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Abstract

This paper describes several techniques designed to improve
protocol latency, and reports on their effectiveness when
measured on a modern RISC machine employing the DEC
Alpha processor. We found that the memory system—which
has long been known to dominate network throughput—is
also a key factor in protocol latency. As a result, improving
instruction cache effectiveness can greatly reduce protocol
processing overheads. An important metric in this context is
the memory cycles per instructions (mCPI), which is the av-
erage number of cycles that an instruction stalls waiting for
a memory access to complete. The techniques presented in
this paper reduce the mCPI by a factor of 1.35 to 5.8. In an-
alyzing the effectiveness of the techniques, we also present
a detailed study of the protocol processing behavior of two
protocol stacks—TCP/IP and RPC—on a modern RISC pro-
cessor.

1 Introduction

Communication latency is often just as important as through-
put in distributed systems, and for this reason, researchers
have analyzed the latency characteristics of common net-
working protocols, such as TCP/IP [15, 6, 14] and RPC [32].
This paper revisits the issue of protocol latency. Our goal is
not to optimize a particular protocol stack, but rather, to un-
derstand the fundamental limitationson processing overhead.
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In doing so, this paper goes beyond the earlier work in three
important ways:

� Updated Study: It studies protocol latency on a mod-
ern RISC architecture—the 64-bit DEC Alpha—and in
doing so, updates earlier studies that were performed on
the x86 architecture. This is important because the dif-
ferent design tradeoffs applied to CISC and RISC de-
signs typically lead to qualitative differences in process-
ing behavior.

� New Techniques: It describes and evaluates a new set
of techniques that are designed to improve protocol la-
tency. These techniques are targeted not so much at re-
ducing the number of instructions executed to process
each packet, but more at the number of cycles that each
instruction takes.

� Detailed Analysis: It contains a level of detail not
found in other studies. In particular, it reports on
instruction-cache (i-cache) effectiveness, as well as on
processor stall rates. The bottom-line is that we eval-
uate protocol latency in terms of memory cycles per in-
struction (mCPI), a metric that will become increasingly
important as improvements in memory speed lag farther
behind improvements in processor speed [5, 29].

It should be clear from these three points that memory
bandwidth—and in particular, the memory cycles required by
each instruction—is a central focus of this paper. In fact, the
experimental results presented in this paper show that the dif-
ference between the worst- and best-case mCPI that we were
able to measure is a factor of 3.9 for the TCP/IP stack, and
a factor of 5.8 for an RPC stack. The techniques we propose
are primarily targeted at improving the mCPI, although some
also have a positive effect on the instruction count.

Because these techniques are aimed at improving the
mCPI of networking software, they are necessarily fine-
grain. To be more precise, they can all be characterized as
compiler-based techniques. As such, one might ask if they
are specific to networking code, or if they are applicable to
general applications (e.g., SPECmark code). The answer is
that while it is likely that these techniques are of some bene-
fit to application programs, they are motivated by the unique



characteristics of networkingsoftware (specifically) and low-
level systems code (more generally). For example, exception
handling and other infrequently executed code often makes
up a large portion of the critical execution paths in network-
ing software. One of our techniques (outlining) exploits this
fact. Also, execution in layered networking software often
results in deep call chains and since each function call is typ-
ically an optimization barrier, in limited context available to
the compiler’s optimizer. A technique called (path-inlining)
attacks these two problems. As a final example, networking
software is designed to handle a wide range of situations, but
once a connection is established, it is often possible to spe-
cialize the code for that particular connection. A technique
called (cloning) addresses this issue.

Note that this works focuses on networking code as cur-
rently deployed, that is, for code written in C. We do not pro-
pose a new programming language or paradigm for protocol
implementation, although we observe that some of the pro-
posed techniques have also proven useful in alternative pro-
tocol implementation languages [4].

The paper is organized as follows. Section 2 sets the con-
text in which this research was performed. In doing so, it
expands earlier studies on TCP/IP latency with results for a
modern RISC machine. Section 3 describes and discusses the
latency improvement techniques which are then evaluated in
Section 4. Section 5 offers some concluding remarks.

2 Preliminaries

This section sets the context in which this research was per-
formed. It first describes the experimental testbed, and then
updates earlier TCP/IP results reported in [6] with measured
results for a modern RISC workstation. This update also pro-
vides evidence that the base case used in later sections is
sound, that is, it is representative of the behavior of commer-
cial TCP/IP implementations.

2.1 Experimental Testbed

The hardware used for all tests consists of two DEC 3000/600
workstations connected over an isolated 10Mbps Ethernet.
These workstations use the 21064 Alpha CPU running at
175MHz [30]. The CPU is a 64-bit wide, super-scalar de-
sign that can issue up to two instructions per cycle. In prac-
tice, there are very few opportunities to dual issue pure inte-
ger code. For integer-only systems code, it is therefore more
accurate to view the CPU as a single-issue processor.

The memory system features split primary i- and d-caches
of 8KB each, a unified 2MB second-level cache (backup-
cache, or b-cache), and 64MB of main memory. All caches
are direct-mapped and use 32-byte cache blocks. For the i-
cache, this implies that a cache block holds 8 instructions.
Memory read accesses are non-blocking, which is important
since it implies that there is not necessarily a direct relation-
ship between the number of misses and the number of CPU

stall cycles induced by these misses. This is because non-
blocking loads make it possible to overlap memory accesses
with useful computation. The memory system interface is
128 bits wide and the lmbench [20] suite reports a memory
access latency of 2, 10, and 48 cycles for a d-cache, b-cache,
and main-memory accesses, respectively. When executing
straight-line code out of the b-cache, the CPU can sustain an
execution rate of 8 instructions per 13 cycles [10].

Unless noted otherwise, all software was implemented in
a minimal stand-alone version of the x-kernel [13]. The en-
tire test runs in kernel mode (no protection domain crossings)
and without virtual memory. The kernel is so small that it fits
entirely into the b-cache and, unless forced (as in some of the
tests), there are no b-cache conflicts. All code was compiled
using a version of gcc 2.6.0 that was modified to support out-
lining [31]. While we started with the regular x-kernel dis-
tribution, we did apply some modifications in the process of
porting it to the Alpha. These modification, which are de-
scribed in detail elsewhere [22], are summarized below:

� D-cache optimizations: First, data structures were
reorganized to minimize compiler-introduced padding
and to co-locate structure members that are accessed to-
gether. Second, the kernel was adapted to use continu-
ations [8] and stacks that are first-class objects so as to
minimize the number of stacks in use and to allow man-
aging them in a cache-friendly last-in-first-out manner.
Third, the hash-table manager was changed to allow ef-
ficient visiting of all table-elements. This obviates the
need for TCP to maintain some of its state in multiple
representations, thus reducing TCP’s d-cache footprint.

� Conditional and careful inlining: Conditional inlining
is a technique that allows inlining a function provided
that a subset of the function’s actual arguments is con-
stant. This allows generating inline code for the sim-
ple cases without forcing inlining for the complex cases
where the resulting code inflation would be unaccept-
ably large. Careful inlining limits the use of inlining to
the cases that will result in improved performance even
for latency sensitive code. This is in contrast to the blind
inlining that is often used when optimizing execution in
tight loops.

� Fixing machine idiosyncrasies: The LANCE [1] Eth-
ernet adapter present in the test machines employs
a DMA engine that results in memory being used
sparsely: every two bytes of data is followed by a 2
byte gap. The Universal Stub Compiler [24] was used
to allow accessing such memory efficiently and conve-
niently. Also, the Alpha architecture does not support
sub-word load and store operations. The critical-path
code size of TCP was dramatically reduced by chang-
ing a few type declarations to use full words instead of
sub-words. The resulting increase in d-cache footprint
was very modest so that the change was well warranted.



2.2 Test Protocols

As the goal of this research is to test a set of latency im-
proving techniques on protocol stacks that are representative
of networking code, we use two protocol stacks that differ
greatly in design and implementation: a conventional TCP/IP
stack and a generic RPC stack. TCP/IP was chosen primarily
because of its ubiquitous nature that facilitates comparison
with other work on latency-oriented optimizations. In con-
trast, the RPC stack is a model case for the x-kernel paradigm
that encourages decomposing networking functionality into
many small protocols.

The organization of the two protocol stacks is shown in
Figure 1. The left side shows the TCP/IP stack. At the top is
TCPTEST, a simple, ping-pongtest program. Below are TCP
and IP which are the x-kernel versions of the correspond-
ing Internet protocols [28, 27]. The x-kernel implementa-
tion of TCP is based on BSD source code so, except for in-
terface changes, they are identical. VNET is a virtual pro-
tocol [23] that routes outgoing messages to the appropriate
network adapter. In BSD-derived implementations, VNET
is normally part of IP. ETH is the device-independent half of
the Ethernet driver, whereas LANCE is the device-dependent
half for the network adapter present in the DEC 3000 ma-
chine.
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VNET

ETH

LANCE LANCE

ETH

VNET

IP
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BID

CHAN

VCHAN

MSELECT

XRPCTEST

Figure 1: Test Protocol Stacks

The right side of Figure 1 shows the RPC stack. It imple-
ments a remote procedure call facility similar to Sprite RPC
[25]. Since the x-kernel-paradigm encourages stacks with
many small (minimal) protocols, RPC is considerably taller
than TCP/IP. At the top is XRPCTEST, which is the RPC-
equivalent of the ping-pong test implemented in TCPTEST.
MSELECT, VCHAN, CHAN, BID and BLAST together pro-
vide the desired RPC semantics. A detailed description of
these protocols can be found in [23].

2.3 Base Case

We first establish that the base case used in later sections is
sound. To do this, we compare the x-kernel TCP/IP stack
with the one implemented in DEC Unix v3.2c. While there
is always room for improvement, the Unix implementation
qualifies as well-optimized code.

Because of large structural differences between the two
implementations, it is not meaningful to compare end-to-end
numbers. For example, on Unix, network communication in-
volves crossing the user-kernel boundary whereas in the x-
kernel, all execution is in kernel mode. Instead, we compare
TCP/IP input processing, which is almost identical for the
two cases. The necessary data was collected by instrument-
ing both kernels with a tracing facility. This facility allows
collecting instruction traces of actual working code.1 Com-
bined with execution times obtained using the CPU’s cycle
counter, this allows a detailed comparison of processing over-
heads. It also provides us with the opportunity to update [6]
with results for a modern RISC workstation.

The results reported in Table 1 are for the case where a
one byte TCP segment arrives on a bi-directional connec-
tion. This is in contrast to [6] where the focus was on uni-
directional connections (as is the case for an ftp transfer, for
example). Using a bi-directional connection is more realistic
to measure latency since if data flows in only one direction, it
is usually possible to send large packets, and for large pack-
ets, processing time is dominated by data-dependent costs
[7]. In contrast, with a request-response style of communi-
cation, small, latency-sensitive messages are quite common.

The distinction between uni- and bi-directional data con-
nections matters for two reasons. First, with a bi-directional
connection, both end-hosts perform sender and receiver-
related house-keeping. With a unidirectional connection,
each host performs one function, but not the other. Sec-
ond, the DEC Unix implementation uses header-prediction
[6]. This is an optimization primarily targeted at improving
latency. Unfortunately, TCP header-prediction works only
for uni-directional connections. The result is that for a bi-
directional connection—which is the case for which latency
is most critical—header prediction slightly worsens latency.
However, with less than a dozen additional instructions exe-
cuted, the slow down is not significant.

Architecture: 80386 Alpha
TCP/IP implementation: [6]: Unix Improved:

v3.2c: x-kernel:
# of instruction executed:: :

: : : in ipintr: 57 248
: : : in tcp input: 276 406

: : : from IP to TCP input: 262 437
: : : from TCP to socket input: 1188 1004

CPI: 4.3 3.3

Table 1: Comparison of TCP/IP Implementations

1The traces are available via anonymous ftp from
ftp://cage.cs.arizona.edu/pub/davidm/tcpip.



The first row in Table 1 shows the number of instruc-
tions executed in function ipintr (IP input processing).
The second row gives the number of instructions executed in
tcp input after the TCP control block has been found (i.e.,
after function in pcblookup has returned). The IP count
for the 80386 processor was taken directly from [6]. The TCP
input processing count of 276 instructions was arrived at by
adding both the sender side and the receiver side costs, as well
as the common path cost reported in [6] (154 instructions for
the common path, 15 + 17 additional instructions for the re-
ceive side processing, and 9+20+17+44additional instruc-
tions for the sender side processing). The DEC Unix numbers
were measured as described above. Since the x-kernel source
code is organized differently, it is not possible to report cor-
responding x-kernel numbers.

First, consider the results for tcp input. The DEC Unix
trace is roughly 50% longer than the 80386 count. Such a
code inflation is not uncommon when converting CISC code
to RISC code, especially considering that the traced Alpha
code does not have sub-word loads and stores available [3].
Second, comparing theipintr results, we notice that IP in-
put processing on the Alpha appears to be more than a fac-
tor of four longer than on the 80386. We believe this to be
more an artifact of how the counting was performed rather
than a real difference. For example, the DEC Unix imple-
mentation has the IP header checksum inlined. This artifi-
cially inflates the ipintr count by 42 instructions. Even
though the checksum alone does not fully explain the large
discrepancy, it serves to illustrate that it is probably not a
good idea to count instructionsexecuted in a specific function
since such a count depends heavily on implementation details
(e.g., amount of inlining). Instead, we suggest to count the
number of instructions required to complete an entire task.
This also makes it easier to compare different implementa-
tions of the same protocol stack.

Thus, to compare IP processing between Unix and the x-
kernel, we counted the number of instructions executed be-
tween the point where an incoming packet enters IP and the
point where it enters TCP. For BSD-derived implementa-
tions, this covers the instructions executed from the point
whereipintr is called up to the point wheretcp input is
called. The corresponding x-kernel functions are ipDemux
and tcpDemux. Similarly, for TCP we counted the number
of instructions executed between entering TCP and the point
where data is delivered to the layer above TCP. For BSD-
derived implementations, this is the code executed between
the calls totcp input andsowakeup. The corresponding
x-kernel calls are tcpDemux and clientStreamDemux.
Equivalent counts for the 80386 are not available.

As the third and fourth rows in Table 1 illustrate, DEC
Unix is doing a little better during IP processing while the
x-kernel implementation is better during TCP processing.
Overall, the two traces have almost the same length (1450
versus 1441). As the last row shows, the average number of
cycles required to execute each instruction (CPI) is 3.3 for

the x-kernel and 4.3 for Unix, so in terms of actual execution
time, the x-kernel is quite a bit faster. The important point,
however, is that the similarity in code-path length provides
evidence for the claim that the x-kernel TCP/IP implemen-
tation is indeed representative of production-quality imple-
mentations.

3 Latency Reducing Techniques

This section describes three techniques that we evaluated as
a means to reduce protocol-processing latency. Unlike many
other optimization techniques that improve execution speed
by reducing the number of instructions executed, these tech-
niques are primarily targeted at reducing the cost for each in-
struction.

3.1 Outlining

As the name suggests, outlining is the opposite of inlining.
It exploits the fact that not all basic blocks in a function are
executed with equal frequency. For example, error handling
in the form of a kernel panic is clearly expected to be a low-
frequency event. Unfortunately, it is rarely possible for a
compiler to detect such cases based only on compile-time in-
formation. In general, basic blocks are generated simply in
the order of the corresponding source code lines. For exam-
ple, the sample C source code shown on the left is often trans-
lated to machine code of the form shown on the right:

:
: load r0,(bad_case)

if (bad_case) { jump_if_0 r0,good_day
panic("bad day"); load_addr a0,"bad day"

} call panic
printf("good day"); good_day:

: load_addr a0,"good day"
call printf

:

The above machine code is suboptimal for two reasons: (1)
it requires a jump to skip the error handling code, and (2) it
introduces a gap in the i-cache if the block size is larger than
one instruction. A taken jump often results in pipeline stalls
and i-cache gaps waste memory bandwidth because useless
instructionsare loaded into the cache. This can be avoided by
moving error handling code out of the main line of execution,
that is, by outlining error handling code. For example, error
handling code could be moved to the end of the function or
to the end of the program.

Outlining traditionally has been associated with profile-
based optimizers [12, 26]. Profile-based optimizers are ag-
gressive rather than conservative—any code that is not cov-
ered by the collected profile will be outlined. They also make
it difficult to map the changes back to the source code level,
so it is not easy to verify that a collected profile is indeed
(sufficiently) exhaustive. Finally, relatively simple changes
to the source code may require collecting a new profile all



over again. The main advantage of profile-based optimizing
is that it can be easily automated.

Due to the above drawbacks and the unique opportuni-
ties present in networking and low-level systems code, our
outlining approach is language-based and conservative. Be-
ing conservative, it may miss outlining opportunities and be
less effective than a profile-based approach. However, sys-
tems code is unique in that it contains much code that can
be outlined trivially. For example, it is not uncommon to
find functions that contain up to 50% error checking/handling
code. Just outlining these obvious cases can result in dra-
matic code-density improvements. Since the approach is lan-
guage based, the source code explicitly indicates what por-
tions of the code get outlined. That is, outlining gives full
control to the systems programmer.

We modified the GNU C compiler such that if-statements
can be annotated with a static prediction as to whether the
if-conditional will mostly evaluate to TRUE or FALSE. If-
statements with annotations will have the machine code for
the unlikely branch generated at the end of the function. Un-
annotated if-statements are translated as usual. With this
compiler-extension, the code on the left is translated into the
machine code on the right:

:
: load r0,(bad_case)

if (bad_case @ 0) { jump_if_not_0 r0,bad_day
panic("bad day"); load_addr a0,"good day"

} call printf
printf("good day"); continue:

: :
return_from_function

bad_day:
load_addr a0,"bad day"
call panic
jump continue

Note that the if-conditional is followed by an @0 annota-
tion. This tells the compiler that the expression is expected
to evaluate to FALSE most of the time. In contrast, the anno-
tation@1would mark a mostly-TRUE expression. For porta-
bility and readability, these annotations are normally hidden
in C pre-processor macros.

The above machine code avoids the taken jump and the i-
cache gap at the cost of an additional jump in the infrequent
case. Corresponding code will be generated for if-statements
with an else-branch. In that case, the static number of jumps
remains the same, however. It is also possible to use if-
statement annotations to direct the compiler’s optimizer. For
example, it would be reasonable to give outlined code low-
priority during register allocation. Our present implementa-
tion does not yet exploit this option.

As alluded to before, outlining should not be applied
overly aggressively. In practice, we found the following three
cases to be good candidates for outlining:

1. Error handling. Any kind of expensive error handling
can be safely outlined. Error handling is expensive, for

example, if it requires a reboot of the machine, console
I/O, or similar actions.

2. Initialization code. Any code along the critical path of
execution that is executed only once (e.g., at system
startup) can be outlined.

3. Unrolled loops. The latency sensitive case usually in-
volves so little data processing that unrolled loops are
never entered. If there is enough data for an unrolled
loop to be entered, execution time is typically domi-
nated by data-dependent costs, so that the additional
overheads due to outlining are insignificant.

We found that outlining alone does not make a huge dif-
ference in end-to-end latency. However, the code density im-
provements that it achieves are essential to the effectiveness
of the next two techniques: cloning and path-inlining.

3.2 Cloning

Cloning involves creating a copy of a function. The cloned
copy can be relocated to a more appropriate address and/or
optimized for a particular use. For example, if the TCP/IP
path is executed frequently, it may be desirable to pack the
involved functions as tightly as possible. The resulting in-
crease in code-density can improve i-cache, TLB, and paging
behavior. The longer cloning is delayed, the more informa-
tion is available to specialize the cloned functions. For exam-
ple, if cloning is delayed until a TCP/IP connection is estab-
lished, most connection state will remain constant and can be
used to partially evaluate the cloned function. This achieves
similar benefits as code synthesis [17]. Just as for inlining,
cloning is at odds with locality of reference. Cloning at con-
nection creation time will lead to one cloned copy per con-
nection, while cloning at protocol stack creation time will re-
quire only one copy per protocol stack. By choosing the point
at which cloning is performed, it is possible to tradeoff local-
ity of reference with the amount of specialization that can be
applied.

Cloning can be considered the next logical step following
outlining—the latter improves (dynamic) instruction density
within a function, while the former achieves the same across
functions. Figure 2 summarizes the effects that outlining and
cloning have on the i-cache footprint. The left column shows
many small i-cache gaps due to infrequently executed code.
As shown in the middle column, outlining compresses fre-
quently executed code and moves everything else to the end
of the function. The right column shows that cloning leads
to a contiguous layout for clone A and clone B. Note that this
particular example assumes that the clones and the original
functions can share the outlined code. Whether this is possi-
ble depends on architectural details. For the Alpha, sharing
is normally possible. Where sharing is not possible, cloning
places a copy of the outlined code behind all the frequently
executed code.
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Figure 2: Effects of Outlining and Cloning

We implemented runtime cloning as a means to allow flex-
ible experimentation with various function positioning algo-
rithms. Cloning currently occurs when the system is booted
(not when a connection is established) and supports only very
simple code specialization. Code specialization is specific to
the Alpha architecture and is targeted at reducing function
call overheads. In particular, under certain circumstances, the
Alpha calling convention allows us to skip the first few in-
structions in the function prologue. Similarly, if a caller and
callee are spatially close, it is possible to replace a jump to
an absolute address with a PC-relative branch. This typically
avoids the load instruction required to load the address of the
callee’s entry point and also improves branch-prediction ac-
curacy.

We experimented extensively with different layout strate-
gies for cloned code. We thought that, ideally, it should be
possible to avoid all i-cache conflicts along a critical path
of execution. With a direct-mapped i-cache, the starting ad-
dress of a function determines exactly which i-cache blocks
it is going to occupy [19]. Consequently, by choosing appro-
priate addresses, it is possible to optimize i-cache behavior
for a given path. The cost is that this fine-grained control of
function-placement occasionally makes it necessary to intro-
duce gaps between two consecutive functions (sometimes it
is possible to fill a gap with another function of the appropri-
ate length). Gaps have the obvious cost of occupying main
memory without being of any direct use. More subtly, if i-
cache blocks are larger than one instruction, fetching the last
instructions in a functionwill frequently result in part of a gap
being loaded into the i-cache as well, thereby wasting mem-
ory bandwidth.

We devised a tool employing simple heuristics that, based
on a trace-file, computed a layout that minimizes replacement
misses without introducing too many additional gaps. We

call this approach micro-positioning because function place-
ment is controlled down to size of an individual instruction.
I-cache simulation results were encouraging—it was possible
to reduce replacement misses by an order of magnitude (from
40, down to 4), while introducing only four or five new cold
misses due to gaps.

However, when performing end-to-end measurements, a
much simpler layout strategy consistently outperformed the
micro-positioning approach. The simpler layout strategy
achieves what we call a bipartite layout. Cloned functions
are divided into two classes: path functions that are executed
once and library functions that are executed multiple times
per path invocation. There is very little benefit in keeping
path functions in the cache after they executed, as there is no
temporal locality unless the entire path fits into the i-cache. In
contrast, library functions should be kept cached startingwith
the first and ending with the last invocation. Based on these
considerations it makes sense to partition the i-cache into a
path partition and a library partition. Within a partition, func-
tions are placed in the order in which they are called. Such
a sequential layout maximizes the effectiveness of prefetch-
ing hardware that may be present. This layout strategy is so
simple that it can be computed easily at runtime—the only
dynamic information required is the order in which the func-
tions are invoked. In essence, computing a bipartite layout
consists of applying the well-known “closest-is-best” strat-
egy to the library and path partition individually [26].

Establishing the performance advantage of the bipartite
layout relative to the micro-positioning approach is diffi-
cult since small changes to the heuristics of the latter ap-
proach resulted in large performance variations. The micro-
positioning approach usually performed somewhat worse
than a bipartite layout and sometimes almost equally well, but
never better. It is not entirely obvious why this is so and it
is impossible to make any definite conclusions without even
more fine-grained simulations, but we have three hypotheses.
First, micro-positioning leads to a non-sequential memory
access pattern because a cloned function is positioned wher-
ever it fits best, that is, where it incurs the minimum number
of replacement misses. It may be this nearly random access
pattern that causes the overall slowdown. Second, the gaps
introduced by the micro-positioning approach do cost extra
memory bandwidth. This hypothesis is corroborated by the
fact that we have not found a single instance where aligning
function entry-points or similar gap-introducing techniques
would have improved end-to-end latency. Note that this is
in stark contrast with the findings published in [11], where i-
cache optimization focused on functions with a very high de-
gree of locality. So it may be that micro-positioning suffers
because of the memory bandwidth wasted on loading gaps.
Third, the DEC 3000/600 workstations used in the experi-
ments employ a large second-level cache. It may be the case
that the initial i-cache misses also missed in the second-level
cache. On the other hand, i-cache replacement misses are al-
most guaranteed to result in a second-level cache hit. Thus,



it is quite possible that 36 replacement misses were cheaper
than four or five additional cold misses introduced by micro-
positioning.

Despite the unexpected outcome, the above result is en-
couraging. In order to improve i-cache performance, it is not
necessary to compute an optimal layout—a simple layout-
strategy such as the bipartite layout appears to be just as good
(or even better) at a fraction of the cost. We would like to
emphasize that the bipartite layout strategy may not be ap-
propriate if all the path and library functions can fit into the
i-cache. If it is likely that the path will remain cached be-
tween subsequent path-invocations, it is better to use a sim-
ple linear allocation scheme that allocates functions strictly in
the order of invocation, that is, without making any distinc-
tion between library and path functions. This is a recurrent
theme for cache-oriented optimizations: the best approach
for a problem that fits into the cache is often radically differ-
ent from the best one for a problem that exceeds the cache
size.

3.3 Path-Inlining

The third latency reducing technique is path-inlining. This
is an aggressive form of inlining where the entire latency-
sensitive path of execution is inlined to form a single func-
tion. Since the resulting code is specific for a single path,
this is warranted only if the path is executed frequently. It
is important to limit inlining to path-functions: by definition,
library-functions are used multiple times during a single path
executions, so it is better to preserve the locality of reference
that they afford. Also, inlining library-functionswould likely
lead to an excessive growth in code size.

The advantage of path-inliningis that it removes almost all
call overheads and greatly increases the amount of context
available to the compiler for optimization. For example, in
the x-kernel’s VNET protocol, output processing consists of
simply calling the next lower layer’s output function. With
path-inlining, the compiler can trivially detect and eliminate
such useless call overheads.

While path-inlining is easy in principle, the practical prob-
lem is quite difficult. None of the common C compilers are
able to inline code across module boundaries (object files).
There are tools available that assist in doing so, but the ones
that we experimented with were not reliable enough to be of
much use. While it should not be very difficult to add cross-
module inlining to an existing C compiler, in our case it ap-
peared more effective to apply the require transformations
manually.

We applied path-inlining to both the TCP/IP and the RPC
stacks. In the TCP/IP case, this resulted in collapsing the en-
tire stack into two large functions: one for input processing
and one for output processing. Roughly the same applies for
the RPC stack, although the split is slightly different: one
function takes care of all the processing in protocols XRPC-
TEST, MSELECT, VCHAN as well as the output processing

in CHAN and the protocols below it, whereas the other func-
tion handles all input processing up to the CHAN protocol.

3.4 Support for Paths

The second two techniques described in this section—
cloning and path-inlining—depend on knowing the exact se-
quence of functions that a given packet is going to traverse.
While this is usually the case for outbound packets, knowing
the path an incoming packet is going to follow is problem-
atic. This is because traditional networking code discovers
the path of execution incrementally and as part of other pro-
tocol processing: a protocol’s header contains the identifier
of the next higher-level protocol, and this higher-level pro-
tocol identifier is then mapped into the address of the func-
tion that implements the appropriate protocol processing. In
other words, processing incoming packets involves indirect
function calls that cannot be inlined in general.

To make cloning and path-inlining work for this impor-
tant case, it is necessary to assume that a packet will follow
a given path, generate path-inlined and cloned code for that
assumed path, and then, at run-time, establish that an incom-
ing packet really will follow the assumed path. We have de-
signed and implemented a new OS, called Scout, that extends
the x-kernel by adding an explicit path abstraction [21]. An
essential component of Scout is a packet classifier that deter-
mines which path a given packet will traverse [2, 18, 33, 9].
Thus, such a system provides exactly the information neces-
sary to use cloning and path-inlining.

4 Evaluation

This section evaluates the techniques presented in the previ-
ous section. It first describes the specific test cases and then
follows with a presentation of end-to-end latency results and
a detailed, trace-based analysis of processing behavior. For
brevity, no throughput measurements are presented but we
note that none of the techniques had a negative effect on it.
In fact, as is commonly the case, the latency improvements
also resulted in a slightly higher throughput.

4.1 Test Cases

Recall that all measurements were performed in the environ-
ment described in Section 2.1. Both the TCP/IP and RPC
stacks were measured in several configurations. The con-
figurations were selected to allow us to gauge the effect of
each technique. An exhaustive measurement of all possible
combinations would have been impractical, so we focus on
the following six version and supply additional data where
needed.

� STD: This is the standard version from Section 2.3.
It uses none of the latency-reducing optimizations de-
scribed in Section 3.



� OUT: Like STD, but includes outlining.

� CLO: Like OUT, but includes cloning (using a bipartite
layout).

� BAD: Like CLO, but cloning has been used to artifi-
cially worsen the i-cache behavior. While not strictly
a worst-case scenario, this version is used to establish
the potential of i-cache effects to influence processing
latency. Specifically, for the TCP stack, version BAD
results in 217 additional i-cache and 110 additional b-
cache misses (relative to CLO, which has 483 i-cache
and 678 b-cache misses). For the RPC stack, it re-
sults in 233 additional i-cache and 14 additional b-cache
misses (relative to CLO with 488 i-cache and 845 b-
cache misses).

� PIN: Like OUT, but includes path-inlining.

� ALL: Like PIN, but cloning (bipartite layout) has been
used to improve i-cache behavior. That is, this version
uses all techniques, and is expected to achieve the best
performance.

Note that path-inlining and cloning require running a
packet classifier on incoming packets since the optimized
code is no longer general enough to handle all possible pack-
ets. Currently, the best software classifiers add an overhead
of about 1 � 4�s per packet [2, 9]. The results presented in
this section do not include the time required to classify pack-
ets. This seems justified since systems commonly use clas-
sifiers to improve functionality, flexibility, and accountabil-
ity [16, 21]. In a system that already makes use of a clas-
sifier, the benefits of cloning and path-inlining are truly the
ones reported below. The same applies for a system that uses
a hardware classifier or a protocol stack that contains an ex-
plicit path-identifier.

4.2 End-to-End Results

TCP and RPC latency was measured by ping-ponging pack-
ets with no payload between a server and a client machine.
Since TCP is stream-oriented, it does not send any network
packets unless there is data to be sent. Thus, the “no pay-
load” case is approximated by sending 1B of data per mes-
sage. For both protocol stacks, the tests result in 64-byte
frames on the wire since that is the minimum frame size
for Ethernet. The reported end-to-end latency is the aver-
age time it took to complete one roundtrip in a test involving
100,000 roundtrips. Time was measured with a clock running
at 1024Hz, thus yielding roughly a 1ms resolution.

For the TCP/IP stack, the optimizations were applied to
both the server and client side. Since the processing on the
server and client side is almost identical, the improvement on
each side is simply half of the end-to-end improvement. For
the RPC stack, the optimizations were restricted to the client
side. On the server side, the configuration yielding the best

performance was used in all measurements (which happened
to be the ALL version). Always running the same RPC server
ensures that the reference point remains fixed and allows a
meaningful analysis of client performance.

TCP/IP RPC
Version Te [�s] � [%] Te [�s] � [%]
BAD 498.8� 0.29 +60.5 457.1� 0.20 +25.1
STD 351.0� 0.28 +12.9 399.2� 0.29 +9.2
OUT 336.1� 0.37 +8.1 394.6� 0.10 +8.0
CLO 325.5� 0.07 +4.7 383.1� 0.20 +4.8
PIN 317.1� 0.03 +2.0 367.3� 0.19 +0.5
ALL 310.8� 0.27 +0.0 365.5� 0.26 +0.0

Table 2: End-to-end Roundtrip Latency

Table 2 shows the end-to-end results. The rows are sorted
according to decreasing latency, with each row giving the
performance of one version of the TCP/IP and RPC stacks.
The performance is reported in absolute terms as the mean
roundtrip time plus/minus one standard deviation, and in rel-
ative terms as the per cent slow-down compared to the fastest
version (ALL). For TCP/IP, the mean and standard deviation
where computed based on ten samples; five samples were
collected for RPC.

As the table shows, the BAD version of the TCP/IP stack
performs by far the worst. With almost 500�s per roundtrip,
it is over 173�s slower than version CLO, which corresponds
to a slowdown of more than 53%. As explained above, the
code in the two versions is mostly identical. The only signif-
icant difference is the layout of that code. This clearly shows
that i-cache effects can have a profound effect on end-to-end
latency.

Row STD shows that the standard x-kernel version of the
protocol stacks has a much better cache behavior than BAD.
That version is slower by about 12.9% for TCP/IP and 9.2%
for RPC. There are two reasons why STD performs relatively
well. First, earlier x-kernel experiences with direct-mapped
caches led to attempts to improve cache performance by man-
ually changing the order in which functions appear within
the object files and by changing the link order. Because of
such manual tuning, the STD version has a reasonably good
cache behavior to begin with. Second, it also appears to be
the case that the function usage pattern in the x-kernel is such
that laying the functions out in the address space in what ba-
sically amounts to a random manner, yields an average per-
formance that is closer to the best case than to the worst case.
This is especially true since in the latency sensitive case, there
are few loops that have the potential for pathological cache-
behavior. Keep in mind, however, that case BAD is possi-
ble in practice unless the cache layout is controlled explicitly.
The techniques proposed in this paper provide sufficient con-
trol to avoid such a bad layout.

Row OUT indicates that outlining works quite well for
TCP/IP—it reduces roundtrip time by about 15�s when com-



pared to STD. Since both the client and the server use outlin-
ing, the reduction on the client side is roughly half of the end-
to-end reduction, or 7:5�s. In contrast, at a 4:6�s savings,
outlining makes a smaller difference to the RPC stack. This
is because TCP consists of a few large functions that han-
dle most of the protocol processing (including connection es-
tablishment, tear-down, and packet retransmission), whereas
RPC consists of many small functions that often handle ex-
ceptional events through separate functions. In this sense,
the RPC code is already structured in a way that handles ex-
ceptional events outside the performance critical code path.
Nevertheless, outlining does result in significantly improved
performance for both protocol stacks.

In contrast, row CLO indicates that cloning works bet-
ter for RPC than for TCP. In the former case, the reduction
on the client side is about 11:5�s whereas in the latter case
the client-side reduction is roughly 5:3�s. This makes sense
since TCP/IP absorbs most of its instruction locality in a few,
big functions, meaning that there are few opportunities for
self-interference. The many-small-function structure of the
RPC stack makes it likely that the uncontrolled layout present
in version OUT leads to unnecessary replacement misses.
Conversely, this means that there are good opportunities for
cloning to improve cache effectiveness.

Path-inlining also appears to work very well for the RPC
stack. Since PIN is the same as version OUT with path-
inlining enabled, it is more meaningful to compare it to the
outlined version (OUT), rather than the next best version
(CLO). If we do so, we find that the TCP/IP client side la-
tency is about 9:5�s and the RPC client side about 27:3� be-
low the corresponding value in row OUT. Again, this is con-
sistent with the fact that the RPC stack contains many more—
and typically much smaller—functions than TCP. Just elim-
inating call-overheads through inlining improves the perfor-
mance of the RPC stack significantly.

Finally, row ALL shows the roundtrip latency of the ver-
sion with all optimizations applied. As expected, it is in-
deed the fastest version. However, the client-side reduction
for TCP/IP compared to PIN is only about 3:1�s and the
improvement in the RPC case is a meager 1:8�s. That is,
with path-inlined code, partitioning library and path func-
tions does not increase performance much further.

While end-to-end latency improvements are certainly re-
spectable, they are nevertheless fractional on the given test
system. It is important to keep in mind, however, that modern
high-performance network adapters have much lower latency
than the LANCE Ethernet adapter present in the DEC 3000
system [1]. To put this into perspective, consider that a
minimum-sized Ethernet packet is 64 bytes long, to which
an 8 byte long preamble is added. At the speed of a 10Mbps
Ethernet, transmitting the frame takes 57:6�s. This is com-
pounded by the relative tardiness of the LANCE controller
itself: we measured 105�s between the point where a frame
is passed to the controller and the point where the “transmis-
sion complete” interrupt handler is invoked. The LANCE

overhead of 47:4�s is consistent with the 51�s figure re-
ported elsewhere for the same controller in an older gener-
ation workstation [32]. Since the latency between sending
the frame and the receive interrupt on the destination system
is likely to be higher, and since each roundtrip involves two
message transmissions, we can safely subtract 105�s� 2 =

210�s from the end-to-end latency to get an estimate of the
actual processing time involved. For example, if we apply
this correction to the TCP/IP stack, we find that version BAD
is actually 186% slower than the fastest version. Even ver-
sion STD is still 40% slower than version ALL.

Table 3 revisits the end-to-end latency numbers, adjusted
to factor out the overhead imposed by the controller and Eth-
ernet. While there will obviously be some additional latency,
one should expect roundtrip times on the order of 50�s rather
than the 210�s measured on our experimental platform.2

TCP/IP RPC
Version Te [�s] � [%] Te [�s] � [%]
BAD 288.8 +186.5 247.1 +59.0
STD 141.0 +40.2 189.2 +21.7
OUT 126.1 +25.1 184.6 +18.7
CLO 115.5 +14.6 173.1 +11.3
PIN 107.1 +6.3 157.3 +1.2
ALL 100.8 +0.0 155.5 +0.0

Table 3: End-to-end Roundtrip Latency Adjusted for Net-
work Controller

4.3 Detailed Analysis

The end-to-end results are interesting to establish global per-
formance effects, but since some of the protocol processing
can be overlapped with network I/O, they are not directly re-
lated to CPU utilization. Also, it is impossible to control all
performance parameters simultaneously. For example, the
tests did not explicitly control data-cache performance. Sim-
ilarly, there are other sources of variability. For example, the
memory free-list is likely to vary from test case to test case
(e.g., due to different memory allocation patterns at startup
time). While not all of these effects can be controlled, most
can be measured.

Towards this end, we collected two additional sets of data.
The first is a set of instruction traces that cover most of the
protocol processing. The second is a set of fine-grained mea-
surements of the execution time of the traced code. The in-
struction traces do not cover all of the processing since the
tracing facility did not allow the tracing of interrupt handling.
Other than that, the traces are complete. For the sake of
brevity, we only summarize the most important results; see
[22] for a more detailed discussion.

2Numbers is this range have been reported in the literature for FDDI and
ATM controllers [7].



TCP/IP RPC
Tp [�s] Length iCPI mCPI Tp [�s] Length iCPI mCPI

BAD 167.0�1.75 4718 1.61 4.58 154.2� 0.47 4253 1.69 4.66
STD 89.6�0.34 4750 1.72 1.58 85.1� 0.53 4291 1.78 1.69
OUT 84.1�0.12 4728 1.61 1.50 81.0� 0.16 4257 1.68 1.65
CLO 77.2�0.36 4684 1.61 1.28 71.0� 0.29 4227 1.69 1.25
PIN 69.9�0.48 4245 1.57 1.31 57.7� 0.18 3471 1.66 1.25
ALL 66.1�0.48 4215 1.57 1.17 49.2� 0.12 3468 1.67 0.81

Table 4: Protocol Processing Costs

4.3.1 Processing Time Measurements

Given the execution traces and timings, it is possible to de-
rive a number of interesting quantities: protocol processing
time, CPI, and, most importantly, the memory CPI (mCPI).
Protocol processing time was measured with the CPU’s cy-
cle counter. Thus, the CPI is obtained by dividing the cycle
count by the trace length. The memory CPI can then be cal-
culated by subtracting the instruction CPI (iCPI). The iCPI
is the average number of cycles spent on each instruction as-
suming a perfect memory system. That is, the stall cycles in
this quantity are purely due to data-dependencies and limi-
tations in the CPU. The iCPI was derived from the instruc-
tion trace by feeding it into a CPU simulator. The simulator is
somewhat crude with respect to branches as it simply adds a
fixed penalty for each taken branch. Other than that, the sim-
ulator has almost perfect accuracy.

The trace-based data is shown in Table 4. Columns Tp
shows the measured processing time in micro-seconds. As
before, this is shown as the sample mean plus/minus the sam-
ple standard deviation. The column labeled Length gives the
trace length as an instruction count. Columns mCPI and iCPI
are the memory and instruction CPI values, respectively.

Looking at the iCPI columns, we find that both the TCP/IP
and RPC stacks break down into three classes: the stan-
dard version has the largest iCPI, the versions using outlin-
ing (BAD, OUT, CLO) have the second largest value, and
the path-inlined versions have the smallest value. This is
expected since the code within each class is largely identi-
cal. Since the CPU simulator adds a fixed penalty for each
taken branch, the decrease in the iCPI as we go from the
standard version to the outlined versions corresponds directly
to the reduction in taken branches. Interestingly, outlining
improves iCPI by almost exactly 0.1 cycles for both proto-
col stacks. This is a surprisingly large reduction consider-
ing that path-inlining achieves a reduction of 0.04 cycles at
the most. We expected that the increased context available
in the inlined versions would allow the compiler to improve
instruction scheduling more. Since this does not seem to be
the case, the performance improvement due to path-inlining
stems mostly from a reduction in the critical-path code size.
Note that even in the best case, the iCPI value is still above
1.5. While some of this can be attributed to suboptimal code
generation on the part of gcc 2.6.0, a more fundamental rea-

son for this large value is the structure of low-level systems
code: the traces show that there is very little actual computa-
tion, but much interpretation and branching.

The mCPI columns in the table show that, except for the
RPC case of ALL, the CPU spends well above 1 cycle per
instruction waiting for memory (on average). Comparing the
mCPI values for the various versions, we find that the pro-
posed techniques are rather effective. Both protocol stacks
achieve a reduction by a factor of more than 3.9 when going
from version BAD to version ALL. Even when comparing
version ALL to STD we find that the latter has an mCPI that
is more than 35% larger. In terms of mCPI reduction, cloning
with a bipartite layout and path-inliningare about equally ef-
fective. The former is slightly more effective for the TCP/IP
stack, but in the RPC case, both achieve a reduction of 0.4
cycles per instruction. Combining the two techniques does
have some synergistic effects for TCP/IP. The additional re-
duction compared to outlining or path-inlining alone is small
though, on the order of 0.11 to 0.14 cycles per instruction. Of
all the mCPI values, the value 0.81 for the ALL version of
the RPC stack clearly stands out. Additional data presented
in [22] leads us to believe that the value is an anomaly: just
small changes to the code lead to mCPI values more in line
with the other results. This serves as a reminder that while the
proposed techniques improve cache behavior, it is nearly im-
possible to achieve perfect control for any reasonably com-
plex system.

4.3.2 Outlining Effectiveness

The results presented so far are somewhat misleading in that
they underestimate the benefits of outlining. While it does
achieve performance improvements in and of itself, it is more
important as an enabling technology for path-inlining and
cloning. Thanks to outlining, the amount of code replication
due to path-inlining and cloning is greatly reduced. Together
with this size reduction goes an increase in dynamic instruc-
tiondensity, that is, less memory bandwidth is wasted loading
useless instructions. This is demonstrated quantitativelywith
the results presented in Table 5. It shows that without out-
lining (STD version), around 20% of the instructions loaded
into the cache never get executed. For both protocol stacks,
outlining reduces this by roughly a factor of 1.4. It is illustra-



tive to consider that a waste of 20% corresponds to 1.8 unused
instructions per eight instructions (one cache block). Outlin-
ing reduces this to about 1.3 unused instructions. This is a
respectable improvement, especially considering that outlin-
ing was applied conservatively.

Without Outlining With Outlining
i-cache i-cache
unused Size unused Size

TCP/IP 21% 5841 15% 3856
RPC 22% 5085 16% 3641

Table 5: Outlining Effectiveness

The table also shows that outlining results in impressive
critical-path code-size reductions. The Size columns show
the static code size (in number of instructions) of the latency
critical path before and after outlining. In the TCP/IP stack,
about 1985 instructions could be outlined, corresponding to
34% of the code. Note that this is almost a full primary
i-cache worth of instructions (8KB). Similarly, in the RPC
stack 28% of the 5085 instructionscould be outlined. This re-
inforces our claim that outliningis a useful technique not only
because of its direct benefits, but also as a means to greatly
improve cloning and path-inlining effectiveness. Minimiz-
ing the size of the main-line code improves cloning flexibility
and increases the likelihood that the entire path will fit into
the cache.

5 Concluding Remarks

Networking system designers have known for some time
that memory bandwidth plays a critical role in end-to-end
throughput. This paper argues that memory bandwidth also is
a major player in protocol processing latency. It demonstrates
this with measurements performed on a modern 64-bit work-
station. While the quantitative results certainly are machine-
specific, it is reasonable to expect that the qualitative conclu-
sions will generalize to most other high-performance RISC-
based systems.

Beyond this basic result, the paper describes three tech-
niques that can be applied to networking code to improve the
latency situation. These techniques have two benefits. First,
they significantly improve execution speed by reducing the
mCPI. Fundamentally, this reduction is achieved by (a) in-
creasing the dynamic instruction stream density, (b) reducing
the number of cache conflicts, and (c) reducing the critical-
path code size. The impact of these techniques will grow
rapidly as the gap between processor and memory speeds
widens. For example, this research was conducted on a ma-
chine with a 175MHz Alpha processor, a 100MB/s mem-
ory system, and a 10Mbps Ethernet. We now also have
in our lab low-cost machines with a 300MHz processor, an
80MB/s memory system, and 100Mbps Ethernet. Second,
even though case BAD reported in Section 4 was constructed

artificially, sub-optimal configurations are possible and not
uncommon in practice. For example, the measured mCPI for
the DEC Unix v3.2c TCP/IP stack is 2.3, which is signifi-
cantly worse than the 1.58 mCPI measured for the standard
x-kernel. The proposed techniques make it relatively easy to
avoid such bad cache behavior. That is, they help improve
the predictability of a system.
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