cope with both serial and parallel applica-
tions.
This requirement has been fulfilled. A serial application can be modeled as a single
node parallel application.

REQ_2 The scheduler shall do automatic parallelization of the applica-
tion. Parallelization shall be transparent to the programmer.
This requirement has been partially fulfilled. As mentioned in Section 5.1, auto-
matic parallelization takes care of the application decomposition and the handling
of dependencies. In the implemented prototype, the programmer has to draw the
DAG with the execution and communication times of the tasks as a first step. In
this sense, the first part of the automation process has not been accomplished. How-
ever, the toolchain generates the code for the target which automatically handles
the inter-task communication. The programmer only has to fill in the content of
the tasks and the communication interfaces between them.

The profiler module improves the parallelization of the application by feeding
back the actual execution and communication times of the tasks. This means that
the parallelization may change once the real execution and communication times
are used in a second iteration of the toolchain.

REQ_3 The scheduler shall parallelize tasks as much as possible.
REQ_4 The scheduler shall avoid communication as much as possible.
REQ_6 The scheduler shall generate a schedule with the minimum ex-
ecution time.
This requirement has been partially fulfilled. The toolchain is limited by the schedul-
ing algorithm, linear clustering. Better results could be achieved with other algo-
rithms. The toolchain could use several algorithms and choose the one that gives
the shortest makespan.

REQ_5 The scheduler shall provide to an application an end-to-end guar-
antee.
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This requirement has been fulfilled. The toolchain provides the theoretical makespan
of the application. Then there is a profiler module to get the real computation weight
of the nodes and the communication costs to feed back the toolchain. However, it
has been proved that the profiler module can alter the performance of the applica-
tion. It is especially noticeable if the computation times of the tasks are very small.

REQ_7 The scheduler shall be energy efficient.
This requirement has been partially fulfilled. The use of the idle mode saves energy
compared to the case of not using the idle mode. However, energy savings have not
been achieved by parallelizing. Parallelization can only reduce the execution time
of the brake-by-wire application.

REQ_8 The scheduler shall be target independent. The algorithm shall
be easily portable to another platform.
This requirement has been partially fulfilled. The graph editor, the xgml parser
module and the scheduler module with the linear clustering algorithm are target
independent. However, the code generator module is dependent on the developing
board. This module should be implemented again for another target. The input
interface of that module would be the same: the nodes list, the edges list and the
clusters lists.

9.6 Summary

The toolchain system has shown to be a useful tool for developing parallel applica-
tions. Linear clustering was not the best scheduling algorithm for the brake-by-wire
application because the makespan was 17 and an alternative solution was presented
in this chapter that had a lower makespan. Apart from that, the programmer can
generate error-free parallel code very quickly.

Regarding the Epiphany code, the mailbox system is quite heavy for the brake-
by-wire application because the granularity of the tasks is very fine. The execution
time of the serial application is around 16µs and transmitting a message costs
around 10µs. Therefore no more than two messages can be sent in a non-parallel way
to get a smaller execution time. Besides, messages are not transmitted in parallel
from the same node, but sequentially. The conclusion is that this communication
system is suitable for coarse granularity tasks, where the communication overhead
does not affect so much.

In applications with fine granularity tasks is advisable to go for other approaches
such as task duplication, where inter-core communication is avoided by doing extra
computations. A comparison of the parallel applications with the serial application
is shown in the Table 9.9.
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Execution time Energy consumption

Parallel app +266% +1346%
Parallel app with
task duplication

-45.7% +133.7%

Table 9.9: Performance comparison between brake-by-wire applications

An striking result is that even though more calculations are being done with
the task duplication approach, the energy consumption is far less. This is due to
the fact that the execution time is smaller. In the first approach the tasks spend a
lot of time in the idle mode waiting for a message, which consumes a lot of energy.
There is also extra overhead from the communication system that make the whole
system less energy efficient.
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Conclusions and future work

10.1 Conclusions

The goal of this project was to research scheduling algorithms for multi-core embed-
ded systems and to make an implementation of a scheduler for a parallel application.
In the analytical phase several algorithms have been studied and compared. The
linear clustering algorithm was chosen to be implemented.

In the practical phase a toolchain for programming parallel applications was
implemented. The target platform was the Epiphany E16 development board. Dif-
ferent software modules for that target had to be implemented: epiphany module,
file system module, interrupts module, mailbox module, host communication module
and profiler module.

Several experiments were carried out in order to help evaluate the performance
of the system. Parallel computing should only be used when there is enough com-
putation to be parallelized. If there is little parallelization to be done, the mailbox
system is not worthy to use. However, the execution can still be sped up by using
algorithms based on task duplication. A mailbox system is worthy to use in appli-
cations with a lot of parallelization because the communication overhead can then
be neglected.

10.2 Limitations

At the current stage there are some limitations in the system:

• An application with more than 16 clusters cannot be handled since only one
cluster is assigned to a core.

• No more than 32 blocks or 32 messages can be stored in the mailbox.

10.3 Future work

Some lines of future research are:

85
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• Evaluation of the toolchain on other applications with different characteristics,
such as execution times, communication times, CCR or DAG topology.

• Design of a more scalable system (limitation to 16 clusters, limitation to 32
messages simultaneously in the mailbox).

• Implementation of other scheduling algorithms in the toolchain. Selection of
the algorithm with the shortest makespan for each case.

• Automation of the generation of DAGs by extracting parallelism from the
source code of serial applications. This could be done by profiling the appli-
cation at run-time (hotspots in the code, accesses to the memory) and using
machine learning techniques.

• Implementation of an automatic feedback mechanism with the profiled data.
It would get hold of the real execution and communication times of the ap-
plication, assuming constant execution times. The original DAG would be
updated with these values increasing its fidelity. These feedback mechanism
would also validate the parameters in each execution.

• Dealing with varying execution and communication times in the system.

• Implementation of a multicast service in order not to send the same message
several times.

• Dynamic loading of tasks and evaluation of its performance.



Appendix A

Epiphany power consumption test

application

In this appendix the program to measure the power consumption of the Epiphany
chip as a function of the number of idle cores is attached. The program has been run
17 times, changing the number of cores in idle. The cores that are not in idle state
perform operations in the Floating-Point Unit (FPU). The timers are also started
in order to consume more.

Power consumption test

1 int mc_core_common_go ( )
2 {
3 int s t a t u s = 0 ;
4
5 int core Id = e_get_coreid ( ) ;
6
7 i f ( core_num ( core Id )>=0)
8 {
9 asm volat i le ( " i d l e " ) ;

10 } else {
11 double i , k , l , m , n ;
12
13 l =3.14;
14 m = 3 .14567 ;
15 n = 3 . 0 1 4 ;
16 k = 0 ;
17 i = 1 . 3 4 ;
18
19 while (1 )
20 {
21 m = ( i ∗ 3 . 14 ) / 0 .57 + 3 2 . 5 4 5 ;
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22 k = i / 1 .746 − 3 . 2 3 ;
23 l = (m ∗ 3 . 14 ) / 0 .57 + 3 2 . 5 4 5 ;
24 i = m / 1.746 − 3 . 2 3 ;
25 n = ( i ∗ 3 . 14 ) / 0 .57 + 3 2 . 5 4 5 ;
26 i = i ∗ i / 1 .746 − 3 . 2 3 ;
27 k = ( i ∗ 3 . 14 ) / 0 .57 + 3 2 . 5 4 5 ;
28 i = i / 1 .746 − 3 . 2 3 ;
29 m = (n ∗ 3 . 14 ) / 0 .57 + 32.545 ∗ l ;
30 l = l ∗ l / 1 .746 − 3 . 2 3 ;
31 i = ( i ∗ m ∗ 3 . 14 ) / 0 .57 + 3 2 . 5 4 5 ;
32 k = m / 1.746 − 3 . 2 3 ;
33 l = ( k ∗ 3 . 14 ) / 0 .57 + 3 2 . 5 4 5 ;
34 m = k / 1.746 − 3 . 2 3 ;
35
36 e_ctimer_set (E_CTIMER_0, E_CTIMER_CLK, 100000000) ;
37 e_ctimer_set (E_CTIMER_1, E_CTIMER_CLK, 100000000) ;
38 }
39 }
40
41 return s t a t u s ;
42 }
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Brake-by-wire application: single core

In this appendix a serial version of the brake-by-wire application is attached.

Single core application

1 int driver_required_brake_torque = (MAX_BRAKE_TORQUE ∗

input_1 . brake_pedal_percentage ) / 100 ;
2 int dr ive r_requ i red_throt t l e_torque =

(MAX_THROTTLE_TORQUE ∗

input_1 . thrott l e_peda l_percentage ) / 100 ;
3
4 int wheel_torque = −1;
5 i f (MAX_BRAKE_TORQUE/10 > driver_required_brake_torque )
6 {
7 wheel_torque = dr iver_requ i red_throt t l e_torque / 4 ;
8 } else {
9 wheel_torque = 0 ;

10 }
11 output_1 . e l_s ignal_tract ion_motor = ( wheel_torque ∗

245) /750 + 10 ;
12
13 int wheel_1_speed_rpm = (MAX_RPM ∗

input_1 . wheel_1_speed_rpm_percentage ) / 100 ;
14 int wheel_2_speed_rpm = (MAX_RPM ∗

input_1 . wheel_2_speed_rpm_percentage ) / 100 ;
15 int wheel_3_speed_rpm = (MAX_RPM ∗

input_1 . wheel_3_speed_rpm_percentage ) / 100 ;
16 int wheel_4_speed_rpm = (MAX_RPM ∗

input_1 . wheel_4_speed_rpm_percentage ) / 100 ;
17
18 double vehicle_speed_mps = ( wheel_1_speed_rpm +

wheel_2_speed_rpm + wheel_3_speed_rpm +
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wheel_4_speed_rpm )
19 ∗ WHEEL_RADIOUS ∗ 2 ∗ 3 .14 / 1000 / 60 / 4 ;
20
21 double wheel_1_slip = ( vehicle_speed_mps −

wheel_1_speed_rpm ∗ WHEEL_RADIOUS ∗ 2 ∗ 3 .14 / 60 /
1000) / vehicle_speed_mps ;

22 i f (0 > wheel_1_slip )
23 wheel_1_slip = 0 ;
24 double wheel_2_slip = ( vehicle_speed_mps −

wheel_2_speed_rpm ∗ WHEEL_RADIOUS ∗ 2 ∗ 3 .14 / 60 /
1000) / vehicle_speed_mps ;

25 i f (0 > wheel_2_slip )
26 wheel_2_slip = 0 ;
27 double wheel_3_slip = ( vehicle_speed_mps −

wheel_3_speed_rpm ∗ WHEEL_RADIOUS ∗ 2 ∗ 3 .14 / 60 /
1000) / vehicle_speed_mps ;

28 i f (0 > wheel_3_slip )
29 wheel_3_slip = 0 ;
30 double wheel_4_slip = ( vehicle_speed_mps −

wheel_4_speed_rpm ∗ WHEEL_RADIOUS ∗ 2 ∗ 3 .14 / 60 /
1000) / vehicle_speed_mps ;

31 i f (0 > wheel_4_slip )
32 wheel_4_slip = 0 ;
33
34 int abs_brake_torque_1 , abs_brake_torque_2 ,

abs_brake_torque_3 , abs_brake_torque_4 = −1;
35
36 i f ( (10 <= vehicle_speed_mps ∗3600/1000) && ( 0 . 2 <

wheel_1_slip ) )
37 {
38 abs_brake_torque_1 = 0 ;
39 } else {
40 abs_brake_torque_1 = driver_required_brake_torque / 4 ;
41 }
42 output_1 . el_signal_brake_motor_1 = ( abs_brake_torque_1 ∗

245) /750 + 10 ;
43 i f ( (10 <= vehicle_speed_mps ∗3600/1000) && ( 0 . 2 <

wheel_2_slip ) )
44 {
45 abs_brake_torque_2 = 0 ;
46 } else {
47 abs_brake_torque_2 = driver_required_brake_torque / 4 ;
48 }
49 output_1 . el_signal_brake_motor_2 = ( abs_brake_torque_2 ∗



245) /750 + 10 ;
50 i f ( (10 <= vehicle_speed_mps ∗3600/1000) && ( 0 . 2 <

wheel_3_slip ) )
51 {
52 abs_brake_torque_3 = 0 ;
53 } else {
54 abs_brake_torque_3 = driver_required_brake_torque / 4 ;
55 }
56 output_1 . el_signal_brake_motor_3 = ( abs_brake_torque_3 ∗

245) /750 + 10 ;
57 i f ( (10 <= vehicle_speed_mps ∗3600/1000) && ( 0 . 2 <

wheel_4_slip ) )
58 {
59 abs_brake_torque_4 = 0 ;
60 } else {
61 abs_brake_torque_4 = driver_required_brake_torque / 4 ;
62 }
63 output_1 . el_signal_brake_motor_4 = ( abs_brake_torque_4 ∗

245) /750 + 10 ;





Appendix C

Brake-by-wire application: tasks

In this appendix the calculations’ sections of the tasks are listed. Task 6, 7 and 8
are omitted due to their similarity to task 5. Task 10, 11 and 12 are omitted due
to their similarity to task 9.

Task 1

1 edge_12 . dr iver_requ i red_throt t l e_torque =
(MAX_THROTTLE_TORQUE ∗

input_1 . thrott l e_peda l_percentage ) / 100 ;

Task 2

1 int wheel_torque = −1;
2 i f (MAX_BRAKE_TORQUE/10 >

edge_32 . dr iver_required_brake_torque )
3 {
4 wheel_torque = edge_12 . dr ive r_requ i red_throt t l e_torque /

4 ;
5 } else {
6 wheel_torque = 0 ;
7 }
8 output_2 . e l_s ignal_tract ion_motor = ( wheel_torque ∗

245) /750 + 10 ;

Task 3

1 int driver_required_brake_torque = (MAX_BRAKE_TORQUE ∗

input_3 . brake_pedal_percentage ) / 100 ;
2 edge_32 . dr iver_required_brake_torque =

driver_required_brake_torque ;
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3 edge_39 . dr iver_required_brake_torque =
driver_required_brake_torque ;

4 edge_310 . dr iver_required_brake_torque =
driver_required_brake_torque ;

5 edge_311 . dr iver_required_brake_torque =
driver_required_brake_torque ;

6 edge_312 . dr iver_required_brake_torque =
driver_required_brake_torque ;

Task 4

1 int wheel_1_speed_rpm = (MAX_RPM ∗

input_4 . wheel_1_speed_rpm_percentage ) / 100 ;
2 int wheel_2_speed_rpm = (MAX_RPM ∗

input_4 . wheel_2_speed_rpm_percentage ) / 100 ;
3 int wheel_3_speed_rpm = (MAX_RPM ∗

input_4 . wheel_3_speed_rpm_percentage ) / 100 ;
4 int wheel_4_speed_rpm = (MAX_RPM ∗

input_4 . wheel_4_speed_rpm_percentage ) / 100 ;
5
6 double vehicle_speed_mps = ( wheel_1_speed_rpm +

wheel_2_speed_rpm + wheel_3_speed_rpm +
wheel_4_speed_rpm )

7 ∗ WHEEL_RADIOUS ∗ 2 ∗ 3 .14 / 1000 / 60 / 4 ;
8
9 edge_45 . wheel_1_speed_rpm = wheel_1_speed_rpm ;

10 edge_45 . vehicle_speed_mps = vehicle_speed_mps ;
11 edge_46 . wheel_2_speed_rpm = wheel_2_speed_rpm ;
12 edge_46 . vehicle_speed_mps = vehicle_speed_mps ;
13 edge_47 . wheel_3_speed_rpm = wheel_3_speed_rpm ;
14 edge_47 . vehicle_speed_mps = vehicle_speed_mps ;
15 edge_48 . wheel_4_speed_rpm = wheel_4_speed_rpm ;
16 edge_48 . vehicle_speed_mps = vehicle_speed_mps ;

Task 5

1 edge_59 . vehicle_speed_mps = edge_45_copy . vehicle_speed_mps ;
2
3 double wheel_1_slip = ( edge_45_copy . vehicle_speed_mps −

edge_45_copy . wheel_1_speed_rpm ∗ WHEEL_RADIOUS ∗ 2 ∗

3 .14 / 60 / 1000) / edge_45_copy . vehicle_speed_mps ;
4 i f (0 <= wheel_1_slip )
5 {



6 edge_59 . wheel_1_slip = wheel_1_slip ;
7 } else {
8 edge_59 . wheel_1_slip = 0 ;
9 }

Task 9

1 int abs_brake_torque = −1;
2 i f ( (10 <= edge_59_copy . vehicle_speed_mps ∗3600/1000) && ( 0 . 2

< edge_59_copy . wheel_1_slip ) )
3 {
4 abs_brake_torque = 0 ;
5 } else {
6 abs_brake_torque = edge_39 . dr iver_required_brake_torque /

4 ;
7 }
8 output_9 . el_signal_brake_motor_1 = ( abs_brake_torque ∗

245) /750 + 10 ;





Appendix D

Brake-by-wire application with task

duplication: tasks

In this appendix the calculations’ sections of the tasks are listed. Task 5, 6 and 7
are omitted due to their similarity to task 4.

Task 1

1 int driver_required_brake_torque = (MAX_BRAKE_TORQUE ∗

input_1 . brake_pedal_percentage ) / 100 ;
2 edge_1 . dr iver_required_brake_torque =

driver_required_brake_torque ;

Task 2

1 int wheel_torque = −1;
2 int dr ive r_requ i red_throt t l e_torque = (MAX_THROTTLE_TORQUE

∗ input_2 . thrott l e_peda l_percentage ) / 100 ;
3 i f (MAX_BRAKE_TORQUE/10 >

edge_1 . dr iver_required_brake_torque )
4 {
5 wheel_torque = dr iver_requ i red_throt t l e_torque / 4 ;
6 } else {
7 wheel_torque = 0 ;
8 }
9 output_2 . e l_s ignal_tract ion_motor = ( wheel_torque ∗

245) /750 + 10 ;

Task 3

1 int wheel_1_speed_rpm = (MAX_RPM ∗

input_3456 . wheel_1_speed_rpm_percentage ) / 100 ;
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2 int wheel_2_speed_rpm = (MAX_RPM ∗

input_3456 . wheel_2_speed_rpm_percentage ) / 100 ;
3 int wheel_3_speed_rpm = (MAX_RPM ∗

input_3456 . wheel_3_speed_rpm_percentage ) / 100 ;
4 int wheel_4_speed_rpm = (MAX_RPM ∗

input_3456 . wheel_4_speed_rpm_percentage ) / 100 ;
5
6 double vehicle_speed_mps = ( wheel_1_speed_rpm +

wheel_2_speed_rpm + wheel_3_speed_rpm +
wheel_4_speed_rpm )

7 ∗ WHEEL_RADIOUS ∗ 2 ∗ 3 .14 / 1000 / 60 / 4 ;
8
9 edge_34 . wheel_1_speed_rpm = wheel_1_speed_rpm ;

10 edge_34 . vehicle_speed_mps = vehicle_speed_mps ;

Task 4

1 double wheel_1_slip = ( edge_34 . vehicle_speed_mps −
edge_34 . wheel_1_speed_rpm ∗ WHEEL_RADIOUS ∗ 2 ∗ 3 .14 /
60 / 1000) / edge_34 . vehicle_speed_mps ;

2 i f (0 > wheel_1_slip )
3 {
4 wheel_1_slip = 0 ;
5 }
6
7 int abs_brake_torque = −1;
8 i f ( (10 <= edge_34 . vehicle_speed_mps ∗3600/1000) && ( 0 . 2 <

wheel_1_slip ) )
9 {

10 abs_brake_torque = 0 ;
11 } else {
12 abs_brake_torque = edge_1 . dr iver_required_brake_torque /

4 ;
13 }
14 output_4 . el_signal_brake_motor_1 = ( abs_brake_torque ∗

245) /750 + 10 ;
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